天然气制备合成气

合集下载

第2章 合成气

第2章 合成气

3、脱碳方法的选择
氨加工的品种
取决于
气化所用原料和方法 后继气体精炼方法 各脱碳方法的经济性
2.2.4.原料气的精炼(CO、CO2、O2、水等)
1、铜氨溶液吸收法 氯化铜氨液 吸 蚁酸铜氨液 收 碳酸铜氨液 液 醋酸铜氨液 (1)、铜液的组成
总量≤10ppm
铜离子浓度(铜比) 氨含量 醋酸浓度 残余CO、CO2(再生液)
3、甲烷化法
互逆 甲烷蒸汽转化 机理分析:
甲烷蒸汽转化机理
CH4 + [ ] ? [CH 2 ]
[CO] [ ] + CO
甲烷化机理
CO + [ ] [CO]
H2
[CH2 ] + H2O [CO] + 2H2
[CO] + [ ] [C ] + [O]
[C] + H2 ? [CH2 ] H2 揪快? CH4 [ ]
CH 4 + H 2O CO + 3H 2
H2O + [ ] [O] + H 2
[O] + H2 ? H2O [ ]
CO2 + [ ] ? [CO2 ]
[CO2 ] + [ ] [CO] + [O* ]
CO + [O] [ ] + CO2
CO + H 2O CO2 + H 2
利用催化剂使CO、CO2加氢生成CH4使气体 精炼的方法,可使CO、CO2&度增加都会造成扩散系数下降
5.活性系数与催化剂用量
活性系数指真实工业条件下的使用活性与标准条件下的比值 催化剂用量:
VK
yCO ,2 dy G CO = r òyCO ,1 xA k

甲醇工业生产工艺

甲醇工业生产工艺

甲醇工业生产工艺
甲醇是一种无色、易溶于水的液体,具有较高的挥发性。

它是一种重要的工业化学品,广泛应用于合成化学品、溶剂和燃料等领域。

以下是甲醇的工业生产工艺的基本步骤:
1. 原料准备:甲醇的主要原料是天然气或煤。

对于天然气,首先将其经过除硫、除硅和除氨等处理步骤,以去除杂质。

对于煤,需要进行煤气化反应,将煤转化为合成气。

2. 合成气制备:合成气是甲醇生产的关键中间产物,由一氧化碳(CO)和氢气(H2)组成。

合成气的制备一般采用催化剂(如铁、镍等)催化煤气化或重整反应,将天然气或煤转化为合成气。

3. 甲醇合成:合成气进一步经过甲醇合成装置,进行甲醇的合成反应。

这个反应过程一般采用催化剂(如氧化锌和铜等)催化,将一氧化碳和氢气进行重整、变换和水合反应,生成甲醇。

4. 分离纯化:合成甲醇含有水、残留气体和其他杂质。

因此需要进行一系列的分离纯化步骤,以去除这些杂质。

首先通过闪蒸分离装置,将甲醇和轻质杂质(如水、甲醛等)分离。

然后通过蒸馏或吸附等方法,进一步纯化甲醇。

5. 储存和包装:纯化后的甲醇经过冷却和储存处理,以保持其稳定性。

然后将甲醇装入适当的容器中,通常是丙烯酸或聚乙烯醇等材料的密封容器中。

以上是甲醇工业生产的基本步骤。

甲醇的工业生产工艺在不同的厂家和地区可能会有所差异,但总体流程是大致相同的。

随着技术的发展,一些新型生产工艺,如生物质转化法和光电催化法等,也在逐渐应用于甲醇的生产过程中,以提高生产效率和降低环境影响。

天然气重整催化剂 空速-概述说明以及解释

天然气重整催化剂 空速-概述说明以及解释

天然气重整催化剂空速-概述说明以及解释1.引言1.1 概述天然气重整催化剂是用于将天然气转化为合成气的关键催化剂。

合成气是一种重要的工业原料,可用于制备合成油、化学品和燃料等。

天然气重整催化剂能够在高温和高压条件下,将天然气中的甲烷和水蒸气进行反应,生成一氧化碳和氢气。

这个反应过程被称为重整反应,是合成气的主要生产方式之一。

天然气重整催化剂的关键成分是镍,它具有良好的催化性能和热稳定性。

该催化剂能够在相对较低的温度下实现高效的重整反应,从而提高合成气的产率和纯度。

同时,天然气重整催化剂还能抑制副反应的发生,提高整个反应过程的选择性,减少能源的浪费和环境污染。

在天然气重整催化剂的选择和设计中,催化剂的空速是一个重要的考虑因素。

空速是指单位时间内通过催化剂床层的气体流量,通常以体积或质量的形式表示。

适当的催化剂空速可以保证反应过程的高效进行,同时避免过高的空速可能引起的催化剂烧结和损耗。

在实际应用中,天然气重整催化剂的空速选择需要综合考虑反应速率、催化剂的性能和设备的限制等多个因素。

过低的空速可能导致催化剂床层内的反应不能充分进行,降低合成气的产率和纯度;而过高的空速则可能引起催化剂颗粒的磨损和催化剂床层的烧结,从而影响催化剂的稳定性和使用寿命。

因此,在天然气重整催化剂的应用和设计中,合理选择和控制催化剂的空速是非常重要的。

通过合适的实验和计算方法,可以确定最佳的催化剂空速范围,以确保反应的高效进行,并实现催化剂的长期稳定运行。

1.2 文章结构文章结构是指将文章的内容按照一定的逻辑顺序进行组织和安排,以确保文章的逻辑性和易读性。

在本文中,我们将按照以下结构组织文章:2.正文2.1 第一个要点在这一部分,我们将介绍天然气重整催化剂的概念、特性和应用。

首先,我们将详细解释天然气重整催化剂的定义和原理,包括其在天然气加工中的重要性和作用。

其次,我们将介绍天然气重整催化剂的组成和结构,包括其常见的载体材料和活性组分。

甲醇生产工艺

甲醇生产工艺

甲醇生产工艺甲醇是一种广泛应用的重要有机化工原料,具有重要的经济价值。

甲醇的生产工艺主要有化石燃料转化、天然气转化、煤转化和生物质转化等几种方法。

以下将介绍一种常见的甲醇生产工艺,即天然气转化工艺。

天然气转化工艺是通过将天然气转化为甲醇。

该工艺的主要原料是天然气,其中含有丰富的甲烷(CH4)。

甲醇生产通常分为三个步骤:天然气净化、合成气制备和甲醇合成。

首先是天然气净化。

天然气中除了甲烷,还含有其他杂质气体,如硫化氢、二氧化碳等。

这些杂质气体会对甲醇合成催化剂有毒,因此需要对天然气进行净化处理。

通常采用物理方法和化学方法相结合的方式进行净化,如冷凝、吸附、催化转化等。

这样可以将天然气中的硫化氢和二氧化碳等杂质气体去除。

接下来是合成气制备。

合成气是甲醇生产的关键原料。

它是通过天然气进行催化转化得到的,主要由一氧化碳(CO)和氢气(H2)组成。

合成气制备过程中,天然气首先经过蒸汽重整反应,将甲烷转化为一氧化碳和氢气。

然后通过变换反应将一氧化碳转化为二氧化碳和氢气,以进一步提高氢气的含量。

最后,通过调整气体比例和精制处理,得到合成气。

最后是甲醇合成。

合成气作为原料,通过催化剂进行催化反应,将一氧化碳和二氧化碳转化为甲醇。

甲醇合成反应一般采用高压催化反应器,通常在200-300℃条件下进行。

反应过程中,合成气中的一氧化碳和二氧化碳在催化剂的作用下发生化学反应,生成甲醇。

甲醇合成反应是一个复杂的反应体系,一般需要多级反应器进行反应。

每一级反应器都要进行中间冷却,以控制反应温度,保证甲醇的合成效果和产量。

甲醇合成反应结束后,需要进行产品分离和净化处理。

通过蒸馏、吸附、冷却等工艺,将甲醇从反应废气、杂质等物质中分离出来。

最终得到高纯度的甲醇产品。

以上就是甲醇生产工艺的简要介绍。

随着能源需求和环境保护意识的提高,甲醇生产工艺也在不断发展和完善,以提高产量、降低能耗和环境污染。

合成气的制备方法

合成气的制备方法

二甲醚原料----合成气合成气的主要组分为CO和H2,可作为化学工业的基础原料,亦可作为制氢气和发电的原料。

经过多年的发展,目前以天然气、煤为原料的合成气制备工艺已很成熟,以合成气为原料的合成氨、含氧化物、烃类及碳一化工生产技术均已投入商业运行。

清洁高效的煤气化联合循环发电系统的成功开发,进一步促进了合成气制备技术的发展。

合成气的用途广泛,廉价、清洁的合成气制备过程是实现绿色化工、合成液体燃料和优质冶金产品的基础。

1合成气的制备工艺根据所用原料和设备的不同,合成气制备工艺可以分为不同的类型,目前大多数合成气制备工艺是以处理天然气和煤这2种原料的工艺为基础发展起来的。

1.1以天然气为原料的合成气制备工艺以天然气为原料制备合成气是一个复杂的反应过程,其主要的反应包括天然气的蒸汽转化反应(1)、部分氧化反应(2)、完全燃烧反应(3)、一氧化碳变换反应(4)和甲烷与二氧化碳重整反应(5)。

CH4+H2O CO+3H2+206 kJ/mol (1)CH4+0·5O2CO+2H2-36 kJ/mol (2)CH4+2O2CO2+2H2O -802 kJ/mol (3)CO+H2O CO2+H2-41 kJ/mol (4)CH4+CO22CO+2H2+247 kJ/mol (5)这几个主要反应的不同组合、不同的实施方式和生产装置,形成了天然气转化制备合成气的多种工艺。

从工艺特征上来讲,目前成熟的天然气转化制备合成气的工艺可分为管式炉蒸汽转化法、部分氧化法和两者的组合方法等三大类。

1.1.1甲烷蒸汽转化甲烷蒸汽转化的代表反应式为(1)。

工业上使用以Ni为活性组分,载体可用硅铝酸钙、铝酸钙以及难熔的耐火氧化物为催化剂,生成的合成气中H2/CO体积比约为3:0,适合于制备合成氨和氢气为主产品的工艺。

此工艺能耗高,燃料天然气约占天然气总用量的1/3,高温下催化剂易失活,设备庞大,投资和操作费用高。

1.1.2甲烷非催化部分氧化甲烷非催化部分氧化的代表反应式为(2)。

化学工艺学 第 2 章 合成气

化学工艺学  第 2 章  合成气
原则:不析碳,原料充分利用,能耗小。
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.5 转化反应工艺流程及转化炉
燃料用天然气 11
8 9 过 热 蒸 汽
5
2
1 3
一段转化
4
二段转化
对流段
7 10 蒸汽 空气 原料天然气 锅炉给水 转化气去变换 6
氢氮气来自合成
天然气蒸汽转化工艺流程
1、钴钼加氢反应器;2、氧化锌脱硫槽;3、对流段;4、辐射段(一段炉);5、二段转化炉;6、第一废热锅炉;7、批二废热 锅炉;8、汽包;9、辅助锅炉;10、排风机;11、烟囱
图解法或迭代法求解x,y
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素

水碳比 反应温度 反应压力
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素

温度增加,甲烷平衡含量下降,反应温度每降低 10℃,甲烷平衡含量约增加1.0%-1.3%;

增加压力,甲烷平衡含量随之增大;
增加水碳比,对甲烷转化有利; 甲烷蒸汽转化在高温、高水碳比和低压下进行有利
立式圆筒,内径约3米,高约13米;壳体材质 为碳钢,内衬不含硅的耐火材料,炉壳外保温。
上部有燃烧空间的固定床绝热式催化反应器。

天然气制备合成气

天然气制备合成气

天然气制备合成气 天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视.天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。

制合成气是间接利用天然气的重要步骤,也是天然气制氢的基础,充分了解天然气制合成气 的工艺与催化剂对于我们进一步研究天然气的利用将有很大帮助.天然气中甲烷含量一般大于90%,其余为小量的乙烷、丙烷等气态烷烃,有些还含有少量氮和硫化物。

其他含甲烷等气态烃的气体,如炼厂气、焦炉气、油田气和煤层气等均可用来制造合成气。

目前工业上有天然气制合成气的技术主要有蒸汽转化法和部分氧化法。

本文主要对蒸汽转化法进行具体的描述,并具体介绍此工艺的发展趋势. 蒸气转化法蒸气转化法是目前天然气制备合成气的主要途径。

蒸汽转化法是在催化剂存在及高温条件下,使甲烷等烃类与水蒸气反应,生成CO H 、2等混合气,其主反应为:2243H CO O H CH +=+,mol /206298KJ H =∆Θ该反应是强吸热的,需要外界供热。

因为天然气中甲烷含量在90%以上,而甲烷在烷烃中热力学最稳定,其他烃类较易反应,因此在讨论天然气转化过程时,只需考虑甲烷与水蒸气的反应。

甲烷水蒸气转化反应和化学平衡甲烷水蒸气转化过程的主要反应有: 2243H CO O H CH +⇔+,mol /206298KJ H =∆Θ222442H CO O H CH +⇔+,mol /165298KJ H =∆Θ222H CO O H CO +⇔+,mol /9.74298KJ H =∆Θ可能发生的副反应主要是析碳反应,它们是:242H C CH +⇔,mol /9.74298KJ H =∆Θ22CO C CO +⇔,mol /5.172-298KJ H =∆ΘO H C H CO 22+⇔+,mol /4.131-298KJ H =∆Θ甲烷水蒸气转化反应必须在催化剂存在下才有足够的反应速率.倘若操作条件不适当,析碳反应严重,生成的碳会覆盖在催化剂内外表面,致使催化剂活性降低,反应速率下降。

合成氨技术的原理和应用

合成氨技术的原理和应用

合成氨技术的原理和应用1. 原理合成氨是一种重要的工业原料,广泛用于农业、化工和能源等领域。

合成氨技术主要通过合成气的反应来制备氨气。

合成气是指由氢气和一氧化碳组成的气体混合物,一般通过以下两种方法得到:1.通过煤炭气化产生合成气。

煤炭气化是将煤炭在高温和高压的条件下与氧气或二氧化碳反应,生成合成气。

2.通过天然气重整产生合成气。

天然气重整是将天然气与水蒸气反应,在催化剂的作用下生成合成气。

合成氨的主要反应是哈柏-卡什反应(Haber-Bosch reaction),反应方程式如下:N2 + 3H2 -> 2NH3该反应发生在高温(400-500摄氏度)和高压(200-350兆帕)的条件下,需要催化剂的存在。

2. 应用合成氨具有广泛的应用领域,以下是一些常见的应用:2.1 农业合成氨被广泛用作农业肥料中的主要原料,用来满足植物对氮素的需求。

合成氨可以作为氨基酸和蛋白质的合成原料,促进作物的生长和发育。

此外,合成氨还可以用于改良土壤质量,提高土地的肥力和农作物的产量。

2.2 化工合成氨被广泛用于化工工业中的生产过程中。

它可以用作制造尿素、硝酸和其他化学品的原料。

合成氨也可以用于制造合成树脂、炸药和染料等化学产品。

2.3 能源合成氨可以用作燃料的替代品,用于替代传统的化石燃料。

合成氨的燃烧产生的废气较少,燃烧效率高,对环境污染较小。

因此,合成氨可以作为清洁能源的一种选择。

2.4 其他应用除了上述应用领域,合成氨还有一些其他的应用。

例如,合成氨可以用作金属表面处理的溶剂,用于清洗、除锈和防腐。

合成氨也可以用作氮化硼和氮化铝等特殊材料的制备。

3. 总结合成氨技术的原理是通过合成气的反应制备氨气,主要反应是哈柏-卡什反应。

合成氨广泛应用于农业、化工和能源等领域,用于制备肥料、化学品以及作为清洁能源的替代品。

此外,合成氨还有一些其他的应用,例如金属表面处理和特殊材料制备等。

通过合成氨技术,我们能满足不同领域对氨气的需求,推动农业发展、化工工业的进步以及环境污染的减少。

甲醇合成的工艺流程和设备

甲醇合成的工艺流程和设备

甲醇合成的工艺流程和设备甲醇是一种重要的化工原料,广泛应用于化工、医药、食品等领域。

甲醇的合成工艺流程主要包括天然气制甲醇和煤制甲醇两种。

以下将以天然气制甲醇为例,介绍甲醇的合成工艺流程和设备。

1. 甲醇合成工艺流程甲醇的合成主要通过气相合成法进行,该方法通过一系列复杂的催化反应将一氧化碳和氢气合成甲醇。

具体的工艺流程如下:- 天然气→天然气净化→变化转换反应→合成气→合成气净化→合成气改质→甲醇合成→甲醇回收2. 甲醇合成设备甲醇合成设备主要包括催化反应器、冷凝器、分离塔等:- 催化反应器:将一氧化碳和氢气催化反应生成甲醇,需要具有较高的反应活性和选择性。

- 冷凝器:用于冷却和凝结合成气中的甲醇,使其形成液体甲醇。

- 分离塔:用于将液体甲醇从残余的气相中分离出来,保证甲醇的纯度和回收率。

3. 甲醇生产过程甲醇生产过程主要包括天然气的催化转变、合成气的制备、甲醇的合成和甲醇的回收等环节。

整个过程需要耗费大量的热能和电能,因此需要具备较为完备的能源设施和配套设备。

总的来说,甲醇的合成工艺流程较为复杂,需要涉及多个催化反应和分离过程,所需要的设备也比较繁杂。

企业在进行甲醇合成生产时,需要充分考虑到工艺流程和设备配置,确保生产过程的高效稳定。

甲醇是一种重要的化学品,其合成工艺的复杂性和对能源的依赖性使得甲醇工业在全球范围内备受关注。

天然气制甲醇是目前全球最为主流的甲醇生产工艺。

下面将详细介绍甲醇的合成工艺流程和设备,以及在甲醇生产过程中可能出现的关键技术和挑战。

4. 甲醇合成过程甲醇的合成工艺主要涉及以下几个过程:4.1 天然气制备合成气首先,天然气需要在天然气净化设备中进行净化处理,去除其中的硫化氢、二氧化碳和水等杂质。

通过石灰石和干燥剂的吸附、脱硫等处理,可使天然气达到合成气制备的要求。

然后,经催化转化反应,天然气中的甲烷和水蒸气进行高温反应,生成一氧化碳和氢气,形成合成气。

4.2 合成气的制备合成气是由一氧化碳和氢气所组成的气体混合物,它是甲醇合成的重要中间产物。

2.合成气

2.合成气
5.
合成天然气、汽油和柴油
CO 3H 2 CH 4 H 2O( SNG)
Ni
煤制合成气通过费托合成可生产液体烃燃料
nCO ( 2n 1) H 2 C2 H 2 n 2 nH 2O
合成气的应用实例

合成气应用新途径
1.
直接合成乙烯等低C烯烃 2CO 4 H 2 C2 H 4 2 H 2O
水蒸气转化法 在高温和催化剂存在下,烷烃与水蒸气反应生 产合成气的方法称为水蒸气转化法。当以天然气为原料时,又 称甲烷蒸汽转化法,是目前工业生产应用最广泛的方法。 部分氧化法 部分氧化法是指用氧气(或空气)将烷烃部分氧化 制备合成气的方法。反应运式表示为, 部分氧化法多用于以石 脑油或重油为原料的合成气生产。
Mobil工艺
2. 合成气经甲醇再转化成烃类
2 2 2nCH3OH H nCH3OCH3 HC2 ~ C4烯烃 O O
3. 甲醇同系化制乙烯
CH 3OH CO 2 H 2 CH 3CH 2OH H 2O CH 3CH 2OH C2 H 4
4. 合成低C醇
合成气的应用实例
另一部分烃类与水蒸气发生吸热反应生成合成气 n Cm H n mH 2O mCO ( m ) H 2 2
iii.
以煤为原料的生产方法
高温条件下,以水蒸气和氧气为气化剂;
C H 2O CO H 2
煤制合成气中H2/ CO比值较低,适于合成有机化合物。
合成气的应用实例
1.
5 天然气蒸气转化过程的工艺条件

(1)压力 从热力学特征看,低压有利转化反应。从动力 学看,在反应初期,增加系统压力,相当于增加了反应物 分压,反应速率加快。但到反应后期,反应接近平衡,反 应物浓度高,加压反而会降低反应速率,所以从化学角度 看,压力不宜过高。但从工程角度考虑,适当提高压力对 传热有利,因为①节省动力消耗② 提高传热效率③ 提高 过热蒸汽的余热利用价值。综上所述,甲烷水蒸气转化过 程一般是加压的,大约3MPa左右。 (2)温度 从热力学角度看,高温下甲烷平衡浓度低, 从动力学看,高温使反应速率加快,所以出口残余甲烷含 量低。因加压对平衡的不利影响,更要提高温度来弥补。 但高温下,反应管的材质经受不了,需要将转化过程分为 两段进行。第一段转化800℃左右,出口残余甲烷10% (干基)左右。第二段转化反应器温度1000℃,出口甲 烷降至0.3%。

天然气化工产业链超详细解读,保证你看不够,小七双手奉上!

天然气化工产业链超详细解读,保证你看不够,小七双手奉上!

天然气化工产业链超详细解读,保证你看不够,小七双手奉上!【本期内容,由江苏乐科节能冠名播出】小七说:天然气化工是化学工业分支之一。

是以天然气为原料生产化工产品的工业,是燃料化工的组成部分,也可将天然气化工归属于石油化工。

天然气化工一般包括天然气的净化分离、化学加工等。

今天小七为大家介绍天然气化工的完整产业链图,每一个细分领域都很明确,让你一目了然!高清图请放大查看!合成气主要生产方法及系列化学品简介合成气是以一氧化碳和氢气为主要组分,用作化工原料的一种原料气。

合成气的原料范围很广,可由煤或焦炭等固体燃料气化产生,也可由天然气和石脑油等轻质烃类制取,还可由重油经部分氧化法生产。

合成气的生产方法主要从烃类生产合成气,所用方法主要有蒸汽转化和部分氧化两种。

一蒸汽转化1.天然气蒸汽转化为在工业上实现天然气蒸汽转化反应,可采用连续转化和间歇转化两种方法。

(1)连续蒸汽转化流程这是目前合成气的主要生产方法。

在天然气中配以0.25%~0.5%的氢气,加热到380~400℃时,进入装填有钴钼加氢催化剂和氧化锌脱硫剂的脱硫罐,脱去硫化氢及有机硫,使总硫含量降至0.5ppm以下。

原料气配入水蒸气后于400℃下进入转化炉对流段,进一步预热到500~520℃,然后自上而下进入各支装有镍催化剂的转化管,在管内继续被加热,进行转化反应,生成合成气。

转化管置于转化炉中,由炉顶或侧壁所装的烧嘴燃烧天然气供热(见天然气蒸汽转化炉)。

转化管要承受高温和高压,因此需采用离心浇铸的含25%铬和20%镍的高合金不锈钢管。

连续转化法虽需采用这种昂贵的转化管,但总能耗较低,是技术经济上较优越的生产合成气的方法。

(2)间歇蒸汽转化流程,亦称蓄热式蒸汽转化法。

采用周期性间断加热来补充天然气转化过程所需的反应热。

过程可分为两个阶段:首先是吹风(升温、蓄热)阶段:一部分天然气首先作为燃料与过量空气在燃烧炉内进行完全氧化反应,产生1300℃左右的高温烟气,经第一、二蓄热炉进入转化炉,从上而下穿过催化剂层,使催化剂吸收一部分热量。

第五章 合成气的生成方法

第五章 合成气的生成方法

第五章合成气的生成方法5.1概述一概述合成气,是以氢气、一氧化碳为主要组分供化学合成用的一种原料气。

由含碳矿物质如煤、石油、天然气以及焦炉煤气、炼厂气等转化而得。

按合成气的不同来源、组成和用途,它们也可称为煤气、合成氨原料气、甲醇合成气(见甲醇)等。

合成气的原料范围极广,生产方法甚多,用途不一,组成(体积%)有很大差别:H2 32~67、CO 10~57、CO22~28、CH4 0.1~14、N2 0.6~23。

制造合成气的原料含有不同的H/C摩尔比:对煤来说约为1:1;石脑油约为2.4:1;天然气最高,为4:1。

由这些原料所制得的合成气,其组成比例也各不相同,通常不能直接满足合成产品的需要。

例如:作为合成氨的原料气,要求H2/N2=3,需将空气中的氮引入合成气中(见合成氨原料气);生产甲醇的合成气要求H2/CO≈2或(H2-CO2)/(CO+CO2)≈2;用羰基合成法生产醇类时,则要求H2/CO≈1;生产甲酸、草酸、醋酸和光气等则仅需要一氧化碳。

为此,在合成气制得后,尚需调整其组成,调整的主要方法是利用水煤气反应(变换反应):CO+H2O=CO2+H2。

以降低一氧化碳,提高氢气的含量。

二历史沿革合成气的生产和应用在化学工业中具有极为重要的地位。

早在1913年已开始从合成气生产氨,现在氨已成为最大吨位的化工产品。

从合成气生产的甲醇,也是一个重要的大吨位有机化工产品。

1939年,德国开发的乙炔氢羧化工艺曾是生产丙烯酸及其酯的重要方法。

第二次世界大战期间,德国和日本曾建立了十多座以煤为原料用费托合成从合成气生产液体燃料(见煤间接液化)的工厂,战后由于有廉价的原油,这些厂先后关闭。

1945年,德国鲁尔化学公司用羰基合成(即氢甲酰化)法生产高级脂肪醛和醇开发成功,此项工艺技术发展很快。

60年代,在传统费托合成的基础上,南非开发了SASOL工艺,生产液体燃料并联产乙烯等化工产品,以适应当地的特殊情况。

1960年,联邦德国巴登苯胺纯碱公司的甲醇羰基化生产醋酸工艺工业化;1970年,美国孟山都公司对此法作了重大改进,使之成为生产醋酸的主要方法,进而带动了有关领域的许多研究。

天然气转化制备合成气研究进展安波

天然气转化制备合成气研究进展安波

天然气转化制备合成气研究进展安波发布时间:2021-10-06T08:35:59.228Z 来源:《基层建设》2021年第18期作者:安波[导读] 随着我国科学技术水平不断提升,各领域均在创新发展阶段加大新技术应用力度,详细探究天然气转化制备合成气工作要点新疆玉象胡杨化工有限公司新疆维吾尔自治区沙雅县 842200摘要:随着我国科学技术水平不断提升,各领域均在创新发展阶段加大新技术应用力度,详细探究天然气转化制备合成气工作要点,核心目的是能对天然气合理开发与利用,有效减少石油资源使用量,并降低环境污染程度,提升资源利用率。

同时,天然气转化制备阶段会应用到先进技术与配套设施,要有完善的实施方案与计划,并对人员技术水平、专业能力等有明确要求,才可保证整体质量与效率。

关键词:天然气;转化制备;合成气引言:在天然气转化制备合成气过程中,所包括的工作流程较多,每项工艺质量控制会影响到整体效果,经专业化技术人员规范操作,能对常规问题详细探究与防控,能在细节上控制转化制备质量。

再加上工艺要求不同,技术手段选择与应用要合理,以CH为主要燃料,经多道程序处理可保证合成气转化质量,整体利用率显著提升。

一、方法应用当前,天然气转化制备合成气的常用方法包括两种:其一,直接转化法,能把天然气直接转化成化工产品;其二,间接转化法,直接把天然气转化成合成气,再经过对合成气的处理才能得到相应的化工产品。

对比两种方法的综合性,前者转化率、产率等较低,无法在短期内实现预期目标。

而后者则分析天然气转化制备要点,借助相应的技术手段,要经过多到程序处理才可生成化工产品,在总体投资方面成本较高,但能保证化工产品质量。

对此情况,无论是对哪种方法应用,均需依据实际情况全面分析,一旦在方法应用方面存在不合理情况,就会影响后续工作进度,更无法保证工艺质量。

对此,还需在转化制备中详细探究,实施效果才能有良好的基础保障。

二、工艺分析(一)甲烷水蒸气重整甲烷的水蒸气重整属于较早的研究内容,所应用的方法也比较简单,只需结合实际情况与各项条件,选择相应的催化剂,就可影响SRM产率(>80%),主要应用在工业领域中。

合成气的制备方法

合成气的制备方法

合成气的制备方法合成气是一种混合气体,主要由一氧化碳(CO)和氢气(H2)组成,常用于工业生产中的化学反应和能源转化。

下面将介绍几种常见的合成气制备方法:1.煤气化法:煤气化法是一种以煤作为原料,通过煤的气化反应生成合成气的方法。

煤气化反应可以使用氧、水蒸汽或二氧化碳等作为氧化剂,在高温(1000~1300℃)和高压(10~30MPa)条件下进行。

氧化剂与煤反应生成一氧化碳和氢气,同时伴随生成一些其他气体和固体产物。

该方法具有原料丰富、适用于大规模生产的优点,但同时也伴随着环境污染和生产成本较高的问题。

2.重油催化裂解法:重油催化裂解法是一种以石油重质馏分为原料,通过催化反应生成合成气的方法。

在催化剂的作用下,重油中的大分子化合物被裂解为轻质烃类,并在高温(600~800℃)和中等压力条件下生成一氧化碳和氢气。

该方法具有操作灵活、反应速度快的优点,但由于原料资源较为有限,所以在生产规模方面存在一定的限制。

3.天然气重整法:天然气重整法是一种以天然气为原料,通过催化反应生成合成气的方法。

首先将天然气中的烷烃类通过催化剂催化反应重整为较小分子量的烃类,然后在高温(700~900℃)和中等压力条件下通过水蒸汽重整反应生成一氧化碳和氢气。

该方法具有废气少、纯度高的优点,适用于小规模生产和移动式装置。

4.生物质气化法:生物质气化法是一种以生物质(如木材、秸秆等)为原料,通过热解反应生成合成气的方法。

生物质在高温(600~900℃)和缺氧条件下发生热解反应,生成可燃性气体,其中包括一氧化碳、二氧化碳、氢气和甲烷等。

该方法具有可再生、环保、资源丰富的优点,但由于原料质量不一、成分复杂,所以需要进行前处理,以提高合成气的纯度。

这些方法各有优劣,根据不同的应用领域和经济条件可以选择合适的方法进行合成气的制备。

同时,未来随着技术的不断进步,可能会涌现出更多的新型合成气制备方法。

合成气合成新技术研究

合成气合成新技术研究

合成气合成新技术研究随着人类经济和社会的发展,能源供给成为了人类生存和发展的重要保障。

能源的缺乏已成为全球共同的难题,如何寻找新型能源来满足全球能源需求,成为了各国科学家和能源产业公司的重要研究方向之一。

而合成气(Syngas)合成技术正是近几年来备受瞩目的新型能源生产技术之一,其应用范围已经延伸到化工、石油、天然气、电力等众多领域。

一、合成气简介合成气是由水或天然气通过催化剂等手段,通过高温和高压发生化学反应而得到的一种燃气,主要由一氧化碳和氢气组成。

按摩尔比,一氧化碳和氢气的比例一般在1:2 ~ 2:1之间。

合成气被广泛地应用于热能、动力能源、石化、农业生产等诸多领域,是一个极具潜力的新能源来源。

合成气是一种高品质、高纯度的气体,能够被用于生产合成烃、合成液体燃料、化学品等,还可做为生产一些特殊材料的前体和作为热能源。

与传统燃料相比,合成气可获得更高的氢气含量,可用于制造化学品和液体燃料,同时也可用于电力和城市燃气供应。

二、合成气合成新技术传统的合成气生产技术主要是通过化石燃料进行加热来实现,这种方法虽然生产效率较高却存在一定的污染和能源消耗问题。

近年来,随着生产工艺和技术的不断发展,科学家们开始探讨新的合成气生产技术。

1、微生物工程技术微生物工程技术即利用生物学手段进行工程化改造来制造具有特定能力的微生物。

最近,通过这种技术和遗传学技术来实现合成气的生产已成为一种新的研究热点。

微生物在生物过程中可以利用废弃的生物质来产生一氧化碳和氢气,并能在较低的温度和压强条件下实现合成气的生产。

2、光催化技术光催化技术利用太阳光能来进行化学反应,而非传统的高温和高压方式,由于具有无毒、高效和可持续等特点,因此也逐渐成为合成气合成新技术中的一种。

光催化技术主要是通过选择适当的催化剂来实现合成气的制备,研究人员已经通过多项实验证明利用光催化技术制备合成气的效果已经相当显著。

3、质子交换膜技术质子交换膜技术是将合成气分子转化为质子,利用质子穿过膜来获取氢原子,以实现氢气的提纯。

天然气制甲醇合成气工艺及进展

天然气制甲醇合成气工艺及进展

at
presem.Tko—stage
refb肌ing

pmcess used tlle steam refb珊ning at first and 02 refbnIling in the second, oxidation process needed lower energy,and the reaction w鹪e鹊y
steam
refb肌ing
partial oxidation
Auto
tllemal
reforIIling
甲醇作为Cl化学的核心产品,是一种用途广泛 的有机化学原料。随着甲醇工业的发展和对甲醇需 求的迅速增加,特别是甲醇作为燃料用作交通能源要
气,达到节约能源,增加效益的目的,人们不断地致力 于各种制合成气工艺的研究,如甲烷催化部分氧化, 甲烷自然转化工艺等,探索将各种工艺的相互结合。 本文综合介绍了以天然气为原料制甲醇合成气的各 工艺的基本原理、流程、优缺点以及国内外发展现状, 并对近年来的新工艺进行了介绍,由此分析了今后的
S硼姗【arization
of the
Methanol
Synthesis Gas Production
Proce隅es by Natural nu
(College
Abs仃act reviewed.The of Chenlistry 8nd CheIIlical
G嬲
Yijing
Liu Jin 610500)
也开发了类似的工艺,且都实现了工业应用。应该指 出,此类工艺由于取消了转化炉的火房,故高压蒸气
供应量将不足,需向甲醇装置供入电能或另行设置燃 气透平以补充合成气压缩机所需要的能量。
甲烷部分氧化制合成气是一个温和的放热反应,

天然气制备合成气工艺

天然气制备合成气工艺

天然气制备合成气工艺天然气制备合成气的工艺,听起来好像有点高大上,其实说白了就是把天然气变成可以用来做化学合成的气体。

想象一下,咱们的厨房里,炒菜用的煤气就是天然气的一种,天然气的成分中有个重要的成分叫做甲烷,听起来是不是有点耳熟?没错,甲烷就是天然气的主力军,简单来说就是天然气的“明星”。

不过呢,这个“明星”除了用来做饭,还能变身为合成气,真是个多才多艺的小家伙。

先说说合成气,这玩意儿其实就是氢气和一氧化碳的混合物,简单点说就是能当燃料用,也能用来做化学反应的“原料”。

想要得到这个合成气,首先得把天然气给分解开来,别小看这个过程,听上去简单,实际上可是技术活。

通常采用的方法就是蒸汽重整,这听上去高深莫测,其实就是把天然气和水蒸气一起加热,经过反应后生成氢气和一氧化碳,哇,感觉科技感爆棚!再加上咱们的天然气,这一混合,嘿,合成气就出炉啦。

这个工艺的好处可不少,首先环保,天然气的燃烧比起煤炭、石油那些老大哥可干净多了。

想想看,咱们在享受美味的时候,还能保护环境,真是赚到了。

不过,任何事情都有两面性,天然气的制备合成气虽然听上去牛,但在实际操作中,可是有很多挑战哦。

比如说,高温高压的环境可不是一般人能承受的,想想在这种环境下工作,就像是一场和“火”搏斗的游戏,刺激又紧张。

再说了,天然气可不是无限的资源,随着时间推移,开采天然气的难度在增加。

于是,科学家们就开始琢磨,怎么能把天然气用得更高效、更经济。

嘿,技术的进步可真是让人感叹,新的催化剂、新的反应条件,层出不穷,真是让人眼花缭乱。

比如说,某些新型催化剂的出现,让反应过程更高效,成本也大幅下降,简直是为这个行业注入了“强心针”。

合成气还可以通过后续反应,转化成其他有价值的化学品,比如说甲醇、氨等,听起来是不是很诱人?想象一下,天然气变身成合成气,再转化成你平时用的化学产品,仿佛天然气在演绎一场华丽的“变身秀”。

所以说,天然气的制备合成气,不仅仅是一个简单的过程,更是一个神奇的化学旅程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天然气制备合成气 天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。

天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。

制合成气是间接利用天然气的重要步骤,也是天然气制氢的基础,充分了解天然气制合成气 的工艺与催化剂对于我们进一步研究天然气的利用将有很大帮助。

天然气中甲烷含量一般大于90%,其余为小量的乙烷、丙烷等气态烷烃,有些还含有少量氮和硫化物。

其他含甲烷等气态烃的气体,如炼厂气、焦炉气、油田气和煤层气等均可用来制造合成气。

目前工业上有天然气制合成气的技术主要有蒸汽转化法和部分氧化法。

本文主要对蒸汽转化法进行具体的描述,并具体介绍此工艺的发展趋势。

蒸气转化法蒸气转化法是目前天然气制备合成气的主要途径。

蒸汽转化法是在催化剂存在及高温条件下,使甲烷等烃类与水蒸气反应,生成CO H 、2等混合气,其主反应为:2243H CO O H CH +=+,mol /206298KJ H =∆Θ该反应是强吸热的,需要外界供热。

因为天然气中甲烷含量在90%以上,而甲烷在烷烃中热力学最稳定,其他烃类较易反应,因此在讨论天然气转化过程时,只需考虑甲烷与水蒸气的反应。

甲烷水蒸气转化反应和化学平衡甲烷水蒸气转化过程的主要反应有: 2243H CO O H CH +⇔+,mol /206298KJ H =∆Θ222442H CO O H CH +⇔+,mol /165298KJ H =∆Θ222H CO O H CO +⇔+,mol /9.74298KJ H =∆Θ可能发生的副反应主要是析碳反应,它们是:242H C CH +⇔,mol /9.74298KJ H =∆Θ22CO C CO +⇔,mol /5.172-298KJ H =∆ΘO H C H CO 22+⇔+,mol /4.131-298KJ H =∆Θ甲烷水蒸气转化反应必须在催化剂存在下才有足够的反应速率。

倘若操作条件不适当,析碳反应严重,生成的碳会覆盖在催化剂内外表面,致使催化剂活性降低,反应速率下降。

析碳更严重,床层堵塞,阻力增加,催化剂毛细孔内的碳遇水蒸汽会剧烈汽化,致使催化剂崩裂或粉化,迫使停工,经济损失巨大。

所以对于烃类蒸汽转化过程要特别主要防止析碳,而高温有利于甲烷裂解析碳,不利于一氧化碳歧化析碳,也不利于还原析碳,却有利于碳被水蒸气所气化,温度越高,水蒸气比例越大,则越有利于消碳;如果气相中22CO H 、分压很大时,均有利于抑制析碳。

由此可见,影响甲烷水蒸气转化反应平衡的主要因素有温度、水碳比和压力。

温度的影响甲烷与水蒸气反应生成2H CO 和吸热的可逆反应,高温对平衡有利,即2H CO 和的平衡产率高,4CH 平衡含量低。

一般情况下,当温度提高10℃,甲烷的平衡含量可降低1%-1.3%,高温对一氧化碳变换反应的平衡不利,可以少生成二氧化碳,而且高温也会抑制一氧化碳歧化和还原析碳的副反应。

但是,温度过高,会有利于甲烷裂解,当温度高于700℃时,甲烷均相裂解速率很快,会大量析出碳,并沉淀在催化剂和器壁上。

水碳比的影响水碳比对于甲烷转化影响重大,高的水碳比有利于甲烷的蒸气重整反应,在800℃、2Mpa 条件下,水碳比由3提高到4时,甲烷平衡含量由8%将至5%,可见水碳比对甲烷平衡含量影响是很大的。

同时,高水碳比也有利于抑制析碳副反应。

压力的影响甲烷蒸汽转化反应是体积增大的反应,低压有利于平衡,当温度800℃、水碳比4时,压力由2Mpa 降低到1Mpa 时,甲烷平衡含量由5%降至2.5%。

低压也可抑制一氧化碳的两个析碳反应,但是低压对甲烷裂解析碳反应平衡有利,适当加压可抑制甲烷裂解。

压力对一氧化碳变换反应平衡无影响。

总之,从反应平衡考虑,甲烷水蒸气转化过程应该用适当的高温、稍低的压力和高水碳比。

甲烷水蒸气转化催化剂甲烷水蒸气转化,在没有催化剂的情况下反应速率很慢,然而在高温下甲烷会裂解,这样会导致没有工业生产价值,所以必须使用催化剂。

催化剂的组成和结构决定了其催化性能,而对其使用是否得当会影响其性能的发挥。

甲烷水蒸气转化对催化剂的基本要求是高强度、高活性、抗析碳、热稳定性好。

工业装置使用的催化剂均以Ni 为活性组分。

载体通常都用硅铝酸钙、铝酸钙以及难熔的耐火氧化物,如32O Al 、MgO 、CaO 、ZIo2、2TiO 等。

随着工业条件的改变.对载体的耐压、强度也有不同要求。

近年来一般使用32O Al a 作为载体。

目前国内外开发的低Ni 型天然气蒸汽转化催化剂含NiO 12%,而ICI 公司近年来研制的PALL 环负载NiO 量只有2.7%,其活性与工业转化催化剂相同,可见降低Ni 用量还大有潜力。

甲烷水蒸气转化反应动力学 当有催化剂时,反应活性能降低,转化速率显著增大,在700-800℃时已具有工业生产价值。

催化剂的活性越高,反应速率越快。

对于一定的催化剂而言,影响反应速率的主要因素有温度、压力和组成。

温度温度升高,反应速率常数k 增大,反应速率也增大。

压力总压增高,会使各组分的分压也增高,对反应初期的速率提高很有利。

此外,加压尚可使反应体积减少。

组分原料的组成由水碳比决定,42/CH O H 过高时,虽然水蒸气分压高,但甲烷分压过低,反应速率不一定高;反之,42/CH O H 过低时,反应速率也不会高。

所以水碳比要适当。

在反应初期,反应物O H CH 24和的浓度高,反应速率高。

到反应后期,反应物浓度下降,产物浓度增高,反应速率降低,需要提高温度来补偿。

转化反应是气固相催化过程,包括内外扩散和催化剂表面上吸附、反应、产物脱附和扩散等多个步骤,每个步骤对整个过程的总速率都有影响,最慢的一步控制了总速率。

上述动力学方程式是本征动力学方程式。

在工业生产中,反应器内气流速度较快,外扩散影响可以忽略。

但为了减少床层阻力,所用催化剂颗粒较大(>2mn),故内扩散阻力较大,催化剂内表面利用率较低。

在500℃左右时,内表面利用率越30%;温度升到800℃时,内表面利用率仅有1%,这是因为温度升高,表面反应速率加快,孔口侧的反应物消耗快,细孔内反应物浓度因内扩散阻力大而随孔长下降迅速,更多内表面没有被利用。

所以,在工业生产中的反应速率r '低于本征动力学速率r ,两者关系为r r η='。

r '考虑了传质过程的影响,减少催化剂的成型颗粒尺寸和制成环形或车轮形或多孔球形,可以提高内表面利用率,从而提高表观反应速率。

甲烷水蒸气转化过程的工艺条件 在选择工艺条件时,理论依据是热力学和动力学分析以及化学工程原理,此外,还需要结合技术经济、生产安全等进行综合优化。

转化过程主要工艺条件有压力、温度、水碳比和空速,这几个条件之间互有关系,要适当匹配。

压力从热力学特征看,低压有利转化反应。

从动力学看,在反应初期,增加系统压力,相当于增加了反应物分压,反应速率加快。

但到反应后期,反应接近平衡,反应物浓度高,加压反而会降低反应速率,所以从化学角度看,压力不宜过高。

但从工程角度考虑,适当提高压力对传热有利,因为甲烷转化过程需要外部供热,大的给热系数是强化传热的前提。

床层给热系数9.0b e a R ∝,提高压力,即提高了介质密度,是提高雷诺数Re 的有效措施。

为了增大传热面积,采用多管并联的反应器,这就带来了如何将气体均匀地分布的问题,提高系统压力可增大床层压降,使气流均布于各反应管。

虽然提高压力会增加能耗,但若合成气是作为高压合成过程(例如合成氨、甲醇等)的原料时,在制造合成气时将压力提高到一定水平,就能降低后序工段的气体压缩功,使全厂总能耗降低。

加压还可以减少设备、管道的体积,提高设备生产强度,占地面积也小。

综上所述,甲烷水蒸气转化过程一般是加压的,大约3Mpa 左右。

温度从热力学角度看,高温下甲烷平衡浓度低,从动力学看,高温使反应速率加快,所以出口残余甲烷含量低。

因加压对平衡的不利影响,更要提高温度来弥补。

在3Mpa 的压力下,为使残余甲烷含量降至0.3%(干基),必须使温度达到1000℃。

但是,在此高温下,反应管的材质经受不了,以耐高温的HK-40合金钢为例,在3Mpa 压力下,要使反应炉管寿命达10年,管壁温度不得超过920℃,其管内介质温度相应为800-820℃。

因此,为满足残余甲烷%3.0≤的要求,需要将转化过程分为两段进行。

第一段转化在多管反应器中进行,管间供热,反应器称为一段转化炉,最高温度(出口处)控制在800℃左右,出口残余甲烷10%(干基)左右。

第二段转化反应器为大直径的钢制圆筒,内衬耐火材料,可耐1000℃以上高温。

对于此结构的反应器,不能再用外加热方法供热。

温度在800℃左右的一段转化气绝热进入二段炉,同时补入氧气,氧与转化气中甲烷燃烧放热,温度升至1000℃,转化反应继续进行,使二段出口甲烷降至0.3%。

若补入空气则有氮气带入,这对于合成氨是必要的,对于合成甲醇或其他产品则不应有氮。

一段转化炉温度沿炉管轴向的分布很重要,在入口端,甲烷含量最高,应着重降低裂解速率,故温度应低些,一般不超过500℃,因有催化剂,转化反应速率不会太低,析出的少量碳也及时气化,不会积碳。

在离入口端1/3处,温度应严格控制不超过650℃,只要催化剂活性好,大部分甲烷都能转化。

1/3处以后,温度高于650℃,此时氢气已增多,同时水碳比相对变大,可抑制裂解,温度又高,消碳速率大增,因此不可能积碳了,之后温度继续升高,直到出口处达到800℃左右,以保证低的甲烷残余量。

因而,一段转化炉是变温反应器。

二段转化炉中温度虽高,但甲烷含量低,又有氧存在,不会积碳。

水碳比水碳比是诸操作变量中最便于调节的一个条件,又对一段转化过程影响较大。

水碳比高,有利于防止积碳,残余甲烷含量也低。

实验指出,当原料气中无不饱和烃时,水碳比若小于2,温度到400℃时会析碳,而当水碳比大于2时,温度要高达1000℃才有碳析出;但若有较多不饱和烃存在时,即使水碳比大于2,当℃时就会析碳。

为了防止积碳,操作中一般控制水碳比在3.5左右。

温度400近年来,为了节能,要降低水碳比,防止积碳可采取的措施有三个,其一是研制、开发新型的高活性、高抗碳性的低水碳比催化剂;其二是开发新的耐高温炉管材料,提高一段炉出口温度;其三是提高进二段炉的空气量,可以保证降低水碳比后,一段出口气中较高残余甲烷能在二段炉中耗尽。

目前,水碳比已可降至3.0,最低者可降至2.75。

气流速度反应炉管内气体流速高有利于传热,降低炉管外壁温度,延长炉管寿命。

当催化剂活性足够时,高流速也能强化生产,提高生产能力。

但流速不宜过高,否则床层阻力过大,能耗增加。

天然气蒸汽转化流程和主要设备天然气蒸汽转化制备合成气的基本步骤如下图所示。

氧气或空气天然气脱硫一段转化二段转化变换脱碳合成气蒸汽图1 天然气蒸汽转化制合成气过程一段转化炉由辐射段和对流段组成,外壁用钢板制成,炉内壁衬耐火层。

相关文档
最新文档