步进电机细分控制(英文)

合集下载

步进电机英文

步进电机英文

Stepper motorStepper motor is the electric pulse signals into angular displacement or linear displacement of the open-loop stepper motor control element pieces. In the case of non-overloaded, the motor speed, stop position depends only on the pulse frequency and pulse number, regardless of load changes, when the driver receives a step pulse signal, it will drive a stepper motor to Set the direction of rotation of a fixed angle, called the "step angle", which the angle of rotation is fixed step by step operation. Number of pulses can be controlled by controlling the angular displacement, so as to achieve accurate positioning purposes; the same time by controlling the pulse frequency to control the motor rotation speed and acceleration, to achieve speed control purposes.WorkInduction motor is a stepper motor, does it work is the use of electronic circuits, the DC power supply into a time-sharing, multi-phase timing control current, this current stepper motor power supply, the stepper motor to work properly , The drive is sharing power supply for the stepper motor, the polyphase timing controllerAlthough the stepper motor has been widely used, but the stepper motor does not like a normal DC motor, AC motor in the conventional use. It must be double-ring pulse signal, power driver circuit composed of the control system can be used. Therefore, it is not easy with a good stepping motor, which involves mechanical, electrical, electronics and computers, and many other specialized knowledge.As the stepper motor actuators, electromechanical integration, one of the key products, widely used in a variety of automatic control systems. With the development of microelectronics and computer technology, increasing demand for stepper motor, has applications in all areas of the national economy.CategoriesNow more commonly used include the reaction of step motor stepper motor (VR), permanent magnet stepper motor (PM), hybrid stepper motors (HB) and single-phase stepper motor.Permanent magnet stepper motorPermanent magnet stepper motor is generally two-phase, torque, and smaller, usually 7.5 degree step angle or 15 degrees;Permanent magnet stepper motor output torque, dynamic performance, but a large step angle.Reaction Stepper MotorReaction is generally three-phase stepping motor can achieve high torque output, step angle of 1.5 degrees is generally, but the noise and vibration are large. Reaction by the stepper motor rotor magnetic circuit made of soft magnetic materials, a number of the stator phase excitation winding, the use of permeability changes in torque. Step Motor simple structure, low production costs, step angle is small; but the dynamic performance is poor.Hybrid Stepping MotorHybrid Step Motor combines reactive, permanent magnet stepper motors of both, it's asmall step angle, contribute a large, dynamic performance, is currently the highest performance stepper motor. It is also sometimes referred to as Permanent Magnet Induction Stepping Motor. It consists of two phases and the five-phase: the general two-phase step angle of 1.8 degrees and the general five-phase step angle 0.72 degrees. The most widely used Stepper Motor.Stepper motor drive for energy savingThree-phase stepper motor drive special features:■180% low torque output, low frequency characteristics of a good run■Maximum output frequency 600Hz, high-speed motor control■full range of detection of protection (over voltage, under voltage, overload) instantaneous power failure restart■acceleration, deceleration, such as dynamic change in the stall protection function to prevent■Electrical dynamic parameters of automatic recognition function to ensure stability and accuracy of the system■quick response and high-speed shutdown■abundant and flexible input and output interface and control, versatility■use of SMT production and three full-mount anti-paint treatment process, product stability and high■full range of Siemens IGBT power devices using the latest, to ensure the quality of high-qualityBasic principlesUsually for the permanent magnet rotor motor, when current flows through the stator windings, the stator windings produce a magnetic field vector. The magnetic field will lead to a rotor angle of the magnetic field makes the direction of a rotor and the stator's magnetic field direction. When the stator magnetic field vector rotating at an angle. As the rotor magnetic field is also transferred from another perspective. An electrical pulse for each input, the motor turning a point forward. It is the angular displacement of the output and input the number of pulses proportional to speed and pulse frequency is proportional to. Power to change the order of winding, the motor will reverse. Therefore, the number of available control pulse, frequency and power the motor windings of each phase in order to control the stepper motor rotation. Reaction Stepper MotorAs the response to stepping motor works is relatively simple. The following describes the first principle of three-phase stepping motor response.1, the structure: uniformly distributed rotor with many small teeth, the stator excitation windings of three teeth, the geometric axis of the rotor tooth axis in order were staggered. 0,1 / 3 て, 2 / 3 て, (adjacent to the two axes of the rotor tooth pitch distance between the てsaid), that is, with the teeth a relatively homogeneous A, B and staggered tooth 2 to the right 1 / 3 て, C and the right to stagger tooth 3 2 / 3 て, A 'and the tooth 5 is relatively homogeneous, (A' is A, is the gear teeth 5 1) The following is the rotor's expansion plan:2, rotation: If the A-phase power, B, C phase is not energized, the magnetic field,alignment of teeth 1 and A, (without any power of the rotor are the same the following). Such as the B-phase power, A, C phase is not energized, gear 2, and B should be aligned, when the rotor over to the right 1 / 3 て, this time offset teeth 3 and C 1 / 3 て, teeth 4 and A shift (て-1 / 3 te) = 2 / 3 て. Such as the C-phase power, A, B phase is not energized, gear 3, and C should be aligned, this time right off the rotor Youxiang 1 / 3 て, 4 and A gear shift time is 1 / 3 てalignment. Such as the A-phase power, B, C phase is not energized, 4 and A-aligned teeth, the rotor Youxiang right over 1 / 3 てso after A, B, C, A are energized, gear 4 (ie, the previous tooth 1 teeth) to the A-phase, rotor to the right around a pitch, if you continue to press the A, B, C, A ... ... power, the motor for each step (per pulse) 1 / 3 て, Rotate Right. Such as by A, C, B, A ... ... power, the motor to reverse. This shows that: the location and speed of motor conduction times by the (number of pulses) and frequency into one relationship. The direction determined by the conductivity of the order. However, out of torque, smooth, noise and reduce the angle considerations. Often with A-AB-B-BC-C-CA-A this conductive state, so that each step the original 1 / 3 てchanged to 1 / 6 て. Even through different combinations of two-phase current, so 1 / 3 てinto 1 / 12 て, 1 / 24, te, which is the basic theory of the motor-driven basis for subdivision. Easily introduced: m phase on the stator excitation windings, the axis of the rotor tooth axis were offset 1 / m, 2 / m ... ... (m-1) / m, 1. And conductivity at a certain phase sequence reversing motor can be controlled - this is the rotation of the physical conditions. As long as we meet this condition can theoretically create any phase stepper motor, because of cost, and many other considerations, the market generally two, three, four, five-phase is more.3, the torque: the motor once energized, will produce between the stator and rotor magnetic field (magnetic flux Ф) when the rotor and stator stagger angle to produce force F and (dФ / dθ) is proportional to S the magnetic flux Ф = Br * S Br for the flux density, F and S for the magnetic area of L * D * Br core is proportional to L, effective length, D is rotor diam eter Br = N • I / RN • I was excited winding ampere turns (current x turns) R for the magnetic resistance. Torque = force * radius of the torque and the motor turns the effective volume * An * is proportional to the flux density (only consider the linear state), therefore, the greater the effective volume of the motor, the greater the excitation ampere turns, the smaller air gap between stator and rotor, the motor torque, and vice versa.Induction Stepping Motor1, features: Induction, compared with the traditional reactive, structural reinforced with a permanent magnet rotor, in order to provide the working point of soft magnetic materials, and the stator excitation magnetic field changes only need to provide to provide the operating point of the consumption of magnetic materials energy, so the motor efficiency, current, low heat. Due to the presence of permanent magnets, the motor has a strong EMF, the damping effect of its own good, it is relatively stable during operation, low noise, low frequency vibration. Induction can be seen as somewhat low-speed synchronous motor. A four-phase motor can be used for four-phase operation, but also can be used for two-phase operation. (Must be bipolarvoltage drive), while the motor is not so reactive. For example: four phase, eight-phase operation (A-AB-B-BC-C-CD-D-DA-A) can use two-phase eight-shot run. Not difficult to find the conditions for C =, D =. a two-phase motor's internal winding consistent with the four-phase motors, small power motors are generally directly connected to the second phase, the power of larger motor, in order to facilitate the use and flexible to change the dynamic characteristics of the motor, its external connections often lead to eight (four-phase), so that when used either as a four-phase motors used, can be used for two-phase motor winding in series or parallel.2, classificationInduction motors can be divided in phases: two-phase motor, three phase motor, four-phase motor, five-phase motor. The frame size (motor diameter) can be divided into: 42BYG (BYG the Induction Stepping motor code), 57BYG, 86BYG, 110BYG, (international standard), and like 70BYG, 90BYG, 130BYG and so are the national standards.3, the stepper motor phase number of static indicators of terms: very differently on the N, S the number of magnetic field excitation coil. Common m said. Beat number: complete the necessary cyclical changes in a magnetic field pulses or conducting state with n said, or that turned a pitch angle of the motor pulses needed to four-phase motor, for example, a four-phase four-shot operation mode that AB -BC-CD-DA-AB, shot eight four-phase operation mode that A-AB-B-BC-C-CD-D-DA-A. Step angle: corresponds to a pulse signal, the angular displacement of the rotor turned with θ said. θ = 360 degrees(the rotor teeth number of J * run shot), the conventional two, four-phase, the rotor teeth 50 tooth motor as an example. Four step run-time step angle θ = 360 ° / (50 * 4) = 1.8 degrees (commonly called the whole step), eight-shot running step angle θ = 360 ° / (50 * 8) = 0.9 degrees (commonly known as half step.) Location torque: the motor is not energized in the state, its locked rotor torque (as well as by the magnetic field profile of harmonics caused by mechanical error) static torque: the motor under the rated static electricity, the motor without rotation, the motor shaft locking torque. The motor torque is a measure of volume (geometry) standards, and drive voltage and drive power, etc. has nothing to do. Although the static torque is proportional to the electromagnetic magnetizing ampere turns, and fixed air gap between the rotor teeth on, but over-use of reduced air gap, increase the excitation ampere-turns to increase the static torque is not desirable, this will cause the motor heating and mechanical noise.4, the dynamic indicators and terminology:1, step angle accuracy: turn a stepper motor step angle for each actual value with the theoretical value of the error. Expressed as a percentage: Error / Step Angle * 100%. Its value is the number of different running different beat, four beat running should be within 5%, eight runs should take less than 15%.2 step: the motor running operation steps, is not equal to the theoretical number of steps. Called the step.3, offset angle: the axis of the rotor tooth offset angle of the axis of the stator teeth, the motor is running there will be misalignment angle, the error caused by themisalignment angle, using division drive can not be solved.4, the maximum no-load starting frequency: a drive motor in the form of voltage and rated current, in the case without load, the maximum frequency can be started directly.5, the maximum operating frequency of load: a drive motor in the form of voltage and rated current, the motor maximum speed with no load frequency.6, running torque-frequency characteristics: the motor under test conditions in a measured frequency of operation between the output torque and running torque curve is called the frequency characteristic curve which is the motor number of the most important dynamic is the fundamental basis for motor selection. As shown below: There used to frequency characteristics of other features, starting frequency characteristics. Electrical Once selected, the motor torque to determine the static and dynamic torque is not the case, the motor torque depends on the dynamics of the average motor current (rather than static current), the average current increases, the greater the output torque of the motor, that motor frequency characteristics of the more hard. As shown below: where the maximum curve 3 current, or voltages; curve a minimum current, or voltage is the lowest curve and the load maximum speed of the intersection point of the load. For the average current, voltage increase as much as possible, so that the use of small inductor high current motor.7, the resonance point of the motor: stepping motor has a fixed resonance region, two, four-phase Induction in the resonance region is generally between 180-250pps (1.8 degree step angle) or about the 400pps (step angle 0.9 degrees), the higher the motor drive voltage, motor current increases, the lighter the load, the smaller the size the motor, the resonance shift upward, and vice versa, the motor output torque is large, yet further, and the whole system noise reduction, the general operating point should be offset more resonance.8, motor reversing control: timing is energized when the motor windings AB-BC-CD-DA or () is a positive turn, power the timing for the DA-CD-BC-AB or () when reversed.Some of the basic parameters of the stepper motorNatural step angle motorIt said each of the control system sends a pulse signal, the motor rotation angle. Motor factory, a step angle is given a value, such as 86BYG250A motors is given in 0.9 ° / 1.8 ° (half-step work that is 0.9 °, when the work of the whole step 1.8 °), the step angle can be called 'natural step angle motor', which is not necessarily true when the actual work the motor step angle, the real step angle and drive on.Stepper motor step angle is usually the general computing β calculated as follows.β= 360 ° / (Z • m • K)Where β-stepper motor step angle;Z-rotor teeth;m-phase stepper motor number;K-control factor, the film is the ratio of the number of coefficients with the phase numberPhase stepper motorRefers to the number of the motor coil group, the commonly used two-phase, three phase, four-phase, five-phase stepper motor. Different number of motor phases, the step angle is different, the general two-phase motor step angle of 0.9 °/ 1.8 °, three-phase for the 0.75 ° / 1.5 °, five-phase for the 0.36 ° / 0.72 °. In the absence of sub-drive, the user select a different number of phases depends mainly on the stepper motor step angle to meet their own requirements. If you use the sub-drive, the 'phases' will become meaningless, the user simply changes in the subdivision number on the drive, you can change the step angle.Holding torque (HOLDING TORQUE)Stepper motor is energized but no rotation, the stator locked rotor torque. It is the stepper motor one of the most important parameters, usually when the stepper motor torque at low speed near the holding torque. As the stepper motor's output torque increases with the speed and continuous attenuation, output power increases with the speed change, so keep the torque stepper motor to become a measure of one of the most important parameters. For example, when people say 2N.m the stepper motor in case of no special note is the holding torque of the stepper motor for the 2N.m. DETENT TORQUE:Stepper motor is not energized, the stator locked rotor torque. DETENT TORQUE translation in the country there is no uniform way, easy to misunderstand us; the reaction is not a permanent magnet stepper motor rotor material, so it does not DETENT TORQUE.Characteristics of the stepper motor1. The general accuracy of the stepper motor step angle of 3-5%, and not cumulative.2. Appearance of the stepper motor to allow the maximum temperature.Stepper motor causes the motor temperature is too high the first magnetic demagnetization, resulting in loss of torque down even further, so the motor surface temperature should be the maximum allowed depending on the motor demagnetization of magnetic material points; Generally speaking, the magnetic demagnetization points are above 130 degrees Celsius, and some even as high as 200 degrees Celsius, so the stepper motor surface temperature of 80-90 degrees Celsius is normal.3. Stepper motor torque will decrease with the increase of speed.When the stepper motor rotates, the motor winding inductance of each phase will form a reverse electromotive force; the higher the frequency the greater the back emf. In its role, the motor with frequency (or speed) increases with the phase current decreases, resulting in decreased torque.4. Low-speed stepper motor can operate normally, but if not higher than a certain speed to start, accompanied by howling.Stepper motor has a technical parameters: no-load starting frequency, ie the stepper motor with no load to start the normal pulse frequency, pulse frequency is higher than the value if the motor does not start, you may lose steps or stall occurs. In the case of a load, start frequency should be lower. If you want the motor to achieve high-speed rotation, the pulse frequency should speed up the process, which started lower frequency, and then rise by a certain acceleration of the desired frequency(motor speed from low rise to high-speed).Stepper motor with its significant features, in the era of digital manufacturing play an important purpose. Along with the different development of digital technology and the stepper motor itself, improvements in technology, the stepper motor will be applied in more fields.。

步进电机英语介绍ppt

步进电机英语介绍ppt
混合式步进是指混合了永磁式和反应式的优点,它又 分为两相和五相:两相步进角一般为1.8度而五相步进角 一般为0.72度

视频:
Closed-loop control


The closed-loop control of the stepping motor is used to determine the phase transformation, which is suitable for the position of the rotor. The accuracy and stability of the system can greatly improve the performance of the stepping motor. 步进电动机的闭环控制是采用位置反馈和
introduce:
Stepping motor is a synchronous motor with intermittent operation, which is a function of the digital control system.

步进电机本质上属于断续运转的同步电机, 是数字控制系统中的一种执行元件。
synchronous [ˈsɪŋkrənəs] intermittent operation [ˌɪntəˈmitənt ˌɔpəˈreiʃən] digital [ˈdɪdʒɪtl]


The function is to convert the input pulse signal into the corresponding angular displacement or linear displacement. The motor rotates a corner or a step. 其功用是将输入的脉冲信号转换为相应的 角位移或直线位移,给定一个脉冲信号, 电机就转动一个角度或前进一步。

【资料】步进电机和伺服电机的系统控制中英文翻译资料

【资料】步进电机和伺服电机的系统控制中英文翻译资料

【关键字】资料SELECTING THE MOTOR THAT SUITS YOUR APPLICATION Motion control, in its widest sense, could relate to anything from a welding robot to the hydraulic system in a mobile crane. In the field of Electronic Motion Control, we are primarily concerned with systems falling within a limited power range, typically up to about 10HP (7KW), and requiring precision in one or more aspects. This may involve accurate control of distance or speed, very often both and sometimes other parameters such as torque or acceleration rate. In the case of the two examples given, the welding robot requires precise control of both speed and distance; the crane hydraulic system uses the driver as the feedback system so its accuracy varies with the skill of the operator. This wouldn’t be considered a motion control system in the strict sense of the term. Our standard motion control system consists of three basic elements:Fig. 1 Elements of motion control systemThe motor,This may be a stepper motor (either rotary or linear), a DC brush motor or a brushless servo motor. The motor needs to be fitted with some kind of feedback device unless it is a stepper motor.Fig. 2 shows a system complete with feedback to control motor speed. Such a system is known as a closed-loop velocity servo system.Fig. 2 Typical closed loop (velocity) servo systemThe drive,this is an electronic power amplifier that delivers the power to operate the motor in response to low-level control signals. In general, the drive will be specifically designed to operate with a particular motor type –you can’t use a stepper drive to operate a DC brush motor, for instance.Application Areas of Motor TypesStepper MotorsStepper Motor BenefitsStepper motors have the following benefits:• Low cost• Ruggedness• Simplicity in construction• High reliability• No maintenance• Wide acceptance• No tweaking to stabilize• No feedback components are needed• They work in just about any environment• Inherently more failsafe than servo motors.There is virtually no conceivable failure within the stepper drive module that could cause the motor to run away. Stepper motors are simple to drive and control in an open-loop configuration. They only require four leads. They provide excellent torque at low speeds, up to 5 times the continuous torque of a brush motor of the same frame size or double the torque of the equivalent brushless motor. This often eliminates the need for a gearbox. A stepper-driven-system is inherently stiff, with known limits to the dynamic position error.Stepper Motor DisadvantagesStepper motors have the following disadvantages:• Resonance effects and relatively long settling times• Rough performance at low speed unless a micro step drive is used• Liability to undetected position loss as a result of operating open-loop• They consume current regardless of load conditions and therefore tend to run hot• Losses at speed are relatively high and can cause excessive heating, and they are frequently noisy (especially at high speeds).• They can exhibit lag-lead oscillation, which is difficult to damp. There is a limit to their available size, and positioning accuracy relies on the mechanics (e.g., ball screw accuracy). Many of these drawbacks can be overcome by the use of a closed-loop control scheme. Note: The Comp motor Zeta Series minimizes or reduces many of these different stepper motor disadvantages. There are three main stepper motor types:• Permanent Magnet (P.M.) Motors• Variable Reluctance (V.R.) Motors• Hybrid MotorsWhen the motor is driven in its full-step mode, energizing two windings or “phases” at a time (see Fig. 3), the torque available on each step will be the same (subject to very small variations in the motor and drive characteristics). In the half-step mode, we are alternately energizing two phases and then only one as shown in Fig. 4. Assuming the drive delivers the same winding current in each case, this will cause greater torque to be produced when there are two windings energized. In other words, alternate steps will be strong and weak. This does not represent a major deterrent to motor performance—the available torque is obviously limited by the weaker step, but there will be a significant improvement in low-speed smoothness over the full-step mode.Clearly, we would like to produce approximately equal torque on every step, and this torque should be at the level of the stronger step. We can achieve this by using a higher current level when there is only one winding energized. This does not over dissipate the motor because the manufacturer’s current rating assumes two phases to be energized the current rating is based on the allowable case temperature). With only one phase energized, the same total power will be dissipated if the current is increased by 40%. Using this higher current in the one-phase-on state produces approximately equal torque on alternate steps (see Fig. 5).Fig. 3 Full step currentFig. 4 Half step currentFig.5 Half step current, profiledWe have seen that energizing both phases with equal currents produces an intermediate step position half-way between the one-phase-one positions. If the two phase currents are unequal, the rotor position will be shifted towards the stronger pole. This effect is utilized in the micro stepping drive, which subdivides the basic motor step by proportioning the current in the two windings. In this way, the step size is reduced and the low-speed smoothness is dramatically improved. High-resolution micro step drives divide the full motor step into as many as 500 micro steps, giving 100,000 steps per revolution. In this situation, the current pattern in the windings closely resembles two sine waves with a 90°phase shift between them (see Fig. 6). The motor is now being driven very much as though it is a conventional AC synchronous motor. In fact, the stepper motor can be driven in this way from a 60 Hz-US (50Hz-Europe) sine wave source by including a capacitor inseries with one phase. It will rotate at 72 rpm.Fig. 6 Phase currents in micro step modeStandard 200-Step Hybrid MotorThe standard stepper motor operates in the same way as our simple model, but has a greater number of teeth on the rotor and stator, giving a smaller basic step size. The rotor is in two sections as before, but has 50 teeth on each section. The half-tooth displacement between the two sections is retained. The stator has 8 poles each with 5 teeth, making a total of 40 teeth (see Fig. 7).Fig.7 200-step hybrid motorIf we imagine that a tooth is placed in each of the gaps between the stator poles, there would be a total of 48 teeth, two less than the number of rotor teeth. So if rotor and stator teeth are aligned at 12 o’clock, they will also be aligned at 6 o’clock. At 3 o’clock and 9 o’clock the teeth will be misaligned. However, due to the displacement between the sets of rotor teeth, alignment will occur at 3 o’clock and 9 o’clock at the other end of the rotor.The windings are arranged in sets of four, and wound such that diametrically-opposite poles are the same. So referring to Fig. 7, the north poles at 12 and 6 o’clock attract the south-pole teeth at the front of the rotor; the south poles at 3 and 9 o’clock attract the north-pole teeth at the back. By switching current to the second set of c oils, the stator field pattern rotates through 45°. However, to align with this new field, the rotor only has to turn through 1.8°. This is equivalent to one quarter of a tooth pitch on the rotor, giving 200 full steps per revolution.Note that there are as many detent positions as there are full steps per rev, normally 200. The detent positions correspond with rotor teeth being fully aligned with stator teeth. When power is applied to a stepper drive, it is usual for it to energize in the “zero phase” state in which there is current in both sets of windings. The resulting rotor position does not correspond with a natural detent position, so an unloaded motor will always move by at least one half steps at power-on. Of course, if the system was turned off other than in the zero phase state, or the motor is moved in the meantime, a greater movement may be seen at power-up.Another point to remember is that for a given current pattern in the windings, there are as many stable positions as there are rotor teeth (50 for a 200-step motor). If a motor isde-synchronized, the resulting positional error will always be a whole number of rotor teeth or a multiple of 7.2°. A motor cannot “miss” individual steps – position errors of one or two steps must be due to noise, spurious step pulses or a controller fault.Fig. 8 Digital servo driveDigital Servo Drive OperationFig.8 shows the components of a digital drive for a servo motor. All the main control functions are carried out by the microprocessor, which drives a D-to-A converter to produce an analog torque demand signal. From this point on, the drive is very much like an analog servo amplifier.Feedback information is derived from an encoder attached to the motor shaft. The encoder generates a pulse stream from which the processor can determine the distance traveled, and by calculating the pulse frequency it is possible to measure velocity.The digital drive performs the same operations as its analog counterpart, but does so by solving a series of equations. The microprocessor is programmed with a mathematical model (or “algorithm”) of the equivalent analog system. This model predicts the behavior of the system. It also takes into account additional information like the output velocity, the rate of change of the input and the various tuning settings.To solve all the equations takes a finite amount of time, even with a fast processor –this time is typically between 100ms and 2ms. During this time, the torque demand must remain constant at its previously-calculated value and there will be no response to a change at the input or output. This “update time” therefore becomes a critical factor in the performance of a digital servo and in a high-performance system it must be kept to a minimum.The tuning of a digital servo is performed either by pushbuttons or by sending numerical data from a computer or terminal. No potentiometer adjustments are involved. The tuning data is used to set various coefficients in the servo algorithm and hence determines the behavior of the system. Even if the tuning is carried out using pushbuttons, the final values can be uploaded to a terminal to allow easy repetition.Some applications, the load inertia varies between wide limits – think of an arm robot that starts off unloaded and later carries a heavy load at full extension. The change in inertia may well be a factor of 20 or more, and such a change requires that the drive isre-tuned to maintain stable performance. This is simply achieved by sending the new tuning values at the appropriate point in the operating cycle.步进电机和伺服电机的系统控制运动控制,在其最广泛的意义上说,可能与任何移动式起重机中焊接机器人液压系统有关。

最新步进电机概述翻译文献综述

最新步进电机概述翻译文献综述

步进电机概述中英文资料对照外文翻译文献综述外文文献:Knowledge of the stepper motorWhat is a stepper motor:The stepping motor as executing components, electromechanical integration is one of the key products, widely used in a variety of automatic control systems. With the development of microelectronics and computer technology, the stepper motor demand grow with each passing day, has been applied in various fields of the national economy.Stepping motor is a kind of electrical pulses into angular displacement of the implementing agencies. When stepping drive receives a pulse signal, it drives stepper motor rotate in the direction set by a fixed angle ( called the " step " ), it is the rotation at a fixed angle step by step operation. The number of pulses to control the amount of angular displacement through the control, so as to achieve the purpose of accurate positioning; also can control the pulse frequency to control motor rotation speed and acceleration, so as to achieve the purpose of speed. Special motor stepper motor control can be used as a, using its no accumulation of error ( accuracy of 100% ) characteristics, widely used in all kinds of open-loop control.Now more commonly used step motor comprises stepper motor ( VR ), permanent magnet stepper motor ( PM ), hybrid stepping motor ( HB ) and single-phase stepping motor.Permanent magnet stepper motor for general two-phase, torque and small volume, the step angle is 7.5 degree or 15 degree;Reaction stepping motor is generally three-phase, can achieve a high torque output, step angle is 1.5 degrees, but the noise and vibration are great. The rotor magnetic circuit made of soft magnetic material reaction stepper motor, a multi-phase excitation winding stator, using magnetic torque changes.Hybrid stepping motor is mixed the advantages of permanent magnet type and reaction type. It is divided into two phase and five phase: two-phase stepper angle is 1.8 degree and five phase stepper angle is 0.72 degrees. Application of the stepping motor is the most widely, is also this subdivision driving of stepper motor selection scheme.Some of the basic parameters of step motor:The natural step motor:It says every hair a step pulse signal control system, motor rotation angle. Motor factory is a step angle values, such as type 86BYG250A motor is given a value of 0.9° /1.8 °( said a half step of work is 0.9 °, the whole step of work is 1.8 °), this step can be called ' motor fixed step ', it doesn't have to be the actual motor work when the real step angle, angle and drive the real steps.Stepper motor phase number:Is the number of coils inside the motor, commonly used in a two-phase, three-phase, four phase, five phase stepper motor. The number of motor phase is different, the step angle is also different, the general two-phase motor step angle is 0.9° /1.8 °, three-phase 0.75 ° /1.5 °, five phase of 0.36 ° /0.72 °. In the absence of subdivision drive, users mainly rely on different phases of the stepper motor to meet their own requirements of step angle. If you use a subdivision driver, is ' phase ' will become meaningless, users only need to change the fine fraction in the drive, you can change the step angle.Keep the torque ( HOLDINGTORQUE ):Is the stepper motor power but there is no rotation, the stator locked rotor torque. It is one of the most important parameters of step motor, usually steppermotor in the low-speed torque to keep the torque. Because of the larger output torque stepper motor with speed and continuous decay, increases the output power with the speed of change, so keep the torque becomes one of the most important parameters of step motor. For example, when people say 2N.m stepper motor, in the absence of exceptional circumstances described in that refers to keep the torque motor for the 2N.m step.DETENTTORQUE:DETENTTORQUE:Refers to the stepper motor is not energized condition, the stator locked rotor torque. DETENTTORQUE does not have a unified way of translation in China, easy to make people misunderstand; as the rotor reaction stepper motor is not permanent magnetic material, so it has no DETENTTORQUE.Some of the characteristic of step motor:The 1 stepper motor step angle accuracy for 3-5%, and no accumulation.2 stepper motor appearance allows the maximum temperature.Stepper motor temperature is too high will first make the motor magnetic material demagnetization, resulting in lower torque and loss, so the highest temperature of motor appearance allows should depend on the different motor demagnetization magnetic materials; generally speaking, demagnetization point magnetic material in 130 degrees Celsius above, some even as high as 200 degrees Celsius stepping motor, so the surface temperature at 80-90 degrees Celsius completely normal.3 stepper motor torque will decrease with the increase of rotational speed.When the stepper motor rotates, the electrical inductance of the winding will form a reverse electromotive force; the higher the frequency, the greater the reverse emf. Under the influence of it, the motor with frequency ( or speed ) increase and the phase current is reduced, resulting in lower torque.4 stepper motor speed can be normal operation, but if it is more than a certain speed will not start, and accompanied by howling.Stepper motor is a technical parameter: no-load start frequency, namely the stepper motor under no-load condition can pulse frequency start, if the pulse frequency is higher than the value, the motor can not start properly, may have lost step or stall. In under the condition of the load, start frequency should be less. If you want to enable the motor to rotate at high speed, pulse frequency should accelerate the process is started, the lower frequency, and then according to certain acceleration up to high frequency desired ( motor speed from low speed to high speed ).Characteristics of stepper motor with its significant, play an important purpose in the era of digital manufacturing. With the different development of digital technology and stepper motor itself technology improves, the stepper motor will be applied in more fields.How to determine the stepper motor driver DC power supply:A. Determination of the voltageHybrid stepping motor driver power supply voltage is generally a wide range (such as the IM483 supply voltage of 12 ~ 48VDC), the supply voltage is usually based on the work of the motor speed and response to the request to choose. If the motor operating speed higher or faster response to the request, then the voltage value is high, but note that the ripple voltage can not exceed the maximum input voltage of the drive, or it may damage the drive.B. Determination of CurrentPower supply current is generally based on the output phase current drive I to determine. If a linear power supply, power supply current is generally preferable 1.1 to 1.3 times the I; if we adopt the switching power supply, power supply current is generally preferable to I, 1.5 to 2.0 times.The main characteristics of stepping motor:A stepper motor drive can be added operate pulse drive signal must be no pulse when the stepper motor at rest, such asIf adding the appropriate pulse signal, it will to a certain angle (called the step angle) rotation. Rotation speed and pulse frequency is proportional to.2 Dragon step angle stepper motor version is 7.5 degrees, 360 degrees around, takes 48 pulses to complete.3 stepper motor has instant start and rapid cessation of superior characteristics.Change the pulse of the order of 4, you can easily change the direction of rotation. Therefore, the current printers, plotters, robotics, and so devices are the core of the stepper motor as the driving force.Stepper motor control exampleWe use four-phase unipolar stepper motor as an example. The structure shown in Figure 1:Four four-phase winding leads (as opposed to phase A1 A2 B1 phase phase B2) and two public lines (to the power of positive). The windings of one phase to the power of the ground. So that the windings will be inspired. We use four-phase eight-beat control, ie, 1 phase 2 phase alter nating turn, would enhance resolution. 0.9 ° per step can be transferred to control the motor excitation is transferred in order as follows:If the requirements of motor reversal, the transmission excitation signal can be reversed. 2 control schemeControl system block diagram is as followsThe program uses AT89S51 as the main control device. It is compatible with the AT89C51, but also increased the SPI interface and the watchdog module, which not only makes the debugging process becomes easy and also more stable. The microcontroller in the program mainly for field signal acquisition and operation of the stepper motor to calculate the direction and speed information. Then sent to the CPLD.CPLD with EPM7128SLC84-15, EPM7128 programmable logic device of large-scale, forthe ALTERA company's MAX7000 family. High impedance, electrically erasable and other characteristics, can be used for the 2500 unit, the working voltage of +5 V. CPLD receives information sent from the microcontroller after converted to the corresponding control signal output to the stepper motor drive. Put the control signal drives the motor windings after the input, to achieve effective control of the motor. 2.1 The hardware structure of the motor driveMotor drive using the following circuit:R1-R8 in which the resistance value of 320Ω. R9-R12 resistance value 2.2KΩ. Q1-Q4 as Darlington D401A, Q5-Q8 for the S8550. J1, J2 and the stepper motor connected to the six-lead。

步进电机_原理、分类和特点_中英文翻译

步进电机_原理、分类和特点_中英文翻译

步进电机_原理、分类和特点_中英文翻译EnglishStepper motorStepper motor is the electric pulse signals into angulardisplacement or linear displacement of the open-loop stepper motorcontrol element pieces. In the case of non-overloaded, the motor speed, stop position depends only on the pulse frequency and pulse number, regardless of load changes, when the driver receives a step pulse signal, it will drive a stepper motor to Set the direction of rotation of afixed angle, called the "step angle", which the angle of rotation isfixed step by step operation. Number of pulses can be controlled by controlling the angular displacement, so as to achieve accurate positioning purposes; the same time by controlling the pulse frequencyto control the motor rotation speed and acceleration, to achieve speed control purposes.WorkInduction motor is a stepper motor, does it work is the use of electronic circuits, the DC power supply into a time-sharing, multi-phase timing control current, this current stepper motor power supply, the stepper motor to work properly , The drive is sharing power supplyfor the stepper motor, the polyphase timing controllerAlthough the stepper motor has been widely used, but the steppermotor does not like a normal DC motor, AC motor in the conventional use.It must be double-ring pulse signal, power driver circuit composed of the control system can be used. Therefore, it is not easy with a good stepping motor, which involves mechanical, electrical, electronics and computers, and many other specialized knowledge.As the stepper motor actuators, electromechanical integration, oneof the key products, widely used in a variety of automatic control systems. With the development of microelectronics and computer technology, increasing demand for stepper motor, has applications in all areas of the national economy.CategoriesNow more commonly used include the reaction of step motor stepper motor (VR), permanent magnet stepper motor (PM), hybrid stepper motors (HB) and single-phase stepper motor.Permanent magnet stepper motorPermanent magnet stepper motor is generally two-phase, torque, and smaller, usually 7.5 degree step angle or 15 degrees;Permanent magnet stepper motor output torque, dynamic performance, but a large step angle.Reaction Stepper MotorReaction is generally three-phase stepping motor can achieve high torque output, step angle of 1.5 degrees is generally, but the noise and vibration are large. Reaction by the stepper motor rotor magneticcircuit made of soft magnetic materials, a number of the stator phase excitation winding, the use of permeability changes in torque. StepMotor simple structure, low production costs, step angle is small; but the dynamic performance is poor.Hybrid Stepping MotorHybrid Step Motor combines reactive, permanent magnet stepper motors of both, it's a small step angle, contribute a large, dynamic performance, is currently the highest performance stepper motor. It is also sometimes referred to as Permanent Magnet Induction Stepping Motor. It consists of two phases and the five-phase: the general two-phase step angle of 1.8 degrees and the general five-phase step angle 0.72 degrees. The most widely used Stepper Motor.Stepper motor drive for energy savingThree-phase stepper motor drive special features:180% low torque output, low frequency characteristics of a goodrun ? Maximum output frequency 600Hz, high-speed motor control full range of detection of protection (over voltage, under voltage, overload) instantaneous power failure restartacceleration, deceleration, such as dynamic change in the stall protection function to preventElectrical dynamic parameters of automatic recognition function to ensure stability and accuracy of the systemquick response and high-speed shutdownabundant and flexible input and output interface and control, versatility ? use of SMT production and three full-mount anti-paint treatment process, product stability and highfull range of Siemens IGBT power devices using the latest, to ensure the quality of high-qualityBasic principlesUsually for the permanent magnet rotor motor, when current flows through the statorwindings, the stator windings produce a magnetic field vector. The magnetic field will lead to a rotor angle of the magnetic field makes the direction of a rotor and the stator's magnetic field direction. When the stator magnetic field vector rotating at an angle. As the rotor magnetic field is also transferred from another perspective. Anelectrical pulse for each input, the motor turning a point forward. It is the angular displacement of the output and input the number of pulses proportional to speed and pulse frequency is proportional to. Power to change the order of winding, the motor will reverse. Therefore, the number of available control pulse, frequency and power the motor windings of each phase in order to control the stepper motor rotation. Reaction Stepper MotorAs the response to stepping motor works is relatively simple. The following describes the first principle of three-phase stepping motor response.1, the structure: uniformly distributed rotor with many small teeth, the stator excitation windings of three teeth, the geometric axis of the rotor tooth axis in orderててwere staggered. 0,1 / 3 , 2 / 3 , (adjacent to the two axes of the rotor tooth pitchてdistance between the said), that is, with the teeth a relatively homogeneous A, Bててand staggered tooth 2 to the right 1 / 3 , C and the right to stagger tooth 3 2 / 3 ,A 'and the tooth 5 is relatively homogeneous, (A' is A, is the gear teeth 5 1) The following is the rotor's expansion plan:2, rotation: If the A-phase power, B, C phase is not energized, the magnetic field, alignment of teeth 1 and A, (without any power of the rotor are the same the following). Such as the B-phase power, A, C phase is not energized, gear 2, and Bてshould be aligned, when the rotor over to the right 1 / 3 , this time offset teeth 3てててand C 1 / 3 , teeth 4 and A shift ( -1 / 3 te) = 2 / 3 . Such as the C-phasepower, A, B phase is not energized, gear 3, and C should be aligned, this time right offててthe rotor Youxiang 1 / 3 , 4 and A gear shift time is 1 / 3 alignment. Such as theA-phase power, B, C phase is not energized, 4 and A-aligned teeth, the rotor Youxiangてright over 1 / 3 so after A, B, C, A are energized, gear 4 (ie,the previous tooth 1 teeth) to the A-phase, rotor to the right around a pitch, if you continue to press the A,てB, C, A ... ... power, the motor for each step (per pulse) 1 / 3 , Rotate Right. Suchas by A, C, B, A ... ... power, the motor to reverse. This shows that: the location and speed of motor conduction times by the (number of pulses) and frequency into one relationship. The direction determined by the conductivity of the order. However, out of torque, smooth, noise and reduce the angle considerations. Often withてA-AB-B-BC-C-CA-A this conductive state, so that each step the original 1 / 3てchanged to 1 / 6 . Even through different combinations of two-phase current, so 1 /てて3 into 1 / 12 , 1 / 24, te, which is the basic theory of the motor-driven basis for subdivision. Easily introduced: m phase on the stator excitation windings, the axis of the rotor tooth axis were offset 1 / m, 2 / m ... ... (m-1) / m, 1. And conductivity at a certain phase sequence reversing motor can be controlled - this is the rotation of the physical conditions. As long as we meet this condition can theoretically create any phase stepper motor, because of cost, and many other considerations, the market generally two, three, four, five-phase is more.3, the torque: the motor once energized, will produce between the stator and rotor magnetic field (magnetic flux Ф) when the rotor and stator stagger angle to produce force F and (dФ / dθ) is proportional to S the magnetic flux Ф = Br * S Br for the flux density, F and S for the magnetic area of L * D * Br core is proportional to L, effective length, D is rotor diameter Br = N • I / RN • I was excited winding ampere turns (current x turns) R for the magnetic resistance. Torque = force * radius of the torque and the motor turns the effective volume * An * is proportional to the flux density (only consider the linear state), therefore, the greater the effective volume of the motor, the greater the excitation ampere turns, the smaller air gap between stator and rotor, the motor torque, and vice versa.Induction Stepping Motor1, features: Induction, compared with the traditional reactive, structural reinforced with a permanent magnet rotor, in order to provide the working point of soft magnetic materials, and the stator excitation magnetic field changes only need to provide to provide the operating point of the consumption of magnetic materials energy, so the motor efficiency, current, low heat. Due to the presence of permanent magnets, the motor has a strong EMF, the damping effect of its own good, it is relatively stable during operation, low noise, low frequency vibration. Induction can be seen as somewhat low-speed synchronous motor. A four-phase motor can be used for four-phase operation, but also can be used for two-phase operation. (Must be bipolar voltage drive), while themotor is not so reactive. For example: four phase, eight-phase operation (A-AB-B-BC-C-CD-D-DA-A) can use two-phase eight-shot run. Not difficult to find the conditions for C =, D =. a two-phase motor's internalwinding consistent with the four-phase motors, small power motors are generally directly connected to the second phase, the power of larger motor, in order to facilitate the use and flexible to change the dynamic characteristics of the motor, its external connections often lead to eight (four-phase), so that when used either as a four-phase motors used, can be used for two-phase motor winding in series or parallel.2, classificationInduction motors can be divided in phases: two-phase motor, three phase motor, four-phase motor, five-phase motor. The frame size (motor diameter) can be divided into: 42BYG (BYG the Induction Stepping motor code), 57BYG, 86BYG, 110BYG, (international standard), and like 70BYG,90BYG, 130BYG and so are the national standards.3, the stepper motor phase number of static indicators of terms:very differently on the N, S the number of magnetic field excitation coil. Common m said. Beat number: complete the necessary cyclical changes in a magnetic field pulses or conducting state with n said, or that turned a pitch angle of the motor pulses needed to four-phase motor, for example, a four-phase four-shot operation mode that AB -BC-CD-DA-AB, shot eight four-phase operation mode that A-AB-B-BC-C-CD-D-DA-A. Step angle: corresponds to a pulse signal, the angular displacement of the rotor turned with θ said. θ = 360 degrees (the rotor teeth number of J* run shot), the conventional two, four-phase, the rotor teeth 50 tooth motor as an example. Four step run-time step angle θ = 360 ? / (50 * 4) = 1.8 degrees (commonly called the whole step), eight-shot running step angle θ = 360 ? / (50 * 8) = 0.9 degrees (commonly known as half step.) Location torque: the motor is not energized in the state, its locked rotor torque (as well as by the magnetic field profile of harmonics caused by mechanical error) static torque: the motor under the rated static electricity, the motor without rotation, the motor shaft locking torque. The motor torque is a measure of volume (geometry) standards, and drive voltage and drive power, etc. has nothing to do. Although the static torque is proportional to the electromagnetic magnetizing ampere turns, and fixed air gap between the rotor teeth on, but over-use of reduced air gap, increase the excitation ampere-turns to increase the static torque is not desirable, this will cause the motor heating and mechanical noise.4, the dynamic indicators and terminology:1, step angle accuracy: turn a stepper motor step angle for each actual value with the theoretical value of the error. Expressed as a percentage: Error / Step Angle * 100%. Its value is the number of different running different beat, four beat running should be within 5%, eight runs should take less than 15%.2 step: the motor running operation steps, is not equal to the theoretical number of steps. Called the step.3, offset angle: the axis of the rotor tooth offset angle of theaxis of the stator teeth, the motor is running there will be misalignment angle, the error caused by themisalignment angle, using division drive can not be solved.4, the maximum no-load starting frequency: a drive motor in the form of voltage and rated current, in the case without load, the maximum frequency can be started directly.5, the maximum operating frequency of load: a drive motor in theform of voltage and rated current, the motor maximum speed with no load frequency.6, running torque-frequency characteristics: the motor under test conditions in a measured frequency of operation between the output torque and running torque curve is called the frequency characteristic curve which is the motor number of the most important dynamic is the fundamental basis for motor selection. As shown below: There used to frequency characteristics of other features, starting frequency characteristics. Electrical Once selected, the motor torque to determine the static and dynamic torque is not the case, the motor torque depends on the dynamics of the average motor current (rather than static current), the average current increases, the greater the output torque of the motor, that motor frequency characteristics of the more hard. As shown below: where the maximum curve 3 current, or voltages; curve a minimum current, or voltage is the lowest curve and the load maximum speed of the intersection point of the load. For the average current,voltage increase as much as possible, so that the use of small inductor high current motor.7, the resonance point of the motor: stepping motor has a fixed resonance region, two, four-phase Induction in the resonance region is generally between 180-250pps (1.8 degree step angle) or about the 400pps (step angle 0.9 degrees), the higher the motor drive voltage, motor current increases, the lighter the load, the smaller the size the motor, the resonance shift upward, and vice versa, the motor output torque is large, yet further, and the whole system noise reduction, the general operating point should be offset more resonance.8, motor reversing control: timing is energized when the motor windings AB-BC-CD-DA or () is a positive turn, power the timing for the DA-CD-BC-AB or () when reversed.Some of the basic parameters of the stepper motorNatural step angle motorIt said each of the control system sends a pulse signal, the motor rotation angle. Motor factory, a step angle is given a value, such as86BYG250A motors is given in 0.9 ? / 1.8 ? (half-step work that is 0.9 ?, when the work of the whole step 1.8 ?), the step angle can be called'natural step angle motor', which is not necessarily true when theactual work the motor step angle, the real step angle and drive on.Stepper motor step angle is usually the general computing β calculated as follows.β = 360 ? / (Z • m • K)Where β-stepper motor step angle;Z-rotor teeth;m-phase stepper motor number;K-control factor, the film is the ratio of the number ofcoefficients with the phase numberPhase stepper motorRefers to the number of the motor coil group, the commonly used two-phase, three phase, four-phase, five-phase stepper motor. Different number of motor phases, the step angle is different, the general two-phase motor step angle of 0.9 ? / 1.8 ?, three-phase for the 0.75 ? /1.5 ?, five-phase for the 0.36 ? / 0.72 ?. In the absence of sub-drive, the user select a different number of phases depends mainly on the stepper motor step angle to meet their own requirements. If you use the sub-drive, the 'phases' will become meaningless, the user simply changes in the subdivision number on the drive, you can change the step angle.Holding torque (HOLDING TORQUE)Stepper motor is energized but no rotation, the stator locked rotor torque. It is the stepper motor one of the most important parameters, usually when the stepper motor torque at low speed near the holding torque. As the stepper motor's output torque increases with the speedand continuous attenuation, output power increases with the speed change, so keep the torque stepper motor to become a measure of one of the most important parameters. For example, when people say 2N.m the steppermotor in case of no special note is the holding torque of the stepper motor for the 2N.m. DETENT TORQUE:Stepper motor is not energized, the stator locked rotor torque. DETENT TORQUE translation in the country there is no uniform way, easy to misunderstand us; the reaction is not a permanent magnet stepper motor rotor material, so it does not DETENT TORQUE.Characteristics of the stepper motor1. The general accuracy of the stepper motor step angle of 3-5%, and not cumulative.2. Appearance of the stepper motor to allow the maximum temperature.Stepper motor causes the motor temperature is too high the first magnetic demagnetization, resulting in loss of torque down even further, so the motor surface temperature should be the maximum allowed depending on the motordemagnetization of magnetic material points; Generally speaking, the magneticdemagnetization points are above 130 degrees Celsius, and some even as high as 200 degrees Celsius, so the stepper motor surface temperature of 80-90 degrees Celsius is normal.3. Stepper motor torque will decrease with the increase of speed.When the stepper motor rotates, the motor winding inductance of each phase will form a reverse electromotive force; the higher the frequency the greater the back emf. In its role, the motor with frequency (orspeed) increases with the phase current decreases, resulting in decreased torque.4. Low-speed stepper motor can operate normally, but if not higher than a certain speed to start, accompanied by howling.Stepper motor has a technical parameters: no-load starting frequency, ie the stepper motor with no load to start the normal pulse frequency, pulse frequency is higher than the value if the motor does not start,you may lose steps or stall occurs. In the case of a load, start frequency should be lower. If you want the motor to achieve high-speed rotation, the pulse frequency should speed up the process, which started lower frequency, and then rise by a certain acceleration of the desired frequency (motor speed from low rise to high-speed).Stepper motor with its significant features, in the era of digital manufacturing play an important purpose. Along with the different development of digital technology and the stepper motor itself, improvements in technology, the stepper motor will be applied in more fields.中文步进电机步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。

步进电机细分控制系统基于SOPC技术

步进电机细分控制系统基于SOPC技术

毕业设计(论文)外文翻译题目基于串口的气动打标机的控制器设计专业机械电子工程班级机电子一班学生付杰指导教师刘朝涛重庆交通大学2014 年Computational Intelligence and Design, 2009. ISCID'09. Second International Symposiumon. IEEE, 2009, 1: 497-500.步进电机细分控制系统基于SOPC技术韩玺,李哲颖,王淑英信息学院北京联合大学北京,中国e-mail: xxthanxi@牛文良北京联合大学科学技术学院北京,中国e-mail: xxtwenliang@摘要-步进电机细分控制系统是基于SOPC系统可编程芯片技术的。

使用TFG(任务流图)模型,该系统是为了满足一些精密控制的要求。

设计方法是基于TFG的数字信号处理算法和模型用SOPC技术实现。

众所周知,步进电机系统由三个部分组成,控制部分,驱动程序部分和步进电机。

分析步进电机细分原理使其精确控制方法,系统的体系结构和实际驱动电路的控制电路。

选择Nios II处理器的SOPC系统的控制核心。

细分控制的软件流过程图表根据时间要求的驱动芯片LMD18245的步进电机也同样可以提供,最后系统会通过图片显示出来。

前言步进电机是机电一体化的关键产品之一,由于其价格低廉的特点,容易控制、无积累误差等,步进电机被广泛应用于自动控制系统,精确的机器等等。

与普通电机不同,步进电机接受脉冲信号的控制,这些特性使得有可能与SOPC技术组合。

实现步进电机精确控制系统的SOPC使用Nios II处理器为核心的处理,嵌入式技术是合理的和可行的。

嵌入式系统具有强大的计算能力和良好的网络配置属性。

[1]此外,由于应用SOPC技术的细分驱动,步进电机控制系统能满足需求等一些高精度定位和精确的加工。

步进电机细分驱动技术是改善步进电机的性能,如降低转矩脉动和噪声,抑制振荡,提高分级精度。

步进电机 英文翻译

步进电机 英文翻译

郑州航空工业管理学院英文翻译2014 届电气工程及其自动化专业班级姓名学号指导教师职称二О一四年 2 月22 日Stepper motorStepper motor is the electrical pulse signal into angular displacement or linear displacement of an open loop stepper motor control element pieces . In the case of non- overloading , motor speed , stopped position depends only on the number of pulse frequency and pulse signals , which are not affected by changes in load , when stepper drive receives a pulse signal , it will drive a stepper motor the rotational direction is set to a fixed angle , referred to as " step angle ", which is fixed to the rotational angle of the step by step operation . The number of pulses can be controlled by controlling the amount of angular displacement , so as to achieve accurate positioning ; while the pulse frequency can be controlled by controlling the motor rotation speed and acceleration to achieve speed control purposes .1. basic introductionStepper motor is an induction motor, it works by using an electronic circuit .The DC power into power -sharing , multi-phase timing control current, this current is powered stepper motor , stepper motor to work properly, the stepper motor drive is powered -sharing , multi-phase timing controller .Although the stepper motor has been widely used, but the stepper motor does not like an ordinary DC motors, AC motors for use in routine under . It must be by a two- ring pulse signal , power driver circuit composed of the control system can be used. So make good use of a stepper motor , but not easy, it involves a lot of expertise in mechanical ,electrical , electronics and computers.Stepper motors as actuators , is one of the key products of mechatronics , widely used in a variety of automated control systems. With the development of microelectronics and computer technology, the growing demand for stepper motor , has applications in various fields of national economy .Stepper motor is an electrical pulse into the angular displacement of the actuator. Plainly speaking : When the stepper drive receives a pulse signal , it will drive a stepper motor to set the direction of rotation of a fixed angle ( ie, step angle ) . The number of pulses can be controlled by controlling the amount of angular displacement , so as to achieve accurate positioning ; while the pulse frequency can be controlled by controlling the motor rotation speed and acceleration to achieve speed control purposes .2. major categoriesThere are three main types of stepper motors in the structure : Reaction (Variable Reluctance, VR), permanent magnet (Permanent Magnet, PM) and hybrid (Hybrid Stepping, HS).Reaction: the stator windings , the rotor soft magnetic material. Simple structure, low cost , small step angle up to 1.2 °, but poor dynamic performance , low efficiency, heat a large , difficult to guarantee reliability .Permanent magnet : permanent magnet stepper motors with permanent magnet rotor material, the number of poles of the rotor and the stator of the same number of poles . Which is characterized by good dynamicperformance, output torque, this motor but poor accuracy , a large step angle (typically 7.5 ° or 15 °).Hybrid : a combination of hybrid stepping motors and permanent magnet reactive advantage of its multi-phase windings on the stator , the rotor permanent magnet material , the rotor and the stator teeth are a number of small steps to improve the accuracy of the moment . It features an output torque, good dynamic performance, step angle is small, but the structure is complex, the cost is relatively high.Press the stator windings to points , a total of two-phase , three-phase and five equal series. Most popular is the two-phase hybrid stepping motor , accounting for more than 97 % market share , the reason is the high cost , coupled with good results after the breakdown of the drive. This kind of basic step angle of the motor 1.8 °/ step , half step back coupled with the drive to reduce the step angle of 0.9 °, coupled with sub-drive after its step angle can be broken up to 256 -fold (0.007 °/ micro step ) . Due to friction and manufacturing precision and other reasons , the actual control accuracy is slightly lower . Same stepper motors can be equipped with different segments of the drive to change the precision and effectiveness.3. selection methodStepper motor and drive selection methods :Determine how much torque is required : static torque stepper motor is to choose one of the main parameters. Load is large, requires the use of high torque motor. Indicators big moment , the motor appearance is also large.Determine motor speed : high speed requirements , should be selected phase current is larger , smaller inductor motors to increase power input. And select the drive when using higher supply voltages.Select motor installation specifications : as 57,86,110 , the main requirements for the moment .Determine the precision positioning requirements and vibration aspects of the case : to determine whether the required segments, the number of segments required .According to the motor current , supply voltage breakdown and select the drive .4. Basic PrinciplesWorksThe rotor is a permanent magnet motor typically , when a current flows through the stator windings , the stator winding generates a magnetic field vector . The rotating magnetic field to drive the rotor at an angle such that the magnetic field of the stator is consistent with a direction of the magnetic field of the rotor. When the stator magnetic field vector rotation angle. As the rotors turn a field angle . Each input an electrical pulse , the motor rotation angle forward. The number of pulses proportional to the angular displacement of the output and its input , the pulse frequency is proportional to the rotational speed . Change the order of the winding is energized , the motor will reverse. Therefore, the number of pulses can be used to control power-on sequence , frequency and motor windings to control each phase stepper motor rotation .Fever principleUsually see all kinds of motors , are all inside the core and windings . Windings resistance , power will produce loss , the loss is proportional to the square of the size of the resistance and current , and this is what we often say that the copper losses , if the current is not a standard DC or sine wave , but also produce harmonic losses ; core has hysteresis eddy current effect , in the alternating magnetic field will produce losses , its size and materials , current, frequency , voltage dependent , called iron loss. Copper and iron losses are manifested in the form of heat , thus affecting the efficiency of the motor . Stepper motors are generally pursue positioning accuracy and torque output , efficiency is relatively low, the current is generally relatively large, and the high harmonic components , the frequency of the alternating current with the speed of change, thus stepping motor widespread fever cases and situations than the general severe AC motor .5. major tectonicStepping motor is also called a stepper , which uses the principle of electromagnetic , mechanical energy is converted to electrical energy , People as early as the 1920s began to use this motor . As embedded systems ( such as printers, disk drives , toys, wipers, pager vibration , mechanical arm and video recorders , etc. ) of the increasingly popular use of the stepper motor also began surge. Whether in industrial, military , medical, automotive or entertainment industry , as long as a piece of the object needs to be moved from one location to another , the stepper motor will certainly come in handy. Stepper motors have many shapes and sizes, but regardless of how the shape and size , they can be classified into two categories : a variable reluctance stepper motors and permanent magnetstepper motors.A stepper motor is wound on the motor fixing part - the stator coils driven alveolar . Typically , a ring-shaped metal wire called a solenoid winding , and in the motor , the teeth around the winding wire is called the coil or phase .6. index termsStatic index terms1, number of phases : produce different on pole N, S magnetic excitation coil pairs. Common m said .2, Beats: cyclical changes in the magnetic field required to complete a number of pulses or conductive state with n, or refer to the motor turned a pitch angle required number of pulses to four-phase motor, for example , there are four ways with four -run shot that AB-BC-CD-DA-AB, four-phase eight-shot operation That way A-AB-B-BC-C-CD-D-DA-A. 3, step angle : corresponds to a pulse signal , the angular displacement of the rotor turn is repre sented by θ. θ = 360 degrees / ( number of rotor teeth * run shot ) to the conventional two , four-phase , the rotor teeth 50 teeth motor, for example . Four beats running step angle is θ = 360 degrees / ( 50 * 4 ) = 1.8 degrees ( commonly known as the full step ) , eight-shot operation step angle of θ = 360 degrees / ( 50 * 8 ) = 0.9 degrees ( commonly known as half-step ) .4, the detent torque : motor is not energized in the state itself locked rotor torque ( harmonics and mechanical error by the magnetic field caused by the tooth ) .5, static torque : motor at rated static electricity effect, the motor doesnot rotates when the motor shaft locking torque. This moment is a measure of the volume of the standard motor , regardless of the driving voltage and driving power supply. Although static torque is proportional to the electromagnetic excitation ampere-turns , and set the air gap between the rotor teeth related, but over the use of the air gap decreases , increasing the excitation ampere-turns to increase the static torque is not desirable, this will cause motor heating and mechanical noise.Dynamic Indicators term1,step angle accuracy: stepper motor turned every error between the actual value and the theoretical value of a step angle . Expressed as a percentage : error / step angle * 100 %. Different running different beats its value , when the four -run shot in the 5% ,eight shot should run less than 15 %.2, step : the number of steps the motor running operation does not mean that the theoretical number of steps . Called out of step .3, the offset angle: rotor stator teeth tooth axis shift axis angle , the motor is running there must be offset angle , angle error generated by the imbalance , driven by subdivision can not be solved .4, he maximum no-load starting frequency : motor in the form of a drive voltage and rated current, in the case without the load, the maximum frequency can directly start .5, the operating frequency of the maximum load : the motor in the form of a drive voltage and rated current, the maximum speed of the motor with no load frequency .6, running torque characteristics : Measured motor running undercertain test conditions the output torque versus frequency curve is called the running torque-frequency characteristic , which is the motor of many dynamic curve of the most important , but also the fundamental basis for the motor selection.Other features include inertia frequency characteristics, starting frequency characteristics. Once the motor is selected, the static torque of the motor is determined , and dynamic moment is not the case , the dynamic torque motor depends on the average current ( rather than static current ) motor is running , the average current , the greater the motor output torque that the motor frequency characteristics of the harder . For the average current, the drive voltage to maximize the use of small high-current inductor motor .7, the resonance point of the motor : stepper motor has a fixed resonance region , two , four-phase Induction resonance zone is generally between 180-250pps ( step angle of 1.8 degrees ) , or about 400pps ( step angle 0.9 degrees ) , the higher the motor drive voltage , motor current increases, the lighter the load , motor size smaller, the upward shift resonance region , and vice versa , so that the motor output torque is large , and the entire system without losing step noise reduction , general working point should shift more resonance region .8, motor reversing control : the timing of when the motor windings are energized for the forward , the timing is energized when AB-BC-CD-DA or () DA-CD-BC-AB or ( ) when inverted.7. features characteristicThe main features1, the general accuracy of the stepper motor step angle of 3-5 % , and does not accumulate.2, the appearance of the stepper motor maximum temperature allowed . First, make a stepper motor temperature magnetic motor demagnetization ,Resulting in the loss of torque down even further , so the maximum temperature of the motor should be allowed depending on the appearance of magnetic motor demagnetization points ; generally speaking, magnetic demagnetization points above 130 degrees Celsius , and some even as high as 200 degrees Celsius above , so the stepper motor surface temperature at 80-90 degrees Celsius completely normal .3, stepper motor torque will increase with the speed of decline .When the stepping motor rotates , the inductance of the motor windings of each phase will form a counter electromotive force ; the higher the frequency, the greater the back EMF . In its role, the motor with frequency ( or speed ) increases the phase current is reduced , resulting in decreased torque .4, the stepper motor can operate normally at low , but if more than a certain speed will not start , accompanied by howling.Stepper motor has a technical parameter : load starting frequency , ie stepper motor under no-load conditions to start the normal pulse frequency , if the pulse frequency is higher than this value, the motor does not start properly , you may lose steps or stall . Under a load , the starting frequency should be lower . If you want the motor to achieve high-speed rotation , the pulse frequency should speed up the process ,which starts at lower frequencies , and then rise to the hope that at a certain acceleration frequency ( motor speed rise from low speed ) . Stepper motor with its remarkable features in the era of digital manufacturing plays a significant purpose. Along with improving the different development of digital technology and the technology itself, stepper motor , stepper motors will be applied in more fields .Key FeaturesA stepping motor can be operated must be added before the drive , the drive signal is a pulse signal to be no pulse when the stepping motor is stationary, if the addition of a suitable pulse signal will at a certain angle ( called a step angle ) is rotated. Rotational speed and the pulse frequency is proportional to .2, phase stepper motor step angle of 7.5 degrees, 360 degrees around , you need to complete the 48 pulses .3, stepper motor with instant start and stop the rapid superior characteristics .4, change the order of the pulse , you can easily change the direction of rotation .Therefore , printers , plotters , robotics and other equipment to the stepper motor driven core .8. speed methodStepper motor pulse signal is converted to angular displacement or linear displacement .First, the overload is good. Its speed independent of load size , unlikeordinary motor when the load increase rate decline occurs when using the stepper motor speed and position , there are stringent requirements.The second is easy to control. Stepper motors are "steps" as a unit rotation , digital features more obvious .Third, the whole structure is simple . Traditional mechanical speed and position control structure is complicated , difficult to adjust after using stepper motors , which makes it simple and compact structure . Motor rotation speed is converted into a voltage , and passed as a feedback signal to the input terminal . Tacho is an auxiliary motor , the motor is installed at the end of the ordinary speed DC motor , the voltage generated by the motor speed feedback to the DC power supply, DC motor speed control to achieve the purpose .9. function module designThis module can be divided into the following three parts:· SCM system : control of stepper motors ;· Peripheral circuits : PIC microcontroller interface circuit and stepper motors ;· PIC procedure : Write SCM stepper electric power machine interface program to achieve output of the triangular wave signal.( 1 ) stepper motor and microcontroller interface .SCM is the excellent performance of the control processor, stepper motor control , interface components must have the following features.① voltage isolation .SCM work at 5V, while the stepper motor is working in dozens of V, or even higher. Once the voltage to the microcontroller series stepper motor , it will damage the microcontroller ; signals would interfere with chip stepper motor , the system may also lead to errors in the work , so the interface device must have isolation .② messaging functions.Interface components should be able to pass information to the microcontroller stepper motor control circuit generates control information needed work , corresponding to different ways of working, interface components should be able to produce a corresponding job control waveform.③ produce different frequencies required .To the stepping motor at different speeds to suit different purposes , interface components should produce different operating frequencies . ( 2 ) V oltage Isolation interface.Isolation voltage isolation interface dedicated to the low-pressure part of the microcontroller and the stepper motor drive circuit high-voltage part , to ensure that they work properly.V oltage pulse transformer isolation interface or optical isolator is basically the use of optical isolators. Microcontroller output signal can be sent directly to the TTL gate or base of the transistor , and then driven by the transistor optocoupler devices emitting diodes.Light -emitting diodes on the opto-coupler devices inside the photodiode , converted into electrical signals , go drive a stepper motor power amplifier circuit , current amplification interface is a stepper motoramplifier circuit preamplifier circuit . Its role is to optical isolator output signal current amplification in order to provide enough power amplifier circuit drive current .( 3 ) Work interface and frequency generator .MCU controlled stepper motor requires the input and output interfaces for controlling stepper motors using three I / 0 lines, this time, the microcontroller I / O port RA0, RAI, RA2 control three-phase stepping motor .10. advantages and defectsAdvantage1, the angle of rotation of the motor is proportional to the number of pulses ;2, when the motor is stopped with a maximum torque ( when winding excitation time ) ;3, the accuracy of each step in the three percent to five percent , but the error will not accumulate to the next step and thus a better position accuracy and repeatability movement ;4, excellent response from the stop and reverse ;5, since there is no brush , high reliability, and therefore the life of the motor depends only on bearing life ;6, only the response of the motor is determined by the digital input pulse , which can be open-loop control, which makes the structure of the motor can be relatively simple and cost control ;7, only the load can be connected directly to a very low speed synchronous rotation on the shaft of the motor ;8, since the speed is proportional to the pulse frequency , and thus a relatively wide speed range.Defect1, if not properly controlled prone resonance ;2, the high speed operation is difficult ;3, it is difficult to obtain a large torque ;4, there is no advantage, low energy efficiency in terms of volume and weight ;5, more than the load will destroy the synchronization , will be issued when the high speed vibration and noise .11. drive methodStepper motors can be connected directly to the power frequency AC or DC power source to work , but must use a dedicated stepper motor driver , which occurs by the pulse control unit , power drive unit , the protection unit and so on. Stepper motor drive unit with direct coupling , can also be interpreted as a stepper motor controller microprocessor power connector.12. drive requirements1, can provide rapid current rise and fall times ,Current waveform as close as possible to make a rectangle .With a cut-off period for the release of the current flow loop to reducethe back electromotive force at both ends of the windings and accelerate the current decay .2, has a high rhyme power and efficiency.Stepper motor driver , which is a pulse signal into the control system of the angular displacement of the stepper motor , or : a control signal for each pulse issued by the stepper motor drive of a step angle of rotation . That frequency is proportional to the speed of the stepper motor pulse signal. So to control the frequency pulse signal , the speed of the motor can be accurately ; controlled stepper pulse number , you can pinpoint the motor . There are a lot of stepper motor drive , power requirements should be based on the actual reasonable choice drive.13. Major ApplicationsSelect the stepper motorThere are step angle stepping motor ( related to the number of phases ) , static torque , and the current composition of the three elements .Once identified three elements , the stepper motor model has determined.1, step angle selectionStep motor angle accuracy depends on the load requirements , the minimum resolution of the load ( equivalent ) conversion to the motor shaft , the number of angles ( including gear ) for each equivalent motor should go. Step motor angle should be equal to or less than this angle. Step angle stepping motor on the market are generally 0.36 °/ 0.72 °( five-phase motors ) , 0.9 degrees / 1.8 degrees ( two , four-phase motor ) , 1.5 degrees / 3 degrees ( three-phase motors ) and so on.2, static moment of choiceDynamic torque stepper motor is difficult to determine all of a sudden , we tend to first determine the static torque of the motor. The choice is based on static torque load on the motor work, and the inertia of the load and the load can be divided into two kinds of friction load . Single inertia load and a single load is not present in friction . When direct start ( generally low ) when the two loads are to be considered , the main consideration inertial load during acceleration start, constant run into just consider friction loads. Under normal circumstances, the static torque should be 2-3 times the load of friction is good, static torque Once selected, the machine base and be able to determine the length of the motor down ( geometry ) .3, the current selectionLike static torque motors , due to the different current parameters , their operating characteristics vary greatly, can be based on torque-frequency characteristic curve , determine the motor current . Application note points1, the stepper motor used in low-speed situations --- rpm less than 1000 rpm , ( 0.9 degrees 6666PPS), preferably using 1000-3000PPS (0.9 degrees ) between , can make it work here through deceleration devices, At this high electrical efficiency, low noise ;2, the stepper motor is best not to use the state of the whole step , whole step when the state of vibration ;3, due to historical reasons, only a nominal voltage of 12V 12V motors , the voltage value other than the motor drive voltage V value, drive selectdriving voltage according to ( suggestions : 57BYG DC 24V-36V, 86BYG DC 50V, 110BYG using higher than the DC 80V), of course, in addition to 12 volts 12V constant voltage driver can also use other external power supply, but to consider the temperature rise ;4, the moment of inertia of the load should choose a large frame size motors ;5, when compared with the high-speed motor or high inertia loads , generally do not start working speed , and the use of up- speed gradually , without losing a step motor , two noise can be reduced while improving the positioning accuracy is stopped ;6, high-precision, through mechanical reduction should improve motor speed , or high number of sub-drive to solve, 5 -phase motor can also be used , but the prices of its entire system more expensive , less manufacturer , which is eliminated argument is the layman ;7, the vibration motor in the region should not , should be resolved by changing the voltage , current, or add some damping ;8, motor 600PPS (0.9 degrees ) following work should be low current , high inductance , low voltage to drive ;9, after the first election should follow the principle of the drive motor option .步进电机步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。

电机 电子 运动控制 伺服系统 英语单词表

电机 电子 运动控制 伺服系统 英语单词表

Motor 电机Supply提供Connector连接口Feedback反馈CAN (Controller Area Network)总线Brushless motor无刷电机Step motor步进电机Brushless 无刷Brush 刷子Phase相位Switch转换Sensor传感器Encoder编码器power supply电源供应器supply供应AC (Alternating Current)交流电DC (direct current)直流电input power输入功率input 输入outputs 输出current 电流voltage 电压Servo伺服Driver 驱动器Logic逻辑Vector矢量Control 控制Open 打开Closed 关闭Typical Applications 典型应用Motion Control Libraries运动控制库Fully digital intelligent全数字智能graphical development environment 图形开发环境Features 特征Execute 实行Complex 复杂的Powerful强大的Suitable适用、相配的Compatible兼容的Programmable可编程的Analog模拟的Digital 数字的User manual 使用手册Family家庭New Member 新成员Dynamic torque动态转矩OPEN LOOP开环控制PPS (pulse per second)每秒脉冲数Power stage 功率电路Uni-plar单极Bi-polar双极型PM (Permanent Magnet)永久磁铁Sleeve metal 金属滑动轴承Multi-Stack 串联多级FDD (Floppy Disk Drive )软盘驱动器RM (Ring-permanent-Magnet)圆环形磁铁Sawyer 索耶Outer rotor motor 或inverted motor外转子电机Pull-out-torque 失步转矩Pull-in-torque牵入转矩Over-shoot超越角Under-shoot 返回角Setting time 稳定时间Sleeve metal滑动轴承Pre-load 预紧力Chopper 恒电流斩波器Step 步Slow up 慢下来Speed up 加速Speed速度Position位置Error误差Cogging齿槽转矩Hall sensor霍尔传感器Continuous Stall Current 持续堵转电流Maximum Mechanical Speed最大的电机转速Continuous Current额定电流Peak Current峰值电流Tuning调整Loop 环Connector Type连接类型Mating结合CONTROL SUPPLY控制电源/输入电源Table表格Protection 保护Male 男的公头Female 女的母头Provides 提供. Pin针Pinout 引出线Motion Control 运动控制Windows 窗口wall-mounted 固定在墙上absence 失去acceleration 加速accept 接受access 存取accomplish 完成,达到accuracy 准确,精确acid 酸性,酸的action 动作Active power 有功功率address 地址adequate 适当的,充分的adjust 调整,校正after 以后air 风,空气Alarm 报警Ambient 周围的,环境的Ambient temp 环境温度ammeter 电流表,安培计Ampere 安培amplifier 放大器Analog 模拟Analog input 模拟输入Angle 角度Anion 阴离子Anode 阳极,正极anticipate 预期,期望Application program 应用程序Arc 电弧,弧光Area 面积,区域Ash 灰烬,废墟assemble 安装,组装Attempt 企图Automatic AUTO 自动Auxiliary AUX 辅助的Available 有效的,可用的Avoid 避免,回避Avometer 万用表,安伏欧表计Axial 轴向的Axis 轴,轴线Axis disp protection 轴向位移,保护Axle 轴,车轴,心捧Back 背后,反向的Back up 支持,备用Back ward 向后Baffle 隔板Balance 平衡Ball 球Bar 巴,条杆base 基础、根据Base load 基本负荷Base mode 基本方式Battery 电池before 在…之前bell 铃Belt 带,皮带Black 黑色Blow 吹Blow down 排污blue 蓝色bore 孔,腔Boot strap 模拟线路,辅助程序bottom 底部brash 脆性,易脆的bracket 支架,托架,括号breadth 宽度break 断开,断路brush 电刷,刷子bucket 斗,吊斗built 建立bump 碰,撞击busbar 母线button 按钮cabinet 柜cable 电缆calculator 计算器caliber 管径、尺寸、大小calorie 卡caloric 热的、热量Caloric value 发热量、热值calorific 发热的、热量的Calorific efficiency 热效率cancel 取消、省略capacitance CAPAC 电容Capacitive reactance 容抗capacity 容量、出力、能量card (电子)板、卡cascade CAS 串级Case pipe 套管casine 壳、箱casual 偶然的、临时、不规则的cathode 阴板、负极Center 中心Chamber 办公室、会议室Change 改变Charge 负荷、充电、加注Check 检查Chest 室Chief 主要的、首长、首领Circuit 电路Circuit diagram 电路图Clamp 夹具、钳Clarification 澄清Class 类、等级、程度Clean 清洁的、纯净的Cleanse 净化、洗净、消毒Clear 清除Clockwise 顺时针、右旋的Close 关闭Closed-loop 闭环Coal 煤Coal dust 煤粉Coil 线圈Cold 冷air 大气风Collect 收集Colour 颜色Combin 合并、联合Combustion 燃烧Command 命令、指挥Commission 使投入、使投产Common 共同的、普通的Compensation 补偿Complexity 复杂Complete 完成Component 元件Compress 压缩Computer 计算机. Condensive reactance 容抗Condition 条件、状况Conduct 传导Conductivity 导电率Conference 会议、商讨、谈判Configure 组态Connection 联接Console 控制台Consult 商量、咨询、参考Consumption 消费、消耗Constant 恒定的Contact 触点Contactor 接触器、触头Contact to earth 接地、触地、碰地Content 目录Continuous 连续的Contract 合同Control CNTR/CNTPL 控制Control loop 控制环Controller 控制器Convection 对流Convertor 运输机、传输机. Cool 冷的Cooling 冷却Coordinate COORD 协调Copy 拷贝Core 铁心、核心、磁心Corner 角落Correction 修正、改正Corrosion 腐蚀Cost 价格、成本、费用Crane 起重机Critical 临界的Critical speed 临界速度Cube 立方(体)Curdle 凝固Current 电流、当前Cursor 光标Curve 曲线Custom 习惯、海关Cutter 切削工具Cyanic 青色、深蓝色Cycle 循环、周期、周波Cymometer 频率表. Damage 损坏、破坏Danger 危险、危险物Dank 潮湿Danger zone 危险区Data 数据Data base 数据库Date 日期Data pool 数据库Dead band 死区Decimeter 分米Deep 深度、深的、深Degree 度、等级Delay 延迟Delay time 延时Delete 删除Deposit 沉积结垢Description 说明、描述Destination 目标、目的地Detail 细节Detect 发现、检定Deviate 偏离、偏差Device 设备、仪器. Diagnosis 诊断Diagram 图形、图表Diameter 直径Diaphragm 膜片、隔板Dielectric 介质、绝缘的Difference 差异、差别、差额Diff press 差压Digital 数字的Digital electric hydraulic 电调Digital input/output 数字量输入/输出Dioxde 二氧化碳Direct current DC 直流(电)Disassembly 拆卸Disaster 事故、故障Disaster shutdown 事故停机Discharge 排除、放电、卸载Disk 磁盘Dispatcher 调度员Disk 磁盘Displacement 位移Display 显示、列屏Distance 距离. Disturbance 扰动Divided by 除以Design 设计、发明Division 分界、部门Division wall 分割屏Documentation 文件Door 门Dowel pin 定位销Down pipe 下降管Download 下载Downtime 停机时间Dozer 推土机Draft 通风、草图Drain pump 疏水泵Drain tank 疏水箱Drawing 图样、牵引Drill 钻孔、钻头、钻床Drive 驱动、强迫Drop 站Drum 汽包Dry 干、干燥Dust 灰尘. Duty 责任Dynamic 动态的Dynamometer 功率表Earth 大地Earth fault 接地故障Earth connector 接地线、接地Earth lead 接地线、接地Eccentricity 偏心、扰度Edit 编辑Efficiency 效率Ejection 射出Ejector 抽气器Electric 电的Elbow 弯管、弯头Electrical 电的、电气的Electrical machine 电机Electrode 电极Electronic 电子的、电子学的Electrostatic 静电的Element 元件、零件、单元Ellipse 椭圆Emergency decree 安规. Emerg off 事故停/关闭Employee 雇员Empty 排空Enclosure 外壳、包围End 末端、终结End cover 端盖Energize 激励、加电Energy 能、能量Energy meter 电度表Energy source 能源Enter 开始、使进入Entry 输入Equipment 设备Erase 删除Error 错误Event 事件Excess 超过、过度Exit 出口Expenditure 费用Expert 专家、能手Explosion 爆炸External 外部的、表面的. Extinguisher 灭火器Extend 扩展、延伸Exteral 外部的、表面的Factor 因素、因数Fahrenheit 华式温标Failure FAIL 失败FALSE 假的、错误的Fan 风扇、风机Fault 故障Features 特点Feed 馈、供给Feedback 反馈Feed forward 前馈Feed water 给水Fiber optic 光纤Field 磁场、现场Figure 数字、图案File 文件Final 最后的Fire 燃烧、火焰Fire-proof 耐火的、防火的Fire-fight 灭火. Fireproof 防火的、阻燃的First stage 第一级、首级Flame 火焰Flank 侧翼、侧面Flash lamp 闪光灯Flash light 闪光Flasher 闪光装置Flexible 灵活的、柔性的Flow 流量、流动Flue 烟道Format 形式、格式Follow 跟随Forbid 禁止Force 强制Forward 向前Free end 自由端Frequency 频率From 从、来自Front 前面的Fuel 燃料Fully 充分的、完全的Function 功能. Fuse 保险丝、熔断器Fuse holder 保险盒Gate 闸门Gateway 入口、途径Gauge 仪表、标准Gear 齿轮Generate 引起、产生Generator 发电机、发生器Gland 密封套Gland seal 轴封Goal 目的、目标Go on 继续Grease 图形Green 绿色Ground/earth 地、大地Group 组、群Hardware 硬件Hazardous 危险的、冒险的Hertz HZ 赫兹History 历史Hold 保持Home 家、处所Horse power 马力Hot 热的Hot air 热风Hour 小时Idiostaic 同电位的Idle 空载的、无效的Ignore 忽视Illustrate 说明Impedance 阻抗Import 进口、引入Impulse 脉冲、冲击、冲量Inch IN 英寸Index 索引、指示Indicator 指示器Individual 单个的、独立的Inductive reactance 感抗Input/output I/O 输入/输出Inductance 电感Induction motor 异步电动机Industry 工业Inhibit 禁止Initial 最初的Inlet 入口Input group 输入组Insert 插入Inside 内侧、内部Inspection 观察、检查Install 安装Instruction 说明书、指南、指导Instrument 仪器Insulator 绝缘子Intake 输入端、进线Integer 整数Integral 积分Intensity 强度Interface 接口Interference 干扰、干涉Interlock 联锁Intermediate 中间的Internal 内部的Interrogation 质问、问号Interval 间隔Invoice INV 发票、发货单、托运Invalid 无效的、有病的Isolation 隔离Job 工作Jumper 跳线、跨接Key 键销、钥匙、键槽Keyboard 键盘Kilovolt-ampere KVA 千伏安Kink 弯曲、缠绕Knack 技巧、窍门、诀窍Label 标号、标签Laboratory 实验室Ladder 梯子、阶梯Ladder diagram 梯形图Lamp 灯、光源Last 最后的Leak 泄漏(动词)Leakage 泄漏(名词)Left 左Length 长度Level 液位、水平Lifebelt 安全带、保险带Lift 提、升Light 光亮、点、点燃、照亮. Lightning 雷电Light run 空转Lightning arrestor 避雷器Limit LMT 极限、限制Limiter 限制器、限位开关Line 线、直线impedance 线路阻抗Linkage 连杆List 列表Liter 公升Load 负荷limit 限制Loading 加负荷Local 局部Lock 闭锁、密封舱、固定Logic 逻辑Long 长Loop 环、回路Loss 损失、减少Loss of excitation 励磁损失Loss of phase 失相Low 低Low-half 下半Lower 较低的、降低Lub oil 润滑油Magenta 品红色Magnet 磁Main steam 主蒸汽Make up 补充(补给)Makers works 制造厂Malfunction 出错、误动、失灵Management 管理、控制、处理Manhole 人孔、检查孔、出入孔Manometer 压力表Manual 手动、手册Mark 型号、刻度、标志、特征Mass memory 大容量存储器Master 主要、控制者Maximum 最高的、最大Mean 平均值、中间的Measure 量度、测量Mechanical 机械的、力学的Mechanism 机械、力学、方法Medial 中间的、平均的Mediate 间接的、调解Medium 装置、介质、工质Memory 存储Metal 金属Meter 集量器、仪表、米Method 方法、规律、程序Method of operation 运行方式Mica 云母Microcallipers 千分尺Middle MID 中间的Minimum 最小的Minus 减、负号Minus phase 负相位Minute 分钟Miss operation 误动作、误操作Mistake 错误、事故Mixture 混合物Modify 修改Modulating control 调节控制Module 模件Moisture 湿度、湿汽Monitor 监视器、监视. Mount 安装、固定Mountain cork 石棉Mouse 鼠标Move 移动Multimeter 万用表Multiplication 乘Name 名、名字Natural 自然的Naught line 零线Negative 负的Neon tester 试电表Network 网络Neutral 中性的Neutral point 中性点Next 其次的Nipper 钳子、镊子Noise 噪音No-loading 空载Nominal power 额定功率Non-work 非工作的Normal 正常的、常规的Not available 无效、不能用Number 数字、号码、数目Number of turns 匝数Nut 螺母、螺帽Occur 发生Odd 奇数Office 办公室Oil 油On/off 开/关Onset 开始、发作Open 开、打开Open-air 露天的、开启的Open-loop 开环Open work 户外作业Operation 操作、运行Operational log 运行记录Operator 操作员Optimal 最优的、最佳的Optimal value 最佳值Optional 可选的Option switch 选择开关Original 初始的、原始的Out 出、出口Outage 停用Outlet 出口Output 产量、产品、输出Outside 外边、外面Over current 过流Over load 过负荷Overload protection 过载保护Over voltage 过压Overflow 溢流Overhead 顶部Override 超越Overspeed 超速Overview 概述、总述Oxygen 氧Pad 瓦、衬垫Page 页Panel 屏、盘Parameter 参数Part 部分、部件Password 口令Path 路线Peak 峰值Pendant 悬吊Perfect 完全的、理想的Performance 完成、执行、性能Periodic 周期的、循环的Peripheral 周围的Permanent 永久的、持久的Permit 允许Petrol 汽油Phase PH 阶段、状态、方面、相Phase angle 相角Phase not together 缺相、失相Phase sequence 相序Phase-in 同步Piezometer 压力计Pilot 导向、辅助的、控制的Pilot bearing 导向轴承Pipe 管、管道Plan 计划Plant 工场、车间Plastics 塑料Plug 塞子、栓、插头Plug socket 插座Plus 加Plyers 钳子、老虎钳Point 点Phase voltage 相电压Pole 机、柱Pollution 污染Pop valve 安全阀、突开阀Portion 一部分Position POS 位置Positive 确定的、正的、阳性的Potable water 饮用水Pound LB 磅Power PWR 功率、电源Power factor 功率因子Power plant 电厂Preliminary 准备工作Present 出现Preset 预设、预置Pressure PRES 压力Primary 初级的、一次的Prime 首要的Printer 打印机Principle 原理、原则Priority 优先级、优点Probe 探头Process 过程、方法Processing time 处理时间Program 程序Programmable 可编程的Prohibit 禁止Protection PROT 保护Potential transformer PT 电压互感器Psig 磅/平方英寸(表压力)Psia 磅/平方英寸(绝对压力)Pulse 脉冲、脉动Pump 泵Purge 净化、吹扫Purify 纯度Purpose 目的、用途Push button 按钮Put into operation 投入运行Pyrology 热工学Q-line Q线Quad 回芯组线Quality 质量Quartz 石英、水晶Query 询问、查询Quick 快Quick open 快开Quit 停止、离开、推出Rack earth 机壳接地Radial 径向的、半径的Radication 开方Radiation fin 散热片Raise 升高Range 范围、量程Rap 敲打Rapid charge 快速充电Rated 额定的、比率的Rated conditions 额定条件Rated power 额定功率Ratio 比率Raw material 原材料Ray 光线、射线Reactance 电抗、反作用Reactive capacity 无功容量Reactive power 无功功率Ready 准备好Real power 有效功率Real time 实时的Rear 后面Recipe 处方、配方Recirculate 再循环Recovery 恢复、再生Rectifier 整流器Red 红色Reduction 还原、缩小、降低Reference REF 参考、参照、证明书Reflux 倒流、回流Region 地域、领域Regulate 调节、控制Relative REL 相对的Release 释放Reliability 可靠的、安全的Relief 去载、卸载、释放、解除Renewal 更新、更换Repair 修理Repairer 修理工、检修工Repeat 重复、反复Replacement parts 备件、替换零件Request REO 请求Require 要求Reserve parts 备件Reserved 备用的Reset 复位Resistance 阻力、电阻Resonate 谐振、调谐Response 响应Return 返回Reverse rotation 反转Review 检查Rig 安装、装配、调整Right 右Ring 环Root 跟Rotating 旋转Rotor 转子Run 运行Run back 返回Safe 安全的、可靠的、稳定的. Safe potential 安全电压Safety 安全Saturate 饱和Scan 扫描Screw 螺杆、螺丝Screwdriver 螺丝刀Sea 海Search 寻找、查找Second 秒、第二Seep 渗出、渗漏Select 选择Sensor 传感器Sensitive 灵敏器Sequence 顺序、序列Service 服务、伺服Servomotor 伺服电机Set 设定Set up 安装、调整、建立Shadow 影子、屏蔽Shake 摇动、振动Shaped 形状Share 共享、分配. Sheet 表格、纸张Shell 壳Short circuit 短路Shot 发射、冲击、钢粒Shut off 关闭Shutdown 停止、停机Side 侧边Sidewall 侧墙Signal 信号Sign 标记、注册Silicon SI 硅Silo 灰库Single 单个的、个体的Simple 单纯的、简单的Similar 同样的、类似的Simulator 仿真机Site 现场Size 尺寸、大小Soft 软的、柔软的Software 软件Solid 固体Source 源、电源. Speed 速度Square 广场、方的Stability 稳定(性)Standard 标准Start 启动、开始Start up 启动State 状态Static 静电Stator 静子Stator coil 定子线圈Stator core 定子铁芯Status 状态Steadiness 稳定性Step 步Stere 立方米Stop 停止Storage 储存Straight 直的、直线Subject 题目、科目Supply 供给Support 支持、支撑Sure 确信的、可靠的System 系统Tab 表格Tandem 串联Tank 箱Tap 抽头、分布Target 目标Temperature 温度Template 模板、样板Tensile 拉力的、张力的Text 出口Terminal 端子、接线柱Test 试验Thermal 热的/热量的/由热驱动的Thermal conduction 热传导Thermal convection 热对流Thermal couple 热电偶Thermal cycle 热力循环Thermal radiation 热辐射Thermometer 温度计Thickness 厚度、浓度Third 第三Throttle 节流Thumb rule 安培右手定则Tight 紧密的Tilt 倾斜Tilting 摆动Title 题目、标题Total 总计的To 到、去Token 标志Tool 工具Tool box 工具箱Torque 扭矩、力矩Track 跟踪Travel 过程、运转、进行、移动Trend 趋势、方向Trip 跳闸、断开Trouble 事故、故障、干扰True 真实的、调整、校正TUNE 调节Tuning 调谐Tweezers 镊子、钳子Type 类型、标志Unbuild 失磁. Unit 单元、机组、电池Unload 减负荷Unlock 打开、解锁、释放Unprotected 未保护的、无屏蔽的Up 向上Up-half 上部、上半Update 更新、修改、校正Upgrade 升级(优先级)提高/改进Upper 上部Use 使用User 用户Valid 有效地、正确Value 数值Variable 可变的、可调的Vector 失量、向量Vessel 容器Vibration 振动Voltage transformer 电压互感器Voltmeter 电压表Volume 容积、体积Wall 墙、壁Wash 洗. Weather 天气Weak 星期、周Weight 重量Weld 焊接White 白色Windbox 风箱Windings 绕组Windows 窗口Wire 电绕Wire stripper 剥线钳Wood 木、木制的Work 工作Year 年Yellow 黄色Zero 零Zone 区、层、带。

步进电机的的基本原理中英文翻译

步进电机的的基本原理中英文翻译

步进电机的的基本原理中英文翻译English translation of the stepping motor basic principle步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。

随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。

The stepping motor as executing components, electromechanical integration is one of the key products, widely used in a variety of automatic control systems. With the development of microelectronics and computer technology, the stepper motor demand grow with each passing day, has been applied in various fields of the national economy.步进电机是一种将电脉冲转化为角位移的执行机构。

当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。

Stepping motor is a kind of electrical pulses into angular displacement of the implementing agencies. When stepping drive receives a pulse signal, it drives stepper motor rotate in the direction set by a fixed angle ( called the " step " ), it is the rotation at a fixed angle step by step operation. The number of pulses to control the amount of angular displacement through the control, so as to achieve the purpose of accurate positioning; also can control the pulse frequency to control motor rotation speed and acceleration, so as to achieve the purpose of speed. Special motor stepper motor control can be used as a, using its no accumulation of error ( accuracy of 100% ) characteristics, widely used in all kinds of open-loop control.现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。

步进电机概述论文中英文资料对照外文翻译文献综述

步进电机概述论文中英文资料对照外文翻译文献综述

步进电机概述中英文资料对照外文翻译文献综述外文文献:Knowledge of the stepper motorWhat is a stepper motor:Stepper motor is a kind of electrical pulses into angular displacement of the implementing agency. Popular little lesson: When the driver receives a step pulse signal, it will drive a stepper motor to set the direction of rotation at a fixed angle (and the step angle). You can control the number of pulses to control the angular displacement, so as to achieve accurate positioning purposes; the same time you can control the pulse frequency to control the motor rotation speed and acceleration, to achieve speed control purposes.What kinds of stepper motor sub-:In three stepper motors: permanent magnet (PM), reactive (VR) and hybrid (HB) permanent magnet stepper usually two-phase, torque, and smaller, step angle of 7.5 degrees or the general 15 degrees; reaction step is generally three-phase, can achieve high torque output, step angle of 1.5 degrees is generally, but the noise and vibration are large. 80 countries in Europe and America have been eliminated; hybrid stepper is a mix of permanent magnet and reactive advantages. It consists of two phases and the five-phase: two-phase step angle of 1.8 degrees while the general five-phase step angle of 0.72 degrees generally. The most widely used Stepper Motor.What is to keep the torque (HOLDING TORQUE)How much precision stepper motor? Whether the cumulative:The general accuracy of the stepper motor step angle of 3-5%, and not cumulative.Stepper motor to allow the minimum amount of surface temperatureStepper motor to allow the minimum amount of surface temperature:Stepper motor causes the motor temperature is too high the first magnetic demagnetization, resulting in loss of torque down even further, so the motor surface temperature should be themaximum allowed depending on the motor demagnetization of magnetic material points; Generally speaking, the magnetic demagnetization points are above 130 degrees Celsius, and some even as high as 200 degrees Celsius, so the stepper motor surface temperature of 80-90 degrees Celsius is normal.How to determine the stepper motor driver DC power supply:A. Determination of the voltageHybrid stepping motor driver power supply voltage is generally a wide range (such as the IM483 supply voltage of 12 ~ 48VDC), the supply voltage is usually based on the work of the motor speed and response to the request to choose. If the motor operating speed higher or faster response to the request, then the voltage value is high, but note that the ripple voltage can not exceed the maximum input voltage of the drive, or it may damage the drive.B. Determination of CurrentPower supply current is generally based on the output phase current drive I to determine. If a linear power supply, power supply current is generally preferable 1.1 to 1.3 times the I; if we adopt the switching power supply, power supply current is generally preferable to I, 1.5 to 2.0 times.The main characteristics of stepping motor:A stepper motor drive can be added operate pulse drive signal must be no pulse when the stepper motor at rest, such asIf adding the appropriate pulse signal, it will to a certain angle (called the step angle) rotation. Rotation speed and pulse frequency is proportional to.2 Dragon step angle stepper motor version is 7.5 degrees, 360 degrees around, takes 48 pulses to complete.3 stepper motor has instant start and rapid cessation of superior characteristics.Change the pulse of the order of 4, you can easily change the direction of rotation. Therefore, the current printers, plotters, robotics, and so devices are the core of the stepper motor as the driving force.Stepper motor control exampleWe use four-phase unipolar stepper motor as an example. The structure shown in Figure 1: Four four-phase winding leads (as opposed to phase A1 A2 B1 phase phase B2) and twopublic lines (to the power of positive). The windings of one phase to the power of the ground. So that the windings will be inspired. We use four-phase eight-beat control, ie, 1 phase 2 phase alternating turn, would enhance resolution. 0.9 ° per step can be transferred to control the motor excitation is transferred in order as follows:If the requirements of motor reversal, the transmission excitation signal can be reversed. 2 control schemeControl system block diagram is as followsThe program uses AT89S51 as the main control device. It is compatible with the AT89C51, but also increased the SPI interface and the watchdog module, which not only makes the debugging process becomes easy and also more stable. The microcontroller in the program mainly for field signal acquisition and operation of the stepper motor to calculate the direction and speed information. Then sent to the CPLD.CPLD with EPM7128SLC84-15, EPM7128 programmable logic device of large-scale, for the ALTERA company's MAX7000 family. High impedance, electrically erasable and other characteristics, can be used for the 2500 unit, the working voltage of +5 V. CPLD receives information sent from the microcontroller after converted to the corresponding control signal output to the stepper motor drive. Put the control signal drives the motor windings after the input, to achieve effective control of the motor. 2.1 The hardware structure of the motor drive Motor drive using the following circuit:R1-R8 in which the resistance value of 320Ω. R9-R12 resistance value 2.2KΩ. Q1-Q4 as Darlington D401A, Q5-Q8 for the S8550. J1, J2 and the stepper motor connected to the six-lead。

步进电机细分驱动控制

步进电机细分驱动控制
步进电机细分驱动控制
步进电机作为一种电脉冲——角位移的转换元件,由于具有价格低廉、易于控制、无积累误差和计算机接口方面等优点,在机械、仪表、工业控制等领域中获得了广泛的应用。
步进电机细分驱动技术是70年代中期发展起来的一种可以显著改善步进电机综合使用性能的驱动控制技术。1975年美国学者T.R.F redr ik sen首次在美国增量运动控制系统及器件年会上提出了步进电机步距角细分的控制方法。在其后的二十多年里,步进电机细分驱动技术得到了很大的发展,并在实践中得到广泛的应用。实践证明,步进电机细分驱动技术可以减小步进电机的步距角,提高电机运行的平稳性,增加控制的灵活性等。
1、步进电机细分驱动原理
步进电机的驱动是靠给步进电机的各相励磁绕组轮流通以电流,实现步进电机内部磁场合成方向的变化来使步进电机转动的。设矢量TA ,TB ,TC,TD 为步进电机A,B,C,D四相励磁绕组分别通电时产生的磁场矢量;TAB ,TBC,TCD,TDA为步进电机中AB,BC,CD,DA 两相同时通电产生的合成磁场矢量。当给步进电机的A,B,C,D四相轮流通电时,步进电机的内部磁场从TA→TB→TC→TD,即磁场产生了旋转。一般,当步进电机的内部磁场变化一周(360°)时,电机的转子转过一个齿距,因此,步进电机的步距角Bθ可表示为:rMBNθθ= 。
式中,Nr 为步进电机的转子齿数;Mθ为步进电机运行时两相邻稳定磁场之间的夹角。Mθ与电机的相数(M)和电机的运行拍数有关。当电机以单四拍方式运行时,Mθ=90°;当电机以四相八拍方式运行时,Mθ=45°。和单四拍方式相比,Mθ和Bθ都减小了一倍,实现了步距角的二细分。但是在通常的步进电机驱动线路中,由于通过各相绕组的电流是个开关量,即绕组中的电流只有零和某一额定值两种状态,相应的各相绕组产生的磁场也是一个开关量,只能通过各相的通电组合来减小Mθ和Bθ。因此,这样可达到的细分数很有限。

电脑灯步进电机SPWN细分驱动与调速控制

电脑灯步进电机SPWN细分驱动与调速控制

5 结语
利用上述方案,选用含四个 PWN 比较 输出口的单片机芯片 ATMEGA16L 和相应 的步进电机驱动电路,对步进电机进行细 分,解决了低频振荡问题,提高定位精度,而 自适应控制调速,能根据步进电机运行特 点,在位置即时变化的情况下提高连贯性, 使舞台灯光的演出效果更加明快、流畅。
图 2 流程图
工 程 技 术
刘志新 ( 湖南城建职业技术学院 湖南湘潭 4 1 1 1 0 3 )
摘 要: 本文在舞台电脑灯步进电机驱动的基础上, 增加了 S P W N 细分控制并对运动的快速定位进行自适应调节。实验结果这种效果良 好, 克服了步进电机的低速振荡与灯光效果不连贯等问题, 使其更加平稳、顺畅。 关键词: 步进电机 SPWN 细分 自适应控制 中图分类号:TV734 文献标识码:A 文章编号:1674-098X(2009)06(c)-0106-01
由图 1 可知,逆变电路功率管的开启时 刻为:
关断时刻为:
参考文献
[1] 王京池.电脑灯的功能特性和正确使用[J]. 现代电视技术,2004.11.
[2] 张希林,段吉安.基于 AVR 单片机的 SPWM 变频调速控制策略[J].电气自动化,2003.6.
[3] 张强,郭庆.三相混合式步进电动机 SPWM 控制技术[J].微特电机,2008.10.
[4] 曾学然, 余向阳. 舞台电脑灯步进电机的 自适应调速法[J].现代计算机,2003.3.
106 科技创新导报 Science and Technology Innovation Herald
软件流程图如图 2,反转情况与正转类似。
图 1 SPWN 波形
式中 M 为调制深度,u 为直流电源电
压。对应图中脉冲在,面积为:

步进电机-英文资料及翻译(Stepping Motor Types)

步进电机-英文资料及翻译(Stepping Motor Types)

Stepping Motor TypesIntroductionStepping motors come in two varieties, permanent magnet and variable reluctance (there are also hybrid motors, which are indistinguishable from permanent magnet motors from the controller's point of view). Lacking a label on the motor, you can generally tell the two apart by feel when no power is applied. Permanent magnet motors tend to "cog" as you twist the rotor with your fingers, while variable reluctance motors almost spin freely (although they may cog slightly because of residual magnetization in the rotor). You can also distinguish between the two varieties with an ohmmeter. Variable reluctance motors usually have three (sometimes four) windings, with a common return, while permanent magnet motors usually have two independent windings, with or without center taps. Center-tapped windings are used in unipolar permanent magnet motors.Stepping motors come in a wide range of angular resolution. The coarsest motors typically turn 90 degrees per step, while high resolution permanent magnet motors are commonly able to handle 1.8 or even 0.72 degrees per step. With an appropriate controller, most permanent magnet and hybrid motors can be run in half-steps, and some controllers can handle smaller fractional steps or microsteps.For both permanent magnet and variable reluctance stepping motors, if just one winding of the motor is energised, the rotor (under no load) will snap to a fixed angle and then hold that angle until the torque exceeds the holding torque of the motor, at which point, the rotor will turn, trying to hold at each successive equilibrium point.Variable Reluctance MotorsFigure 1.1If your motor has three windings, typically connected as shown in the schematic diagram in Figure 1.1, with one terminal common to all windings, it is most likely a variable reluctance stepping motor. In use, the common wire typically goes to the positive supply and the windings are energized in sequence.The cross section shown in Figure 1.1 is of 30 degree per step variable reluctance motor. The rotor in this motor has 4 teeth and the stator has 6 poles, with each winding wrapped around two opposite poles. With winding number 1 energised, the rotor teeth marked X are attracted to this winding's poles. If the current through winding 1 is turned off and winding 2 is turned on, the rotor will rotate 30 degrees clockwise so that the poles marked Y line up with the poles marked 2.To rotate this motor continuously, we just apply power to the 3 windings in sequence. Assuming positive logic, where a 1 means turning on the current through a motor winding, the following control sequence will spin the motor illustrated in Figure 1.1 clockwise 24 steps or 2 revolutions:Winding 1 1001001001001001001001001Winding 2 0100100100100100100100100Winding 3 0010010010010010010010010 time --->The section of this tutorial on Mid-Level Control provides details on methods for generating such sequences of control signals, while the section on Control Circuits discusses the power switching circuitry needed to drive the motor windings from such control sequences.There are also variable reluctance stepping motors with 4 and 5 windings, requiring 5 or 6 wires. The principle for driving these motors is the same as that for the three winding variety, but it becomes important to work out the correct order to energise the windings to make the motor step nicely.The motor geometry illustrated in Figure 1.1, giving 30 degrees per step, uses the fewest number of rotor teeth and stator poles that performs satisfactorily. Using more motor poles and more rotor teeth allows construction of motors with smaller step angle. Toothed faces on each pole and a correspondingly finely toothed rotor allows for step angles as small as a few degrees.Unipolar MotorsFigure 1.2Unipolar stepping motors, both Permanent magnet and hybrid stepping motors with 5 or 6 wires are usually wired as shown in the schematic in Figure 1.2, with a center tap on each of two windings. In use, the center taps of the windings are typically wired to the positive supply, and the two ends of each winding are alternately grounded to reverse the direction of the field provided by that winding.The motor cross section shown in Figure 1.2 is of a 30 degree per step permanent magnet or hybrid motor -- the difference between these two motor types is not relevant at this level of abstraction. Motor winding number 1 is distributed between the top and bottom stator pole, while motor winding number 2 is distributed between the left and right motor poles. The rotor is a permanent magnet with 6 poles, 3 south and 3 north, arranged around its circumfrence.For higher angular resolutions, the rotor must have proportionally more poles. The 30 degree per step motor in the figure is one of the most common permanent magnet motor designs, although 15 and 7.5 degree per step motors are widely available. Permanent magnet motors with resolutions as good as 1.8 degrees per step are made, and hybrid motors are routinely built with 3.6 and 1.8 degrees per step, with resolutions as fine as 0.72 degrees per step available.As shown in the figure, the current flowing from the center tap of winding 1 to terminal a causes the top stator pole to be a north pole while the bottom stator pole is a south pole. This attracts the rotor into the position shown. If the power to winding 1 is removed and winding 2 is energised, the rotor will turn 30 degrees, or one step.To rotate the motor continuously, we just apply power to the two windings in sequence. Assuming positive logic, where a 1 means turning on the current through a motor winding, the following two control sequences will spin the motor illustrated in Figure 1.2 clockwise 24 steps or 2 revolutions:Winding 1a 1000100010001000100010001Winding 1b 0010001000100010001000100Winding 2a 0100010001000100010001000Winding 2b 0001000100010001000100010 time --->Winding 1a 1100110011001100110011001Winding 1b 0011001100110011001100110Winding 2a 0110011001100110011001100Winding 2b 1001100110011001100110011 time --->Note that the two halves of each winding are never energized at the same time. Both sequences shown above will rotate a permanent magnet one step at a time. The top sequence only powers one winding at a time, as illustrated in the figure above; thus, it uses less power. The bottom sequence involves powering two windings at a time and generally produces a torque about 1.4 times greater than the top sequence while using twice as much power.The section of this tutorial on Mid-Level Control provides details on methods for generating such sequences of control signals, while the section on Control Circuits discusses the power switching circuitry needed to drive the motor windings from such control sequences.The step positions produced by the two sequences above are not the same; as a result, combining the two sequences allows half stepping, with the motor stopping alternately at the positions indicated by one or the other sequence. The combined sequence is as follows:Winding 1a 11000001110000011100000111Winding 1b 00011100000111000001110000Winding 2a 01110000011100000111000001Winding 2b 00000111000001110000011100time --->Bipolar MotorsFigure 1.3Bipolar permanent magnet and hybrid motors are constructed with exactly the same mechanism as is used on unipolar motors, but the two windings are wired more simply, with no center taps. Thus, the motor itself is simpler but the drive circuitry needed to reverse the polarity of each pair of motor poles is more complex. The schematic in Figure 1.3 shows how such a motor is wired, while the motor cross section shown here is exactly the same as the cross section shown in Figure 1.2.The drive circuitry for such a motor requires an H-bridge control circuit for each winding; these are discussed in more detail in the section on Control Circuits. Briefly, an H-bridge allows the polarity of the power applied to each end of each winding to be controlled independently. The control sequences for single stepping such a motor are shown below, using + and - symbols to indicate the polarity of the power applied to each motor terminal:Terminal 1a +---+---+---+--- ++--++--++--++--Terminal 1b --+---+---+---+- --++--++--++--++Terminal 2a -+---+---+---+-- -++--++--++--++-Terminal 2b ---+---+---+---+ +--++--++--++--+ time --->Note that these sequences are identical to those for a unipolar permanent magnet motor, at an abstract level, and that above the level of the H-bridge power switching electronics, the control systems for the two types of motor can be identical.Note that many full H-bridge driver chips have one control input to enable the output and another to control the direction. Given two such bridge chips, one per winding, the following control sequences will spin the motor identically to the control sequences given above:Enable 1 1010101010101010 1111111111111111Direction 1 1x0x1x0x1x0x1x0x 1100110011001100Enable 2 0101010101010101 1111111111111111Direction 2 x1x0x1x0x1x0x1x0 0110011001100110 time --->To distinguish a bipolar permanent magnet motor from other 4 wire motors, measure the resistances between the different terminals. It is worth noting that some permanent magnet stepping motors have 4 independent windings, organized as two sets of two. Within each set, if the two windings are wired in series, the result can be used as a high voltage bipolar motor. If they are wired in parallel, the result can be used as a low voltage bipolar motor. If they are wired in series with a center tap, the result can be used as a low voltage unipolar motor. Bifilar MotorsBifilar windings on a stepping motor are applied to the same rotor and stator geometry as a bipolar motor, but instead of winding each coil in the stator with a single wire, two wires are wound in parallel with each other. As a result, the motor has 8 wires, not four.In practice, motors with bifilar windings are always powered as either unipolar or bipolar motors. Figure 1.4 shows the alternative connections to the windings of such a motor.Figure 1.4To use a bifilar motor as a unipolar motor, the two wires of each winding are connected in series and the point of connection is used as a center-tap. Winding 1 in Figure 1.4 is shown connected this way.To use a bifilar motor as a bipolar motor, the two wires of each winding are connected either in parallel or in series. Winding 2 in Figure 1.4 is shown with a parallel connection; this allows low voltage high-current operation. Winding 1 in Figure 1.4 is shown with a series connection; if the center tap is ignored, this allows operation at a higher voltage and lower current than would be used with the windings in parallel.It should be noted that essentially all 6-wire motors sold for bipolar use are actually wound using bifilar windings, so that the external connection that serves as a center tap is actually connected as shown for winding 1 in Figure 1.4. Naturally, therefore, any unipolar motor may be used as a bipolar motor at twice the rated voltage and half the rated current as is given on the nameplate.The question of the correct operating voltage for a bipolar motor run as a unipolar motor, or for a bifilar motor with the motor windings in series is not as trivial as it might first appear. There are three issues: The current carrying capacity of the wire, cooling the motor, and avoiding driving the motor's magnetic circuits into saturation. Thermal considerations suggest that, if the windings are wired in series, the voltage should only be raised by the square root of 2. The magnetic field in the motor depends on the number of ampere turns; when the two half-windings are run in series, the number of turns is doubled, but because a well-designed motor has magnetic circuits that are close to saturation when the motor is run at its rated voltage and current, increasing the number of ampere-turns does not make the field any stronger. Therefore, when a motor is run with the two half-windings in series, the current should be halved in order to avoid saturation; or, in other words, the voltage across the motor winding should be the same as it was.For those who salvage old motors, finding an 8-wire motor poses a challenge! Which of the 8 wires is which? It is not hard to figure this out using an ohm meter, an AC volt meter, and a low voltage AC source. First, use the ohm meter to identify the motor leads that are connected to each other through the motor windings. Then, connect a low-voltage AC source to one of these windings. The AC voltage should be below the advertised operating voltage of the motor; voltages under 1 volt are recommended. The geometry of the magnetic circuits of the motor guarantees that the two wires of a bifilar winding will be strongly coupled for AC signals, while there should be almost no coupling to the other two wires. Therefore, probing with an AC volt meter should disclose which of the other three windings is paired to the winding under power. Multiphase MotorsFigure 1.5A less common class of permanent magnet or hybrid stepping motor is wired with all windings of the motor in a cyclic series, with one tap between each pair ofwindings in the cycle, or with only one end of each motor winding exposed while the other ends of each winding are tied together to an inaccessible internal connection. In the context of 3-phase motors, these configurations would be described as Delta and Y configurations, but they are also used with 5-phase motors, as illustrated in Figure 1.5. Some multiphase motors expose all ends of all motor windings, leaving it to the user to decide between the Delta and Y configurations, or alternatively, allowing each winding to be driven independently.Control of either one of these multiphase motors in either the Delta or Y configuration requires 1/2 of an H-bridge for each motor terminal. It is noteworthy that 5-phase motors have the potential of delivering more torque from a given package size because all or all but one of the motor windings are energised at every point in the drive cycle. Some 5-phase motors have high resolutions on the order of 0.72 degrees per step (500 steps per revolution).Many automotive alternators are built using a 3-phase hybrid geometry with either a permanent magnet rotor or an electromagnet rotor powered through a pair of slip-rings. These have been successfully used as stepping motors in some heavy duty industrial applications; step angles of 10 degrees per step have been reported.With a 5-phase motor, there are 10 steps per repeat in the stepping cycle, as shown below:Terminal 1 +++-----+++++-----++Terminal 2 --+++++-----+++++---Terminal 3 +-----+++++-----++++Terminal 4 +++++-----+++++-----Terminal 5 ----+++++-----+++++-time --->With a 3-phase motor, there are 6 steps per repeat in the stepping cycle, as shown below:Terminal 1 +++---+++---Terminal 2 --+++---+++-Terminal 3 +---+++---++time --->Here, as in the bipolar case, each terminal is shown as being either connected to the positive or negative bus of the motor power system. Note that, at each step, only one terminal changes polarity. This change removes the power from one winding attached to that terminal (because both terminals of the winding in question are of the same polarity) and applies power to one winding that was previously idle. Given the motor geometry suggested by Figure 1.5, this control sequence will drive the motor through two revolutions.To distinguish a 5-phase motor from other motors with 5 leads, note that, if the resistance between two consecutive terminals of the 5-phase motor is R, the resistance between non-consecutive terminals will be 1.5R.Note that some 5-phase motors have 5 separate motor windings, with a total of 10 leads. These can be connected in the star configuration shown above, using 5 half-bridge driver circuits, or each winding can be driven by its own full-bridge. While the theoretical component count of half-bridge drivers is lower, the availability of integrated full-bridge chips may make the latter approach preferable.步进电机•介绍•变磁阻电机•单极电机•双极电机•单一电机•多相电机介绍步进电动机分成两类、永磁和变磁阻(也有混合电机、永磁电机与从控制器的观点)。

步进电机简介stepper motors

步进电机简介stepper motors

步进电机简介s tepper motors2007-03-08 20:28步进电机在去有机床的生产车间都基本上有见过,但主要都是在数控机床,机床呢好象都用了私服电机步进电机我也有玩过一下是一个简易的数控平台设计我做了下位机和上位机的几乎所有程序下位机用了一天一夜用汇编写的 1千多行好恐怖因为赶着交很多其实还没写好插补还实现不了只是留了接口但终究没找到一个现成的又没时间要赶着做上位机的程序!!!!!也搞了一天也来不及做好就验收了~~~~更巧的是验收时步进电机出了问题没被细问~~险啊!!!!三天把人家三个星期的工作都做了已经很不容易了啊在这三天只吃了一顿米饭其他时间 --北方大饼!!来自/Control-Technology/Motor-Control-Circuits/steppe r-motors.htm一、前言步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。

使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。

它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。

因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。

目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。

仅仅处于一种盲目的仿制阶段。

这就给用户在产品选型、使用中造成许多麻烦。

签于上述情况,我们决定以广泛的感应子式步进电机为例。

叙述其基本工作原理。

望能对广大用户在选型、使用、及整机改进时有所帮助。

二、感应子式步进电机工作原理(一)反应式步进电机原理由于反应式步进电机工作原理比较简单。

步进电机概述论文翻译英文版(5篇模版)

步进电机概述论文翻译英文版(5篇模版)

步进电机概述论文翻译英文版(5篇模版)第一篇:步进电机概述论文翻译英文版Knowledge of the stepper motor What is a stepper motor:The stepping motor as executing components, electromechanical integration is one of the key products, widely used in a variety of automatic control systems. With the development of microelectronics and computer technology, the stepper motor demand grow with each passing day, has been applied in various fields of the national economy.Stepping motor is a kind of electrical pulses into angular displacement of the implementing agencies. When stepping drive receives a pulse signal, it drives stepper motor rotate in the direction set by a fixed angle ( called the " step " ), it is the rotation at a fixed angle step by step operation. The number of pulses to control the amount of angular displacement through the control, so as to achieve the purpose of accurate positioning; also can control the pulse frequency to control motor rotation speed and acceleration, so as to achieve the purpose of speed. Special motor stepper motor control can be used as a, using its no accumulation of error ( accuracy of 100% ) characteristics, widely used in all kinds of open-loop control.Now more commonly used step motor comprises stepper motor ( VR ), permanent magnet stepper motor ( PM ), hybrid stepping motor ( HB ) and single-phase stepping motor.Permanent magnet stepper motor for general two-phase, torque and small volume, the step angle is 7.5 degree or 15 degree;Reaction stepping motor is generally three-phase, can achieve a high torque output, step angle is 1.5 degrees, but thenoise and vibration are great. The rotor magnetic circuit made of soft magnetic material reaction stepper motor, a multi-phase excitation winding stator, using magnetic torque changes.Hybrid stepping motor is mixed the advantages of permanent magnet type and reaction type. It is divided into two phase and five phase: two-phase stepper angle is 1.8 degree and five phase stepper angle is 0.72 degrees. Application of the stepping motor is the most widely, is also this subdivision driving of stepper motor selection scheme.Some of the basic parameters of step motor:The natural step motor:It says every hair a step pulse signal control system, motor rotation angle. Motor factory is a step angle values, such as type 86BYG250A motor is given a value of 0.9° /1.8 °( said a half step of work is 0.9 °, the whole step of work is 1.8 °), this step can be called ' motor fixed step ', it doesn't have to be the actual motor work when the real step angle, angle and drive the real steps.Stepper motor phase number:Is the number of coils inside the motor, commonly used in a two-phase, three-phase, four phase, five phase stepper motor. The number of motor phase is different, the step angle is also different, the general two-phase motor step angle is 0.9° /1.8 °, three-phase 0.75 ° /1.5 °, five phase of 0.36 ° /0.72 °. In the absence of subdivision drive, users mainly rely on different phases of the stepper motor to meet their own requirements of step angle. If you use a subdivision driver, is ' phase ' will become meaningless, users only need to change the fine fraction in the drive, you can change the step angle.Keep the torque ( HOLDINGTORQUE ):Is the stepper motor power but there is no rotation, thestator locked rotor torque. It is one of the most important parameters of step motor, usually stepper motor in the low-speed torque to keep the torque. Because of the larger output torque stepper motor with speed and continuous decay, increases the output power with the speed of change, so keep the torque becomes one of the most important parameters of step motor. For example, when people say 2N.m stepper motor, in the absence of exceptional circumstances described in that refers to keep the torque motor for the 2N.m step.DETENTTORQUE: DETENTTORQUE:Refers to the stepper motor is not energized condition, the stator locked rotor torque. DETENTTORQUE does not have a unified way of translation in China, easy to make people misunderstand; as the rotor reaction stepper motor is not permanent magnetic material, so it has no DETENTTORQUE.Some of the characteristic of step motor:The 1 stepper motor step angle accuracy for 3-5%, and no accumulation.2 stepper motor appearance allows the maximum temperature.Stepper motor temperature is too high will first make the motor magnetic material demagnetization, resulting in lower torque and loss, so the highest temperature of motor appearance allows should depend on the different motor demagnetization magnetic materials; generally speaking, demagnetization point magnetic material in 130 degrees Celsius above, some even as high as 200 degrees Celsius stepping motor, so the surface temperature at 80-90 degrees Celsius completely normal.3 stepper motor torque will decrease with the increase of rotational speed.When the stepper motor rotates, the electrical inductance of the winding will form a reverse electromotive force; the higher the frequency, the greater the reverse emf. Under the influence of it, the motor with frequency ( or speed ) increase and the phase current is reduced, resulting in lower torque.4 stepper motor speed can be normal operation, but if it is more than a certain speed will not start, and accompanied by howling.Stepper motor is a technical parameter: no-load start frequency, namely the stepper motor under no-load condition can pulse frequency start, if the pulse frequency is higher than the value, the motor can not start properly, may have lost step or stall. In under the condition of the load, start frequency should be less. If you want to enable the motor to rotate at high speed, pulse frequency should accelerate the process is started, the lower frequency, and then according to certain acceleration up to high frequency desired ( motor speed from low speed to high speed ).Characteristics of stepper motor with its significant, play an important purpose in the era of digital manufacturing. With the different development of digital technology and stepper motor itself technology improves, the stepper motor will be applied in more fields. How to determine the stepper motor driver DC power supply:A. Determination of the voltageHybrid stepping motor driver power supply voltage is generally a wide range (such as the IM483 supply voltage of 12 ~ 48VDC), the supply voltage is usually based on the work of the motor speed and response to the request to choose. If the motor operating speed higher or faster response to the request, thenthe voltage value is high, but note that the ripple voltage can not exceed the maximum input voltage of the drive, or it may damage the drive. B. Determination of Current Power supply current is generally based on the output phase current drive I to determine. If a linear power supply, power supply current is generally preferable 1.1 to 1.3 times the I; if we adopt the switching power supply, power supply current is generally preferable to I, 1.5 to 2.0 times. The main characteristics of stepping motor:A stepper motor drive can be added operate pulse drive signal must be no pulse when the stepper motor at rest, such as If adding the appropriate pulse signal, it will to a certain angle (called the step angle) rotation. Rotation speed and pulse frequency is proportional to.2 Dragon step angle stepper motor version is 7.5 degrees, 360 degrees around, takes 48 pulses to complete.3 stepper motor has instant start and rapid cessation of superior characteristics. Change the pulse of the order of 4, you can easily change the direction of rotation. Therefore, the current printers, plotters, robotics, and so devices are the core of the stepper motor as the driving force. Stepper motor control example We use four-phase unipolar stepper motor as an example. The structure shown in Figure 1:Four four-phase winding leads (as opposed to phase A1 A2 B1 phase phase B2) and two public lines (to the power of positive). The windings of one phase to the power of the ground. So that the windings will be inspired. We use four-phase eight-beat control, ie, 1 phase 2 phase alternating turn, would enhance resolution. 0.9 ° per step can be transferred to control the motor excitation is transferred in order as follows:If the requirements of motor reversal, the transmission excitation signal can be reversed. 2 control scheme Control system block diagram is as followsThe program uses AT89S51 as the main control device. It is compatible with the AT89C51, but also increased the SPI interface and the watchdog module, which not only makes the debugging process becomes easy and also more stable. The microcontroller in the program mainly for field signal acquisition and operation of the stepper motor to calculate the direction and speed information. Then sent to the CPLD. CPLD with EPM7128SLC84-15, EPM7128 programmable logic device of large-scale, for the ALTERA company's MAX7000 family. High impedance, electrically erasable and other characteristics, can be used for the 2500 unit, the working voltage of +5 V. CPLD receives information sent from the microcontroller after converted to the corresponding control signal output to the stepper motor drive. Put the control signal drives the motor windings after the input, to achieve effective control of the motor.2.1 The hardware structure of the motor drive Motor drive using the following circuit:R1-R8 in which the resistance value of 320Ω. R9-R12 resistance value 2.2KΩ. Q1-Q4 as Darlington D401A, Q5-Q8 for the S8550. J1, J2 and the stepper motor connected to the six-lead。

步进电机和伺服电机的系统控制-----英文翻译正文

步进电机和伺服电机的系统控制-----英文翻译正文

英文专业资料翻译英文资料题目Step Motor & Servo MotorSystems and Controls英文资料来源Motion and Control中文译文题目步进电机和伺服电机的系统控制专业自动化姓名学号指导教师二OO八年六月十三日Step Motor&Servo Motor Systems and Controls WITH SUPPORT SOFTWARE, THERE’S NO MORE GUESS WORK Motion Architect® Software Does the Work for You... Configure ,Diagnose, Debug Compumotor’s M otion Architect is a Mic rosoft® Windows™-based software development tool for 6000Series products that allows you to automatically generate commented setup code, edit and execute motion control programs, and create a custom operator test panel. The heart of Motion Architect is the shell, which provides an integrated environment to access the following modules.• System Configurator—This module prompts you to fill in all pertinent set-up information to initiate motion. Configurable to the specific 6000 Series product that is selected, the information is then used to generate actual 6000-language code that is the beginning of your program.• Program Editor—This module allows you to edit code. It also has the commands available through ―Help‖ menus. A user’s gui de is provided on disk.• Terminal Emulator—This module allows you to interact directly with the 6000 product. ―Help‖ is again available with all commands and their definitions available for reference.• Test Panel—You can simulate your programs, debug programs, and check for program flow using this module.Because Its Windows, You Already Know How to Use ItMotion Architect® has been designed for use with all 6000 Series products—for both servo and stepper technologies. The versatility of Windows and the 6000 Series language allow you to solve applications ranging from the very simple to the complex.Motion Architect comes standard with each of the 6000 Series products and is a tool that makes using these controllers even more simple—shortening the project development time considerably. A value-added feature of Motion Architect, when used with the 6000 Servo Controllers, is its tuning aide. This additional module allows you to graphically display a variety of move parameters and see how these parameters change based on tuning values.Using Motion Architect, you can open multiple windows at once. For example, both the Program Editor and Terminal Emulator windows can be opened to run the program, get information, and then make changes to the program.On-line help is available throughout Motion Architect, including interactive access to the contents of the Compumotor 6000 Series Software Reference Guide.SOLVING APPLICATIONS FROM SIMPLETO COMPLEXServo Control is Yours with Servo Tuner SoftwareCompumotor combines the 6000 Series servo controllers with Servo Tuner software. The Servo Tuner is an add-on module that expands and enhances the capabilities of Motion Architect®.Motion Architect and the Servo Tuner combine to provide graphical feedback ofreal-time motion information and provide an easy environment for setting tuning gains and related systemparameters as well as providing file operations to save and recall tuning sessions.Draw Your Own Motion Control Solutions with Motion Toolbox Software Motion Tool box™ is an extensive library of LabVIEW® virtual instruments (VIs) for icon-based programming of Compumotor’s 6000 Series motion controllers.When using Motion Toolbox with LabVIEW, programming of the 6000 Series controller is accomplished by linking graphic icons, or VIs, together to form a block diagram. Motion Toolbox’s has a library of more than 150 command,status, and example VIs. All command and status VIs include LabVIEW source diagrams so you can modify them, if necessary, to suit your particular needs. Motion Toolbox als user manual to help you gut up and running quickly.comprehensiveM Software for Computer-Aided Motion Applications CompuCAM is a Windows-based programming package that imports geometry from CAD programs, plotter files, or NC programs and generates 6000 code compatible with Compumotor’s 6000 Series motion controllers. Available for purchase from Compumotor, CompuCAM is an add-on module which is invoked as a utility from the menu bar of Motion Architect.From CompuCAM, run your CAD software package. Once a drawing is created, save it as either a DXF file, HP-GL plot file or G-code NC program. This geometry is then imported into CompuCAM where the 6000 code is generated. After generating the program, you may use Motion Architect functions such as editing or downloading the code for execution.Motion Builder Software for Easy Programming of the 6000 SeriesMotion Builder revolutionizes motion control programming. This innovative software allows programmers to program in a way they are familiar with—a flowchart-style method. Motion Builder decreases the learning curve and makes motion control programming easy.Motion Builder is a Microsoft Windows-based graphical development environment which allows expert and novice programmers to easily program the 6000 Series products without learning a new programming language. Simply drag and drop visual icons that represent the motion functions you want to perform.Motion Builder is a complete application development environment. In addition tovisually programming the 6000 Series products, users may configure, debug, download, and execute the motion program.SERVO VERSUS STEPPER... WHAT YOU NEEDTO KNOWMotor Types and Their ApplicationsThe following section will give you some idea of the applications that are particularly appropriate for each motor type, together with certain applications that are best avoided. It should be stressed that there is a wide range of applications which can be equally well met by more than one motor type, and the choice will tend to be dictated by customer preference, previous experience or compatibility with existing equipment.A helpful tool for selecting the proper motor for your application is Compumotor’s Motor Sizing and Selection software package. Using this software, users can easily identify the appropriate motor size and type.High torque, low speedcontinuous duty applications are appropriate to the step motor. At low speeds it is very efficient in terms of torque output relative to both size and input power. Microstepping can be used to improve smoothness in lowspeed applications such as a metering pump drive for very accurate flow control.High torque, high speedcontinuous duty applications suit the servo motor, and in fact a step motor should be avoided in such applications because the high-speed losses can cause excessive motor heating.Short, rapid, repetitive movesare the natural domain of the stepper due to its high torque at low speeds, goodtorque-to-inertia ratio and lack of commutation problems. The brushes of the DC motor can limit its potential for frequent starts, stops and direction changes.Low speed, high smoothness application sare appropriate for microstepping or direct drive servos.Applications in hazardous environmentsor in a vacuum may not be able to use a brushed motor. Either a stepper or a brushless motor is called for, depending on the demands of the load. Bear in mind that heat dissipation may be a problem in a vacuum when the loads are excessive.SELECTING THE MOTOR THAT SUITS YOURAPPLICATIONIntroductionMotion control, in its widest sense, could relate to anything from a welding robot to the hydraulic system in a mobile crane. In the field of Electronic Motion Control, we are primarily concerned with systems falling within a limited power range, typically up to about 10HP (7KW), and requiring precision in one or more aspects. This may involve accurate control of distance or speed, very often both, and sometimes other parameters such as torque or acceleration rate. In the case of the two examples given, the welding robot requires precise control of both speed and distance; the crane hydraulic system uses the driver as the feedback system so its accuracy varies with the skill of the operator. This wouldn’t be considered a motion control system in the strict sense of the term.Our standard motion control system consists of three basic elements:Fig. 1 Elements of motion control systemThe motor. This may be a stepper motor (either rotary or linear), a DC brush motor or a brushless servo motor. The motor needs to be fitted with some kind of feedback device unless it is a stepper motor.Fig. 2 shows a system complete with feedback to control motor speed. Such a system is known as a closed-loop velocity servo system.Fig. 2 Typical closed loop (velocity) servo systemThe drive. This is an electronic power amplifier thatdelivers the power to operate the motor in response to low-level control signals. In general, the drive will be specifically designed to operate with a particular motor type –you can’t use a stepper drive to operate a DC brush motor, for instance.Application Areas of Motor TypesStepper MotorsStepper Motor BenefitsStepper motors have the following benefits:• Low cost• Ruggedness• Simplicity in construction• High reliabi lity• No maintenance• Wide acceptance• No tweaking to stabilize• No feedback components are needed• They work in just about any environment• Inherently more failsafe than servo motors.There is virtually no conceivable failure within the stepper drive module that could cause the motor to run away. Stepper motors are simple to drive and control in an open-loop configuration. They only require four leads. They provide excellent torque at low speeds, up to 5 times the continuous torque of a brush motor of the same frame size or double the torque of the equivalent brushless motor. This often eliminates the need for a gearbox. A stepper-driven-system is inherently stiff, with known limits to the dynamic position error.Stepper Motor DisadvantagesStepper motors have the following disadvantages:• Resonance effects and relatively long settlingtimes• Rough performance at low speed unless amicrostep drive is used• Liability to undetected position loss as a result ofoperating open-loop• They consume curren t regardless of loadconditions and therefore tend to run hot• Losses at speed are relatively high and can causeexcessive heating, and they are frequently noisy(especially at high speeds).• They can exhibit lag-lead oscillation, which isdifficult to damp. There is a limit to their availablesize, and positioning accuracy relies on themechanics (e.g., ballscrew accuracy). Many ofthese drawbacks can be overcome by the use ofa closed-loop control scheme.Note: The Compumotor Zeta Series minimizes orreduces many of these different stepper motor disadvantages.There are three main stepper motor types:• Permanent Magnet (P.M.) Motors• Variable Reluctance (V.R.) Motors• Hybrid MotorsWhen the motor is driven in its full-step mode, energizing two winding s or ―phases‖ at atime (see Fig. 1.8), the torque available on each step will be the same (subject to very small variations in the motor and drive characteristics). In the half-step mode, we are alternately energizing two phases and then only one as shown in Fig. 1.9. Assuming the drive delivers the same winding current in each case, this will cause greater torque to be produced when there are two windings energized. In other words, alternate steps will be strong and weak. This does not represent a major deterrent to motor performance—the available torque is obviously limited by the weaker step, but there will be a significant improvement in low-speed smoothness over the full-step mode.Clearly, we would like to produce approximately equal torque on every step, and this torque should be at the level of the stronger step. We can achieve this by using a higher current level when there is only one winding energized. This does not over dissipate the motor because the manufacturer’s current rating assumes two pha ses to be energized the current rating is based on the allowable case temperature). With only one phase energized, the same total power will be dissipated if the current is increased by 40%. Using this higher current in the one-phase-on state produces approximately equal torque on alternate steps (see Fig. 1.10).Fig. 1.8 Full step current, 2-phase onFig. 1.9 Half step currentFig. 1.10 Half step current, profiledWe have seen that energizing both phases with equal currents produces an intermediate step position half-way between the one-phase-on positions. If the two phase currents are unequal, the rotor position will be shifted towards the stronger pole. This effect is utilized in the microstepping drive, which subdivides the basic motor step by proportioning the current in the two windings. In this way, the step size is reduced and the low-speed smoothness is dramatically improved. High-resolution microstep drives divide the full motor step into as many as 500 microsteps, giving 100,000 steps per revolution. In this situation, the current pattern in the windings closely resembles two sine waves with a 90°phase shift between them (see Fig. 1.11). The motor is now being driven very much as though it is a conventional AC synchronous motor. In fact, the stepper motor can be driven in this way from a 60 Hz-US (50Hz-Europe) sine wave source by including a capacitor in series with one phase. It will rotate at 72 rpm.Fig. 1.11 Phase currents in microstep modeStandard 200-Step Hybrid MotorThe standard stepper motor operates in the same way as our simple model, but has a greater number of teeth on the rotor and stator, giving a smaller basic step size. The rotor is in two sections as before, but has 50 teeth on each section. The half-tooth displacement between the two sections is retained. The stator has 8 poles each with 5 teeth, making a total of 40 teeth (see Fig. 1.12).Fig. 1.12 200-step hybrid motorIf we imagine that a tooth is placed in each of the gaps between the stator poles, there would be a total of 48 teeth, two less than the number of rotor teeth. So if rotor and stator teeth are aligned at 12 o’clock, they will also be aligned at 6 o’clock. At 3 o’clock and 9 o’clock the teeth will be misaligned. However, due to the displacement between the sets of rotor teeth, alignment will occur at 3 o’clock and 9 o’clock at the other end of the rotor.The windings are arranged in sets of four, and wound such that diametrically-opposite poles are the same. So referring to Fig. 1.12, the north poles at 12 a nd 6 o’clock attract the south-pole teeth at the front of the rotor; the south poles at 3 and 9 o’clock attract the north-pole teeth at the back. By switching current to the second set of coils, the stator field pattern rotates through 45°. However, to align with this new field, the rotor only has to turn through 1.8°. This is equivalent to one quarter of a tooth pitch on the rotor, giving 200 full steps per revolution.Note that there are as many detent positions as there are full steps per rev, normally 200. The detent positions correspond with rotor teeth being fully aligned with stator teeth. When power is applied to a stepper drive, it is usual for it to energize in the ―zero phase‖ state in which there is current in both sets of windings. The resulting rotor position does not correspond with a natural detent position, so an unloaded motor will always move by at least one half step at power-on. Of course, if the system was turned off other than in the zero phase state, or the motor is moved in the meantime, a greater movement may be seen at power-up.Another point to remember is that for a given current pattern in the windings, there are as many stable positions as there are rotor teeth (50 for a 200-step motor). If a motor isde-synchronized, the resulting positional error will always be a whole number of rotor teeth or a multiple of 7.2°. A motor cannot ―miss‖ individual steps – position errors of one or two steps must be due to noise, spurious step pulses or a controller fault.Fig. 2.19 Digital servo driveDigital Servo Drive OperationFig. 2.19 shows the components of a digital drive for a servo motor. All the main control functions are carried out by the microprocessor, which drives a D-to-A convertor to produce an analog torque demand signal. From this point on, the drive is very much like an analog servo amplifier.Feedback information is derived from an encoder attached to the motor shaft. The encoder generates a pulse stream from which the processor can determine the distance travelled, and by calculating the pulse frequency it is possible to measure velocity.The digital drive performs the same operations as its analog counterpart, but does so by solving a series of equations. The microprocessor is programmed with a mathematical model (or ―algorithm‖) of the equivalent analog system. This model predicts the behavior of the system. In response to a given input demand and output position. It also takes into account additional information like the output velocity, the rate of change of the input and the various tuning settings.To solve all the equations takes a finite amount of time, even with a fast processor – this time is typically between 100ms and 2ms. During this time, the torque demand must remain constant at its previously-calculated value and there will be no response to a change at the input or output. This ―update time‖ therefore becomes a critical factor in the performance of a digital servo and in a high-performance system it must be kept to a minimum.The tuning of a digital servo is performed either by pushbuttons or by sending numerical data from a computer or terminal. No potentiometer adjustments are involved. The tuning data is used to set various coefficients in the servo algorithm and hence determines the behavior of the system. Even if the tuning is carried out using pushbuttons, the final values can be uploaded to a terminal to allow easy repetition.In some applications, the load inertia varies between wide limits – think of an arm robot that starts off unloaded and later carries a heavy load at full extension. The change in inertia may well be a factor of 20 or more, and such a change requires that the drive isre-tuned to maintain stable performance. This is simply achieved by sending the new tuning values at the appropriate point in the operating cycle.步进电机和伺服电机的系统控制只要有软件的支持,这里将不再有猜测性的工作。

步进电机运动控制系统外文文献翻译中英文

步进电机运动控制系统外文文献翻译中英文

外文文献翻译(含:英文原文及中文译文)文献出处:YH Lee. Stepper motor motion control system design [J]. Equipment Manufacturing Technology, 2015,2(6):31-41.英文原文Stepper motor motion control system designYH LeeAbstractStepper motors are open-loop control elements that convert electrical pulse signals to angular or linear displacements. In the case of non-overload, the rotation speed and stop position of the motor depend only on the frequency and pulse number of the pulse signal, and is not affected by the load change, that is, a pulse signal is applied to the motor, and the motor rotates through a step angle. The existence of this linear relationship, coupled with the fact that the stepper motor has only periodic errors and no cumulative errors, is a feature. It is very simple to use a stepper motor to control the speed and position. Stepper motor speed control is generally to change the frequency of the input stepper motor pulse to achieve stepper motor speed control, because the stepper motor for each pulse to rotate a fixed angle, so that you can control the stepper motor The time interval from one pulse to the next pulse changes the frequency of the pulse. The length of the delay controls the step anglespecifically to change the rotation speed of the motor, thereby realizing the stepping motor speed control. In this design scheme, the internal timer of the A T89C51 microcontroller is used to change the frequency of the CP pulse to realize the control of the rotation speed of the stepper motor to realize the functions of the motor speed adjustment and forward and reverse rotation. The design takes into consideration that the CPU may be disturbed when executing instructions, causing the program to "run away" or enter the "endless loop". Therefore, the watchdog circuit is designed using a microprocessing system monitoring integrated chip manufactured by MAXIM. MAXI813. This article also gives the related hardware block diagram and software flow chart in detail, and has compiled the assembly language program.Keywords: stepper motor single chip microcomputer speed control systemIntroductionStepper motors were first developed by the British in 1920. The invention of the transistor in the late 1950s was also gradually applied to a stepping motor, which made it easier to control the digitization. After continuous improvement, today's stepper motors have been widely used in mechanical systems with high controllability such as high positioning accuracy, high decomposition performance, high responsiveness, and reliability. In the production process, where automation, labor saving, andhigh efficiency are required, we can easily find traces of stepper motors, especially those that emphasize speed, position control, and flexible control applications that require precise command operation. The most. As an actuator, a stepper motor is one of the key products of electromechanical integration and is widely used in various automation control systems. With the development of microelectronics and computer technology, the demand for stepper motors is increasing day by day, and there are applications in various national economic fields. A stepper motor is an actuator that converts an electrical pulse signal into an angular or linear displacement. Stepper motors can be driven directly with digital signals and are very easy to use. The general motor is continuous rotation, while the stepper motor has two basic states of positioning and operation. When there is a pulse input, the stepping motor rotates step by step, and when it is given a pulse signal, it turns a certain angle. The angular displacement of the stepping motor is strictly proportional to the number of input pulses and is synchronized in time with the input pulse. Therefore, as long as the number of input pulses, the frequency, and the phase sequence of the motor windings are controlled, the desired rotation angle can be obtained. Speed and direction of rotation. When there is no pulse input, the air gap magnetic field can keep the rotor in the original position under the excitation of the winding power supply. So it is very suitable for single chip microcomputer control. Stepper motors also havefeatures such as fast start, precise stepping and positioning, and are thus widely used in CNC machine tools, plotters, printers, and optical instruments. Stepping motors have become the third category of motors except for DC motors and AC motors. Traditional electric motors, as electromechanical energy conversion devices, play a key role in human production and life into the electrification process. The stepper motor can be used as a special motor for control, and it is widely used in various open-loop control because it has no accumulated error (accuracy is 100%). Now more commonly used stepper motors include reactive stepper motors (VR), permanent magnet stepper motors (PM), hybrid stepper motors (HB), and single-phase stepper motors. Permanent-magnet type stepping motor is generally two-phase, small torque and volume, step angle is generally 7.5 degrees or 15 degrees; Reactive stepping motor is generally three-phase, can achieve large torque output, stepping The angle is generally 1.5 degrees, but the noise and vibration are large. The rotor of the reactive stepper motor is magnetically routed from a soft magnetic material, and the stator has a multi-phase excitation winding, which generates torque using a change in the magnetic permeability. Hybrid stepping motor refers to the advantage of mixing permanent magnet type and reactive type. It is divided into two phases and five phases: the two-phase step angle is generally 1.8 degrees and the five-phase step angle is generally 0.72 degrees. This type of steppermotor is the most widely used and is also the stepper motor used in this subdivision drive scheme.1 stepper motor overview1. 1 stepper motor features:1) The accuracy of a typical stepper motor is 3-5% of the step angle and does not accumulate. 2) The allowable temperature of the stepper motor is high. Excessively high temperature of the stepping motor first demagnetizes the magnetic material of the motor, resulting in a drop in torque and even loss of synchronism. Therefore, the maximum temperature allowed for the appearance of the motor should depend on the demagnetization point of the magnetic material of different motors; generally, the demagnetization of the magnetic material. The points are all above 130 degrees Celsius, and some are even up to 200 degrees Celsius. Therefore, the external temperature of the stepper motor is completely normal at 80-90 degrees Celsius. 3) The torque of the stepper motor will decrease as the rotation speed increases. When the stepper motor rotates, the inductance of each phase winding of the motor will form a counter electromotive force; the higher the frequency, the greater the counter electromotive force. Under its effect, the motor's phase current decreases as the frequency (or speed) increases, causing the torque to drop. 4) The stepping motor can run normally at low speed, but it cannot start if it is higher than a certain speed, accompanied by howling. The stepper motorhas a technical parameter: No-load starting frequency, that is the pulse frequency that the stepping motor can start normally under no-load conditions. If the pulse frequency is higher than this value, the motor cannot start normally, and step loss or stall may occur. In the case of load, the starting frequency should be lower. If the motor is to be rotated at a high speed, the pulse frequency should have an acceleration process, that is, the starting frequency is low, and then it is increased to a desired high frequency (motor speed is raised from low speed to high speed) at a certain acceleration. TC \* MERGEFORMA T1. 2 working principle of stepping motorA stepper motor is a type of motor that is controlled by an electrical pulse and converts the electrical pulse signal into a phase-shifted motor whose mechanical displacement and rotational speed are proportional to the number of pulses and the pulse frequency of the input motor winding. Each pulse signal can be stepped The feed motor rotates at a fixed angle. The number of pulses determines the total angle of rotation. The frequency of the pulse determines the speed of the motor. When the stepper receives a pulse signal, it drives the stepper motor to rotate in the set direction. At a fixed angle (called "step angle"), its rotation is performed step by step at a fixed angle. By controlling the number of pulses to control the angular displacement, so as to achieve the purpose of accurate positioning; At the same time, by controlling the pulse frequencyto control the speed and acceleration of the motor rotation, so as to achieve the purpose of speed control.2 Basic requirements for designStudy the characteristics, working principle, and specific speed regulation principle of stepper motor. TC \* MERGEFORMA T Basic requirements The stepper motor uses a three-phase stepper motor with a power of 1W. When the speed is in the range of 0 to 1000r/min, the maximum accuracy is 2%. To basically complete the graduation design, the stepper motor can perform precise speed control, positive and negative rotation, and it can not lose step when starting. Basically, there is no Oscillation, can complete the complete hardware circuit diagram, software design.3 Argumentation of the plan3.1 Determination of control methodsAlthough the stepper motor control is a relatively accurate, open-loop stepper motor control system has the advantages of low cost, simple, convenient control, etc., in the open-loop system of the stepper motor using the microcontroller, the frequency of the CP pulse of the control system or change The cycle is actually controlling the speed of the stepper motor. There are two ways the system can achieve stepper motor speed control. One is delay, the other is timing. The delay method is to call a delay subroutine after each commutation. After the delay isover, the commutation is executed again. In this way, CP pulses or commutation cycles with a certain frequency can be issued. The delay time of the delay subroutine and the time used by the commutation program are the cycles of the CP pulse. This method is simple, uses less resources, and is implemented by software. Different subroutines can be called to achieve different speeds. However, it takes a long time to process the CPU and cannot handle other tasks at runtime. Therefore, it is only suitable for a simpler control process. The timing method is to use the timer timing function in the microcontroller system to generate an arbitrary period of the timing signal, so that the period of the system output CP pulse can be conveniently controlled. When the timer is started, the timer counts up the system and its cycle starting from the loaded initial value. When the timer overflows, the timer generates an interrupt and the system transfers to execute the timer interrupt subroutine. The motor commutation subroutine is placed in the timer interrupt service routine. The timer interrupt is once and the motor is reversed once to achieve motor speed control. Since there is a certain time interval from the start of restarting the timer to the timer application interruption, the timing time is increased. In order to reduce this timing error and achieve accurate timing, it is necessary to make appropriate adjustments to the initial value of reloading counts. . The initial value of adjusted reloading mainly considers two factors and one is the time required to interrupt theresponse. The second is the time occupied by reloading the initial value instruction, including other instructions that interrupt the service program before reloading the initial value. After these two factors are combined, the correction amount of the reload count initial value takes 8 machine cycles, that is, the timing time is shortened by 8 machine cycles. When using the timer interrupt to control the motor shift, it is actually changing the size of the timer load value. In the control process, a discrete approach is used to approximate the ideal speed curve. In order to reduce the time for calculating the load value in each step, the load value required for the speed of each discrete point is fixed in the ROM of the system when the system is designed. The system uses the table look-up method to find the required load value in the system. Significantly reduce the time spent on CPU and improve the response speed of the system. Most stepper motor motion control systems are designed to run in an open-loop state, because the cost is low, and the position control inherent in the motion control technology can be provided without feedback. However, in some applications, more reliability, security, or product quality assurance is required. Therefore, closed-loop control is also an option. Here are some methods for achieving closed-loop control of stepper motors: 1) Step-by-step confirmation, This is the simplest displacement control, using a low-value optical encoder to calculate the amount of step movement. A simple loop compares the stepper motor with the commandverification and verifies that the stepper motor moves to the expected position; 2) Back-EMF, a sensorless detection method, uses a stepper motor's back EMF (eleCtromotiveCe, emf) signal , Measure and control speed. When the back-EMF voltage drops to the monitoring detection level, the closed-loop control is changed to the standard open-loop to complete the final displacement movement; 3) Full-servo control refers to the full-time use of feedback devices for stepper motors - encoders, decoding , or other feedback sensors to more accurately control the stepper motor displacement and torque. Other methods include a variety of different back-EMF control motor parameter measurements and software techniques that some manufacturers use. Here, the stepper drive monitors and measures the motor coils and uses voltage current information to increase the stepper motor control. Positive damping uses this information to block the speed of vibration, producing more usable torque output and reducing torque-induced mechanical vibration losses. No encoder installation monitoring uses information to detect the loss of synchronous speed. Conventional stepper motor control usually employs feedback devices and non-sensing methods, and is an effective method to implement a sports application with safety requirements, dangerous conditions or high accuracy requirements. Most stepper motor-based systems typically operate in an open-loop state, which provides a low-cost solution. In fact, stepper systems can improve the performanceof displacement control without feedback. However, when the stepper motor is running in open loop, there may be a simultaneous loss between the command pace and the actual step. Closed-loop control, which is part of traditional step control, can effectively provide higher reliability, safety, or product quality. In these stepper systems, the closed loop of the feedback device or indirect parametric sensing method can correct or control out-of-step, monitor motor stagnation, and ensure greater available torque output. Recently, closed-loop control (CLC) of stepper motors can also help implement smart distributed motion architectures. However, there is a risk of out-of-step operation in open-loop operation, which will result in positioning errors. However, compared to encoders used in servo systems, closed-loop stepper motors use encoders that are less costly. Therefore, closed-loop control is selected.3.2 Determination of Drive ModeThere are generally two methods for driving a stepping motor. One is directly driven by the CPU. This method is generally not suitable because the output current pulse of the CPU is extremely small and it cannot sufficiently rotate the stepping motor. One is indirect driving by the CPU, which is to amplify the signal output from the CPU, and then directly drive or indirectly drive the stepper motor through photoelectric isolation. This method is relatively safe and reliable. The solid design should use a CPU to drive the stepper motor indirectly. Thetachogenerator of the encoder is also used as the speed measurement tool. Because the closed-loop control is selected, there must be feedback components. There are generally two types of feedback components. One is the coaxial tachometer generator, and the speed of the stepping motor is fed back. Back, and then through the display and stepper motor adjustment; Another is through the optical coaxial encoder to the stepper motor speed feedback back to the stepper motor to adjust; compared to the latter, the latter The design is relatively simple, inexpensive, safe and reliable, and less polluting. The latter is generally used for solids, and photoelectric crumblers are used as feedback components.3. 3 Selection of Drive CircuitThere are many kinds of driving motors for stepping motors, but the most common ones are single voltage driving, dual voltage driving, chopper driving, subdivision control driving and so on. Single-voltage driving is the simplest driving circuit in stepper motor control. It is essentially a single-phase inverter. Its greatest feature is its simple structure, because of its low work efficiency, especially its prominent features at high frequencies. Its external resistor R consumes a considerable amount of heat, which affects the stability of the circuit. This type of drive is generally used only in the drive circuit of a low-power stepper motor. Dual-voltage driving is generally driven by two power supply voltages. Since these two power supplies are one highvoltage and one low voltage, they are also called high and low voltage driving circuits. The disadvantage of the dual-voltage driving circuit is that the valley point appears in the current at the high-low voltage connection, which inevitably causes the torque to drop at the valley point. Not suitable for normal operation of the motor. For the chopper circuit drive, this disadvantage can be overcome and the efficiency of the stepper motor can also be improved. Therefore, it is a good driver circuit from the standpoint of improving efficiency. It can use a higher power supply voltage and does not require an external resistor to limit the rated current and reduce the time constant. However, due to the sawtooth fluctuations at the top of the waveform, large electromagnetic noise is generated. The subdivision drive is powered by a pulse voltage. For a voltage pulse, the rotor can rotate one step. Generally, according to the voltage pulse distribution method, each phase winding of the stepping motor will alternately switch, and the rotor of the stepping motor can be fixed. Rotate. The subdivided control circuit is generally divided into two types. One is to use a linear analog power amplifier to obtain a staircase current. This method is simple but inefficient. The other method is to use a single-chip microcomputer to obtain the step current by using the method of pulse width modulation. This method requires complex calculations to make the substepped step angles uniform. However, due to the fact that the design of the stepper motor requires a relatively wide range ofhigh-speed adjustments, the drive chip 8713 should be used to drive the motor and the speed of the stepper motor must be controlled by software.中文译文步进电机运动控制系统设计作者:YH Lee摘要步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1/17AN1495APPLICATION NOTE1INTRODUCTIONMicrostepping a stepper motor may be used to achieve one or both of two objectives; 1) increase the position resolution or 2) achieve smoother operation of the motor. In either case the basic the-ory of operation is the same.The simplified model of a stepper motor is a permanent magnet rotor and two coils on the stator separated by 90 degrees, as shown in Figure 1. In classical full step operation an equal current is delivered to each of the coils and the rotor will align itself with the resulting magnetic vector along one of the 45 degree axis. To step the motor, the current in one of the two coils is reversed and the rotor will rotate 90 degrees. The complete full step sequence is shown in figure 2. Half step drive,where the current in the coil is turned off for one step period before being turned on in the opposite direction, has been used to double the step resolution of a motor. In either full and half step drive,the motor can be positioned only at one of the 4 (8 for half step) defined positions.[4][5] Therefore,the number of steps per electrical revolution and the number of poles on the motor determine the resolution of the motor. Typical motors are designed for 1.8 degree steps (200 steps per revolution)or 7.5 degree steps (48 steps per revolution). The resolution may be doubled to 0.9 or 3.75 degrees by driving the motor in half step. Further increasing the resolution requires positioning the rotor at positions between the full step and half step positions.Figure 1. Model of stepper motorMICROSTEPPING STEPPER MOTOR DRIVEUSING PEAK DETECTING CURRENT CONTROL Stepper motors are very well suited for positioning applications since they can achieve very good positional accuracy without complicated feedback loops associated with servo sys-tems. However their resolution, when driven in the conventional full or half step modes of operation, is limited by the configuration of the motor. Many designers today are seeking alternatives to increase the resolution of the stepper motor drives. This application note will discuss implementation of microstepping drives using peak detecting current control where the sense resistor is connected between the bottom of the bridge and ground. Examples show the implementation of microstepping drives with several currently available chips and chip sets. REV . 2AN1495/0604AN1495 APPLICATION NOTEFigure 2. Full step sequence.Another issue occurs at low operating speeds. At low speeds, both the full and half step drive tend to make abrupt mechanical steps since the time the rotor takes to move to the next position can be much less than the step period. This stepping action contributes to jerky movement and mechanical noise in the system. Looking at the simplified model of the stepper motor in Figure 1, it can be seen that if the two coils were driven by sine and cosine waveforms the motor would operate as a syn-chronous machine and run very smoothly. These sinusoidal waveforms may be produced by a mi-crostepping drive .Microstepping can be implemented in either a voltage mode or current mode drive. In voltage mode drive, the appropriate duty cycle would be generated by the controller so that the voltage applied to the coil (Vsupply * duty cycle) is the appropriate value for the desired position. In current mode drives, the winding current is sensed and controlled to be the appropriate value for the desired po-sition. This application note will consider only current mode drive implemented using peak detecting current controllers.To understand the microstepping concept, consider the simplified model of the stepper motor as shown in Figure 1. As previously discussed when the two coils are energized with equal currents, the re-sulting magnetic vector will be at 45° and the permanent magnet of the rotor will align with that vec-tor. However, if the two coils are energized by currents of different magnitude, the resulting magnetic vector will be at an angle other than 45° and the rotor would attempt to align with the new magnetic vector. If one coil were driven with a current that was twice the current in the second coil the magnetic vector would be at 30°, as shown in Figure 3. For any given desired position, the re-quired currents are defined by the sine and cosine of the desired angle.To implement a microstepping drive, two D/A converters are used to set the current level in the coils of the motor, as shown in the block diagram in Figure 4.2/17AN1495 APPLICATION NOTE Figure 3. Example alignment of microstepingFigure 4. Block Diagram of microstepping motor drive.2MICROSTEPPING WITH THE L6208In a typical application the L6208, which integrates two H-Bridges with the current control, drives a bipolar stepper in either full or half step modes. The internal state machine generates the full step or half step sequence from the clock and direction inputs. [1] Although at first glance it is not obvious that the L6208 may be used in a microstepping application, it is possible since the current control circuits have separate reference inputs.To implement a microstepping application, a variable voltage proportional to the desired output cur-rent must be applied to each of the reference pins. In the block diagrams above, the two required D/A converters provide the required voltages. A simple and inexpensive alternative to a D/A con-3/17AN1495 APPLICATION NOTEverter chip is to use a counter/timer in the microprocessor to generate a PWM output for each phase and pass this through a voltage divider and low pass filter to get the desired voltage. The Vref input voltage is equal to the microprocessor power supply voltage times the divider ratio of the resistor divider times the PWM duty cycle. Figure 5 shows the connection between a microcontroller and the L6208. The complete circuit schematic for the power section is shown in appendix A.Since the L6208 includes an internal phase generation circuit, this circuit must be synchronized to the externally provided reference voltages. Again a simple solution is possible. The initial state of the decoding logic after reset is known and may be used as the starting state. After applying a reset to the L6208, either at power up or by forcing a reset from the microprocessor, the full-scale voltage is applied to both Vref pins to align the stepper motor to the known state that corresponds to one of the full step positions. Once the motor is aligned, the references can be reduced to 70.7%, which is the correct value for the currents for the 45-degree position in the microstepping sequence. After the motor is aligned the microcontroller can move through the sine/cosine table to generate the ap-propriate reference levels to move in either direction. The software also has to set the appropriate direction on the CW/CCW pin and generate a clock pulse for each phase reversal that is required. This occurs whenever the phase crosses a 90° boundary in the sine table. By operating the L6208 in the full step mode and providing clock signals at the appropriate time, the decoding logic will out-put the correct phase information for the bridges. Using the L6208 in the half step mode with the appropriate clock signals can improve the performance at the zero cross over of the current, as will be discussed later.Figure 5. Circuit connections for the L6208Figure 6 shows the operating waveforms when using the L6208 in full step mode and varying the reference inputs to achieve microstepping. Trace 1 is the clock input to the L6208. Traces 2 and 3 on the plot are the VrefA and VrefB inputs applied to the L6208. Trace 4 is the motor current in chan-nel B. Although the current has the discontinuities near zero that are typical of a peak detection cur-rent control method, the resulting output matches the desired sine wave reasonably well.4/17AN1495 APPLICATION NOTE Figure 6. Microstepping waveforms: Typical OperationFigure 7. Microstepping waveforms: Current can not follow desired sine wave3SPEED LIMITATIONSSince the motor coil is primarily an inductance, the rate of current change in the coils is limited by the L/R time constant of the motor. As the motor is operated at higher speeds, the L/R time constant of the motor limits the rate of current change and the current can no longer follow the desired sine wave. Figure 7 shows the motor current at a higher rotational frequency. On this scope trace, we see two effects. First, the filter on the reference voltage is starting to roll off the reference signal and5/17AN1495 APPLICATION NOTEsecond, the motor current is limited by the motor time constant and it begins to look more like a triangle waveform than the desired sine wave. Although moving the pole of the filter on the refer-ence voltage will make the reference signal appear more ideal, it will have little effect on the motor current at this point since the motor current is primarily limited by the L/R characteristics of the mo-tor. When approaching this point, the motor will run smoothly in full step mode and the micropro-cessor could easily change to full step drive.If the step rate is increased further, the motor will stall when the current can no longer reach a value large enough to produce the required torque. Figure 8 shows a typical current waveform when the motor has stalled. The almost pure triangular current waveform is similar to the triangular waveform that would result if the motor were being driven in the full step mode at this step rate. At this oper-ating point the current is entirely controlled by the L/R time constant of the motor and no chopping is occurring.Figure 8. Waveforms when motor has stalled4SLOW VS. FAST DECAY MODEWhen implementing current controlled motor drives, the designer has a choice of the recirculation path the current flows in during the "off" time. Figure 9 shows the two recirculation options imple-mented in the L6208. Applying the chopping to only one side of the bridge allows the current to re-circulate around a low voltage loop, in the upper transistors with the L6208. Since the rate of change of the current is controlled primarily by the L/R time constant of the motor, the current decays rela-tively slowly, hence the designation of slow decay mode. However applying the chopping to both sides of the bridge results in the current recirculating back to the power supply and a higher voltage across the coil, hence a fast decay mode. The L6208 also implements a type of synchronous rec-tification that turns on the MOS transistor in parallel with the conducting diode to reduce the power dissipation. [1]The selection of the decay mode influences the operation of a microstepping drive in several ways. The most obvious is the magnitude of the ripple current. Drives implemented using the fast decay mode will have, for the same off time or chopping frequency, a higher ripple current than drives im-plemented using a slow decay mode. This difference in itself is not significant for most stepper mo-6/17AN1495 APPLICATION NOTEtor drives. Issues with the stability of the current control loop are discussed elsewhere [3].When microstepping at a relatively high speed, the selection of the decay mode affects the ability of the drive to follow the desired current level. At any time, the rate of change of current is deter-mined by the inductance of the motor and the voltage across the coil. In the slow decay mode, the voltage across the coil during the off time is only the drop across one transistor and one diode so the current changes very slowly. As the desired current level is lowered, it is the rate of change dur-ing the off time that determines how quickly the current transitions to the new level. At low speeds, the effect may not be too noticeable. However, at higher speeds, the motor current cannot decay fast enough to follow the desired decreasing slope of the sine wave. During this time the current change is limited by the time constant imposed by the motor inductance and the slow decay path and can remain higher than the set value. The current will continue to decay at the slow rate until a phase reversal occurs, at which point the bridge reverses, applying the full supply voltage across the coil, effectively putting the bridge in a fast decay mode and the current will decay quickly to zero. Selecting the fast decay mode can improve the ability of the drive to follow fast decreases in the current. The waveforms in Figure 6 are achieved using the fast decay mode.The ability of the drive to increase current on the upper slope of the sine wave is not affected by the choice of the decay mode since the voltage applied to the coil during the on time is the same. Figure 9. PWM current control decay modes.7/17AN1495 APPLICATION NOTE 8/175MINIMUM CURRENT ISSUESWhen operating a chopping current control that has a minimum duty cycle, the current cannot be taken below a level that is effectively set by the motor resistance and the minimum duty cycle. Con-stant off time controls, like the L6208, have a minimum on time that is set primarily by the propaga-tion delays from the end of the off time until the comparator detects a current above the threshold and retriggers the monostable putting the bridge in the recirculation mode again. This minimum on time and the off time set by the monostable set a minimum working duty cycle for the circuit. When this duty cycle is applied to the motor, a current will be established. If a reference corresponding to a current lower than this minimum is set on the input, the circuit will detect that the motor current is above the reference. However, since the IC is already operating at its minimum duty cycle, the cur-rent can not go any lower and thus will not reach the current level desired by the reference level.The minimum duty cycle in other controllers can some times be adjusted. The minimum on time in the L6506, for example, is set by the width of the sync pulse. By varying the duty cycle of the oscil-lator, the minimum duty cycle of the output can also be changed. Since the sync pulse is also used to mask the switching noise in the system, reducing the minimum duty cycle is not always possible.[3]Figure 10 shows the operating waveforms at the minimum current level. The traces in the oscilo-graph are:Ch 1 :Voltage on output pinCh 2 :V refCh 3 :V senseCh 4 :Load current (20mA/div)Figure 10. Oscillograph of the minimum currentAt the start of each cycle the bridge is turned on and the motor current flows through the sense re-sistor to produce the voltage V sense . However at this operating point the sense voltage is already greater than the Vref input voltage, as can be seen in Figure 10. The comparator will detect that V senseis greater than Vref and cause the circuit switch the bridge into the recirculation mode andAN1495 APPLICATION NOTE the output is switched off after a delay that is determined by the response time of the circuit. The output pulse width, and hence the operating current, are set by the response of the circuit to a con-dition where the current sense comparator detects a current above the set value as soon as the drive is turned on. Since this pulse width can not be reduced further, the current that flows is the minimum that the device can regulate. In Figure 10, the minimum current is approximately 100mA. The minimum current level means a nonlinear transfer function exists between reference in (usually a voltage) to current out. Figure 11 shows the resulting transfer function between reference and out-put current.Figure 11. Transfer function showing nonlinearityThe transfer function also depends on the chopping mode, fast decay (enable chopping) or slow decay (phase chopping) as shown in Figure 11. In slow decay mode the current changes very slow-ly during recirculation and has a small ripple value. When operating in fast decay the transfer func-tion also has a discontinuity in the slope at low levels. At the minimum current level, the duty cycle is small and when operating at this point the current typically is discontinuous, that is the current rises to a peak value and decays back to zero during each cycle. The flat section of the current transfer function corresponds to this minimum current. When the reference is increased, the device begins to regulate current however the device will still operate in the discontinuous mode. Continu-ing to increase the reference, the device will begin to operate in the continuous current mode, where the current does not decay to zero in each cycle. When the current changes from discontinuous to continuous, the slope of the transfer function changes. The result is that there are two discontinui-ties in the transfer function, one set by the minimum current and one set by the change in slope. In theory the slow decay mode could also have two discontinuities, however in practical examples the minimum current is reached before the current goes discontinuous.The minimum achievable current effectively sets a limit on the number of microsteps per step by setting minimum current for the first microstep. Since the fast decay mode has a lower minimum current, fast decay can be used to minimize the effect of the minimum current, but will introduce another error due to the change of the slope. The latter can be compensated for by adjusting the DAC value.It is, however, possible to get zero current in a phase by disabling the bridge when zero current is desired in that phase. When using drivers that have an enable input for each bridge simply disabling the bridge will force the current to zero. The L6208, however, does not have a separate enable input for each bridge so we need to use another trick of the logic to disable the bridge at the appropriate time. When driven in the half step mode, one bridge is disabled in each of the even states [2]. This operating sequence can be used to disable the bridge at the appropriate times. To achieve this, op-9/17AN1495 APPLICATION NOTEerate the L6208 in half step mode and apply a pulse to the clock input at the same time that the desired current is set to zero. At the next change of current apply a second pulse to the clock input and set the current value for the first microstep. The step sequence generator in the L6208 will cause the change from current in one direction in the bridge, to the bridge being disabled, to current in the reverse direction as shown in Figure 12.Figure 12. Microstepping waveforms with improved performance at zero current.The effects of the minimum current can be seen in the motor movement as errors in the motor po-sition or as a jerky movement in a constant speed movement. How much the minimum current af-fects the drive depends primarily on the number of microsteps implemented per step. Since zero current can be achieved as described above, the positions at the 90 degree intervals where one coil is driven by zero current and the other is driven by the full scale current can easily be implemented. However, the next microstep where the current in one coil is small is most affected. If the desired current for any position is less than the minimum current, an error occurs. If the current required for the first microstep after the zero current position is greater than the minimum current, no error is contributed. Fortunately, since the desired current profile is a sine wave, the first step after the zero crossing has the largest relative increase in current of any microstep. If the required current for this first microstep is greater then the minimum current the device can regulate, there will be no error in the current to the motor due to the minimum current.If the design required that one step (90 Deg.) be divided into 16 microsteps, the angle for the first step would be 5.625 Deg. The sine of 5.625 degrees is 0.098. When using an 8-bit D/A, the closest available value would correspond to an input of 25 out of 255. No other microstep needs a current less than this (except the 0 as discussed above). As long as the minimum current is less than the value corresponding 25/255 of the peak current, there will be no noticeable error contributed by the minimum current. Another way to express this that no error will be noticeable if the output current can be regulated to plus or minus 1 LSB over the range 24 to 255. There is no system level require-ment to maintain the accuracy for inputs less than 24.10/17AN1495 APPLICATION NOTE6L6506 & L6203/L298Microstepping drives can be implemented using the L6506 controller and bridge IC's like the L6201, L6202, L6203 and L298. The main difference between the standard half step application and a mi-crostepping application is that the two references of the L6506 are set by D/A converter outputs. Figure 13 shows a microstepping application using the L6506 and the L6203. Outputs Px 1 through Px 4 from the microprocessor set the phase for the L6506/L6203 combination and output Px 5 and PX 6 are used to enable the bridges. Again, the D/A function could be implemented using the PWM outputs of the microprocessor as was done in the example above or it could be implemented using and integrated D/A. The same logic configuration can be used with the L6201, L6202 or L298. When using the typical connection between the L6506 and the L6203 (as shown in Figure 13a), the PWM signal is applied to one of the phase inputs (the phase that is normally high) and you get the slow decay mode of operation.To implement the fast decay mode of operation, the PWM signal needs to be applied to the EN-ABLE inputs of the L6203s. This can be accomplished by rearranging the connections from the mi-croprocessor. Inputs IN 1 and IN 2 of the L6203s are disconnected from the L6506 and connected directly to the Px 1 through Px 4 outputs of the microprocessor, which will continue to provide the phase information as before. The two PWM current control loops in the L6506 are then used to con-trol the ENABLE inputs of the two L6203, as shown in Figure 13b. Px 5 and Px 6 are now connected to the inputs of the L6506 so that each bridge can be disabled to get zero current. Finally the Power On Reset (POR) is connected to the RESET input of the L6506 to disable the bridge during power up.Figure 13a. Microstepping using L6506 and L6203 (Slow Decay)11/17AN1495 APPLICATION NOTEFigure 13b. Microstepping using L6506 and L6203 (Fast Decay)7PBL3717, TEA3717, TEA3718 AND L6219Devices like the PBL3717, TEA3717 TEA3718 and L6219 can also be used to implement mi-crostepping. The main limitation in these devices is that, due to their internal connections, they can only implement the slow decay mode. The microstepping application is the same as the typical ap-plication for the device except that D/A converters must control the reference pins. With these de-vices since the reference is designed to operate from 5V and includes an internal voltage divider, a low impedance output must be used to drive the reference. If the PWM from the microprocessor is used for the D/A function, then only an RC filter is used without the second resistor for the divider. The resulting signal must them be buffered by an amplifier before driving the reference input. The connections between the microprocessor and the PBL3717 family of devices are shown in Fig-ure 14. For the best resolution it is suggested to set the I0 and I1 inputs to select the maximum cur-rent level. One should also be aware that the specifications of the L6219 have a minimum input reference voltage level. This level must be respected and will then determine the minimum current that can be achieved in a microstepping circuit.12/17AN1495 APPLICATION NOTE Figure 14. Microstepping connection using PBL37178CONCLUSIONAlthough they were not designed specifically to implement microstepping, many of the integrated motor control/drive circuits can be used to implement microstepping stepper motor drives. The lim-its imposed by a peak detecting current control technique and the selected decay mode will directly affect the performance of the motor drive. Specifically it's ability to follow the desired current wave-form. So long as these limits allow the designer to achieve the desired resolution in the microstep-ping application the devices provide a cost effective implementation.9REFERENCES[1] A NEW FULLY INTEGRATED STEPPER MOTOR DRIVER IC, Domenico Arrigo, Thomas L. Hopkins, Angelo Genova, Vincenzo Marano, and Aldo Novelli, Proceedings of PCIM 2001, Septer-mber 2001, Intertech Communication[2] L6208 Data Sheet[3] STEPPER MOTOR DRIVES, COMMON PROBLEMS AND SOLUTIONS, AN460, T. Hopkins, STMicroelectronics[4] L297 Data Sheet[5] THE L297 STEPPER MOTOR CONTROLLER, AN470, STMicroelectronics[6] STEPPER MOTOR DRIVING, AN235, H. Sax, STMicroelectronics13/17AN1495 APPLICATION NOTE APPENDIX AFigure 15. Scheme of the EVAL6208N14/17AN1495 APPLICATION NOTEAPPENDIX BThe following is an excerpt from the firmware which executes on the ST7264 based control which is part of the Practispin evaluation system. This code segment is executed when the decision has been made that it is time for the L6208 to take the next microstep (either forward or reverse).; PB.4 is the L6208 clock pin; PB.5 is the L6208 reset pin; stepstate is a byte variable which controls the motor stepping.; torquscaler is a byte used to modulate the normalized sine wave values read from the table to set the current level; TAOC1LR is a register that controls Vrefa (via the duty cycle into the low pass filter) ; TBOC1LR is a register that controls Vrefb (via the duty cycle into the low pass filter) bres PBDR,#4; take clock back low ready to generate rising edge lat-erbset PBDR,#5; normal state for resetjumpifflagclear forward,doclockrev; jump if direction is reverse;direction is forwardinc stepstatejrne for002; skip if stepstate has not rolled over to zerobres PBDR,#5; activate reset to maintain sync (just for added noiseimmunity insurance)for002:ld a,stepstateand a,#%00011111; use only lower five bits as index for table lookupld x,a ; save index; on indexes 8 and 9, clock L6208 to sequence through zero and then polarity reversal and a,#%00001110cp a,#8 ; 8 or 9jrne for001bset PBDR,#4 ; rising edge for clockfor001:ld a,(microtable1,x) ; get normalized value from tableld y,torquescalermul y,a ; y:a = (table value) * torquescalerld TAOC1LR,y ; duty cycle = (table value) * torquescaler/256; repeat for phase Bld a,(microtable2,x)ld y,torquescalermul y,ald TBOC1LR,yjp pwmend; end of routine for forward stepdoclockrev:;direction is reversedec stepstatejrne rev002bres PBDR,#5; activate reset to maintain syncrev002:ld a,stepstateand a,#%00011111ld x,ainc a; 7 or 8 =>> 8 or 9and a,#%00001110cp a,#8 ; 8 or 915/17AN1495 APPLICATION NOTE16/17jrne rev001bset PBDR,#4 ; rising edge for clockrev001:ld a,(microtable1,x)ld y,torquescalermul y,ald TAOC1LR,yld a,(microtable2,x)ld y,torquescalermul y,ald TBOC1LR,yjp pwmend; The lookup table holds the magnitude of a sine wave normalized to a peak value of 256. ; Each line of 16 entries represents 90 degrees or one full step (thus 16 microsteps per step).; Table reference labels at 45 degrees (microtable1) and 135 degrees (microtable2) are provided for convenience; to allow easy lookup of two waveforms with 90 degree phase relationship.; Since only five bits (0 to 31) of the stepstate table index are used, references using microtable1 roll over through; just the first two lines of the table while references using microtable2 stay within the second and third lines; of the overall table.microtable1:; degrees 45 90dc.b180,197,212,224,235,244,250,253,254,253,250,244,235,224,212,197microtable2:; degrees 135 0dc.b180,161,141,120,097,074,049,024,000,024,049,074,097,120,141,161; degrees 45 +90dc.b180,197,212,224,235,244,250,253,254,253,250,244,235,224,212,197Table 1. Revision HistoryDate Revision Description of ChangesApril 20021First IssueJune 20042Replaced the Appendix B that contains assembler code for an ST7264.Changed the Style-sheet following the new "Corporate T echnicalPubblications Design Guide"。

相关文档
最新文档