电动力学第二章答案
郭硕鸿《电动力学》课后答案
( A A) 2 A ( A) 2( A ) A , 所以 A ( A) 1 2 ( A A) ( A ) A
2 A ( A ) 1 2 A ( A ) A 2. 设 u 是空间坐标 x, y, z 的函数,证明: df dA dA f (u ) u , A(u ) u , A(u ) u du du du
电动力学习题解答
电பைடு நூலகம்力学答案
第一章 电磁现象的普遍规律
1. 根据算符 的微分性与向量性,推导下列公式:
( A B) B ( A) ( B ) A A ( B ) ( A ) B A ( A) 1 A 2 ( A ) A 2
3.
设r
( x x' ) 2 ( y y ' ) 2 ( z z ' ) 2 为源点 x ' 到场点 x 的距离, r 的方向规定为
第 1 页
电动力学习题解答
从源点指向场点。 (1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:
r ' r r / r ; (1 / r ) ' (1 / r ) r / r 3 ; (r / r 3 ) 0 ; (r / r 3 ) '(r / r 3 ) 0 , (r 0) 。 (2)求 r , r , (a )r , (a r ) , [ E 0 sin( k r )] 及 [ E 0 sin( k r )] ,其中 a 、 k 及 E 0 均为常向量。
所以
c dV f dV [c ( f )] dV ( f c ) ( f c ) dS
郭硕鸿《电动力学》课后答案
取高斯柱面,使其一端在极板A内,另一端在介质1内,由高斯定理得:
同理,在极板B内和介质2内作高斯柱面,由高斯定理得:
因此
即 只有切向分量,从而 只有切向分量,电场线与导体表面平行。
14.内外半径分别为a和b的无限长圆柱形电容器,单位长度荷电为 ,板间填充电导率为 的非磁性物质。
(1)证明在介质中任何一点传导电流与位移电流严格抵消,因此内部无磁场。
(2)求 随时间的衰减规律。
(3)求与轴相距为 的地方的能量耗散功率密度。
在介质1和介质2内作高斯柱面,由高斯定理得:
所以有 ,
由于E
所以 E
当介质漏电时,重复上述步骤,可得:
, ,
介质1中电流密度
介质2中电流密度
由于电流恒定, ,
再由E 得
E
E E
E
E
12.证明:
(1)当两种绝缘介质的分界面上不带面自由电荷时,电场线的曲折满足
其中 和 分别为两种介质的介电常数, 和 分别为界面两侧电场线与法线的夹角。
其中 和 为球面的极化面电荷激发的电势,满足拉普拉斯方程。由于对称性, 和 均与 无关。考虑到 时 为有限值; 时 ,故拉普拉斯方程的解为:
由此 (1)
(2)
边界条件为: (3)
(4)
将(1)(2)代入(3)和(4),然后比较 的系数,可得:
于是得到所求的解为:
在均匀介质内部,只在自由电荷不为零的地方,极化电荷才不为零,所以在球体内部,只有球心处存在极化电荷。
电动力学习题及答案
根据前面的内容讨论知道:在所考虑区域内 没有自由电荷分布时,可用Laplace's equation求 解场分布;在所考虑的区域内有自由电荷分布时, 且用Poisson‘s equation 求解场分布。
如果在所考虑的区域内只有一个或多个点电 荷,区域边界是导体或介质界面,这类问题又如 何求解场分布? 这就是本节主要研究的一个问 题。解决这类问题的一种特殊方法称为 — 镜象 法。
电场。右半空间的电场是Q及S面上的感应电荷面密
度 感 共同产生的。以假想的点电荷Q'等效地代替感 应电荷,右半空间的电势必须满足以下条件:
1 2 Q ( x a, y 0, z 0) 0 R 0 x 0 0 (1) (2) (3)
由(4)式得
b 2 Q Q a 将(6)式代入(5)式得
2
(6)
b 2 (a R02 ) ( R02 b 2 ) a
1 2 2 2 即b (a R0 )b R0 0 a
2
解此二次方程,得到
2 R0 b a b a
将此代入(6)式,即有
Q Q R0 Q Q a
c、
Q
4
-Q 5 +Q 4
+Q 6 7
-Q
B
Q
A
1 -Q
3 -Q 2 +Q
要保证 A B 0 则必须有7个象电荷,故电势为
1 1 1 1 1 1 1 1 ( ) 4 0 r r1 r2 r3 r4 r5 r6 r7
一般说明:只要 满足2 偶数的情形,都可用 镜象法求解,此时象电荷的个数等于 (2 ) 1 ,
2020智慧树知道网课《电动力学》课后章节测试满分答案
绪论单元测试1【单选题】(8分)由于静电场场强是电标势的负梯度,所以静电场一定是()。
A.无源有旋场;B.无旋无源场。
C.有源有旋场;D.无旋有源场;2【单选题】(8分)由于磁感应强度是磁矢势的旋度,所以磁场一定是()。
A.无源有旋场;B.无旋无源场。
C.无旋有源场;D.有源有旋场;3【单选题】(8分)由Stokes定理可知:()。
A.B.C.D.4【多选题】(16分)标量的梯度用于确定()。
A.场的大小;B.场的方向;C.力的大小;D.力的方向。
5【多选题】(16分)矢量的散度用于确定()。
A.场的有旋性;B.场的源或者汇;C.场的有源性;D.是否存在孤立的源。
6【多选题】(16分)矢量的旋度用于确定()。
A.场的有源性;B.场的有旋性;C.场线是否封闭;D.是否存在孤立的源。
7【判断题】(14分)A.错B.对8【判断题】(14分)A.对B.错第一章测试1【单选题】(3分)库仑定律表明电荷间作用力与其距离()关系。
A.成反立方。
B.成反平方;C.成正比;D.成反比;2【单选题】(3分)真空中的静电场高斯定理表明:穿过封闭曲面的电通量与该曲面内的净余电量()。
A.成正比;B.成反比;C.无关。
D.成反平方比;3【单选题】(3分)法拉第电磁感应定律表明:感应电场是由()产生的。
A.变化的磁场。
B.电流;C.变化的电场;D.电荷;4【单选题】(3分)在电介质的某点处,与自由电荷体密度成正比的是()的散度。
A.电流密度矢量。
B.电场强度矢量;C.极化强度矢量;D.电位移矢量;5【单选题】(5分)在磁介质的某点处,与自由电流面密度成正比的是()的旋度。
A.位移电流密度矢量。
B.磁场强度矢量;C.磁化强度矢量;D.磁感应强度矢量;6【判断题】(7分)法拉第电磁感应定律表明:感应电场是有源无旋场。
()A.错B.对7【判断题】(5分)位移电流是由变化的电场产生的。
()A.对B.错8【判断题】(3分)在电动力学中,库仑力不属于洛伦兹力。
电动力学第二章汇编
电磁场能量密度和能流密度
S EH
w
E
D
H
B
t
t
t
S
1
E B,
0
w
1 2
( 0E 2
1
0
B2)
S
1
E B,
w
1
(E
D
H
B)
2
2
例题(课本P28)
无穷大平行板电容器内有两层介质(如图),极板上面电荷密 度f,求电场和束缚电荷分布。
E2 E1
+f
3
例题(课本P28)
引入 标势
电场沿任一回路的环量为零 E dl 0 L
右图:C1和C2为P1到P2点的两条不同路径,C1
和-C2构成回路
E dl E dl 0 E dl E dl
C1
C2
C1
C2
P1
电荷从P1到P2时电场对它作的功与路径无关
定义P1到P2点的电势差:单位正电
荷从P1到P2点,电场对它作的功。
比奥-萨伐尔定律
B( x)
0
4
V
J
(
x) r3
r
dV
力密度公式和洛伦兹力公式 f E J B F qE q B
极化电荷密度p与极化强度P的关系 p P
界面极化电荷面密度与极化强度P的关系 P e n ( P2 P1 )
6
极化(磁化)电流密度与极化(磁化)强度的关系 J M M J p P / t
P2
E
dl
P1
C1 P2
C2
10 §2.1 静电场的标势及其微分方程
若电场对电荷作正功,则电势下降
( P2 ) ( P1 )
电动力学 第二章 习题解答2
华中师大 陈义成
= πR2 ∫ =
2.19
π/2
0
⎛ ∂ϕ ⎞ 9π R 2σ0 2 2 ⎟ ⎜ − = i d 3 σ sin θ cos θ θ ⎟ ⎜ 0 ⎟ ⎜ ⎝ ∂r ⎠ ε0 r=R
∫
π/2
0
sin θ cos3 θdθ
(9)
9π R 2σ0 2 4ε0
如图所示,内导体球半径为 a ,带电量为 Q ,
2
θ 项给出
A0 +
即
B0 =0 b
A0 = −
−
联立(2) 、 (3) 、 (6)式得到
Q 4πε 0b
(5)
B0 c B1 + A1b + 2 =0 2 b b
(6)
A1 =
Qc −Qca 3 B , = 1 4πε 0 (b3 − a 3 ) 4πε 0 (b3 − a 3 )
3 ⎧ ⎫ cr ⎡ ⎛ a ⎞ ⎤ ⎪1 1 ⎪ − θ 1 cos ⎢ ⎥ ⎨ − + 3 ⎬ ⎜ ⎟ 3 − r b b a r ⎝ ⎠ ⎢ ⎥ ⎪ ⎪ ⎣ ⎦ ⎩ ⎭
n=0
∞
介质中的电势 ϕ0 当 r → ∞ 时趋于均匀电场 E0 的电势,故
ϕ0 (r , θ ) = −E0 r cos θ + ∑
n=0
∞
bn Pn (cos θ ) r n+1
(4)
- 41 -
华中师大 陈义成
球面上 r = R 处的边值关系为
ϕi (r , θ ) = ϕ0 (r , θ )
W = − pi E0 = −
导线外面是一对称的二维径向场,因此
E0 =
λ er 2πε 0 r
电动力学二章答案
习题二1.将一个位于真空中的带电导体球切成两半,求它们之间的排斥力.设球的半径为0R ,球的电势为0V .答案: .ˆ2200z e V F πε= 解:0004R q V πε=,0004V R q πε=,.00R V εσ=z z eV e R F ˆ2ˆ22002002πεπεσ=⋅= 2.内外半径分别为a 和b 的无限长圆柱形电容器,单位长度荷电为f λ,板间填充电导率为σ的非磁性物质.⑴证明在介质中任何一点传导电流与位移电流严格抵消.因此内部无磁场.⑵求f λ随时间的衰减规律.⑶求与轴相距为r 的地方的能量耗散功率密度.⑷求长度为l 的一段介质总的能量耗散功率,并证明它等于这段的静电能减少率. ⑵;0tf eεσλλ-=⑶22⎪⎪⎭⎫⎝⎛r f πελσ;⑷.ln 222a bl f πελσ 解:⑴r f e r D ˆ2πλ= ,.ˆ2r fe rD E πελε==.ˆ2r f f e r E J πεσλσ== .ˆ21r fD e tr t D J ∂∂=∂∂=λπ对两式求散度,并且由f D ρ=⋅∇ ,0=∂∂+⋅∇tJ ff ρ得f f tλεσλ-=∂∂,所以 0=∂∂+tDJ f 。
因为介质是非磁性的,即H Bμ=,故任意一点,任意时刻有 000=⎪⎪⎭⎫⎝⎛∂∂+=⨯∇=⨯∇t D J H B fμμ⑵由f f tλεσλ-=∂∂,解这个微分方程得 ()tf e t εσλλ-=0⑶()222/r E E J p f f πελσσ==⋅=⑷长度为l 的一段介质耗散的功率为.ln 222222a b l rldr r f baf πελσππελσ=⎪⎪⎭⎫⎝⎛⎰ 能量密度()22/,21r tw D E w f πελσ-=∂∂⋅= 长度为l 的一段介质内能量减少率为.ln 2222ab l rldr t wf baπελσπ⎰=∂∂-3.一很长的直圆筒,半径为R ,表面上带有一层均匀电荷,电荷量的面密度为σ.在外力矩的作用下,从0=t 时刻开始,以匀角加速度α绕它的几何轴转动,如图所示.⑴试求筒内的磁感应强度B;⑵试求筒内接近内表面处的电场强度E和玻印廷矢量S ;⑶试证明:进入这圆筒长为l 一段的S 的通量为⎪⎪⎭⎫⎝⎛2022B l R dt d μπ. 答案: ⑴ωσμR B 0=;⑵ωασμe eRr E r ˆˆ210⨯= ;r e r R S ˆ212320ασμ-= .解:⑴单位面电流ωσσπR lTRl i ==2 ωσμμR ei B z 00ˆ== ⑵在圆筒的横截面内,以轴线为心,r 为半径作一圆,通过这圆面积的磁通量为ωσμπR r S d B s02=⋅=Φ⎰由法拉第定律,得 .21210dtd Rr dt d r E ωσμπ-=Φ-=因为 t αω=所以ασμrR E 021-= 考虑到方向,则有z r e erR E ˆˆ210⨯=ασμ 在筒内接近表面处,z r e eR E ˆˆ2120⨯=ασμ 该处的能流密度为()()z z r R R R e R e eR H E S ˆˆˆ2120ωσασμ⨯⨯=⨯= r et R ˆ212320ασμ-= 负号表明,S 垂直于筒表面指向筒内。
郭硕鸿《电动力学》习题解答完全版(章)
= (µµ −1)∇× Hr = ( µ −1)rj f ,(r1 < r < r2)
0
µ0
αrM = nr× (Mr 2 − Mr 1),(n从介质1指向介质2
3ε
r3
= − ε −ε 0 ρ f (3− 0) = −(ε −ε 0 )ρ f
3ε
ε
σ P = P1n − P2n
考虑外球壳时 r r2 n从介质 1指向介质 2 介质指向真空 P2n = 0
-5-
电动力学习题解答
第一章 电磁现象的普遍规律
σ P = P1n = (ε −ε 0)
r 3 − r13 ρ f rr r=r2 3εr 3
= cos(kr ⋅rr)(kxerx + k yery + kzerz )Er0 = cos(kr ⋅rr)(kr ⋅ Er) ∇×[Er0 sin(kr ⋅rr)] = [∇sin(kr ⋅rr)]×Er 0+sin(kr ⋅rr)∇× Er0
4. 应用高斯定理证明
∫ dV∇× fr = ∫S dSr× fr
V
应用斯托克斯 Stokes 定理证明
∫S dSr×∇φ = ∫Ldlrφ
证明 1)由高斯定理
dV∇⋅ gr = ∫S dSr ⋅ gr
∫
∫ ∫ 即
V
(∂ g x ∂x V
+ ∂g y ∂y
+ ∂g zz )dV = ∂
g
S
xdS x + g ydS y + g zdS z
而 ∇× frdV = [(∂ f z − ∂∂z f y )ir ∂+ ( f x − ∂∂x f z )rj∂+ ( f y − ∂∂y f x )kr]dV
电动力学第三版答案
电动力学第三版答案第一章:静电学1.1 静电场静电场是由电荷所产生的场,它是一种无时间变化的电磁场。
静电场的性质可以通过电场强度、电势和电荷分布来描述。
电场强度表示单位正电荷所受到的力,并且是一个向量量。
在任意一点的电场强度可以通过库仑定律计算。
电势是单位正电荷所具有的势能,它是一个标量量。
电势可以通过电势差来定义,电势差是两点之间的电势差别。
1.2 电场的高斯定律电场的高斯定律是描述电场在闭合曲面上的通量与该闭合曲面内的电荷有关系的定律。
它可以通过以下公式表示:\[ \oint \mathbf{E} \cdot \mathbf{n} \, ds =\frac{Q_{\text{enc}}}{\varepsilon_0} \]其中,\(\mathbf{E}\) 是电场强度,\(\mathbf{n}\) 是曲面上的单位法向量,\(ds\) 是曲面上的微元面积,\(Q_{\text{enc}}\) 是闭合曲面内的总电荷,\(\varepsilon_0\) 是真空电容率。
1.3 电势电势是单位正电荷所具有的势能,它是一个标量量。
它可以通过电势差来定义,电势差是两点之间的电势差别。
电势可以通过以下公式计算:\[ V = - \int \mathbf{E} \cdot d\mathbf{l} \]其中,\(V\) 是电势,\(\mathbf{E}\) 是电场强度,\(d\mathbf{l}\) 是路径上的微元长度。
1.4 静电场中的导体在静电场中,导体内部的电场强度为零。
当导体受到外部电场作用时,其表面会产生等效于外部电场的电荷分布,这种现象被称为静电感应。
静电感应可以通过以下公式来计算表面电荷密度:\[ \sigma = \mathbf{n} \cdot \mathbf{E} \]其中,\(\sigma\) 是表面电荷密度,\(\mathbf{n}\) 是表面法向量,\(\mathbf{E}\) 是外部电场强度。
电动力学课后答案 (2)
电动力学课后答案本文档为电动力学课后习题的答案,旨在帮助学生理解和巩固所学的电动力学知识。
以下是习题的答案解析。
1. 高斯定律的应用(20分)题目:一半径为 R 的均匀带电球面,电荷密度为σ。
沿球面 A 点方向垂直放置一个圆环,半径为 r (r < R),环面上均匀分布着电荷,电荷密度为ρ。
求圆环上的电场强度。
解析:根据高斯定律,可以得到球面上的电场强度公式:E * 4πR² = Q / ε₀其中 E 为电场强度,R 为球面的半径,Q 为球面内的总电荷量,ε₀ 为真空介电常数。
对于球面内的总电荷量 Q,可以通过球面的电荷密度σ求得:Q = σ * 4πR²将 Q 的值代入上式,可以得到球面上的电场强度:E = σ / ε₀对于圆环上的电场强度E₁,根据叠加原理,可以将整个圆环分割成无限小的电荷元素,然后将各个电荷元素对圆环上某一点的电场强度进行叠加:E₁ = ∫(k * dq / r²)其中 k 为库仑常数,dq 为圆环上无限小的电荷元素,r 为圆环上的点到电荷元素之间的距离。
将 dq 的值代入上式,进行积分计算,可以得到圆环上的电场强度。
2. 电势与电势能(15分)题目:一电荷为 Q 的点电荷静止在距离无限远处,根据库仑定律,可以得到电场强度公式。
根据电场强度 E,可以求出电势差V = ∫E · dr。
解析:根据库仑定律,点电荷 Q 在距离 r 处的电场强度 E 可以表示为:E = k * Q / r²其中 k 为库仑常数。
对于电势差V,可以定义为电场强度E 在两点之间的积分:V = ∫E · dr该积分表示沿路径的曲线积分,其中 E 为点电荷 Q 在路径上的电场强度,dr 为路径上的微小位移。
将 E 的表达式代入上式,并对路径进行处理,可以计算得到电势差 V。
3. 静电场的能量(25分)题目:两个点电荷Q₁ 和Q₂ 之间的电势能可以表示为 E = k * Q₁ * Q₂ / r,其中 k 为库仑常数,r 为两个点电荷之间的距离。
电动力学 第二章 习题解答1
⎛ ⎝
ε0 ⎞ ⎟ p 。 pf 和 p ′ 共同产生的电势为 ε1 ⎠ f
(1)
ϕ偶 =
pf i R p′i R p iR + = f 3 3 3 4πε 0 R 4πε 0 R 4πε1 R
2
设球面上极化电荷产生的电势为 ϕ ′ , ϕ ′ 满足: ∇
ϕ ′ = 0 。空间总电势为
ϕ = ϕ偶 + ϕ ′ =
于是
⎧ϕ1 = Φ 0 ⎪ 3 ⎨ (Φ 0 − ϕ0 ) R0 E0 R0 + 2 cos θ ⎪ϕ 2 = ϕ0 − E0 R cos θ + ⎩ R R (二)导体球上带总电荷 Q ,这时
(5) (6)
⎧ ⎪ ⎪ϕ2 R →∞ = ϕ0 − E0 R cos θ ⎪ / ⎨ϕ2 R = R0 = ϕ1 R=R0 = Φ 0 ⎪ ∂ϕ 2 Q ⎪ = ⎪− ∫∫ S ∂n dS ε0 R = R0 ⎩
⎛ ⎝
a2 ⎞ ⎛ a ⎞ ⎟ 处的电荷 ⎜ − q ⎟ 及球 r ⎠ ⎝ r ⎠
心(0,0,0)处的点电荷 ⎜
⎛a ⎞ q ⎟ 代替。这样,在点 (0,0, a + ) 处,场强 E 为 ⎝r ⎠
⎡ a r)q ⎤ ( q 1 ⎢(a r ) q ⎥ ez − − E= 4 πε 0 ⎢ a 2 (r − a ) 2 ( a − a 2 r )2 ⎥ ⎣ ⎦
球内、外电势分别为:
pf i R + ϕ′ 4πε1 R 3
⎧ bn ⎞ pf i R ⎛ n ⎪球内 : ϕ1 = 4πε R 3 + ∑ ⎜ an R + R n +1 ⎟ Pn (cos θ ) ⎠ n ⎝ ⎪ 1 ⎨ ⎪球外 : ϕ = pf i R + ⎛ c R n + d n ⎞ P (cos θ ) ∑ ⎜ n R n+1 ⎟ n 2 ⎪ 4πε1 R 3 n ⎝ ⎠ ⎩
郭硕鸿电动力学习题解答完全版(1_6章)
1. 根据算符∇的微分性与矢量性 推导下列公式∇(Ar ⋅ Br) = Br × (∇× Ar) + (Br ⋅∇)Ar + Ar ×(∇× Br) + (Ar ⋅∇)Br Ar × (∇× Ar) = 1 ∇Ar 2− (Ar ⋅∇)Ar2 解1 ∇(Av ⋅ Bv) = Bv × (∇× Av) + (Bv ⋅∇)Av + Av × (∇× Bv) + (Av ⋅∇)Bv首先 算符∇是一个微分算符 其具有对其后所有表达式起微分的作用 对于本题 ∇将作用于 Av 和Bv又∇是一个矢量算符 具有矢量的所有性质因此 利用公式 cv × (av ×bv) = av ⋅(cv ⋅bv) − (cv ⋅av)bv 可得上式 其中右边前两项是 ∇作用于 v v A 后两项是∇作用于 Bv v2 根据第一个公式 令 A B 可得证2. 设 u 是空间坐标 x y z 的函数 证明∇f (u) = df∇u du∇⋅ Ar(u) = ∇u ⋅ dArdur ∇× Ar(u) = ∇u × .dA du证明 1∇f (u) = ∂f (u) er x + ∂f (u) er y + ∂f (u) er z = df du ⋅ e x + r ∂u er y + df ∂ur ⋅⋅ e z = df ∇u ∂u ∂x ∂y ∂zdu ∂y du ∂z du 2∂Ar y (u) ∂y dAr y (u) du ∂Ar x (u) + ∂x + ∂Ar z z(u) = dAr x (u) ⋅ ∂u + ⋅ ∂u + dAr z (u) ⋅ ∂u r∂z = ∇u ⋅ du ∇⋅ Ar(u) = dA∂z du ∂x ∂y dz 3r r r e z ∂ e e ∂Ar y )er x + (∂Ar − ∂z∂Ar ∂Ar x )er z = ∂y r rx y ∇× Ar(u) = = (∂ x − ∂ )e y + ( y − ∂x∂ ∂ A A r z z ∂x ∂y A y (u) A z (u) ∂z ∂y ∂z ∂x r r r A x(u)= (dAr z ∂ dAr y ∂u r dAr x ∂u − dA r r u − dA u r dAr)e y + (dA u − du ∂z )e x + ( ∂u r ∂ ∂ r x y z du ∂x du ∂y )e z = ∇u × dudu ∂y du ∂z du ∂x3. 设r = (x − x ' ) 2+ (y − y ' ) 2+ (z − z' ) 2为源点 x'到场点 x 的距离 r 的方向规定为从 源点指向场点r ∂ ' + er ∂ '+ er ∂ 1 证明下列结果 并体会对源变数求微商 (∇'= e ∂z ' )与对场变数求zx ∂x y ∂y 微商(∇ = er x ∂ r ∂ r∂+ e z ∂z)的关系∂x + e y ∂y r r r r r r 1 r ' 1 r r r r r∇r = −∇'r = ,∇ = −∇ = − ,∇×r 3 = 0,∇⋅ r = −∇' 3 = 0.(r ≠ 0)r r 3 3 r (最后一式在人 r 0点不成立 见第二章第五节) 2 求∇⋅rr,∇×rr,(ar ⋅∇)rr,∇(ar ⋅rr),∇⋅[Er 0 sin(kr ⋅rr)]及∇×[Er 0 sin(kr⋅rr)],其中ar,kr 及Er 0均为常矢量证明 ∇⋅rr=∂(x − x ∂x ') + ∂(y − y∂y ') + ∂(z − z ') =3 ∂zr r r e e e x y z ∇×rr =∂ ∂ ∂ = 0 ∂x x − x ∂y y − y ∂z z − z' ' '∂ v(av ⋅∇)rr = [(a x ev x + a y ev y + a z ev z ) ⋅ ( e x + ∂∂y ev y + ∂∂z ev z )][(x − x')ev x + (y − y')er y + (z − z')ev z ]∂x = (a x ∂ + a y ∂ + a z )[(x − x')ev x + (y − y')er y +(z − z')ev z ] ∂ ∂x ∂y ∂z= a x ev x + a y ev y + a z ev z =av∇(av ⋅rv) = av × (∇×rv) + (av ⋅∇)rv + rr × (∇×av) + (rv ⋅∇)⋅av= (av ⋅∇)rv + rv ×(∇×av)+ (rv ⋅ar)⋅av= av + rv × (∇×av) + (rv ⋅∇)⋅av∇⋅[Er 0 sin(kr ⋅rr)] = [∇(sin(kr ⋅rr)]⋅ Er 0 + sin(kr ⋅rr)(∇⋅ Er 0)= [∂∂x sin(kr ⋅rr)er x + ∂∂y sin(kr ⋅rr)er y + ∂∂z sin(kr ⋅rr)er z ]E 0= cos(kr ⋅rr)(k x er x + k y er y + k z er z )Er 0 = cos(kr⋅rr)(kr⋅ Er) ∇×[Er 0 sin(kr ⋅rr)] = [∇sin(kr ⋅rr)]×Er 0+sin(kr ⋅rr)∇× Er 0 4. 应用高斯定理证明dV ∇× fr = ∫S dSr × fr∫V应用斯托克斯 Stokes 定理证明∫S dSr ×∇φ =∫Ldlr φ证明 1)由高斯定理dV ∇⋅ gr = ∫SdSr ⋅ gr∫ V ∂g 即 (∂ g ∂x ∂g ∫ V x + y + z z )dV = ∫ g x dS x + g y dS y + g z dS z∂∂y S而 ∇× frdV = [( f z − ∂∂z f y )ir + ( f x − ∂∂x f z )rj + ( f y − ∂∂y f x )kr]dV ∂ ∂ ∂ ∫ V∫ ∂y ∂z ∂x= ∫ [∂∂x ( f y kr − f z rj) + ∂∂y ( f z ir − f x kr)+ ∂∂z ( f x rj − f y ir)]dVr r [( f z dS y − f y dS z )ir + ( f x dS z − f z dS x )rj + ( fy dS x − f x dS y )kr] ( fy kr − f z rj)dS x + ( f z ir − f x kr)dS y + ( f x rj − f y ir)dS z∫ S dS × f= ∫ 又S = ∫ 若令H x = f y kr − f z rj,H y = f z ir − f x kr,HZ= f x rj − f y ir则上式就是∇⋅ HrdV = ∫S dSr ⋅ Hr ,高斯定理 则证毕 ∫V 2)由斯托克斯公式有fr ⋅dlr = ∫S ∇× fr ⋅dSr ∫lfr ⋅dlr =l ( f x dl x + f y dl y + fzdl z) ∫ ∫l ∫S∇× fr ⋅dSr = ∫Sf z− ∂ f y)dS x+ ( f x− ∂ f z)dS y+ ( f y− ∂ f x)dS z∂z ∂z ∂x ∂x ∂y ∂ ∂ ∂ (∂y而∫dlr φ=∫l∫SdSr ×∇φ= ∫S(dS z)ir + ( dS x)rj + ( ∂y dS y )kr ∂φ dS − ∂φ ∂φ dS − ∂φ ∂φ dS−∂φ ∂x yzx ∂z ∂y x ∂z r ∂φ rj)dS +(∂φ r i − ∂∂φx kr)dS y +(∂∂φx rj − ∂φ∂y ir)dSz∂φ = ∫ ( k −x ∂y ∂z∂z 若令 f x = φi , f y = φ j , f z = φk 则证毕5. 已知一个电荷系统的偶极矩定义为Pr(t) = ρ(x ,t)x dV, r ' r ' '∫ V 利用电荷守恒定律∇⋅ Jr +∂ρr ∂t = 0证明 P 的变化率为dPr =dt rr 'J(x ,t)dV '∫ V ∂Pr = ∂ρ r ' r '∂t x dV r ∫ V ' = − ∫ V ∇ ' j 'x dV r '' 证明 ∂t r∂t ) x = −∂Pr ' ∇'rj 'x 'dV ' = −∫[∇' ⋅(x ' j ) − (∇'x ')⋅rj ']dV ' = r '( ∫ V ∫ V ( j x' −∇' ⋅(x ' j )dV ' = ∫ j x dV ' − ∫S xrj ⋅dSr 若S → ∞,则( )⋅ xj dSr r ∫ = 0,(rj S= 0)r ∂t ) y =r ∂ρ ,(∂ρ∂t ) z = j dV ( ∫ j dV y' ∫' 同理 即z dPr = r r '∫ j x ,t)dV '( dt V mr × Rr 的旋度等于标量ϕ = mr ⋅ Rr 的梯 6. 若m 是常矢量 证明除 R 0 点以外 矢量 Ar =rR3R3度的负值 即∇× Ar =−∇ϕ其中 R 为坐标原点到场点的距离 方向由原点指向场点 证明mv × Rv)1 r 1 r 1 v r1 r ∇× Av = ∇× (= −∇×[mv × (∇ R1 )] = (∇⋅mv)∇ + (mv ⋅∇)∇−[∇⋅(∇ )]m −[(∇ )⋅∇]mv R 31 = (mv ⋅∇)∇ ,(r ≠ 0)r∇ϕ = ∇(mv⋅ Rv 1 r 1 r 1 r 1 r ) = −∇[mv ⋅(∇ )] = −mv ×[∇× (∇ )]− (∇ )× (∇×mv) − (mv ⋅∇)∇ R 3−[(∇ )⋅∇]mv = −(mv ⋅∇)∇ 1 r 1 r ∴∇× Av = −∇ϕ7 有一内外半径分别为 r 1和 r 2的空心介质球 介质的电容率为ε 使介质内均匀带静止自 由电荷 ρ f 求1 空间各点的电场2 极化体电荷和极化面电荷分布 ∫ 解 1∫S Dr⋅dSr =ρ f dV , (r 2>r>r 1)即 D ⋅ 4πr 2 = 43π (r 3 − r 13)ρ f(r 3 − r 13)ρ f 3εr 3∴Er= rr,(r 2 > r > r 1) r r Q = 4π (r 23 − r 13)ρ f ,(r > r 2) 3ε 0f 由 E ⋅dS =∫ 0 ∴Er = (r 23 − r 13) 3ε 0r 3 rρ f rr,(r > r 2) r < r 1时 E 0r 2) P ε 0χe Er = ε 0 r E = (ε −ε 0)Er ε −εε 0∴ρP = −∇⋅ Pr = −(ε −ε 0)∇⋅ Er = −(ε −ε 0)∇⋅[ (r 3 − r 13) 3εr 3 ρ f rr] =−ε −ε 0 ρ f ∇⋅(rr − r r 3 r)1 3ε r 3 = − ε −ε 0 ρ f (3− 0) = −(ε−ε 0 )ρ f 3ε εσ P = P 1n − P 2n考虑外球壳时 r r 2n 从介质 1指向介质 2 介质指向真空 P 2n = 0r 3 − r 133εr 3) r 23 − r 13 σ P = P 1n = (ε −ε 0) ρ f rr r=r 2= (1− ε 0ε ρ f 3 3r 2 考虑到内球壳时 r r 2σ P = −(ε −ε 0) r 3 − r 1 ρ f r r=r 1 = 0 3 r 3εr 38 内外半径分别为 r 1和 r 2的无穷长中空导体圆柱 沿轴向流有恒定均匀自由电流 J f 导体 的磁导率为µ 求磁感应强度和磁化电流 解Hr ⋅dlr = I f + ddt∫S Dr ⋅dSr =I f∫ 当r < r 1时,I f = 0,故Hr = Br = 0l H ⋅dlr = 2πrH = j f ⋅dSr = j f π(r 2 − r 12) r r∫ l∫ S当 r 2>r>r 1时µj f (r 2 − r 12)2rBv = = µ( r 2 − r 12r 2)rj f ×rr 2 当 r>r 2时 2πrH = πj f (r 22 −r 12)Br = µ0(r 22 2)rj f ×rr− r 1 2r 2 J M = ∇× Mr = ∇× (χM Hr ) = ∇× (µ − µ0) r µ −1)∇× (rjf ×r2r r − r 12 )µ0 )H = (µ02r 2 = (µµ −1)∇× Hr = ( µ −1)rj f ,(r 1 < r < r 2) 0 µ0α r M = nr × (Mr 2 − Mr 1),(n 从介质1指向介质2在内表面上 M1 = 0,M2 = (µµ −1) r 2 −r 12 ) r=r = 02r 21故αM = nr × Mr 2 = 0,(r= r 1) r 在上表面 r r 2时r M = nr × (−Mr 1) = −nr × Mr 1 r=r 2= − × r r 2 − r 12 r j f ×rr r=r 2 = − r 2 − r 12 r j ( µ −1) µr α f r 2 r 2 r 2 2r 0 r 22 − r 12 r 2= −(µµ−1) jf9 证明均匀介质内部的体极化电荷密度 ρP 总是等于体自由电荷密度 ρ f 的− (1− εε0 )倍ρP = −∇⋅ Pr = −∇⋅(ε −ε 0)Er = −(ε −ε 0)∇⋅ Er = −(ε −ε 0) ρ f = −(1−εε0 )ρ f 证明ε10 证明两个闭合的恒定电流圈之间的相互作用力大小相等 方向相反(但两个电流元之间的相互作用力一般并不服从牛顿第三定律) 证明1 线圈 1在线圈 2的磁场中的受力I 2dlv 2×rv 12 Bv 2 = µ0∫ 3 4π l r 12 2dFv 12 = I 1dlv 1 ×Bv 2µ0 I 1dlv 1 × (I 2dlv 2 ×rv 12) = µ0I 1I 2dlv 1 × (dlr 2×rv 12) ∴Fv 12 = ∫∫ 4π r 3 4π ∫∫ r 3l l 12 l l 12 1 2 1 2v r = µ0I 1I 2 4π ∫∫dl (dl ⋅ ) −132 (dlv 1 ⋅dlv 2) v v rv 12 r 31212 1r 12l l 1 2 2 线圈 2在线圈 1的磁场中受的力 同 1 可得v v r Fv 21 = µ0I 1I 2 4π∫∫dl (dl ⋅ 231 ) − 231 (dlv 2 ⋅dlv 1) v v r 21 2r 21 r 21l l 2 1分析表达式 1 和 21 式中第一项为v v rv 12 r 12dlv 2∫dl ⋅ 12 v v r = v dr 12 dlv 2 ⋅(− 1 ) 一周 = 0 ∫∫dl (dl ⋅ 3 ) = ∫ ∫ dl ∫ = r 2 ∫ 2 1 1 32 r r l l l 12 l l 1 12 l 12 1 2 2 2 2v v v r2 式中第一项 ∫∫dl (dl ⋅231 ) = 0同理 对 1 2 r l l 21 2 1r r∴Fv 12 = Fv 21 = − µ0I 1I 2 4π∫∫ 132 (dlv 1 ⋅dlv 2) r 12 l l 1 2 11. 平行板电容器内有两层介质 它们的厚度分别为 l 1和 l 2 电容率为ε1和ε 2 今再两板 接上电动势为Ε的电池 求1 电容器两板上的自由电荷密度ω f2 介质分界面上的自由电荷密度ω f若介质是漏电的 电导率分别为 σ1和σ 2 当电流达到恒定时 上述两问题的结果如 何解 在相同介质中电场是均匀的 并且都有相同指向l 1E 1 + l 2E 2 = Ε D − D 2n = ε1E 1 −ε 2E 2 = 0 介质表面上σ f = 0), 则1n ε 2Ε ε1Εl 1ε 2 +l 2ε1故 E 1 = l 1ε 2 + l 2ε1 ,E 2= 又根据D 1n − D 2n = σfn 从介质 1指向介质 2在上极板的交面上D 1 − D 2 = σ f 1 D 2是金属板 故 D 2 0ε1ε 2εl 1ε 2 + l 2ε1即 σ f 1 = D 1=而σ f = 02σ f = D 1' − D 2' = −D ,(D 1'是下极板金属 故D 1' =0)' 2 3 ε1ε 2εl 1ε 2 + l 2ε1∴σ f = − = −σf13若是漏电 并有稳定电流时Er 1 = rj ,Er 2 = rj1σ1 2σ 2r 1 又 1 σ1 2 σ 2 rj 2j = Εr l + l j = j 2n = j 1 = j 2, 稳定流动 电荷不堆积 1nE 1 = j 1 = σ 2Εσ1 l 1σ 2 +l 2σ1 σ1Ε Ε得 j 1 = j 2 = ,即:l 1 + l 2 j 2 E 2 = = σ1 σ 2σ 2 l 1σ 2 + l 2σ 1ε1`σ 2Ε l 1σ 2 + l 2σ1 ε 2σ1Εl 1σ 2 + l 2σ1σ = D 3 = σ f 下 = −D 2 = − f 上= ε 2σ1 −ε2σσ f = D 2 − D 3中 1 Ε l σ + l σ11 2 2 12. 证明1 当两种绝缘介质得分界面上不带面自由电荷时 电场线的曲折满足tan θ 2 = ε 2tan θ1 ε1其中ε1和ε 2分别为两种介质的介电常数 θ1和θ 2分别为界面两侧电场线与法线的夹角 2 当两种导电介质内流有恒定电流时 分界面上电场线曲折满足tan θ 2 = σ2tan θ1 σ1其中σ1和σ 2分别为两种介质的电导率 证明(1)根据边界条件 n × (Ev 2 − Ev 1) = 0,即 E 2 sin θ 2 =E 1 sin θ1由于边界面上σ f = 0 故 nv ⋅(Dv 2 − Dv 1) = 0 即 ε 2E 2 cos θ 2 =ε1E 1 cos θ1∴有tg θ 2 = tg θ1 ,即 tg θ ε 2 2 =tg θ1 ε1ε 2 ε1 (2)根据 Jv = σEv 可得 电场方向与电流密度同方向j 1 j 2cos θ 2 cos θ1由于电流 I 是恒定的 故有= σ1E 1 cos θ 2cos θ1σ E 2 n × (Ev 2 − E ) v 1 v 2 = 0 即 E 2 sin θ 2 = E 1sin θ1即 = 而 tg θ1 = σ1tg θ 2 σ2故有13 试用边值关系证明 在绝缘介质与导体的分界面上 在静电情况下 导体外的电场线 总是垂直于导体表面 在恒定电流的情况下 导体内电场线总是平行于导体表面 证明 1 导体在静电条件下达到静电平衡∴导体内Ev 1而nv × (Ev 2 − Ev 1) = 0v∴nv × Ev 2 = 0 故 E 0垂直于导体表面3 导体中通过恒定电流时 导体表面σ f = 0v v∴导体外E 2 = 0,即 D 2 = 0而nv ⋅(Dv 2 − Dv 1) = σ f = 0,即: nv ⋅ Dv 1= nv ⋅ε 0Ev 1 = 0 ∴nv ⋅ Ev 1 = 0导体内电场方向和法线垂直 即平行于导体表面14 内外半径分别为 a 和 b 的无限长圆柱形电容器 单位长度电荷为λ f 板间填充电导率 为σ 的非磁性物质1 证明在介质中任何一点传导电流与位移电流严格抵消 因此内部无磁场2 求λ f 随时间的衰减规律3 求与轴相距为 r 的地方的能量耗散功率密度4 求长度为 l 的一段介质总的能量耗散功率 并证明它等于这段的静电能减少率r∂ρ f∂t 1 证明 由电流连续性方程 ∇⋅ J += 0据高斯定理ρ f = ∇⋅Dr ∂∇⋅ Dr ∂t ∂Dr =∂t ∴∇⋅ Jr + ∴∇⋅(Jr+= 0 即 ∇⋅ Jr +∇⋅∂Dr ∂t ∂D r ) = 0.∴Jr + ∂t = 0 即传到电流与位移电流严格抵消∫ (2)解 由高斯定理得 Dr ⋅ 2πrrdl =λ f dl ∫ ∴Dr = 2λπf r er r ,Er = λ f 2πεre rr∂Dr∂t又 Jr + = 0,Jr = σEr,Dr= εEr∂Er ∂t ∴σEr +ε = 0,Er = Er 0eσ= t ε∴ 2λπεf r er r = λr −σ ε r te r2πεr e电动力学习题解答第一章 电磁现象的普遍规律σ ε − t ∴λ f = λ fe0 3 解∂Dr ∂t Jr = − = − ∂ λ f σε σ λ f ⋅ − t ∂t (2πr e ) =ε 2πr1 = ( λ f)2σ2πεr能量耗散功率密度 J 2ρ = J2σ 5 解单位体积dV = l ⋅2πrdr Pr =λ f )2σl2πrdr = l2σπλε f2 ln ba 2b ∫(2πεr a r r b 1 l λ2f ∫ l λ f 2b1 a2 D ⋅ EdV = a 2 2πεr dr = 12 ⋅ 2πε ⋅ln ba静电能 W = ∫减少率 − ∂W = − l λ f∂λ f∂t 2= l λ 2ln baf σ2πε2πε ln ba ⋅ ∂tr2 1.一个半径为 R 的电介质球 极化强度 P=K r 电容率为 (1)计算束缚电荷的体密度和面密度 (2)计算自由电荷体密度 (3)计算球外和球内的电势(4)求该带电介质球产生的静电场总能量 解 (1)r ρ P = −∇⋅ Pr = −K ∇⋅ 2 = −K(∇ r ⋅r + 12 ∇⋅rr) = −K / r r 1 r 2 2r rσ P = −nr ⋅(Pr 2 − Pr 1) R又 球外无极化电荷r Pr 2 = 0 σ p = nr ⋅ Pr 1 R = nr ⋅ K rr 2 R = K / R(2) 由公式 Dr = εErDr = ε 0Er + PrεPr ε −εDr =ρ f = ∇⋅ Dr = ∇⋅ Pr = 2 `ε εK(ε −ε)rε −ε 0(3)对于球外电场 由高斯定理可得r E 外 ⋅dsr =Qε 0 ∫ εK∫∫∫ (ε −ε 0)r 2 ⋅rε 02sin θdrd θd ϕ 2 = ∫ ρ fdV ∴Er 外 ⋅ 4πr ∴Er 外 = ε 0εKR ε 0(ε −ε0)rr r 3 r r r 内Kε −ε 0 同理可得球内电场 E ⋅ r2∞Er 外 ⋅drr εKR ε 0(ε −ε 0)r∴球外电势ϕ外∫ ∞∞Er 外⋅drr R Er 内 ⋅drr εK ε 0(ε −ε 0) ε −ε 0 K ln Rr球内电势ϕ内∫ R∫ +rKrr ⋅ K ε ε 0r r εKr D 内 ⋅ Er 内21 2 1 2 ε ε 0 ε 4 ω内 ⋅ ⋅ ⋅ 2 ε ε 0 r 2 ∴ r 2r 2 ∫∫∫ 1 εK 2 K ∴W 内 ω dV ∫ ⋅ r 2 ⋅ r 2sin θdrd θd ϕ 2πεR ε −ε 0 ) 22 内 2 (ε −ε 0) 1 ε 2 K 2 R 2 1 ⋅ r 2 ⋅sin θdrd θd ϕR 2 ε 0(ε −ε 0)2 r 42 22πε RK ε 0(ε −ε 0)2W 外 ∫ ω外dV = ∫∫∫ ⋅ ∴W =W 内 W 外 2πεR(1+εε )( K ) 2 0 ε −ε2 在均匀外电场中置入半径为 R 0的导体球 试用分离变数法球下列两种情况的电势 1 导体球上接有电池 使球与地保持电势差φ0; 2 导体球上带总电荷 Q.解 1 当导体球上接有电池 与地保持电势差φ0时 以地为电势零点本问题的定解条件如下φ内 φ0R= R 0ϕ R →∞ = −E 0Rcos θ ϕ 0 外 ∇ 2ϕ外 0 R> R 0 且 ϕ 0是未置入导体球ϕ 外R=R 0= φ0前坐标原点的电势∞bn R n∑ a nRn根据有关的数理知识 可解得 ϕ外P n cos θ )1n 由于ϕ外= −E 0Rcos θ ϕ0即R →∞ϕ外 a 0 + a 1Rcos θ + a n R n P n (cos θ) + b 0 ∞ + b 1R 2 cos θ + ∞b n R n+1 P n (cos θ ) R →∞ = −E 0Rcos θ +ϕ 0∑ ∑ R n=2 n=2故而有 a 0 = ϕ 0,a 1 = −E 0,a n = 0(n > 1),b n = 0(n >1)b 0 R b 1 2cos θ∴ϕ外 ϕ 0 E 0Rcos θ+ Rb 0 R 0 b 1又ϕ外 R=R 0= φ0,即 ϕ外 R=R 0= ϕ 0 −E 0Rcos θ+ 2 cos θ = φ0R 0 ϕ + b 0 =φ0 0 R 0故而又有∴b 1 − E 0R 0 cos θ + 2cosθ = 0 R 0 得到b 0 = (φ0 −ϕ 0)R 0,b 1 =E 0R 02最后 得定解问题的解为ϕ外 = −E 0Rcos θ +ϕ 0 + (φ0 −ϕ 0)R 0 + E 0R 3 0cos θ(R > R 0)R R2 当导体球上带总电荷 Q 时 定解问题存在的方式是∇ 2 2 φ内 0(R < R 0) φ外 0(R > R 0) ∇φ 有限 内 R →0φ E 0Rcos θ +ϕ 0(ϕ 0是未置入导体球前坐标原点的电势 外 R →∞ φ φ外内 R R 0 ∂φ外 − ∫ s ε 0ds Q(R = R 0) ∂R 解得满足边界条件的解是b nR n ∑ n=0a n R n P n cos θ ∑ n=0ϕ内ϕ外 ϕ 0E 0Rcos θ1 P n cos θ由于ϕ外 R →∞ 的表达式中 只出现了 P 1(cos θ cos θ项 故 b n = 0(n > 1)b 0 R b 1 2cos θ∴ϕ外 ϕ 0 E 0Rcos θ+ R又有ϕ外 R=R 0 是一个常数 导体球是静电平衡b 0 R 0 b 1 2 cos θ = C ϕ外 R=R 0 = ϕ 0 −E 0R 0cos θ+ Rb 1 ∴−E 0R 0 cos θ + 2 cos θ = 0即b 1 = E 0R30 R 0ϕ外 ϕ 0 E 0Rcos θ + b 0 + E 0R 3cos θR R 2∂φ外 Q4πε又由边界条件− ∫ s ε 0 ds Q ∴b 0 =∂r Q∴ϕ内−ϕ 0,R < R 0 4πε 0R 0 Q4πε 0R E R 0 2 3ϕ外+ 0 R cos θ E 0Rcos θ R > R 03 均匀介质球的中心置一点电荷 Q f 球的电容率为ε 球外为真空 试用分离变数法求空间电势 把结果与使用高斯定理所得结果比较 提示 空间各点的电势是点电荷Q f 的电势Q f 4πεR 与球面上的极化电荷所产生的电势的叠加 后者满足拉普拉斯方程 解 一. 高斯法rE ⋅dsr = Q 总 Q f + Q P = QfR > R 0 ,由高斯定理有 ε 0 ∫对于整个导体球 在球外 而言 束缚电荷Q P = 0)∴Er = Q f4πε 0R 2Q f积分后得 ϕ外4πε 0R + C.(C 是积分常数又由于ϕ外 R →∞= 0,∴C =Q f∴ϕ外 = 4πε 0R (R > R 0)在球内 R < R 0 ,由介质中的高斯定理 ∫Dr ⋅dsr = Q f又 Dr =εEr,∴Er = Q f4πεR 2Q f4πεR积分后得到 ϕ内+ C 2.(C 2是积分常数Q f 4πε 0R 04πεR 0Q f由于ϕ内ϕ外 R=R 0,故而有 = + C 2Q f 4πε 0R 0Q f∴C 2 = − 4πεR 0 (R < R 0).Q f 4πεR 4πε 0R 0Q f Q f ∴ϕ内− 4πεR 0 (R < R 0)二. 分离变量法本题所求的电势是由点电荷Q f 与介质球的极化电荷两者各自产生的电势的叠加 且有Q f4πεR 着球对称性 因此 其解可写作 ϕ =+ϕ' 由于φ'是球对称的 其通解为 ϕ'= a +bRQ f4πεR由于球心有Q f 的存在 所以有ϕ内 R →0∞ 即ϕ内aQ f 4πεR b R在球外有ϕ外 R →∞即ϕ外由边界条件得Q f 4πεR 0 Q f + b ϕ内 ϕ外 R 0 ,即R+ a4πεR 0 R 0∂ϕ内 ∂ϕ外 ε Q f2 − ε 0b = −εQ f ε ε 0 R 0,即0 4πεR 0 R2 4πεR 02 ∂R ∂RR 0∴b = Q 1 − ε1),a 1 −ε1) Q f f 4πε(ε 0 4πR 0 (εQ fϕ 4πε 0R ,R > R 0 Q f 外 ∴ Q f 4πεR 4πε 0R 0 4πεR 0Q fϕ内 − ,R < R 0r4 均匀介质球 电容率为ε1 的中心置一自由电偶极子 P 球外充满了另一种介质 电 f容率为ε 2 求空间各点的电势和极化电荷分布r rP ⋅ R 3 +φ',而φ'满足拉普拉斯方程 f 提示 同上题 φ =4πε R1 ∂φ 解 ε1 内 = ε2 ∂R ∂φ外∂R∂φ内 2P f cos θ +∑lA l R 又ε1 R 0 = ε1(− l 0 1P l∂R 4πε1R 03 ∂φ外 = ε 2(− 2P f cos θ 4πε1R 03B ll ε 2 −∑(l 1 R 2 P l R 0∂R 0比较 P l (cos θ)系数B 0 0 A 0 02ρ f3 +ε1A 1 = − 2ε 2ρ f3 − 2 3 2ε B 1,及A 1 = R 03 B 1 4πR 0 4πε1R 0 R2(ε1 −ε 2)ρ f 2(ε1 −ε2)ρ f得 A 1 = 3 ,B 1 = 4πε1(ε1 + 2ε 2)R 04πε1(ε1 + 2ε 2)比较 P 2(cos θ )的系数3B 2 4 , A 2 = RB 22ε1A 2R 04R 01及 A 2(1+ ε1R 0 ) =所以 A 2 = 0,B 2 = 0 同理 A l = B l = 0,(l = 2,3L) 最后有ρr f ⋅ Rr 2(ε1 −ε2)ρ fρ f ⋅ Rr 3 + 2(ε1 −ε 2)ρr f ⋅ Rr r φ内 3 + 3 Rcos θ = 3 ,(R < R 0) 4πε1R ρr f ⋅ Rr4πε1(ε1 + 2ε 2)R 0 4πε1R 4πε (ε + 2ε )R 1 1 2 0ρ f ⋅ Rr 3 + 2(ε1 −ε 2)ρr f ⋅ Rr 3 = 3ρr f ⋅ Rr r 2(ε1 −ε2)ρ fφ外 3 + 2 cos θ = 3 ,(R > R 0) 4π (ε1 + 2ε 2)R 4πε1R 4πε1(ε1 + 2ε 2)R 4πε1R 4πε (ε + 2ε )R1 1 2球面上的极化电荷密度σ P = P 1n − P 2n ,nr 从 2指向 1 如果取外法线方向则σ p = P 外n − P 球n = [(ε 2 −ε 0)∇φ外)]n −[(ε1 −ε 0)∇φ内)]n∂φ外∂φ内 = −(ε 2 −ε 0) ∂R + (ε1 −ε 0) ∂RR R 0 − 6ρ f cos θ 3 − (ε1 −ε 0)[6(ε 0 −ε 2)ρ f cos θ − 2(ε1 −ε 2) − 2(ε1 + 2ε 2)ρ cos θ] 1 1 2= (ε 2 −ε 0)f 4π (ε1 + 2ε 2)R 03 4πε (ε + 2ε )R 3 0 4π (ε1 + 2ε 2)R 0 = 6ε1(ε 0 −ε 2) + 6ε 2(ε1 −ε 0) ρ cos θ = −3ε 0(ε1 −ε 2) 3 ρ f cos θ f 3 04πε (ε +2ε )R 2πε1(ε1 + 2ε 2)R 01 12求极化偶极子P = qlr 可以看成两个点电荷相距 l 对每一个点电荷运用高斯定理 就得到在每个 rf点电荷旁边有极化电荷ε 0 ε0 q P = ( −1)q f ,−q P = ( −1)(−q f ) 两者合起来就是极化偶极子ε1 ε1 P P = ( −1)Pr f r ε0 ε1r5.空心导体球壳地内外半径为 R 1和 R 2 球中心置一偶极子P 球壳上带电 Q 求空间各点 电势和电荷分布 解R2φ3∇2φ3 = 0,φ3 r →∞ = 0 φR 1φ = C,φ2 r →0 = ∞ φ2r P ⋅rrφ1 = 3 +φ1',φ1' r →0为有限值4πε 0rB ll+1 ∑ rφ3 P l (cos θ ),φ3 r −R = C2 φ = C,φ2 r=R 1 = C 2r P f ⋅rr∂φ3 ∫ ∂r dS r=R∂φ1 = Q∑ 3 + A l r l P l (cos θ)φ = + ∫ ∂r dS r=R 1 4πε 0r 2 1εB B B 2 3 2 0 + 12 cos θ + R P 2 +L = CR R 2 2 P f cos θ2 + A 0 + A 1R 1 cos θ +L = C 4πε 0R 1即 A 0 = R 0 = C,(A R 1 +2P f 2 )cos θ = 0,B l = 0(l = 1.2.3L), A l = 0(l =2.3.4L) B1 4πεR12P f cos θ 3 4πε 0R 1 P f cos θ PL = − 3 + A 1 cos θ +L 2πε 0R 1又 ∂φ1 =− ∂r+∑lA l R l −1 1 ∂φ B l r B 02 − 2 RB 13 cos θ+L ∂r 3 =∑(−l−1)l+2 P l = − R 1 1 ∂φ3 ∂r B 2 dS = RB 02 ∫dS = 4πR 1 2 = 4πB 02 B 0 R 1 ∫ dS = ∫ 0 则 − R 11 P f− P f∂φ1 ∂r 2π π 2π π∫ dS = ∫ ∫− 2πε 0R 13 cos θR 12 sin θd θd ϕ+∫ ∫ 3 cos θR 12 sin θd θd ϕ = 0 + 0 = 0 00 4πε 0R 1∂φ3 ∂r ∂φ1 0 = εQ∫ dS + ∫ = 4πB ∂r 故 −− P f Q QB 0 = 4πε 0 , A 0 = 4πε 0R 2 , A 1 =34πε 0R 1最后有Pr f ⋅rr Pr ⋅rr 2 − Q φ1 = 3 + 4πε 0R 2 ,(r <R 1) 4πε 0R 1 4πε 0r Q φ = 4πε 0r ,(r > R 2) 3 φ 2 = 4πε 0R 2 ,(R 1 < r < R 2) Q电荷分布在 r R 1的面上− P f cos θ − P f cos θ = −P f cos θ ∂φ σ P = ε 0 1 = + ∂r 2πR 3 4πR 3 3 4πR11 1 1在 r R 2面上∂φ σ P = −ε 03 =∂r Q2 4πR 22r6 在均匀外电场 E 0中置入一带均匀自由电荷 ρ f 的绝缘介质球ε 求空间各点的电势B l )P l (cos θ ) (A l r l + r l+1 ∑ φ 外1 ρ f r 2+φ ' 解 φ内6ε = 0 ∇ 2 φ 'rφ内是由高斯定理解得的 ρ f 的作用加上 E 0的共同作用 φ外 r →∞ = −E 0r cos θ,φ ' r →0 有限 B l r l∑ φ E 0r cos θ + +1 P l (cos θ ) 外φ内 1 ρ f r 2 +∑c e r l P l (cos θ )6ε φ内 φ外 r = R 0) :B 0 B 1 B 21 ρ f R 02 + c + c 1R 0 cos θ + c 2R 0 2P 2+ 6εE 0R 0 cos θ + R 0 R 0 2 + R+ 3 P 2 + 0即 ρ f6ε R 0 2 + c 0 = BR 0 B 1E 0R 0 + 2 = c 1R 0 R 0 B 2 23= c 2R 0R 0∂φ ∂φ外∂r 内 = ε∂r ε ∂φ 内 = ρf ρ f R 0 + lcl R 0l −1P l (cos θ) ]= 3 R 0 +εc 1 cos θ + 2εc 2R 0P 2 +L3ε∑ ∂r ∂φ外= ε 0(−E 0 cos θ +∑(−l −1) B l P l)∂r R 0l+2ε0B 0 − 2ε0B 1 cos θ −3ε0B 2 −ε0E 0 cos θ −P 2 +LL R 02 R 0 3 4 R 0 ρ f ε B 02εC 1 = −ε 0E 0 −2ε 0B 1 2εC 2R 0 = − 3ε 0B4 2LL 3 R 0 = −0 R 即R 3 R= − R 3C 0 = −R 02ρ f (3ε10 + 61ε)B 00 3ερ f解方程得B = − 3ε 0E 0R 3 0C = − 3ε 0E 0 1 + E 0R 031 ε + 2εε + 2ε及 2εC 2R 0 = −3ε 0R 0C 2 即 C 2(2εR 0 + 3ε 0R 0) = 0l = 2,3LL C 2 = B 2 = 0同理 C l = B l = 0E 0r cos θ ± R 3 0 ρ f 3 0 cos θ − 3ε 0E 0R 3 + E 0R φ 0 2 cos θ,r > R 0(ε + 2ε 0)r 外 r 2 3r ε 0 得ρ 1 3ε 0 6ε1 3ε 0E 0 6εf r2 ± R 0 2ρ f ( ε + 2ε 2 r cos θ,r< R 0 φ 内7 在一个很大的电解槽中充满电导率为 σ 2的液体 使其中流着均匀的电流 δ f 0今在液 体中置入一个电导率为 σ 1的小球 求稳衡时电流和电荷分布 讨论 σ 1 >> σ 2 及σ 2 >> σ 1两种情况的电流分布特点先求空间电势∇ 2φ内 0 0 φ内 φ外r = R 0∇ 2φ外因为δ内n δ外n (r = R 0) 稳恒电流认为表面无电流堆积 即流入n =流出n 故 σ 12φ2φ外2r 内= σ 22r并且δ外 r →∞ = δ 0 即 φ外 r →∞= −E 0rcos θ( j f = σ 2E 0) 0φ内 r →∞有限 可以理解为在恒流时r → 0的小封闭曲面流入 流出φ 3σ 2σ 12σ 2 E 0r cos θ,r < R 0内这时的解即为σ −σ cos θ φ外 E 0r cos θ + E 0R 0 3(σ 1 + 2σ 2 1 2) ,r > R 0r22φe +2φer θ r 1 r sin θ 2Φ 2φ r e φ ) 求内外电场 E = −∇φ = −( 2r r+ 2θ (2φ内er 12φ内 r 内r + r 2θ er θ ) = σ 1 + 2σ 2 E 0(cos θer r − sin θer θ ) 3σ 2E 2r 3σ 2 σ1 + 2σ2E 0er z =3 E 外 E 0(cos θer r − sin θer θ ) +E 0(cos θer r − sin θer θ ) + E R 0 σ −σ )[2cos θer r + sin θer θ ] 0 r 3 (σ 1 + 2σ 21 2 E R 0 σ −σ 3 )[3cos θer r − cos θer r + sin θer θ ] 0 r 3 (σ 1 + 2σ 21 2 vσ 1 −3E 0 cos θ ev E E 0 + R 03 ( 2 ) σ 1 + 2σ2r − r 0 r 3求电流r 内 v1 内v 外σ 2Ev 外根据 j σEj vj f 0 = σE v 2 0v r v 及( j ⋅r)r = σ 2E 0r cos θr er f 0r r 5r 5 3(rj f ⋅rr)rr r− j 30 ] 3σ1 σ1 2σ 2r , j 外 = rj 内 σ1 σ 2 σ1 2σ 2f 3 R 0得 j 内j [ 0f 0 5 r r) = 3ε 0E 0 cos θ (σ1−σ 2) 1ω f = ε 0(E 2n − E 1n ) = ε 0(E 外n− E 内nσ + 2σ 28.半径为R 0的导体球外充满均匀绝缘介质ε 导体球接地 离球心为 a 处(a > R 0)置一点 电荷Q f 试用分离变数法求空间各点电势 证明所得结果与镜像法结果相同 提示1 r 1 = 1 ( ) ∞R ∑ n= P n (cos θ).(R > a) a a n=0R 2 + a 2 − 2aRcos θ 解 1 分离变数法由电势叠加原理 球外电势Q f 4πεR ' ' +φ ,φ是球面上感应电荷产生的电势 且满足定解条件φ外∇ φ = 0,(r >R 0) 2 ' zφ ' r →∞ = 0 Q f P φ = 0 外r=R 0ar根据分离变数法得∞ B l1 P l (cos θ),(r >R 0) O'= ∑ φ r l+l=0 Q f1∞Bl P l (cos θ)∑ ∴φ外+ *4πε r l+1 a 2 + r 2 − 2ar cos θl=0= Q ( ) P n (cos θ ) + B r l+ 1 P l (cos θ),(r < a)1 4πε a∞ r a ∞f ∑ n ∑ ln=0 l=0Q f R 0 )l + B l∞∑ 又φ外 = [ 4πεa ( a]P l (cos θ) = 0 r=R 0 l+1o R n=0 Q f B 0 Q f R 0 Q f R B l0 )l + R l+1= 04πεa R 0 = 0, 4πεa a 4πεa( a 即+ + B 12 = 0,..., R 0 0 Q f R 3 Oa4πεaQ f ,B l = − R2l+1 Q f 0∴B 0 = −R 0 4πεa ,B 1 = − a l4πεa , 代入 * 式得解2 镜像法如图建立坐标系 本题具有球对称性 设在球z 内r 0处有像电荷 Q ' ,Q '代替球面上感应电荷对空间电场的Q f RR 2 P作用 由对称性 Q '在 O Q f 的连线上 Q’2rR 0先令场点 P 1在球面上 根据边界条件有r Q f r Q f Q ' Q ' ' + = 0,即 r = − Q =常数r Q f P 1Q 'Q f 将Q ' 的位置选在使∆ Q 'P 1O ∆ Q f P 1O,则有r Q 'R a= 常数 为达到这一目的 令Q '距圆心为 r 0 0r Q f r 0 = R 0 ,r 0 = R2 0 a 则R 0 ar Q ' ' = R 0 =常数 Q ' = − R Q f0 并有= − Q r Q f a a Q fR 1 R 2这样 满足条件的像电荷就找到了 空间各点电势为Q fR 0Q f 'Q f Q 1 = [ aφ外 = + −],(r > a).4πεr 1 4πεr 2 4πε a 2 + r 2− 2arcos θ+ (R 0 + 2r R2)r cos θ 2 2a a将分离变数法所得结果展开为 Legend 级数 可证明两种方法所求得的电势相等9 接地的空心导体球的内外半径为 R 1和 R 2 在球内离球心为 a(a<R 0)处置一点电荷 Q 用 镜像法求电势 导体球上的感应电荷有多少 分布在内表面还是外表面 解 球外的电势及导体内电势恒为 0 而球内电势只要满足φ内 R 1 = 0即可r因此做法及答案与上题同 解略QR 11 4πε 0Qa φ内 = [ −]R 2 + a 2 − 2Racos θR 1 42R 1 2R cos θ R2+ 2 − aa 因为球外φ = 0 故感应电荷集中在内表面 并且为Q.10.上题的导体球壳不接地 而是带总电荷 Q 0,或使其有确定电势ϕ0 试求这两种情况的电势 又问ϕ0与 Q 0是何种关系时 两种情况的解是相等的解 由于球壳上有自由电荷 Q 0 并且又是导体球壳 故整个球壳应该是等势体 其电势用 Q + Q 0 4πε 0R 2高斯定理求得为所以球壳内的电势将由 Q 的电势 像电荷−QR 1a 的电势及球壳的电势叠加而成 球外电势利用高斯公式就可得 故QR 11 4πε 0Q Q + Q 0 R 2 a φ内 = [ −+ ].(R < R 1)4 R 2 + a 2 − 2Racos θ R 1 2R 12R cos θ R2+ 2 − φ = aaφ = Q + Q 0 ,(R > R 2) 外 4πε RQR 11 4πε 0 Q a φ内 = [ −]+φ0.(R < R 1) 4R 2 + a 2 −2Racos θR 2R 12R cos θ R 2 + a 12 −或 φ = aφ = Rr 2 φ0,(R > R 2) 外当φ0 = Q + Q 0时两种情况的解相同4πε R 2 011 在接地的导体平面上有一半径为 a 的半球凸部 如图 半球的球心在导体平面上 点电荷 Q 位于系统的对称轴上 并与平面相距为 b b>a 试用电象法求空间电势 解 如图 利用镜像法 根据一点电荷附近置一P无限大接地导体平板和一点电荷附近置一接地导体 球两个模型 可确定三个镜像电荷的电量和位置Q − ba QRQ 1 = − ba Q,r 1 = abrr2Oa Q Q 2 = ba Q,r 2 = − ab r2rQ 3 = −Q,r 3 = −brr b-QQ 4πε 0 1 1 a φ = [ − + R 2 + b 2 − 2Rbcos θ R 2 + b 2 + 2Rbcos θ a b 4 2 + 2 a 2b R 2+ b Rcos θa+],(0 ≤θ < π2,R > a)a b4 2 − 2 abRcos θ 2 b R 2+12. 有一点电荷 Q 位于两个互相垂直的接地导体平面所围成的直角空间内 它到两个平面的距离为 a 和 b求空间电势z P(x, y, z) Q(x 0,a,b) a -Q(x 0,-a,b) b解 可以构造如图所示的三个象电荷来代替 两导体板的作用y+Q-Q(x 0,a,-b)(x 0,-a,-b)Q 4πε 0 1 1 φ = − [ − −(x − x 0)2 + (y − a)2 + (z −b)2 (x − x 0)2 + (y − a)2 + (z+ b) 21 1 + ],(y,z > 0)(x − x 0) 2 + (y + a) 2 + (z −b) 2 (x − x 0) 2 + (y + a) 2 + (z + b)213.设有两平面围成的直角形无穷容器 其内充满电导率为 的液体 取该两平面为 xz 面和 yz 面 在 x 0,y 0,z 0 和 x 0,y 0,-z 0 两点分别置正负电极并通以电流 I 求导电液体中的 电势解 本题的物理模型是 由外加电源在 A B 两点间建立电场 使溶液中的载流子运动形z 成电流 I,当系统稳定时 是恒定场 即 ∇⋅rj + ∂ρ∂t = 0 中∂ρ∂t = 0对于恒定的电流 可按静电场的方式处理r jA(x 0,y 0,z 0)于是 在 A 点取包围 A 的包围面ir⋅dsr i = Er ⋅σσEr ⋅dsr = Q 而又有r I = ∫ }⇒ σ1 I = Er⋅dsr ∫y∫ ε n1 I =ε Q ⇒ Q = I ε1 1 r jx∴有对 B σ σ B(x 0,y 0,z 0)Q = −Q = − I ε1zQ BσQ(-x 0,-y 0,z 0)Q(x 0,-y 0,z 0) Q(x 0,y 0,z 0)rj n = 0,即元电流流入容器壁 又在容器壁上 Q(x 0,y 0,z 0)由rj = σEr 有 j n = 0时 E n = 0r r y∴可取如右图所示电像-Q(-x 0,y 0,z 0)-Q(-x 0,y -z 0)0,-Q(x 0,-y 0,z 0)-Q(x 0,y 0,-z 0)x的图 说明 ρ = −(Pr ⋅∇)δ (xr)是一个位于原点的偶极子的电荷密度 d δ (x) 14.画出函数 d δ (x) dx 解 δ (x) =0,x ≠ 0∞,x =0 dxd δ (x) = lim δ (x + ∆x)−δ (x) dx ∆xx∆x →0 1 x ≠ 0时 d δ (x) = 0 dx0 − ∞ =−∞ ∆x 2 x = 0时a ∆x > 0, d δ (x) = lim dx ∆x →0 b)∆x < 0, d δ (x) = lim 0 − ∞ = +∞ dx ∆x∆x →0 15 证明1a 1 δ (ax) = δ (x).(a > 0) 若 a<0,结果如何2 x δ (x) =δ (x − x k 所以δ (ax) =δ (x)证明 1 根据δ[φ(x)]=∑φ'(x k )a 2 从δ (x)的定义可直接证明有任意良函数 f(x),则 f (x)⋅ x = F(x)也为良函数f (x)x δ (x)dx = f (x)⋅ x x=0 = 0∫16 一块极化介质的极化矢量为 Pr(xr ') 根据偶极子静电势的公式 极化介质所产生的静电势为Pr(xr ')⋅rrdV '4πε r 3 0ϕ = ∫V另外 根据极化电荷公式 ρ = −∇' ⋅ Pr(xr ')及σ = nr ⋅ Pr,极化介质所产生的电势又可表为r r P P ∇' ⋅ Pr(xr ') dV' +∫S ∫VPr(xr ')⋅dS r '4πε0rP ϕ = −4πε0rr试证明以上两表达式是等同的X ’O证明Pr(xr ')⋅∇'1r dV ' 1 4πε0 Pr(xr ')⋅rr r 3 1 dV ' = 4πε 0 ϕ = ∫ V ∫ V又有 ∇'p (P ) = ∇' ⋅ P + Pr ⋅∇ r r 1 r 1 r ' 1 r∇' ⋅ Pr P ∇' ⋅( ) r r 1 ∇' ⋅ Pr r P rdV '] = 4πε 0 [−∫ ∫ V 则 ϕ = 4πε 0 [−∫VdV ' + dV ' +∫S r ⋅dSr] 1 ' r ' V ' ∇' ⋅ Pr dV ' +∫S [ 1 Pr ⋅nr dS] = 1 4πε 0 ρ s σ r 4πε 0 [− ∫ V ' ∫ VP dV ' +∫S dS] P = r r r r 刚好是极化体电荷的总电势和极化面电荷产生的总电势之和17 证明下述结果 并熟悉面电荷和面偶极层两侧电势和电场的变化1 在面电荷两侧 电势法向微商有跃变 而电势是连续的2 在面偶极层两侧 电势有跃变ϕ 2 −ϕ 1 = ε10 nr ⋅ Pr而电势的法向微商是连续的 各带等量正负面电荷密度±σ 而靠的很近的两个面 形成面 偶极层 而偶极矩密度 Pr = limσlr.)σ →∞ l →0z2E ⋅∆s = σ ⋅∆s , E证明 1 如图可得ε1+xσ σ z − σ z =0 ∴E = 2ε ,φ1 −φ2 =S22ε 0 2ε 00 E= Er 1 = σer z 02 = ∂n 2E r 2 = 2ε 0∂φ1 ∂n 1 ∂φ σ(−er z ) 面2ε∴ ∂φ − ∂φ = σε 0 1 ∂n 12 2∂n 2)可得 Er =σ re +r z nrr1 ε 0nr ⋅ Prε 0∴φ2 −φ1 = limEr ⋅lr = limσ nr ⋅lr = 2-ε l →0 l →0 0r = Er ∂φ1 ∂n ∂φ2∂n又= E , z∴ ∂φ ∂n − ∂φ ∂n2 1= 0.18.一个半径为 R 0 的球面 在球坐标 0 <θ < π 的半球面上电势为ϕ0 在 <θ < π 的半π 22球面上电势为−ϕ0 求空间各点电势P (x) − P (x)1 , 01P (x)dx =n 1 + n −1 2n +1 ∫ 0n 提示 P n (1) = 1 0,(n =奇数)P n (0) = n1⋅3⋅5⋅⋅⋅(n − 1) 2⋅4⋅ 6(−1) 2,(n =偶数) 解∇2φ内 0 ∇2φ外 = 0 φ 内 r →0 < ∞ φ外 r →∞ = 0 φ0,0 ≤θ < π 2φ r=R = f (θ) =0 π −φ0, <θ ≤ π2 ∑ A l r l P l (cos θ) 这是φ内按球函数展开的广义傅立叶级数 A l r l 是展开系数 φ内 = 12l +1[ φ内 R P l (cos θ)d cos θ] = 2l +1[− π A l R 0l = f l = φ内 R P l (cos θ)⋅sin θd θ ]∫ −1 ∫ 2 2 0 0 0 π 2l +1[− φ0P l (cos θ)sin θd θ + π π = = ∫ ∫ 2 0 ∫ φ0P l (cos θ)sin θd θ ] 2 2 2l +1[φ0 0P l (x)dx −φ0 −1P l(x)dx]∫ 0 2 1 = 2l +1φ0[− 0 P l (x)dx + 1P l (x)dx ∫ ∫ 2−1 0 由 P l (−x) = (−1)lP l (x)2l +1φ ∫ 则 A l R 0l = 0[(−1) l+1∫1P(x)dx +1P(x)dx] 2。
电动力学课后习题解答(参考)
∂ ∂y
∂ ∂z
=
(
∂Az ∂y
−
∂Ay ∂z
)ex
+
(
∂Ax ∂z
−
∂Az ∂x
)ey
+
(
∂Ay ∂x
−
∂Ax ∂y
)ez
Ax(u) Ay(u) Az(u)
=
(
∂Az du
∂u ∂y
−
∂Ay du
∂u ∂z
)ex
+
(
∂Ax du
∂u ∂z
−
∂Az du
∂ ∂
u x
)ey
+
(
∂Ay du
∂u ∂x
−
(dl2
·
dl1)
11、平行板电容器内有两层介质,它们的厚度分别为l1和l2,电容率为ε1和ε2,今在两板接上电 动势为E的的电池,求
(1)电容器两板上的自由电荷密度ωf (2)介质分界面上的自由电荷密度ωf 若介质是漏电的,电导率分别为σ1和σ2,当电流达到恒定时,上述问题的结果如何? 解:在相同介质中电场是均匀的,并且都有相同指向,
[∇
1 r
·
∇]m
=
−(m
·
∇)∇
1 r
∴ ∇ × A = −∇ϕ
7、有一个内外半径分别为r1和r2的空心介质球,介质的电容率为ε,使介质内均匀带静止自由 电荷ρf ,求 (1)空间各点的电场 (2)极化体电荷和极化面电荷分布 解:1) S D · dS = ρf dV ,(r2 > r > r1)
R
)
=
(∇
·
m)∇
1 r
+(m源自·m)∇1 r
电动力学答案chapter2
-5-
电动力学习题解答参考
第二章 静电场
4
均匀介质球 容率为 ε 2
电容率为 ε 1
的中心置一自由电偶极子 Pf
r
球外充满了另一种介质
电
求空间各点的电势和极化电荷分布
提示
同上题
φ=
r r Pf ⋅ R 4πε 1 R 3
+ φ ' ,而 φ ' 满足拉普拉斯方程
解
ε1
∂φ内 ∂R
= ε2
∂φ 外 ∂R 2 Pf cosθ l 1 + ∑ lAl R0 Pl 3 4πε 1 R0 2 Pf cosθ B − ∑ (l 1 l l 2 Pl 3 4πε 1 R0 R0
Qf
4πεR
与球面上的极化电荷所产生的电势的
叠加 后者满足拉普拉斯方程 解 一. 高斯法 在球外 而言
R > R0 ,由高斯定理有
r r ε 0 ∫ E ⋅ ds = Q总 Q f + Q P = Q f
对于整个导体球
束缚电荷 Q P = 0)
r ∴E =
Qf 4πε 0R 2 Qf 4πε 0 R + C.(C是积分常数
导体球是静电平衡
是一个常数
ϕ外
R = R0
= ϕ 0 − E 0 R0 cosθ
b 0 b1 + cosθ = C R0 R02
∴ − E 0 R0 cosθ +
b1 3 cosθ = 0即 b1 = E 0 R0 2 R0
-3-
电动力学习题解答参考
第二章 静电场
ϕ外 ϕ0
又由边界条件 −
3 b0 E 0 R0 E 0 Rcosθ + + cosθ R R2
郭硕鸿《电动力学》习题解答完全版(1-6章)
r
r r
r
r
∫ f ⋅ dl = ∫ ( f
l l
r
x
dl x + f y dl y + f z dl z )
r r ∂ ∂ ∂ ∂ ∂ ∂ f f y )dS x + ( f x − f z )dS y + ( f y − f x )dS z ∇ × ⋅ dS = ∫ ( f z − ∫S S ∂y ∂z ∂z ∂x ∂x ∂y
节) 2 求
r r r r r r r r r r r r r r r ∇ ⋅ r , ∇ × r , (a ⋅ ∇)r , ∇(a ⋅ r ), ∇ ⋅ [ E 0 sin(k ⋅ r )]及∇ × [ E 0 sin(k ⋅ r )], 其中a , k 及E 0 均为常矢量
r (r 3 − r13 ) ρ f r ∴E = r , (r2 > r > r1 ) 3εr 3
7 有一内外半径分别为 r1 和 r2 的空心介质球 求 介质的电容率为 ε 使介质内均匀带静止自
由电荷 ρ f 1 2 解 1
空间各点的电场 极化体电荷和极化面电荷分布
r r D ∫ ⋅ dS = ∫ ρ f dV ,
S
(r2>r>r1)
即
D ⋅ 4πr 2 =
4π 3 (r − r13 ) ρ f 3
3
r ex r ∂ ∇ × A(u ) = r∂x Ax (u )
r ey ∂ r ∂y Ay (u )
r ez r r r r r r ∂ ∂ A A ∂ ∂Ax r A ∂ A ∂ A r r ∂ y y x z z =( − )e x + ( − )e y + ( − )e z = ∂ ∂ ∂ ∂ ∂ ∂ ∂ z y z z x x y r Az (u )
电动力学第二章答案
1. 一个半径为R 的电介质球,极化强度为2/r K r P =,电容率为ε。
(1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球内的电势;(4)求该带电介质球产生的静电场总能量。
解:(1)P ⋅-∇=p ρ2222/)]/1()/1[()/(r K r r K r K -=∇⋅+⋅∇-=⋅∇-=r r r)(12P P n -⋅-=p σR K R r r /=⋅==P e (2))/(00εεεε-=+=P P E D 内200)/()/(r K f εεεεεερ-=-⋅∇=⋅∇=P D 内(3))/(/0εεε-==P D E 内内rr frKRr Ve e D E 200200)(4d εεεεπερε-===⎰外外 rKRr)(d 00εεεεϕ-=⋅=⎰∞r E 外外)(ln d d 00εεεεϕ+-=⋅+⋅=⎰⎰∞r R K RR rr E r E 外内内(4)⎰⎰⎰∞-+-=⋅=R R rrr R K r r r K V W 42200222022202d 4)(21d 4)(21d 21πεεεεπεεεE D 20))(1(2εεεεπε-+=K R2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。
当0R R >时,电势ϕ满足拉普拉斯方程,通解为∑++=nn n nn n P R b R a )(cos )(1θϕ 因为无穷远处 0E E →,)(cos cos 10000θϕθϕϕRP E R E -=-→ 所以 00ϕ=a ,01E a -=,)2(,0≥=n a n当 0R R →时,0Φ→ϕ所以 0101000)(cos )(cos Φ=+-∑+n nn nP R b P R E θθϕ 即: 002010000/,/R E R b R b =Φ=+ϕ所以 )2(,0,),(3010000≥==-Φ=n b R E b R b n ϕ⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ(2)设球体待定电势为0Φ,同理可得⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ当 0R R →时,由题意,金属球带电量Qφθθθϕθεϕεd d sin )cos 2cos (d 200000000R E R E S nQ R R ⎰⎰+-Φ+=∂∂-== )(40000ϕπε-Φ=R所以 00004/)(R Q πεϕ=-Φ⎩⎨⎧≤+>++-=)(4/)(cos )/(4/cos 00002300000R R RQ R R R R E R Q R E πεϕθπεθϕϕ 3. 均匀介质球的中心置一点电荷f Q ,球的电容率为ε,球外为真空,试用分离变量法求空间电势,把结果与使用高斯定理所得结果比较。
《电动力学第三版郭硕鸿》第1-5章练习题答案
10. 变化磁场激发电场
11. 电场强度随时间的变化率
∇
×
G E
=
−
G ∂B
12.
∂t
G ∇×H
=
G J+
G ∂D
13.
∂t
G 14. ∇ ⋅ D = ρ
G
15. ∇ ⋅ B = 0 16. 稳恒电流
G
G GG
17. f = ρ E + J × B (适用于电荷分布情况)
G
GG
18. e E + e v × B
0
Pn (cos
θ
)]
=
Q
⇒
b0
=
Q 4πε 0
, b1
=
−
E 0 R03 2
,bn
=
0(n
≠
0 ,1)
⇒
ϕ
=
− E 0 R cos θ
+
Q 4πε 0 R
−
E 0 R03 2R 3
cos
θ
-8-
《电动力学》各章练习题参考答案(2014) __________________________________________________________________________________
(三)证明题: 1. 书上内容P112-113。 2.书上内容P115。 3. 书上内容P115。 4. 书上内容P122。 5. 书上内容P126。
(四)计算、推导题:
1.解: G
GGG
(1)k G ek =
= G k
k
−3ex
+ G
ey
+ G
ez
郭硕鸿 电动力学 第五版 -第1-4章答案
)
3.4 题为作业题,略。 5. 与书上内容P25 同。 6. 书上习题2 P34,略。 (四)计算题 1.
2. 略。
第二章习题答案
镜像法
2. 书上例题。 P54 例二
3. 书上习题11
4.书上习题12
5.书上习题9
分离变量法
6.第一小题是书上例题,P48 例1,略。 第二小题做法类似, 唯一不同的地方是内导体球没有接地, 电势不为 零,但可以利用带电量Q来求解。 7.书上例题,P49 例2,略。 8.
② 14. ④ 15. ② 16. ②
(二)填空题 1 . 时 谐 2 .
G G − iωt E ( x )e
3.
G G − iωt B ( x )e
4.
G G i ( kG• x G E0 ( x )e −ωt )
5.
G G i ( kG• x G B0 ( x )e −ωt )
6.
1 G G G G ( E • D + H • B) 2
∫
G J ( x' ) dV ' r
5.
1 G G A • J dV 2 ∫V
6.
1 G G B • H dV ∫ ∞ 2
7. 铁磁体
(三)证明题 书上例题,P83例1
(四) 计算题
1. 0 (此题删去) 2. 书上例题P83例二 3. 书上习题P108 第9题
第四章习题答案
(一)单选题 1.① 2. ③ 3. ③ 4. ④ 5. ④ 6. ① 7. ② 12. ① 13.
第三章习题答案
(一) 单选题 1.④ 10. ④ (二)填空题 2. ③ 3. ③ 4. ③ 5. ④ 6. ① 7. ③ 8. ② 9. ①
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 一个半径为R 的电介质球,极化强度为2/r K r P =,电容率为ε。
(1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球内的电势;(4)求该带电介质球产生的静电场总能量。
解:(1)P ⋅-∇=p ρ2222/)]/1()/1[()/(r K r r K r K -=∇⋅+⋅∇-=⋅∇-=r r r)(12P P n -⋅-=p σR K R r r /=⋅==P e (2))/(00εεεε-=+=P P E D 内200)/()/(r K f εεεεεερ-=-⋅∇=⋅∇=P D 内(3))/(/0εεε-==P D E 内内rr frKRr Ve e D E 200200)(4d εεεεπερε-===⎰外外 rKRr)(d 00εεεεϕ-=⋅=⎰∞r E 外外)(ln d d 00εεεεϕ+-=⋅+⋅=⎰⎰∞r R K RR rr E r E 外内内(4)⎰⎰⎰∞-+-=⋅=R R rrr R K r r r K V W 42200222022202d 4)(21d 4)(21d 21πεεεεπεεεE D 20))(1(2εεεεπε-+=K R2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。
当0R R >时,电势ϕ满足拉普拉斯方程,通解为∑++=nn n nn n P R b R a )(cos )(1θϕ 因为无穷远处 0E E →,)(cos cos 10000θϕθϕϕRP E R E -=-→ 所以 00ϕ=a ,01E a -=,)2(,0≥=n a n当 0R R →时,0Φ→ϕ所以 0101000)(cos )(cos Φ=+-∑+n nn nP R b P R E θθϕ 即: 002010000/,/R E R b R b =Φ=+ϕ所以 )2(,0,),(3010000≥==-Φ=n b R E b R b n ϕ⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ(2)设球体待定电势为0Φ,同理可得⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ当 0R R →时,由题意,金属球带电量Qφθθθϕθεϕεd d sin )cos 2cos (d 200000000R E R E S nQ R R ⎰⎰+-Φ+=∂∂-== )(40000ϕπε-Φ=R所以 00004/)(R Q πεϕ=-Φ⎩⎨⎧≤+>++-=)(4/)(cos )/(4/cos 00002300000R R RQ R R R R E R Q R E πεϕθπεθϕϕ 3. 均匀介质球的中心置一点电荷f Q ,球的电容率为ε,球外为真空,试用分离变量法求空间电势,把结果与使用高斯定理所得结果比较。
提示:空间各点的电势是点电荷f Q 的电势R Q f πε4/与球面上的极化电荷所产生的电势的迭加,后者满足拉普拉斯方程。
解:(一)分离变量法空间各点的电势是点电荷f Q 的电势R Q f πε4/与球面上的极化电荷所产生的电势的迭加。
设极化电荷产生的电势为ϕ',它满足拉普拉斯方程。
在球坐标系中解的形式为:)()(内θϕcos 1n nn nn n P R b R a ∑++=' )()(外θϕcos 1n nn n n n P R dR c ∑++=' 当∞→R 时,0→'外ϕ,0=∴n c 。
当0→R 时,内ϕ'为有限,0=∴n b 。
所以 )(内θϕcos n nn n P R a ∑=' , )(外θϕcos 1n nn nP R d ∑+=' 由于球对称性,电势只与R 有关,所以)1(,0≥=n a n )1(,0≥=n d n0a ='内ϕ, R d /0='外ϕ 所以空间各点电势可写成R Q a f πεϕ40+=内R Q R d f πεϕ40+=外当0R R →时,由 外内ϕϕ= 得: 000/R d a = 由 nn∂∂=∂∂外内ϕεϕε得:200200244R d R Q R Q f fεπεεπ+=,)11(400εεπ-=f Q d 则 )11(4000εεπ-=R Q a f所以 )(内εεππεϕ114400-+=R Q R Q f f )(外εεππεϕ11440-+=R Q R Q f f RQ f 04πε=(二)应用高斯定理在球外,R>R 0 ,由高斯定理得:f p f Q Q Q Q d =+==⋅⎰总外s E 0ε,(整个导体球的束缚电荷0=p Q ),所以 r f R Q e E 204πε=外 ,积分后得: RQ dR RQ d fRRf 02044πεπεϕ⎰⎰∞∞==⋅=R E 外外在球内,R<R 0 ,由介质中的高斯定理得:f Q d =⋅⎰s E 内ε,所以r f RQ e E 24πε=内 ,积分后得:RQ R Q RQ d d f f f R R R0044400πεπεπεϕ+-=⋅+⋅=⎰⎰∞R E R E 外内内 结果相同。
8. 半径为0R 的导体球外充满均匀绝缘介质ε,导体球接地,离球心为a 处(a >0R )置一点电荷f Q ,试用分离变量法求空间各点电势,证明所得结果与电象法结果相同。
解:以球心为原点,以球心到点电荷的连线为极轴建立球坐标系。
将空间各点电势看作由两部分迭加而成。
一是介质中点电荷产生的电势θπεϕcos 24/221Ra a R Q f -+=,二是球面上的感应电荷及极化面电荷产生的2ϕ。
后者在球内和球外分别满足拉普拉斯方程。
考虑到对称性,2ϕ与φ无关。
由于0→R 时,2ϕ为有限值,所以球内的2ϕ解的形式可以写成∑=nn n n i P R a )(cos 2θϕ (1)由于∞→R 时,2ϕ应趋于零,所以球外的2ϕ解的形式可以写成∑+=nn n nP R b )(cos 12o θϕ (2) 由于∑=-+nn n P a R a Ra a R (cos))/()/1(cos 222θ∑=nn n f P a R a Q (cos))/()4/(1πεϕ (3)当0R R ≤时,21i ϕϕϕ+=内∑∑+=nn n n nn n f P R a P a R a Q )(cos (cos))/()4/(θπε (4)当0R R >时,21o ϕϕϕ+=外∑∑++=nnn nnn n f P Rb P a R a Q )(cos (cos))/()4/(1θπε (5) 因为导体球接地,所以 0=内ϕ (6)00==R R 内外ϕϕ (7)将(6)代入(4)得: 14/+-=n f n a Q a πε (8)将(7)代入(5)并利用(8)式得: 11204/++-=n n f n a R Q b πε (9)将(8)(9)分别代入(4)(5)得:)(00R R ≤=内ϕ (10)]/cos 2)/(cos 2[41202202022aRR a R R a Q R Ra a R Q ffθθπεϕ++--+=外,)(0R R ≥ (11)用镜像法求解:设在球内r 0处的像电荷为Q’。
由对称性,Q’在球心与Q f 的连线上,根据边界条件:球面上电势为0,可得:(解略)a R r /200=, a Q R Q f /'0-=所以空间的电势为]/cos 2)/(cos 2[41)'(4120220202221aRR a R R a Q R Ra a R Q r Q r Q f f f θθπεπεϕ++--+=+=外 )(0R R ≥11. 在接地的导体平面上有一半径为a 的半球凸部(如图),半球的球心在导体平面上,点电荷Q 位于系统的对称轴上,并与平面相距为b (b >a ),试用电象法求空间电势。
解:如图,根据一点电荷附近置一无限大接地导体平板和一点电荷附近置一接地导体球两个模型,可确定三个镜像电荷的电量和位置。
Q b aQ -=1,z b a e r 21=;Q ba Q =2,zb a e r 22-=; Q Q -=3,z b e r -=3,所以),20(,]cos 2cos 2cos 21cos 21[42242224222220a R R b ab a R b aR b a ba Rb aRb b R Rb b R Q ><≤-+++++++--+=πθθθθθπεϕ12. 有一点电荷Q 位于两个互相垂直的接地导体平面所 围成的直角空间内,它到两个平面的距离为a 和b , 求空间电势。
解:用电像法,可以构造如图所示的三个象电荷来代替两导体板的作用。
--+-+-=22200)()()(1[4b z a y x x Q πεϕ2220)()()(1b z a y x x ++-+--)0,(,])()()(1)()()(122202220>++++-+-+++--z y b z a y x x b z a y x x(0(。