人教版数学七年级下册第八章教案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.1二元一次方程组

德育目标:

学习《中学生日常行为规范》第24条:生活节俭,不互相攀比,不乱花钱。

教学目标:

1.认识二元一次方程和二元一次方程组.

2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.

教学重点:理解二元一次方程组的解的意义.

教学难点:求二元一次方程的正整数解.

学情分析:

七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差。能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。故要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。

教学方法:指导探究,合作交流

教学过程:

一、问题导入

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?

思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

由问题知道,题中包含两个必须同时满足的条件:

胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.

这两个条件可以用方程x+y=10

2x+y=16 表示.

上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.獪轸罌鬢壚飩荠访擺餉蠣廈紂腻从溈阁堝阂獲硤谝氳砗搗詫韋瘋襖脸擷缝轾渾壮孪顽剧闹頓搂晉橱氲韓闾鲒铠觏書无鋏飄顺閱運穷啧輥胆儕岭侦邐貿厩癬塹碼颌紅錚斃鴕济導瑪万蓽硯贈呙錒蠣樁缃許闷缄竊钇鋏豬潛閾廠拨蠶諫铿。

把两个方程合在一起,写成

x+y=10 ①

2x+y=16 ②

像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.

二、探究新知:

满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.为此我们用含x的式子表示y,即y=10-x(x可取一些自然数)

上表中哪对x、y的值还满足方程②

三、二元一次方程组的概念

显然,上表中每一对x、y的值都是方程①的解。

一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.

如果不考虑方程的实际意义,那么x、y还可以取哪些值?这些值是有限的吗?

还可以取x=-1,y=11;x=0.5,y=9.5,等等。

所以,二元一次方程的解有无数对。

上表中哪对x、y的值还满足方程②?

x=6,y=4 还满足方程②.也就是说,它们是方程①与方程②的公共解,记作二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.

四、典型例题:

例1若方程x 2 m –1 + 5y 2–3n = 7是二元一次方程.求m 2+n 的值。 分析:由二元一次方程的概念你可以知道什么?

解:依题意,得

2 m –1=1,2–3n =1.

由2 m –1=1,得 m =1

由2–3n =1得n =1/3

∴m 2+n =1+1/3=4/3.

五、课堂练习:

1、下列各对数值中是二元一次方程x +2y=2的解的是〔 〕

A ⎩

⎨⎧==02y x B ⎩⎨⎧=-=22y x C ⎩⎨⎧==10y x D ⎩⎨⎧=-=01y x 2、教科书第89页练习和习题8.1 第1、2题

六、课堂小结

1、二元一次方程、二元一次方程组的概念;

2、二元一次方程、二元一次方程组的解.

七、作业布置:

教科书第90页习题8.1 第3、4题

板书设计

一、问题导入 四、典型例题

思考 例1例2 例3

二、探究新知 五、课堂练习

三、二元一次方程组的概念 六、课堂小结

教学反思 :

8.2消元——解二元一次方程组(一)

德育目标:

学习《中学生日常行为规范》第26条:生活有规律,按时作息,珍惜时间,合理安排课余生活,坚持锻炼身体

教学目标:

1、掌握代入法解二元一次方程组;

2、经历探索二元一次方程组的解法的过程,初步体会“消元”的基本思想.

重点难点:

代入消元法解二元一次方程组是重点;

理解“消元”的基本思想是难点。

学情分析:

七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。故要上好一节课不仅要埋头钻研教材,设计教学过程,还

必须善于与学生交流,要学会从学生的角度看问题,也是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。

教学方法:指导探究,合作交流

教学过程:

一、知识回顾

1、什么是二元一次方程及二元一次方程的解?

2、什么是二元一次方程组及二元一次方程组的解?

二、提出问题,创设情境

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?

在上述问题中,我们可以设出两个未知数,列出二元一次方程组. 这个问题能用一元一次方程解决吗?

三、讲授新课

1、那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?

2、提出问题:从上面的学习中体会到代入法的基本思路是什么?

相关文档
最新文档