有理数单元易错题讲练
第1章有理数(易错必刷30题11种题型专项训练)(原卷版)
第1章有理数(易错必刷30题11种题型专项训练)一.正数和负数(共5小题)1.(2022秋•定远县校级月考)某品牌大米包装袋上印有【(9±0.10)(kg)】字样.即标准重量为9kg,上下偏差不超过0.1kg就符合标准.则下列不符合标准的是()A.9.15kg B.8.95kg C.9.05kg D.8.90kg2.(2022秋•怀远县校级月考)在﹣3.5,﹣2.1,0,﹣1,﹣4,5这6个数中,负数有几个()A.1B.2C.3D.43.(2022秋•南陵县期中)若a是有理数,则下列叙述正确的是()A.|a|一定是正数B.﹣a一定是负数C.﹣|a|可能是0D.﹣|a|一定是负数4.(2022秋•怀远县校级月考)若规定向东为正,则向东走100m记作m,向西走200m记作m.5.(2022秋•颍州区校级期末)2020年国庆节放假八天,高速公路免费通行,各地风景区游人如织其中,其中闻名于世的北京故宫,在10月1日的游客人数就已经达到了5万人,接下来的七天中,每天的游客人数变化(单位:万人)如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期10月2日10月3日10月4日10月5日10月6日10月7日10月8日人数变化+0.6+0.2+0.1﹣0.2﹣0.8﹣1.6﹣0.1(1)10月3日的人数为万人;(2)这八天,游客人数最多的是10月日,达到万人;游客人数最少的是10月日,为万人;(3)这8天参观故宫的总人数为万人;(4)如果你们一家人打算在下一个国庆节参观故宫,请你对你们的出行日期提一个建议.二.有理数(共2小题)6.(2022秋•蚌山区校级月考)下列叙述正确的是()A.不是正数的数一定是负数B.正有理数包括整数和分数C.整数不是正整数就是负整数D.有理数绝对值越大,离原点越远7.(2022秋•霍邱县校级月考)在﹣,,﹣π,﹣4中,属于负整数的是()A.﹣B.C.﹣πD.﹣4三.数轴(共4小题)8.(2021秋•蚌埠期末)如图,在数轴上有A、B两个动点,O为坐标原点.点A、B从图中所示位置同时向数轴的负方向运动,A点运动速度为每秒2个单位长度,B点运动速度为每秒3个单位长度,当运动秒时,点O恰好为线段AB的中点.9.(2021秋•定远县校级期末)已知a,b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果是.10.(2021秋•庐阳区期末)如图,点A在数轴上表示的数是﹣9,点D在数轴上表示的数是12,AB=4(单位长度),CD=2(单位长度).(1)则点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC的长=(单位长度);(2)若点P是线段BC的中点,则P点在数轴上表示的数是:;(3)若点Q是坐标轴上的点,且QC=2QB,则Q点在数轴上表示的数是.11.(2022秋•蜀山区校级月考)我们知道,若有理数x1,x2表示在数轴上得到点A1,A2,且x1<x2,则点A1与点A2之间的距离为|x2﹣x1|=x2﹣x1,现已知数轴上三点A、B、C,其中A表示的数为﹣3,B表示的数为3,C与A的距离等于m,C与B的距离等于n.请解答下列问题:(1)若点C在数轴上表示的数为﹣5,求m+n的值;(2)若m+n=7,请你直接写出点C表示的数为;(3)若C在点A、B之间(不与点A、B重合),且m=n,求点C表示的数.四.相反数(共1小题)12.(2022秋•鸠江区校级月考)下列各组数中,互为相反数的是()A.﹣2022与+(﹣2022)B.﹣(﹣2022)与2022C.﹣(+2022)与+(﹣2022)D.﹣2022 与﹣(﹣2022)五.倒数(共1小题)13.(2022秋•定远县校级月考)﹣2.5的倒数是()A.﹣2.5B.2.5C.D.﹣六.有理数大小比较(共5小题)14.(2022秋•蒙城县期中)用“>”或“<”填空:﹣.15.(2022秋•霍邱县期中)比较两数大小:﹣﹣(用“<”或“=”或“>”填空).16.(2022秋•亳州期末)在﹣1,1.2,﹣2,0四个数中,最小的数是()A.﹣1B.1.2C.﹣2D.017.(2022秋•淮北月考)在下列四个数中,比﹣2023小的数是()A.﹣2024B.﹣2022C.﹣2022.5D.018.(2022秋•无为市月考)有理数a、b在数轴上的对应点的位置如图所示.(1)比大小:|c||b|,﹣a b;(填“>”,“=”或“<”)(2)化简:|2b|+|b﹣c|﹣|c﹣a|.七.有理数的减法(共2小题)19.(2021秋•长丰县期末)已知|a|=5,b=3,且a+b<0,则a﹣b的值为()A.﹣8B.﹣2C.2或﹣8D.220.(2022秋•淮北月考)阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如图,线段AB=1=0﹣(﹣1);线段BC=2=2﹣0;线段AC=3=2﹣(﹣1)问题(1)数轴上点M、N代表的数分别为﹣9和1,则线段MN=;(2)数轴上点E、F代表的数分别为﹣6和﹣3,则线段EF=;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为2,则另一个点表示的数为m,求m.八.非负数的性质:偶次方(共1小题)21.(2021秋•霍邱县期中)如果|a+2|+(b﹣1)2=0,那么代数式(a+b)2021的值是()A.1B.﹣1C.±1D.2021九.有理数的混合运算(共7小题)22.(2022秋•南陵县期中)在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0.乙:24﹣(4×32)=24﹣4×6=0.丙:(36﹣12)÷=36×﹣12×=16.丁:(﹣3)2÷×3=9÷1=9.A.甲B.乙C.丙D.丁23.(2022秋•芜湖期中)a,b互为相反数,且都不为0,c,d互为倒数,|m﹣1|=2,则的值为.24.(2022秋•安徽期末)计算:5÷[(﹣1)3﹣4]﹣|﹣1|.25.(2022秋•蚌山区月考)计算:.26.(2022秋•颍州区校级期末)(1)计算:()×30;(2)计算:(﹣1)4×|﹣8|+(﹣2)3×()2.27.(2022秋•龙子湖区校级月考)已知a、b为有理数,下列说法:①若a、b互为相反数,则=﹣1;②若|a﹣b|+a﹣b=0,则b>a;③若a+b<0,ab>0,则|3a+4b|=﹣3a﹣4b;④若|a|>|b|,则(a+b)•(a﹣b)是正数,其中正确的序号是.28.(2022秋•庐江县期中)小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时,;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,.(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0];(3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.一十.科学记数法—表示较大的数(共1小题)29.(2022秋•定远县校级月考)北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为()A.0.12×105B.1.2×105C.1.2×104D.12×103一十一.科学记数法与有效数字(共1小题)30.(2021秋•安庆期末)下列关于近似数的说法中正确的是()A.近似数2020精确到百位B.近似数5.78万精确到百分位C.近似数3.51×105精确到千位D.近似数5.1890精确到千分位。
(易错题精选)初中数学有理数单元汇编含答案解析
(易错题精选)初中数学有理数单元汇编含答案解析一、选择题1.若a 与b 互为相反数,则下列式子不一定正确的是( )A .0a b +=B .=-a bC .a b =D .a b = 【答案】C 【解析】【分析】依据相反数的概念及性质可确定正确的式子,再通过举反例可证得不一定正确的式子.【详解】解:∵a 与b 互为相反数,∴0a b +=,∴=-a b ,∴a b =,故A 、B 、D 正确, 当1a =时,1b =-,则1=b ,∴a b =;当1a =-时,1b =,则1=b ,∴a b ≠,故C 不一定正确,故选:C .【点睛】本题考查了相反数的定义.解此题的关键是灵活运用相反数的定义判定式子是否正确.2.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=,则23a +=,解得:1a =,Q 3tan 603︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.3.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.4.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.5.下列等式一定成立的是( )A =B .11=C 3=±D .6=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】321-=,故错误;B. 11=,故正确;3=, 故错误;D. ()66=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.6.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.7.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .8.如果x 取任意实数,那么以下式子中一定表示正实数的是( )A .xB .C .D .|3x +2| 【答案】C【解析】【分析】利用平方根有意义的条件以及绝对值有意义的条件进而分析求出即可.【详解】A.x 可以取全体实数,不符合题意;B.≥0, 不符合题意; C.>0, 符合题意; D. |3x +2|≥0, 不符合题意.故选C.【点睛】本题考查了平方根和绝对值有意义的条件,正确把握平方根和绝对值有意义的条件是解题关键.9.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【答案】C【解析】【分析】利用绝对值的代数意义求出a 的值即可.【详解】若a 为有理数,且|a|=2,那么a 是2或﹣2,故选C .【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.10.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a>C.ad bc>D.a d>【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a<b<0<c<d,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a<b<0<c<d,A、b+d=0,∴b+c<0,故A不符合题意;B、ca<0,故B不符合题意;C、ad<bc<0,故C不符合题意;D、|a|>|b|=|d|,故D正确;故选D.【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a<b<0<c<d是解题关键,又利用了有理数的运算.11.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q【答案】C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.12.在–2,+3.5,0,23-,–0.7,11中.负分数有( )A.l个B.2个C.3个D.4个【答案】B【解析】根据负数的定义先选出负数,再选出分数即可.解:负分数是﹣23,﹣0.7,共2个. 故选B .13.下列各组数中,互为相反数的组是( )A .2-B .2-C .12-与2D . 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2=2,符合相反数的定义,故选项正确;B 、-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.14.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n ﹣2)2互为相反数,∴|m+3|+(n ﹣2)2=0,∴m+3=0,n ﹣2=0,解得m=﹣3,n=2,所以,m n =(﹣3)2=9.故选C .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.16.67-的绝对值是()A.67B.76-C.67-D.76【答案】A【解析】【分析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A.【点睛】本题考查了绝对值的定义.17.在﹣6,0,﹣1,4这四个数中,最大的数是()A.4 B.﹣6 C.0 D.﹣1【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A.【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.18.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.19.小麦做这样一道题“计算()3-+W”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A.5 B.-5 C.11 D.-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D.【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.20.如图所示,数轴上点P所表示的数可能是()A30B15C10D8【答案】B【解析】【分析】点P在3与4之间,满足条件的为B、C两项,点P与4比较靠近,进而选出正确答案.【详解】∵点P在3与4之间,∴3<P<49P16∴满足条件的为B、C图中,点P比较靠近4,∴P应选B、C中较大的一个故选:B.【点睛】本题考查对数轴的理解,数轴上的点,从左到右依次增大,解题过程中需紧把握这点.。
(完整版)有理数易错题汇总答案
有理数·易错题练习一.多种情况的问题(考虑问题要全面)(1)已知一个数的绝对值是3,这个数为_______;3±此题用符号表示:已知,3=x 则x=_______;3±,5=-x 则x=_______;5± (2)绝对值不大于4的负整数是________;-1,-2,-3 (3)绝对值小于4.5而大于3的整数是________.4±(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;5±(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________; 4,-2(6) 平方得412的数是____;23±此题用符号表示:已知,4122=x 则x=_______;23± (7)若|a|=|b|,则a,b 的关系是________;a=b,或a=-b (8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值. a=4,b=-2时a-b=6,a=4,b=2时为2二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择(1)若a 是负数,则a_____<___-a ;a --是一个____负____数;(2)已知,x x -=则x 满足__0≤x ______;若,x x =则x 满足___0≥x _____;若x=-x, x 满足______x=0__;若=-<2,2a a 化简____ ;2-a正数0 负数(3)有理数a 、b 在数轴上的对应的位置如图所示: 则( A )-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0(4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。
语法知识—有理数的易错题汇编含答案解析
一、填空题1.如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是_________.2.|x |<3,且x 为整数,则x 的最小值是_____3.若2(2)30x y -+-=,则代数式xy 的值是 ________.4.若2260x y -++=,则101()x y +的值是_________.二、解答题5.点A ,O ,B 是数轴上从左至右的三个点,其中O 与原点重合,点A 表示的数为﹣4,且AO +AB =11.(1)求出点B 所表示的数,并在数轴上把点B 表示出来.(2)点C 是数轴上的一个点,且CA :CB =1:2,求点C 表示的数.6.在学习绝对值后,我们知道,表示a 在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点与原点的距离.|5﹣3|表示5、3在数轴上对应两点之间的距离,而|x +1|=|x ﹣(﹣1)|表示x ,﹣1在数轴上对应两点之间的距离;一般的,点A 、B 之间的距离可表示为|a ﹣b |.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;若数轴上表示x 、1的距离为4,即|x ﹣1|=4,则x 的值为 .(2)点A 、B 、C 在数轴上分别表示有理数x 、﹣3、1,那么,点A 到点B 的距离与点A 到点C 的距离之和可表示为 (用含绝对值的式子表示),满足|x ﹣4|+|x +1|=7的x 的值 ;(3)由以上探索猜想,对于任何有理数x ,|x ﹣4|+|x +5|是否有最小值?如果有,写出最小值,并写出此时x 的取值范围;如果没有,说明理由.7.对于有理数a ,b ,定义一种新运算“⊙”,规定a ⊙b =|a +b |+|a ﹣b |.(1)计算2⊙(﹣3)的值;(2)当a ,b 在数轴上的位置如图所示时,化简a ⊙b ; (3)已知(a ⊙a )⊙a =8+a ,求a 的值.8.在活动课上,有6名学生用橡皮泥做了6个乒乓球,若直径与规定直径不超过0.02毫米的误差视为符合要求,现超过规定直径的毫米数记作正数,不足的记为负数,检查结果如下表:做乒乓球的同学 李明 张兵王芳余佳 赵平 蔡伟 检测结果+0.031﹣0.017 +0.023﹣0.021+0.022﹣0.011(1)请你指出哪些同学做的乒乓球是符合要求的?(2)指出这6个乒乓球中,哪个同学做的质量最好?哪个同学做的质量最差; (3)请你对6名同学做的乒乓球质量按照最好到最差排名.9.点P ,Q 在数轴上分别表示的数分别为p ,q ,我们把p ,q 之差的绝对值叫做点P ,Q 之间的距离,即PQ p q =-.如图,在数轴上,点A ,B ,O ,C ,D 的位置如图所示,则312DC =-=;101CO =-=;(4)(2)22AB =---=-=.请探索下列问题:(1)计算1(4)--=____________,它表示哪两个点之间的距离?________________________.(2)点M 为数轴上一点,它所表示的数为x ,用含x 的式子表示PB =____________;当PB =2时,x =____________;当x =____________时,|x +4|+|x-1|+|x-3|的值最小. (3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值为________________________. 10.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b -c 0,a +b 0,c -a 0. (2)化简:| b -c|+|a +b|-|c -a|11.已知:在纸面上有一数轴,如图所示,点O 为原点,点A 1、A 2、A 3、…分别表示有理数1、2、3、…,点B 1、B 2、B 3、…分别表示有理数﹣1、﹣2、﹣3、….(1)折叠纸面:①若点A 1与点B 1重合,则点B 2与点 重合;②若点B 1与点A 2重合,则点A 5与有理数 对应的点重合;③若点B 1与A 3重合,当数轴上的M 、N (M 在N 的左侧)两点之间的距离为9,且M 、N 两点经折叠后重合时,则M 、N 两点表示的有理数分别是 , ; (2)拓展思考:点A 在数轴上表示的有理数为a ,用|a |表示点A 到原点O 的距离. ①|a ﹣1|是表示点A 到点 的距离; ②若|a ﹣1|=3,则有理数a = ; ③若|a ﹣1|+|a +2|=5,则有理数a = .12.旭东中学附近某水果超市最近新进了一批百香果,每斤8元,为了合理定价,在第一周试行机动价格,卖出时每斤以10元为标准,超出10元的部分记为正,不足10元的部分记为负,超市记录第一周百香果的售价情况和售出情况:星期一 二 三 四 五 六 日 每斤价格相对于标准价格(元) +1 ﹣2 +3 ﹣1 +2 +5 ﹣4 售出斤数2035103015550(1)这一周超市售出的百香果单价最高的是星期 ,最高单价是 元. (2)这一周超市出售此种百香果的收益如何?(盈利或亏损的钱数) (3)超市为了促销这种百香果,决定从下周一起推出两种促销方式: 方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折; 方式二:每斤售价10元.于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.13.已知a ,b 互为相反数,c 与d 互为倒数,m 的绝对值是最小的正整数.求:2019a b+﹣cd+m 的值.三、1314.一个数的相反数与该数的倒数的和等于0,则这个数的绝对值等于( ) A .2 B .-2 C .1 D .-1 15.如果|a+2|+(b-1)2=0.那么代数式(a+b )2019的值为( ) A .3 B .-3 C .1 D .-1 16.若|x ﹣3|=|x |+3,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <017.在23| 3.5|3,05⎛⎫---- ⎪⎝⎭、、中,最小的数是( ) A .3B .﹣|﹣3.5|C .235⎛⎫-- ⎪⎝⎭D .018.下列代数式的值一定是正数的是( ) A .x +1B .x 2C .x 3D .|x |+219.如图,a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .a+b <0B .ab <0C .b ﹣a <0D .0ab≥ 20.已知3m +与2(2)n -互为相反数,则2m 等于( )A .6B .6-C .9D .9-21.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A -C 表示观测点A 相对观测点C 的高度),根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )米.A -C C -D E -D F -E G -FB -G 90米80米-60米50米-70米40米A .210B .170C .130D .5022.已知ab <0,则2a b -化简后为:( ) A .--a b B .a b - C .a b D .-a b 23.已知:(b +3)2+|a ﹣2|=0,则b a 的值为( )A .﹣9B .9C .﹣6D .624.如图所示,a 、b 、c 表示有理数,则a 、b 、c 的大小顺序是( )A .a b c <<B .a c b <<C .b a c <<D .c b a <<25.已知有理数a 、b 在数轴上的位置如图所示,则下列代数式的值最大的是( )A .a +bB .a ﹣bC .|a +b |D .|a ﹣b |【参考答案】***试卷处理标记,请不要删除一、填空题1.1【分析】首先确定原点位置可得B 点对应的数进而可得C 点对应的数【详解】解:∵点AB 对应的数互为相反数∴线段AB 的中点为数轴的原点∵AB=6∴B 点对应的数为3∵BC=2且C 点在B 点左侧∴点C 对应的数为 解析:1 【分析】首先确定原点位置,可得B 点对应的数,进而可得C 点对应的数. 【详解】解:∵点A 、B 对应的数互为相反数, ∴线段AB 的中点为数轴的原点, ∵AB=6,∴B 点对应的数为3, ∵BC=2,且C 点在B 点左侧, ∴点C 对应的数为1. 故答案为:1 【点睛】本题主要考查了数轴,正确确定原点位置是解答此题的关键.2.-2【分析】由题意|x|<3得﹣3<x <3再根据x 为整数和x 的最小值进行求解【详解】解:因为|x|<3所以﹣3<x <3因为x 为整数所以x 取值为﹣2﹣1012所以x 的最小值是﹣2故答案为:﹣2【点睛】 解析:-2 【分析】由题意|x |<3,得﹣3<x <3,再根据x 为整数和x 的最小值进行求解. 【详解】 解:因为|x |<3, 所以﹣3<x <3, 因为x 为整数,所以x 取值为﹣2,﹣1,0,1,2, 所以x 的最小值是﹣2, 故答案为:﹣2. 【点睛】本题主要考查绝对值的几何意义,解决本题的关键是要能够理解绝对值的几何意义.3.9【分析】要求的值必须先求出的值而通过已知条件可知则可求的值【详解】代入中得【点睛】本题主要考查平方数和绝对值的性质都是非负性两个非负数相加为零则这两个数都为零利用这点解题即可解析:9 【分析】要求xy 的值,必须先求出,x y 的值,而通过已知条件可知20,30x y ∴-=-=,则可求,x y 的值.【详解】2(2)30x y -+-=20,30x y ∴-=-= 2,3x y ∴==代入xy 中,得239= 【点睛】本题主要考查平方数和绝对值的性质都是非负性,两个非负数相加为零,则这两个数都为零,利用这点解题即可.4.-1【分析】根绝绝对值的值恒大于等于0即可求得xy 的值由此可得x+y 的值【详解】∵∴x-2=02y+6=0得x=2y=-3∴故答案为:-1【点睛】此题考查绝对值解题关键在于掌握绝对值的值恒大于等于0解析:-1 【分析】根绝绝对值的值恒大于等于0,即可求得x ,y 的值,由此可得x+y 的值. 【详解】∵2260x y -++= ∴x-2=0,2y+6=0,得x=2,y=-3 ∴()101101(=)1-1x y =-+故答案为:-1. 【点睛】此题考查绝对值,解题关键在于掌握绝对值的值恒大于等于0.二、解答题5.(1)点B 所表示的数是3;(2)点C 表示的数是﹣11或﹣53. 【分析】(1)先求出AB 的长度,再根据两点间的距离公式即可在数轴上把点B 表示出来. (2)分两种情况:①点C 在点A 的左边;②点C 在点A 和点B 的中间;进行讨论即可求解. 【详解】解:(1)∵O 与原点重合,点A 表示的数为﹣4, ∴AO =4, ∵AO +AB =11, ∴AB =7,∵点A ,O ,B 是数轴上从左至右的三个点, ∴点B 所表示的数是﹣4+7=3, 如图所示:(2)①点C 在点A 的左边, 7×12-1=7, 点C 表示的数是﹣4﹣7=﹣11; ②点C 在点A 和点B 的中间, 7×11+2=73, 点C 表示的数是﹣4+73=﹣53. 故点C 表示的数是﹣11或﹣53. 【点睛】本题考查了分类思想的应用以及数轴,熟练掌握两点间的距离公式是解题的关键.6.(1)3;5或﹣3;(2)|x+3|+|x﹣1|;2或5;(3)|x﹣4|+|x+5|的最小值是9.x的取值范围是﹣5≤x≤4.【分析】(1)根据两点间的距离公和绝对值的意义即可解答;(2)根据两点间的距离公式,即可解答.(3)x为有理数,所以要根据x-4与x+5的正负情况分类讨论,再去掉绝对值符号化简计算.【详解】(1)数轴上表示4和1的两点之间的距离是:|4﹣1|=3;∵|x﹣1|=4,∴x=5或﹣3;故答案为:3;5或﹣3.(2)∵A到B的距离为|x﹣(﹣3)|,与A到C的距离为|x﹣1|,∴A到B的距离与A到C的距离之和可表示为|x+3|+|x﹣1|,故答案为:|x+3|+|x﹣1|;根据绝对值的几何含义可得,|x﹣4|+|x+1|表示数轴上x与4的距离与x与﹣1的距离之和,若x<﹣1,则4﹣x+(﹣x﹣1)=7,即x=﹣2;若﹣1≤x≤4,则4﹣x+x+1=7,方程无解,舍去;若x>4,则x﹣4+x+1=7,即x=5,∴满足|x﹣3|+|x+1|=6的x的所有值是﹣2,5,故答案为:﹣2或5;(3)分情况讨论:当x<﹣5时,x+5<0,x﹣4<0,所以|x﹣4|+|x+5|=﹣(x﹣4)﹣(x+5)=﹣2x﹣1>9;当﹣5≤x<4时,x+5≥0,x﹣4<0,所以|x﹣4|+|x+5|=﹣(x﹣4)+x+5=9;当x≥4时,x+5>0,x﹣4≥0,所以|x﹣4|+|x+5|=(x﹣4)+(x+5)=2x+1≥9;综上所述,所以|x﹣4|+|x+5|的最小值是9.x的取值范围是:﹣5≤x≤4.【点睛】本题考查了数轴与绝对值的概念,读懂题目信息,理解绝对值的几何意义是解题的关键.解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值.7.(1)2⊙(﹣3)=6;(2)a⊙b=﹣2b;(3)当a≥0时, a=83;当a<0时, a=﹣85.【分析】(1)根据文中的新运算法则将2⊙(﹣3)转化为我们熟悉的计算方式进行计算即可;(2)根据文中的新运算法则将a⊙b转化为|a+b|+|a﹣b|,然后先判断出a+b与a﹣b的正负性,之后利用绝对值代数意义化简即可;(3)先根据文中的新运算法则将(a⊙a)⊙a转化为我们熟悉的计算方式,此时注意对a进行分a≥0、a<0两种情况讨论,然后得出新的方程求解即可.【详解】(1)由题意可得:2⊙(﹣3)=|2﹣3|+|2+3|=6;(2)由数轴可知,a+b<0,a﹣b>0,∴a⊙b=|a+b|+|a﹣b|=﹣a﹣b+a﹣b=﹣2b;(3)当a≥0时,(a⊙a)⊙a=2a⊙a=4a=8+a,∴a=83;当a<0时,(a⊙a)⊙a=(﹣2a)⊙a=﹣4a=8+a,∴a=85 -.综上所述,a的值为83或85-.【点睛】本题主要考查了绝对值的化简与定义新运算的综合运用,根据题意找出正确的新运算的法则是解题关键.8.(1)答案见解析;(2)答案见解析;(3)答案见解析.【分析】(1)绝对值>0.02的就都是不合格的,所以张兵、蔡伟合格;(2)绝对值越小质量越好,越大质量越差,所以蔡伟最好、李明最差;(3)按绝对值由大到小排即可.【详解】解:(1)∵直径与规定直径不超过0.02毫米的误差视为符合要求,张兵的是﹣0.017,蔡伟的是﹣0.011不超过0.02毫米的误差,∴张兵和蔡伟做的乒乓球是符合要求的;(2)∵蔡伟的为﹣0.011、李明的为+0.031,∴蔡伟做的质量最好,李明同学做的质量最差;(3)∵|﹣0.011|<|﹣0.017|<|﹣0.021|<|+0.022|<|+0.023|<|+0.031|,∴6名同学做的乒乓球质量按照最好到最差排名为:蔡伟、张兵、余佳、赵平、王芳、李明.【点睛】此题考查了正数与负数,以及绝对值,弄清题意是解本题的关键.9.(1)5;A与C;(2)|x+2|;-4或0;1;(3)1019090【分析】(1)由所给信息,结合绝对值的性质可求;(2)由绝对值的性质,分段去掉绝对值符号,在不同的x范围内确定|x+4|+|x−1|+|x−3|的最小值;(3)由所给式子的对称性,结合绝对值的性质,将所求绝对值式子转化为求0+2+4+…+2018的和.【详解】(1)|1−(−4)|=|1+4|=|5|=5,|1−(−4)|表示点A与C之间的距离,故答案为5,点A与C;(2)∵点P为数轴上一点,它所表示的数为x,点B表示的数为−2,∴PB=|x−(−2)|=|x+2|,当PB=2时,|x+2|=2,得x=0或x=−4,当x≤−4时,|x+4|+|x−1|+|x−3|=−x−4+1−x+3−x=−x≥4;当−4<x<1时,|x+4|+|x−1|+|x−3|=x+4+1−x+3−x=8−x,当1≤x≤3时,|x+4|+|x−1|+|x−3|=x+4+x−1+3−x=6+x,当x>3时,|x+4|+|x−1|+|x−3|=x+4+x−1+x−3=3x>9,∴当x=1时,|x+4|+|x−1|+|x−3|有最小值;故答案为|x+2|;−4或0;1(3)|x−1|+|x−2019|≥|1−2019|=2018,当且仅当1≤x≤2019时,|x−1|+|x−2019|=2018,当且仅当2≤x≤2018时,|x−2|+|x−2018|≥|2−2018|=2016,…同理,当且仅当1009≤x≤1011时,|x−1009|+|x−1011|≥|1009−1011|=2,|x−1010|≥0,当x=1010时,|x−1010|=0,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|≥0+2+4+…+2018=1019090,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|的最小值为1019090;故答案为1019090.【点睛】本题考查列代数式、绝对值的意义;能够明确题意,列出相应的代数式,根据绝对值的意义,合理的去掉绝对值符号是解题的关键.10.(1)<,<, >;(2)-2b【分析】(1)根据数轴得出a<0<b<c,|b|<|a|<|c|,即可求出答案;(2)去掉绝对值符号,合并同类项即可.【详解】(1)∵从数轴可知:a<0<b<c,|b|<|a|<|c|,∴b−c<0,a+b<0,c−a>0,(2)∵b−c<0,a+b<0,c−a>0,∴|b−c|+|a+b|−|c−a|=c−b+(−a−b)−(c−a)=c−b−a−b−c+a=−2b.【点睛】此题考查数轴、绝对值、整式的加减,解题关键在于结合数轴判断绝对值的大小. 11.(1) ①A2,②B4,③﹣3.5,5.5;(2)①A1,②﹣2或4,③﹣3或2【分析】(1)①根据中心对称,可得对称中心,根据对称中心,可得点的对应点;②根据中心对称,可得对称中心,根据对称中心,可得点的对应点;③根据中心对称,可得对称中心,根据对称中心到任意一点的距离相等,可得点的对应点;(2)①根据两点间的距离公示,可得答案;②根据数轴上到一点距离相等点有两个,位于该点的左右,可得答案;③根据解含绝对值符号的一元一次方程,可得方程的解.【详解】解:(1)折叠纸面:①若点A1与点B1重合,则点B2与点A2重合;②若点B1与点A2重合,则点A5与有理数B4对应的点重合;③若点B1与A3重合,当数轴上的M、N(M在N的左侧)两点之间的距离为9,且M、N 两点经折叠后重合时,则M、N两点表示的有理数分别是﹣3.5,5.5;(2)拓展思考:点A在数轴上表示的有理数为a,用|a|表示点A到原点O的距离.①|a﹣1|是表示点A到点A1的距离;②若|a﹣1|=3,则有理数a=﹣2或4;③若|a﹣1|+|a+2|=5,则有理数a=﹣3或 2,故答案为:A2,B4﹣3.5,5.5,A1,﹣2或4,﹣3或2.【点睛】本题考查了数轴,利用了中心对称的性质,解含绝对值符号的一元一次方程.12.(1)六,15;(2)盈利135元;(3)选择方式一购买更省钱.【分析】(1)通过看图表的每斤价格相对于标准价格,可直接得结论;(2)计算总进价和总售价,比较即可;(3)计算两种购买方式,比较得结论.【详解】解:(1)这一周超市售出的百香果单价最高的是星期六,最高单价是15元.故答案为六,15;(2)1×20﹣2×35+3×10﹣1×30+2×15+5×5﹣4×50=﹣195(元),(10﹣8)×(20+35+10+30+15+5+50)=2×165=330(元),﹣195+330=135(元);所以这一周超市出售此种百香果盈利135元;(3)方式一:(35﹣5)×12×0.8+12×5=348(元),方式二:35×10=350(元),∵348<350,∴选择方式一购买更省钱.【点睛】本题考查了正负数的应用及有理数的计算.计算本题的关键是看懂图表了理解图表.盈利就是总售价大于总进价,亏损就是总售价小于总进价.13.0或-2.【分析】由相反数和倒数的性质可得a+b=0,cd=1,由绝对值的定义可得m 的值,把a+b 和cd 整体代入,并把m 的不同值代入即可得答案.【详解】∵a ,b 互为相反数,c 与d 互为倒数,∴a+b=0,cd=1,∵m 的绝对值是最小的正整数,∴m=±1, 当m=1时,2019a b +﹣cd+m=0-1+1=0, 当m=-1时,2019a b +﹣cd+m=0-1+(-1)=-2. 综上,2019a b +﹣cd+m 的值为0或-2. 【点睛】此题主要考查了代数式的求值及互为相反数、互为倒数、绝对值的性质,互为相反数的两个数的和为0;互为倒数的两个数的积为1;熟练掌握相关性质是解题关键.三、1314.C解析:C【解析】【分析】根据只有符号不同的两个数互为相反数,乘积为1的两个数互为倒数得出此数具体为何数,然后求出其绝对值即可.【详解】∵一个数的相反数与该数的倒数的和等于0,∴这个数为±1, ∴|±1|=1, 故选:C.【点睛】本题主要考查了相反数与倒数及绝对值相关性质的综合运用,熟练掌握相关概念是解题关键.15.D解析:D【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】∵|a+2|+(b-1)2=0,∴a+2=0,b-1=0,∴a=-2,b=1,∴(a+b)2019=(-2+1)2019=-1.故选D.【点睛】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.16.B解析:B【分析】根据绝对值的性质,要化简绝对值,可以就x>3,0≤x≤3,x<0三种情况进行分析.【详解】解:①当x>3时,原式可化为:x+3=x﹣3,无解;②当0≤x≤3时,原式可化为:x+3=3﹣x,此时x=0;③当x<0时,原式可化为:﹣x+3=3﹣x,等式恒成立.综上所述,则x≤0.故选:B.【点睛】本题主要考查绝对值的化简,解决本题的关键是要熟练掌握绝对值的性质.17.B解析:B【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:﹣|﹣3.5|=﹣3.5,﹣(﹣325)=3.4,∵﹣3.5<0<3<3.4,∴﹣|﹣3.5|<0<3<﹣(﹣325),∴在23| 3.5|35⎛⎫---- ⎪⎝⎭、、中,最小的数是﹣|﹣3.5|.故选B.【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.18.D解析:D【分析】根据式子的特点,判断出选项中的各式的符号,即可判断出其中的正数.【详解】解:A、当x=﹣2时,x+1=﹣1,错误;B、x2≥0,是非负数,故本选项错误;C、x3的符号不能确定,故本选项错误;D、|x|+2≥2,是正数,正确;故选:D.【点睛】本题考查了非负数和正数的表达方式,解答关键是熟练掌握有理数的平方、立方和绝对值的运算。
人教版七年级数学第一章《有理数》易错题训练 (4)含答案解析
第一章《有理数》易错题训练 (4)一、选择题(本大题共14小题,共42.0分)1.有理数a,b在数轴上的位置如图所示,则下列各式成立的是()A. b−a>0B. −b>0C. a>−bD. −ab<02.一个数的相反数是−2020,则这个数是()A. 2020B. −2020C. 12020D. −120203.下列说法正确的是()A. 互为相反数的两个数一定不相等B. 绝对值等于它相反数的数是负数C. 一个有理数不是整数就是分数D. π3是分数4.下列各组数中,互为相反数的是()A. −(+3)与+(−3)B. −(−4)与|−4|C. −32与(−3)2D. −23与(−2)35.若两个数的和为正数,则这两个数()A. 至少有一个为正数B. 只有一个是正数C. 有一个必为零D. 都是正数6.在1:50000000的地图上量得两地间的距离是1.3cm,这两地间的实际距离(单位:m)用科学记数法表示是()A. 6.5×108B. 1.3×108C. 6.5×105D. 1.3×1057.下面一组数+7,−3.1,+15,−317,0.33,+5.8,其中非负分数共有()A. 3个B. 4个C. 5个D. 6个8.已知a、b互为相反数,则下列结论:①a、b在数轴上对应的点关于原点对称;②a+b=0;③|a|=|b|;④ab≤0.一定正确的有()个.A. 1B. 2C. 3D. 49.下列各组量中,互为相反意义的量是()A. 上升与减少B. 增产10吨与减产−10吨C. 篮球比赛胜5场与负3场D. 向东走3米与向南走3米10.下列叙述正确的个数是()①−5是5的相反数;②最小的负有理数是−1;③绝对值小于3的有理数有5个;④数轴上每一个点都对应一个有理数.A. 1个B. 2个C. 3个D. 4个 11. 在−2,0,3.14,102,π3,−|−13| ,100%中,非负整数的个数是( )A. 2个B. 3个C. 4个D. 5个12. 如图所示,点A 、B 、C 在数轴上的位置如图所示,O 为原点,C 表示的数为m ,BC =3,AO =3OB ,则A 表示的数为A. 3m −9B. 9−3mC. 2m −6D. m −3 13. 计算(−12)2012+(−12)2013的结果是 ( ) A. (1+12)2013 B. −(12)2013 C. −(12)2012 D. (12)201314. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为1.5亿千米,将1.5亿千米用科学计数法表示为( )A. 15×107千米B. 1.5×1011米C. 1.5×107千米D. 1.5×1012米二、填空题(本大题共9小题,共27.0分)15. 一个数的倒数就是它本身,这个数是_____________.16. 平方得1625的数是________ ;17. 计算:(+1)+(−2)+(+3)+(−4)+⋯⋯+(−2018)+(+2019)=_______.18. 用“>”“<”或“=”填空:−56___________−67.19. 立方等于它本身的数是______;平方等于它本身的数是_____。
第01讲 有理数(易错点梳理+微练习)(解析版)
第1讲有理数易错点梳理易错点梳理易错点01误把0当成正数0既不是正数也不是负数,0是正数与负数的分界点。
易错点02误以为带“+”号的数就是正数,带“-”号的数就是负数不能简单地理解为带“+”号的数就是正数,带“-”号的数就是负数。
例如:当0>a 时,a 表示正数,a -表示负数;当0=a 时,a 与a -都表示0;当0<a 时,a 表示负数,a-表示正数。
易错点03误把无限循环小数看成无理数有限小数和无限循环小数都可以写成分数形式,所以有限小数和无限循环小数都是有理数;无限不循环小数是无理数。
易错点04误把数轴当成线段数轴是规定了原点、正方向和单位长度的直线。
易错点05混淆“单位长度”和“长度单位”单位长度是指具体的时间内具体的长度为1;长度单位是指毫米、厘米、分米、米、千米等。
它们是完全不同的概念。
易错点06误认为0的倒数是00的相反数是0,0的绝对值为0,0没有倒数。
易错点07混淆na -与na )(-的意义n a -表示n a 的相反数,n a )(-表示n 个a -相乘。
易错点08运用加法交换律时弄错符号运用加法交换律时,在交换各加数的位置时,要连同它前面的符号一起交换,不能漏掉符号。
易错点09运用分配律时易漏乘运用分配律时,括号内的每一项都要乘以括号外的数,不要漏乘。
例题分析考向01正负数的概念例题1:(2021·青海西宁·中考真题)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是()A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-【答案】B【思路分析】根据题意图2中,红色的有三根,黑色的有六根可得答案.【解析】解:由题知,图2红色的有三根,黑色的有六根,故图2表示的算式是(+3)+(-6).故选:B .【点拨】本题主要考查正负数的含义,解题的关键是理解正负数的含义.考向02数轴的概念例题2:(2021·广东广州·中考真题)如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为()A .3-B .0C .3D .6-【答案】A【思路分析】由AB 的长度结合A 、B 表示的数互为相反数,即可得出A ,B 表示的数【解析】解:∵0a b +=∴A ,B 两点对应的数互为相反数,∴可设A 表示的数为a ,则B 表示的数为a -,∵6AB =∴6a a --=,解得:3a =-,∴点A 表示的数为-3,故选:A .【点拨】本题考查了绝对值,相反数的应用,关键是能根据题意得出方程6a a --=.考向03相反数的概念例题3:(2021·湖南永州·中考真题)1||202--的相反数为()A .2021-B .2021C .12021-D .12021【答案】B【思路分析】根据绝对值、相反数的概念求解即可.【解析】解:由题意可知:||=22110202-,故1||202--的相反数为2021,故选:B .【点拨】本题考查相反数、绝对值的概念,属于基础题,熟练掌握概念是解决本题的关键.考向04绝对值和概念和非负性例题4:(2021·黑龙江大庆·中考真题)下列说法正确的是()A .||x x<B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =-【答案】D【思路分析】根据绝对值的定义和绝对值的非负性逐一分析判定即可.【解析】解:A .当0x =时,||=x x ,故该项错误;B .∵10x -≥,∴当1x =时|1|2x -+取最小值,故该项错误;C .∵11x y >>>-,∴1x >,1y <,∴||||x y >,故该项错误;D .∵|1|0x +≤且|1|0x +≥,∴|1|0x +=,∴1x =-,故该项正确;故选:D .【点拨】本题考查绝对值,掌握绝对值的定义和绝对值的非负性是解题的关键.考向05有理数大小的比较例题5:(2021·四川巴中·中考真题)下列各式的值最小的是()A .20B .|﹣2|C .2﹣1D .﹣(﹣2)【答案】C【思路分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数分别化简得出答案.【解析】解:20=1,|-2|=2,2-1=12,-(-2)=2,∵12<1<2,∴最小的是2-1.故选:C .【点拨】此题主要考查了零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数,正确化简各数是解题关键.考向06有理数加减法的运算例题6:(2021·四川广元·中考真题)计算()32---的最后结果是()A .1B .1-C .5D .5-【答案】C【思路分析】先计算绝对值,再将减法转化为加法运算即可得到最后结果.【解析】解:原式325=+=,故选:C .【点拨】本题考查了绝对值化简和有理数的加减法运算,解决本题的关键是牢记绝对值定义与有理数运算法则,本题较基础,考查了学生对概念的理解与应用.考向07科学计数法例题7:(2021·山东青岛·中考真题)2021年3月5日,李克强总理在政府工作报告中指出,我国脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.5575万=55750000,用科学记数法将55750000表示为()A .4557510⨯B .555.7510⨯C .75.57510⨯D .80.557510⨯【答案】C【思路分析】根据科学记数法的定义“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数位只有一位的数,即a 大于或等于1且小于10,n 是正整数),这样的记数方法叫做科学记数法”进行解答即可得.【解析】解:755750000 5.57510=⨯,故选C .【点拨】本题考查了科学记数法,解题的关键是熟记科学记数法的定义.微练习一、单选题1.(2021·湖南·长沙市开福区青竹湖湘一外国语学校三模)-2021的绝对值是()A .2021-B .12021-C .2021D .12020【答案】C【解析】-2021的绝对值是2021,故选:C2.(2021·浙江·温州市教育教学研究院一模)2的相反数是()A .2B .12C .2-D .4-【答案】C【解析】解:2的相反数是-2,故选C .3.(2021·安徽·合肥一六八中学模拟预测)下列是有理数的是()A .tan 45︒B .sin 45︒C .cos 45︒D .sin 60︒【答案】A【解析】解:A 、tan451︒=,是有理数,符合题意;B 、sin 45=°合题意;C 、cos 452=°,不是有理数,不符合题意;D 、sin 60︒=符合题意;故选:A .4.(2021·陕西·交大附中分校模拟预测)如图,数轴上点A 表示的数为()A .﹣2B .﹣1C .0D .1【答案】B【解析】解:由图可知:点A 在﹣1的位置,表示的数为﹣1.故选:B .5.(2021·广东·佛山市华英学校一模)在2, 1.5-,0,23-这四个数中最小的数是()A .2B . 1.5-C .0D .23-【答案】B【解析】解:∵2>0,0>﹣1.5,0>﹣23,又∵|﹣1.5|=32,|﹣23|=23,∴32>23,∴﹣1.5<﹣23,综上所述,﹣1.5<﹣23<0<2.故选:B .6.(2021·浙江·翠苑中学二模)计算42=()A .8B .18C .16D .116【答案】C【解析】解:24=2×2×2×2=16,故选:C .7.(2021·内蒙古东胜·二模)截止2021年4月17日,全国接种新冠病毒疫苗达到81.89810⨯剂次,则数据81.89810⨯表示的原数是()A .1898000B .18980000C .189800000D .1898000000【答案】C【解析】解:81.89810⨯=189800000,故选C .8.(2021·安徽·安庆市第四中学二模)计算:2﹣(﹣2)等于()A .﹣4B .4C .0D .1【答案】B【解析】解:2﹣(﹣2)=2+2=4.故选择B .二、填空题9.(2021·福建·泉州五中模拟预测)计算:10122--+-=_______.【答案】0【解析】原式111022=-+=,故答案为:0.10.(2021·福建·厦门双十中学思明分校二模)实数a 与b 在数轴上对应点的位置如图所示,a <c <﹣b ,且c 为整数,则实数c 的值为________.【答案】3【解析】解:如图由a <c <﹣b ,且c 为整数,故实数c 的值为3,故答案为:3.11.(2021·广东·执信中学模拟预测)()0222cos451 3.14π--+︒--=____________【答案】314【解析】解:()0222cos451 3.14π--+︒--121)14=-++1114=-+++314=.故答案为:314.12.(2021·福建·重庆实验外国语学校模拟预测)新华社北京5月11日电11日发布的第七次全国人口普查结果显示,全国人口共141178万人,与2010年第六次全国人口普查数据相比,增加7206万人,增长5.38%,年平均增长率为0.53%.数据表明,我国人口10年来继续保持低速增长态势.用科学记数法将数据“7206万”表示为__.【答案】77.20610⨯【解析】解:7206万77.20610=⨯故答案为:77.20610⨯.三、解答题13.(2021·广西·南宁十四中三模)计算:()()3425284+-⨯--÷.【答案】29-【解析】()()3425284+-⨯--÷485(7)=-⨯--1140=-29=-14.(2021·云南昭通·二模)计算:120211(1)|2|3-⎛⎫+-+--- ⎪⎝⎭(-2021).【答案】-5【解析】原式1(1)(3)2=+-+--5=-.15.(2021·黑龙江·二模)计算:120201(1)3-⎛⎫-+ ⎪⎝⎭【答案】2.【解析】原式132=+-2=.16.(2021·吉林长春·二模)计算:()()2111323π--+---+⎛⎫⎪⎝⎭【答案】3【解析】解:原式11233=+-+=.。
人教版七年级数学上册 第二章 有理数的运算易错训练(单元复习 6类易错)
第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(24-25七年级上·全国·假期作业)折项法计算:3221554410014334⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24七年级上·四川成都·阶段练习)阅读计算5231591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪⎝⎭.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪⎝⎭⎝⎭.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算111503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪⎝⎭⎝⎭.2.(23-24六年级下·上海·期中)计算:111321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24六年级下·上海黄浦·期中)计算:17424122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.巩固训练1.(23-24六年级下·上海长宁·期中)计算:229125111683⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭;2.(23-24六年级下·全国·假期作业)计算:(1)34(2)5(0.64)4+-⨯--÷.(2)21(2)31(0.2)4-+-⨯-÷---.3.(23-24六年级下·全国·假期作业)计算下列各题:(1)22222(3)(6)(2)-+⨯-+-⨯-(2)42112(3)6⎡⎤--⨯--⎣⎦(3)25221(1)31(2)33⎡⎤⎛⎫---⨯--÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)22319345121543⎡⎤⎛⎫-⨯-+⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦易错题型五有理数的混合运算中的新定义型问题例题:(23-24七年级上·陕西西安·期中)用“△”定义新运算,对于任意有理数a ,b ,都有2a b a ab =- .例如:27477421=⨯=- .(1)求()35- 的值;(2)若继续用“*”定义另一种新运算2*3a b ab b =-,例如:21*231222=⨯-=⨯.求()()4*23- .巩固训练1.(23-24七年级上·湖北随州·期中)用“☆”定义一种新运算:对于任意有理数a 和b ,规定22a b b ab =+☆,如:214421424.=+⨯⨯=☆(1)计算:54☆的值;(2)计算:()326-⎡⎤⎣⎦☆☆的值.2.(22-23七年级上·江苏镇江·期中)我们定义一种新运算:2*a b a b ab =-+,例如:21*31313=-+⨯.(1)求()()3*2--;(2)求()()()2*2*3---⎡⎤⎣⎦.3.(23-24七年级上·福建龙岩·期中)若定义一种新的运算“*”,规定:22*a b a b =-,如225*35316=-=.(1)求()3*4-的值;(2)通过计算说明()()5*4*2⎡⎤--⎣⎦与()()5*4*2⎡⎤--⎣⎦的值是否相等?易错题型六有理数运算中的错题复原问题例题:(2023秋·山东东营·六年级统考期末)课代表发下作业本之后,小刚同学发现有一个题做错了,检查巩固训练第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪.1.(24-25七年级上·全国·假期作业)折项法计算:3221 554410014334⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪.()01=+-1=-.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪.3.(23-24七年级上·四川成都·阶段练习)阅读计算591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪.1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪.2.(23-24六年级下·上海·期中)计算:321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪.3.(23-24六年级下·上海黄浦·期中)计算:4122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.【答案】6【分析】本题考查了有理数的混合运算,先计算乘除,再加减即可,熟知计算法则是解题的关键。
人教版七年级数学第一章《有理数》易错题训练 (1)含答案解析
第一章《有理数》易错题训练 (1)一、选择题(本大题共7小题,共21.0分)−(−5),−|+3|中,负数的个数有()1.在−15,−10,0,−13A. 2个B. 3个C. 4个D. 5个2.已知a、b互为相反数,c、d互为倒数,m的绝对值为1,p是数轴到原点距离为1的数,那么p2000−+m2+1的值是().cd+a+babcdA. 3B. 2C. 1D. 03.下列说法正确的是()A. 没有最大的正数,但有最大的负数;B. 没有最小的负数,但有最小的正数;C. 有最大的负整数,也有最小的正整数;D. 有最小的有理数是0。
4.在下列选项中,具有相反意义的量是()A. 胜二局与负三局B. 气温升高3℃与气温为−3°CC. 盈利5万元与支出5万元D. 甲、乙两队篮球比赛比分分别为66:63与63:665.在−(−2.5),3,0,−5,−0.25,−1中正整数有().2A. 1个B. 2个C. 3个D. 4个6.下列各组量中,具有相反意义的量的有()①“长3.2m与重5.2千克”;②水库水位“上升1.6米”与“下降1.8米”;③温度计上“零上4℃”与“零下5℃”;④−5与3.A. 4组B. 3组C. 2组D. 1组7.下列说法正确的是()A. 有理数a的相反数是−aB. 有理数a的倒数是1aC. 2.0197≈2.010(精确到千分位)D. |−a|=a二、填空题(本大题共12小题,共36.0分)8.8352.6保留两位有效数字是______;3.05万精确到_____位;近似数1.30所表示的准确数a的取值范围:_________9.国家统计局数据显示,截至2014年末全国商品房待售面积约为62200万平方米,该数据用科学记数法可表示为____平方米.10.报告显示,2018年中国家电市场规模达到8104亿元,同比增幅达到,将8104亿元用科学计数法表示为______________亿元.11.在数−32,|−7|,(−2)3,213,−43,0,−0.01,−10.1%中属于非正整数的有______.12.近似数6.30×104精确到________位.13.若|a−3|=4,则a=______.14.2020年五一节期间,渝中区共接待游客约1610000人次,请将数1610000用科学记数法表示为__________.15.根据教育部的消息,2019年参加高考的考生人数为1031万人,1031万用科学记数法表示为______.16.我区约有2930名学生参加本次模拟考试,这个数据用科学记数法可以表示为________.(精确到百位)17.近似数6.3×104精确到______位.18.若ab≠0,a+b=0,ab=___.19.把20056800精确到百万位是___________________.三、计算题(本大题共8小题,共48.0分)20.计算:−12009+(−2)3×(−12)−|1−5|21.计算:(1)−14+(−2)÷(+13)+|−9|(2)−34×[−32×(−23)3−2]22. 计算:②(112−58+712)÷(−124)−8×(−12)323. 计算(1)−12−2×(−2)3÷|−13|(2)(−1)4+(1−0.5)×13×【2−(−3)2】24. 计算:(1)3+50÷22×(−15)−1(2)[1−(1−0.5)×13)]×[2−(−3)2]25. 计算:(1)−14+(1−0.5)×13×[2−(−3)2];(2)(12+56−712)×(−36).26. 计算:(−1)2+[4−(1+12)×2]27. 有理数计算题(1)12−(−5)−(−18)+(−5)(2)−6.5+414+834−312(3)(512+23−34)×(−12) (4)32−50÷22×(−110)−1四、解答题(本大题共3小题,共24.0分)28. 把下列各数填入它所在的数集的括号里.−12,+4,−6.1,0,−1213,|−245|,5.9,−(+8),0.0·81·,−70% 正数集合:{_____________________…}非正整数集合:{__________________…}负分数集合:{___________________…}非负数集合:{____________________…}29. 如图,数轴上有四个数a 、b 、c 、d ,请用“<”把它们的绝对值连起来30. 计算:−14+(−2)3+|2−5|−6×(12−13)参考答案及解析1.答案:B解析:本题考查了正负数,有理数的减法.判断一个数是正数还是负数,要把它化简成最后形式再判断.此题要注意0既不是正数也不是负数.根据相反数、绝对值的概念,将相关数值化简,再根据负数的定义作出判断.解:−13−(−5)=−13+5=423,−|+3|=−3,在−15,−10,0,−13−(−5),−|+3|中,负数是:−15,−10,−|+3|,共3个,故选B.2.答案:B解析:本题考查了代数式求值,主要利用了相反数的定义,倒数的定义,绝对值的性质和数轴,熟记概念与性质是解题的关键.根据互为相反数的两个数的和等于0可得a+b=0,互为倒数的两个数的乘积是1可得cd=1,再根据绝对值的性质和数轴求出m、p,然后代入代数式进行计算即可得解.解:∵a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∵m的绝对值为1,p是数轴到原点距离为1的数,∴m=±1,p=±1,∴p2000−cd+a+babcd+m2+1,=1−1+0+1+1,=2.故选B.3.答案:C解析:本题是考查自然数的意义、整数的意义、正、负数的意义、有理数的意义等.只有深刻理解意义才能作出判断.根据自然数的意义,0是最小的自然数,根据整数的意义,没有最小的整数;根据正数的意义,没有最小的正数,但有最小的正整数,是1;根据负数的意义,既没有最大的负数,也没有最小的负数;根据有理数的意义,没有最小的有理数.解:A.没有最大的正数,也没有最大的负数,故错误;B.没有最小的负数,也没有最大的负数,故错误;C.最大的负整数是−1,最小的正整数是1,故正确;D.有理数中没有最小的数,故错误.故选C.4.答案:A解析:此题考查了正数与负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解:A.胜二局与负三局,具有相反意义的量,故正确;B.升高与降低是具有相反意义,气温为−3℃只表示某一时刻的温度,故错误;C.盈利与亏损是具有相反意义,与支出5万元不具有相反意义,故错误;D.比分66:63与63:66不具有相反意义,故错误.故选A.5.答案:A解析:根据大于0的整数是正整数,可得答案.本题考查了有理数,大于0的整数是解题关键.解:3>0,故选:A.6.答案:C解析:此题考查了正数和负数的知识点,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,据此可以得到正确答案.解:①“长3.2m与重5.2千克”;不是相反意义的量,故本选项错误,②水库水位“上升1.6米”与“下降1.8米”,是相反意义的量,故本选项正确,③温度计上“零上4℃”与“零下5℃”,是相反意义的量,故本选项正确,④−5与3不是相反意义的量,故本选项错误,故选C.7.答案:A解析:解:A、有理数a的相反数是−a,正确;(a≠0),故此选项错误;B、有理数a的倒数是1aC、2.0197≈2.020(精确到千分位),故此选项错误;D、|−a|=a(a≥0),故此选项错误;故选:A.直接利用相反数的定义以及互为倒数的定义和近似数和绝对值的性质分别分析得出答案.此题主要考查了相反数的定义以及互为倒数的定义和近似数和绝对值的性质,正确把握相关定义是解题关键.8.答案:8.4×103;百;1.295≤a<1.305解析:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.近似数精确到哪一位,应当看末位数字实际在哪一位,根据有效数字、近似数的相关知识求解.解:8352.6保留两位有效数字是8.4×103;3.05万精确到百位;近似数1.30所表示的准确数a的范围为1.295≤a<1.305.故答案为8.4×103;百;1.295≤a<1.305.9.答案:6.22×108解析:【试题解析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:62200万=622000000=6.22×108,故答案为6.22×108.10.答案:8.104×103解析:本题考查了用科学记数法表示较大的数.把一个绝对值小于1(或者大于等于10)的数记为a×10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法.按照科学计数法的定义解答即可.解:8104=8.104×103.故答案为8.104×103.11.答案:−32,(−2)3,0解析:本题考查非正整数,属于基础题.根据题意,利用非正整数的定义,即可得解.解:由题意,这些数中属于非正整数的有−32、(−2)3、0,故答案为−32,(−2)3,0.12.答案:百解析:本题考查了近似数和有效数字,根据近似数的精确度求解.解:6.30×104精确到百位.故答案为百.13.答案:7或−1解析:解:∵|a−3|=4,∴a−3=4或a−3=−4,解得a=7或a=−1.故答案为:7或−1.根据互为相反的绝对值相等列式,然后求解即可.本题考查了绝对值的性质,需要注意,互为相反数的绝对值的相等.14.答案:1.61×106.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.将“1610000”用科学记数法表示为1.61×106.故答案是:1.61×106.15.答案:1.031×107解析:解:1031万用科学记数法表示为1031×104=1.031×107.故答案为:1.031×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.答案:2.9×103解析:此题主要考查了科学记数法的表示方法和近似数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值⩾10时,n是正数;当原数的绝对值<1时,n是负数.解:2930=2.93×103≈2.9×103.故答案为2.9×103.17.答案:千解析:解:近似数6.3×104精确到千位.故答案为:千.根据近似数的精确度进行判断.本题考查了近似数和有效数字.解题的关键是掌握近似数和有效数字的定义:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.18.答案:−1解析:此题主要考查相反数.根据a+b=0,可知a、b是互为相反数,互为相反数的两个数的商是−1.解:∵a+b=0,ab≠0,∴a、b是互为相反数,=−1,∴ab故答案为−1.19.答案:2.0×107解析:本题考查了近似数和有效数字:把数按要求进行四舍五入得到的数为近似数.根据20056800= 2.00568×107,精确到百万位是2.0×107,即可得出答案.解:20056800≈2.0×107(精确到百万位).故答案为2.0×107. 20.答案:解:原式样=−1+(−8)×(−1)−42=−1+4−4=−1.解析:本题考查有理数的混合运算,绝对值.注意运算顺序和熟练掌握有理数的运算法则是解题的关键.先计算乘方和绝对值,再计算乘法,最后计算加减即可.)+|−9|21.答案:解:(1)−14+(−2)÷(+13=−1+(−2)×(+3)+9 =−1−6+9=2;(2)原式=−34×[−9×(−827)−2]=−34×(83−2)=−34×23=−12.解析:本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.(1)先计算乘方,再计算乘除,最后计算减法即可得;(2)先计算乘方,再计算乘除,最后计算减法即可得.22.答案:解:①原式=−1−16×(−7)×(−17)=−1−16=−116;②原式=(112−58+712)×(−24)−8×(−18)=−36+15−14+1=−34.解析:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.①原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;②原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.23.答案:解:(1)原式=−1−2×(−8)×3=−1+48=47;(2)原式==1+12×13×(2−9)=1+16×(−7)=1−76=−16.解析:本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.(1)根据有理数的乘方,乘除法和加减法可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.24.答案:解:(1)原式=3+50÷4×(−15)−1=3−52−1=−12;(2)原式=[1−12×13]×(2−9)=(1−16)×(−7)=56×(−7)=−356.解析:本题主要考查的时有理数的混合运算的有关知识.(1)先将给出的式子进行变形,然后再计算即可;(2)先将给出的式子进行变形,然后再计算即可.25.答案:解:(1)原式=−1+12×13×(2−9)=−1+16×(−7)=−1−76=−136;(2)原式=−12×36−56×36+712×36=−18−30+21=−27.解析:此题考查的是有理数的混合运算,熟练掌握有理数的各种运算法则是关键.(1)按照先乘方,再乘除,最后加减的运算顺序计算,有括号的先算小括号,再算中括号;(2)根据有理数的乘法分配律变形后进行有理数的乘法运算,再进行有理数的加减运算即可.26.答案:解:原式=1+(4−112×2)=1+(4−32×2)=1+1 =2.解析:本题考查了有理数的混合运算,有理数的乘方,先算有理数的乘方,然后算小括号里面的,再算中括号里面的,最后算中括号外面的加法,注意运算顺序.27.答案:解:(1)原式=12+5+18−5,=30;(2)原式=−6.5−3.5+13,=−10+13,=3;(3)原式=−5−8+9,=−13+9,=−4;(4)原式=9−50×14×(−110)−1,=9+1.25−1,=9.25.解析:本题考查了有理数的混合运算,掌握有理数的各种运算法则是解决问题的关键.(1)根据有理数的加减运算法则进行计算即可;(2)根据有理数的加减运算法则进行计算即可;(3)根据有理数乘法的分配律进行计算即可;(4)根据有理数的混合运算顺序计算即可.28.答案:解:正数集合:{+4,|−245|,5.9,0.0˙81˙,…};非正整数集合:{0,−(+8),…};负分数集合:{−12,−6.1,−1213,−70%,…};非负数集合:{+4,|−245|,0,5.9,0.0˙81˙,…}.解析:本题考查了有理数的概念,按照有理数的分类填写:有理数认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.29.答案:解:由图可知:|b|<|c|<|d|<|a|解析:本题考查的是绝对值,数轴有关知识,根据绝对值越大,离原点越远进行判断即可.30.答案:解:原式=−1+(−8)+3−6×16=−9+3−1=−7.解析:根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.。
新北师大版七年级数学上册第二章《有理数》难题、易错题讲解
七年级数学上册第二章《有理数》难题、易错题讲解类型一 0+0型例:已知|m-3|+|n+2|=0,求m 、n 的值。
练习:1、已知|x+2|+|y+32|=0,试比较x ,y 的大小。
2、|a-21|+|b+31|+|c+52|=0 (1)试比较a 、b 、c 的大小。
(2)计算|a|+|(-b)|+|c|的值。
3、若|x+1|+|y-2|+|z+3|=0,求|x|+|y|+|z|的值。
4、试讨论:x 为有理数,|x-1|+|x-3|有没有最小值?如果有,求出这个最小值;如果没有,请说明理由。
类型二 化简计算型例:计算|9911001-|+|10011011-| - |9911011-|练习1、 实数a 、b 在数轴上的位置如图所示,化简|a|+|b|-|a+b|2、若a 、b 、c 三数在数轴上对应位置如图所示,化简|a|-|a+b|+|c-b|+|a+c|3、若有理数a 、b 在数轴上的位置如图所示,化简:|a+b|-|a-b|-|-b|4、a 、b 、c 三个数在数轴上的位置如图所示,化简式子: cc b b a a ||||||++5、|2131-|++-+-|4151||3141|…|2011120121-|类型三 比较大小(数轴上可特值法)例:有理数a 、b 在数轴上的位置如图所示,则下列结论中,正确的是( )A 、a+b >a >b >a-bB 、a >a+b >b >a-bC 、a-b >a >b >a+bD 、a-b >a >a+b >b练习 1、如果a 、b 均为有理数,且b <0,则a 、a-b 、a+b 的大小关系。
( )A 、a <a+b <a-bB 、a <a-b <a+bC 、a+b <a <a-bD 、a-b <a+b <b2、有理数a 、b 在数轴上的对应点的位置如图所示,用不等号把a 、b 、-a 、-b 连接起来:________________________类型四 探索规律型 例:观察下列等式:311⨯=)311(21-,)4121(21421-=⨯,)5131(21531-=⨯ (1)猜想:=+)2(1n n ____________________ (2)试写出:)3(1+n n =__________________________练习1 、一只跳蚤从数轴上的原点出发,第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位,…,按这样的规律跳100次,跳蚤到圆原点的距离是____________个单位。
人教版七年级数学上册《有理数》易错题练习-有答案
人教版七年级数学上册《有理数》易错题练习-有答案【易错1例题】正数和负数1.(2021·四川中考真题)如果规定收入为正那么支出为负收入2元记作2+支出5元记作().A.5元B.5-元C.3-元D.7元【答案】B【分析】结合题意根据正负数的性质分析即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识解题的关键是熟练掌握正负数的性质从而完成求解.【易错2例题】有理数2.(2021·广西三美学校)已知下列各数:5-1340 1.5-513312-.把上述各数填在相应的集合里:正有理数集合:{}负有理数集合:{}分数集合:{}【答案】正有理数集合:11,4,5,333⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭【分析】正有理数指的是除了负数0无理数的数字负有理数指小于0的有理数正分数负分数小数统称为分数.【详解】解:正有理数集合:11,4,5,3 33⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭.【点睛】本题考查了有理数的分类熟练掌握各类数的属性和特点是解题的关键.【易错3例题】数轴3.(2021·广东七年级月考)已知下列有理数:-42-3.50-231-0.52(1)在数轴上标出这些有理数表示的点(2)设表示-0.5的点为A那么与A点的距离相差4个单位长度的点所表示的数是多少?【答案】(1)答案见解析(2)3.5或−4.5.【分析】(1)根据所给有理数画出数轴标出各数据即可.(2)直接利用数轴结合与A点的距离相差4个单位长度即可得出答案.【详解】(1)如图所示:(2)设表示−0.5的点为A则与A点的距离相差4个单位长度的点所表示的数是:−0.5+4=3.5或−0.5−4=−4.5.【点睛】本题考查数轴根据题意正确的在数轴上表示出各数据是解题关键.【易错4例题】相反数4.(2021·江苏七年级专题练习)2021的相反数为__________.-【答案】2021【分析】利用相反数的定义即可求解.【详解】-解:2021的相反数为2021-.故答案为:2021【点睛】本题考查相反数掌握相反数的定义是解题的关键.【易错5例题】绝对值5.(2021·浙江九年级三模)2021的绝对值是()A.12021B.﹣12021C.2021D.﹣2021【答案】C【分析】根据绝对值的定义即可得出正确选项.【详解】解:2021的绝对值是2021故选:C.【点睛】本题考查求绝对值.正数的绝对值是它本身0的绝对值是0负数的绝对值是它的相反数.【专题训练】一、选择题1.(2021·江苏苏州市·九年级二模)π的相反数是()A.π-B.πC.1π-D.1π【答案】A【分析】根据相反数的定义即可求解.【详解】解:π的相反数是π-故选:A【点睛】此题考查的是相反数的概念是:只有符号不同的两个数互为相反数掌握相反数的概念是解题的关键.2.(【新东方】初中数学20210625-022【初一上】)下列各对量中不具有相反意义的是()A.胜2局与负3局B.盈利3万元与亏损3万元C.气温升高4℃与气温降低10℃D.转盘逆时针转3圈与向右转5圈【答案】D【分析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【详解】解:A胜2局与负3局具有相反意义不符合题意B盈利3万元与亏损3万元具有相反意义不符合题意C气温升高4℃与气温降低10℃具有相反意义不符合题意D转盘逆时针转3圈与向右转5圈不具有相反意义符合题意故选D.【点睛】本题主要考查了正数和负数的意义解题关键是理解“正”和“负”的相对性明确什么是一对具有相反意义的量.在一对具有相反意义的量中先规定其中一个为正则另一个就用负表示.3.(【新东方】DY试卷解析初一下数学【00017】)下列关于数轴的图示画法不正确的有()A.4个B.3个C.2个D.1个【答案】B【分析】根据数轴的定义逐一判断即可得到答案.【详解】(1)中数轴的单位长度不一致画法不正确符合题意(2)中数轴没有原点画法不正确符合题意(3)中数轴画法正确不符合题意(4)中数轴没有正方向画法不正确符合题意℃画法不正确的有3个故选B.【点睛】本题主要考查数轴的画法掌握画数轴的三要素:正方向单位长度原点是解题的关键.4.(2021·上海期中)在-125% 23250-0.30.67-4257-中非负数有()A.2个B.3个C.4个D.5个【答案】C【分析】根据非负数的范围即非负数是大于等于零的数即可求解.【详解】解:非负数有:232500.67负数有:-125% -0.32 57 -非负数有4个.故选:C【点睛】本题主要考查了有理数的分类解题的关键是熟练掌握有理数的分类情况.5.(2021·江苏南京一中七年级月考)一个数的绝对值是7这个数是()A.7B.﹣7C.7或﹣7D.不能确定【答案】C【分析】根据绝对值的定义即可求解.【详解】解:℃一个数的绝对值是7℃这个数是7或﹣7.故选:C.【点睛】此题主要考查绝对值的求解解题的关键是熟知绝对值的性质.二填空题6.(2021·福建七年级期末)﹣2的相反数是___.【答案】2【分析】根据一个数的相反数就是在这个数前面添上“-”号 求解即可. 【详解】解:-2的相反数是:-(-2)=2故答案为:2. 【点睛】本题考查了相反数的意义 一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数 一个负数的相反数是正数 0的相反数是0.不要把相反数的意义与倒数的意义混淆.7.(1.有理数(题型篇))如果节约20元钱 记作“+20”元 那么浪费15元钱 记作_______元.【答案】-15 【分析】根据节约20元钱 记作“+20”元 可知浪费记为负 可得结果. 【详解】解:根据题意 节约记为正 浪费记为负 那么浪费15元钱 记作-15元故答案为:-15. 【点睛】本题考查了正负数的意义 解题关键是明确正负数代表意义相反的两个量 节约记为正 浪费记为负. 8.(2021·江苏七年级期末)下列各数:﹣1 2 1.01001…(每两个1之间依次多一个0) 0 227 3.14 其中有理数有_____个.【答案】4.【分析】 根据有理数的定义逐一判断即可.【详解】解:在所列实数中 有理数有﹣1 0227 3.14 故答案为:4.【点睛】本题考查了有理数 掌握有理数的概念是解题的关键.9.(1.有理数(题型篇))如果若|x -2|=1 则x =________.【答案】3或1根据绝对值的性质可得x-2=±1再求出x即可.【详解】解:℃|x-2|=1℃x-2=±1则x-2=1或x-2=-1解得:x=3或1故答案为:3或1.【点睛】此题主要考查了绝对值关键是掌握绝对值等于一个正数的数有两个它们互为相反数.10.(2021·湖南七年级期末)已知A B是数轴上的两点且AB=4.5点B表示的数为1则点A表示的数为___________.【答案】﹣3.5或5.5【分析】根据AB=4.5点B表示的数为1进行分类讨论A可以在B的左边或右边求得点A表示的数.【详解】解:℃AB=4.5B表示1℃A表示的数为1﹣4.5=﹣3.5或1+4.5=5.5.故答案为:﹣3.5或5.5.【点睛】本题考查了数轴上两点之间的距离解题的关键是分类讨论借助数轴来分析.三解答题11.(2021·河北七年级期中)把下列各数填在相应的表示集合的大括号里:﹣2312﹣(﹣96)﹣|﹣3| ﹣4.50|﹣2.5|13.(1)正有理数集合{…} (2)非负整数集合{…} (3)负分数集合{…}.【答案】(1)12﹣(﹣96)|﹣2.5| 13(2)12﹣(﹣96)0|﹣2.5| (3)﹣23﹣4.5化简各数 进而分别利用正有理数 非负整数 负分数分析 再分类填写. 【详解】解:﹣(﹣96)=96 ﹣|﹣3|=﹣3 |﹣2.5|=2.5(1)正有理数集合{12 ﹣(﹣96) |﹣2.5| 13…} (2)非负整数集合{12 ﹣(﹣96) 0 …}(3)负分数集合{﹣23 ﹣4.5 …}. 【点睛】本题主要考查了有理数的相关定义 正确化简各数是解题关键.12.(【新东方】初中数学1283-初一上)把下面的数填入它所属于的集合的大括号内(填序号) ① 5.3- ②5+ ③20% ④0 ⑤27- ⑥7- ⑦3--∣∣ ⑧( 1.8)-- 正数集合{ }整数集合{ }分数集合{ }有理数集合{ }【答案】见解析【分析】根据有理数的分类填空.【详解】解:-|-3|=-3 -(-1.8)=1.8.正数集合{②③⑧}整数集合{②④⑥⑦}分数集合{①③⑤⑧}有理数集合{①②③④⑤⑥⑦⑧}.【点睛】本题考查了有理数 认真掌握正数 负数 整数 分数 正有理数 负有理数 非负数的定义与特点.注意整数和正数的区别 注意0是整数 但不是正数.13.(2020·贵阳市清镇养正学校七年级期中)已知下列各有理数 2.5- 0 3- ()2-- 0.5 1-.(1)画出数轴 在数轴上标出表示这些数的点(2)用>符号把这些数连接起来.【答案】(1)见解析 (2)3->-(-2)>0.5>0>-1>-2.5【分析】(1)求出|-3|=3 -(-2)=2 在数轴上把各个数表示出来(2)根据数轴上右边的数总比左边的数大比较即可.【详解】解:(1)如图(2)3->-(-2)>0.5>0>-1>-2.5.【点睛】本题考查了有理数的大小比较和数轴的应用 关键是求出各个数的大小和在数轴上把各个数表示出来 注意:在数轴上右边的数总比左边的数大.14.(【新东方】初中数学20210625-022【初一上】)在数轴上 A B 两点的数分别用a b 表示 如果2a =- 2b a = 请你在给定的数轴上(1)画出B 点可能的位置 并标上字母(2)计算A B 两点的距离为多少?【答案】(1)见解析 (2)2或6【分析】(1)根据绝对值的意义求出b 值 在数轴上画出即可(2)根据b 值 利用两点间的距离计算方法计算即可.【详解】解:(1)℃a =-2℃2=a℃2224b a ==⨯=b=±℃4画图如下:(2)如图可知:当b=-4时AB=2即A B两点距离为2当b=4时AB=6即A B两点距离为6℃A B两点的距离为2或6.【点睛】本题考查了绝对值的意义数轴上两点之间的距离解题的关键是要进行分类讨论.15.(2021·河南七年级期末)点A B在数轴上所表示的数如图所示回答下列问题:(1)将A在数轴上向左移动1个单位长度再向右移动9个单位长度得到点C求出B C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D且A D两点间的距离是3求m的值.【答案】(1)B C两点间的距离是3个单位长度(2)m的值为2或8.【分析】(1)利用数轴上平移左移减右移加可求点C所表示的数为﹣3﹣1+9=5利用绝对值求两点距离BC=|2﹣5|=3(2)分类考虑当点D在点A的左侧与右侧利用AD=3求出点D所表示的数再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5℃BC=|2﹣5|=3.(2)当点D在点A的右侧时点D所表示的数为﹣3+3=0所以点B移动到点D的距离为m=|2﹣0|=2。
第1章有理数(易错必刷30题14种题型专项训练)(原卷版)
第1章 有理数(易错必刷30题14种题型专项训练)➢ 正数和负数 ➢ 有理数 ➢ 数轴 ➢ 相反数 ➢ 绝对值 ➢ 有理数大小比较 ➢ 有理数的减法➢ 有理数的乘法 ➢ 有理数的乘方 ➢ 非负数的性质:偶次方 ➢ 有理数的混合运算 ➢ 科学记数法—表示较大的数 ➢ 实数大小比较 ➢ 规律型:数字的变化类一.正数和负数(共4小题)1.(2022秋•霍林郭勒市校级月考)如果向东走6km ,记作+6km ,那么﹣3km 表示( ) A .向西走3kmB .向北走3kmC .向南走3kmD .向东走3km2.(2022秋•桂林月考)如果零上2℃记作+2℃,那么零下3℃记作 .3.(2022秋•惠济区期中)为全力迎接全国第十四届运动会,西安市将继续加快交通高质量发展,不断增强市民获得感和幸福感.某检修小组从O 地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下,(单位:km ) 第一次 第二次 第三次 第四次 第五次 第六次 第七次 ﹣4+7﹣9+8+6﹣5﹣1(1)求收工时距O 地多远? (2)在第几次记录时距O 地最远?(3)若每千米耗油0.2升,问共耗油多少升?4.(2022秋•福清市校级月考)超市购进8筐白菜,以每筐25kg 为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5. (1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?二.有理数(共1小题)5.(2022秋•旌阳区校级月考)请你把下列各数填入表示它所在的数集的圈里:﹣2,﹣20%,﹣0.13,,10,,21,6.2,4.7,﹣8.正整数:{ …};负整数:{ …};正分数:{ …};负分数:{ …}.三.数轴(共3小题)6.(2022秋•隆昌市校级月考)数轴上点P表示的数为﹣2,与点P距离为3个单位长度的点表示的数为()A.1B.5C.1或﹣5D.1或57.(2022秋•雁塔区校级月考)有理数a、b、c在数轴上的位置如图所示,则|a|﹣|a﹣b|+|c﹣a|+|b﹣c|的值是()A.2c﹣3a B.a C.2c﹣a D.2c﹣2b8.(2022秋•广信区月考)数a,b,c在数轴上的位置如图所示:化简:|a+c|+|b﹣c|﹣|c﹣b|.四.相反数(共1小题)9.(2022秋•齐河县校级月考)的相反数是()A.2B.﹣2C.D.五.绝对值(共1小题)10.(2022秋•启东市校级月考)已知|m|=4,|n|=6,且m+n=|m+n|,则m﹣n的值是()A.﹣10B.﹣2C.﹣2或﹣10D.2六.有理数大小比较(共3小题)11.(2022秋•连山区月考)在有理数0,2,﹣1,﹣2中,最小的数是()A.0B.2C.﹣1D.﹣212.(2022秋•高明区月考)写出一个比﹣3大的负整数为.13.(2022秋•阿图什市校级月考)在数轴上把下列各数表示出来,并用小于符号从小到大排列出来﹣2,0,|﹣4|,0.5,﹣5,﹣(﹣3).七.有理数的减法(共1小题)14.(2022秋•扬州月考)对于含绝对值的算式,在有些情况下,可以不需要计算出结果也能将绝对值符号去掉,例如:|7﹣6|=7﹣6;|6﹣7|=7﹣6;=;=.观察上述式子的特征,解答下列问题:(1)把下列各式写成去掉绝对值符号的形式(不用写出计算结果):①|23﹣47|=;②=;(2)当a>b时,|a﹣b|=a﹣b;当a<b时,|a﹣b|=;(3)计算:.八.有理数的乘法(共1小题)15.(2022秋•南安市月考)如果两数之和是负数,且它们的积是负数,那么()A.这两个数都是负数B.这两个数都是正数C.这两个数中,一个是正数,一个是负数,且负数的绝对值较大D.这两个数中,一个是正数,一个是负数,且正数的绝对值较大九.有理数的乘方(共2小题)16.(2021秋•香洲区校级月考)下列说法正确的是()A.倒数等于它本身的数只有1B.平方等于它本身的数只有1C.立方等于它本身的数只有1D.正数的绝对值是它本身17.(2022秋•桂林月考)下列各数中,互为相反数的是()A.|﹣1|和1B.﹣3和﹣(﹣2)C.(﹣2)2和﹣22D.﹣3和一十.非负数的性质:偶次方(共1小题)18.(2022春•南岗区校级月考)已知|a﹣2|+(b+3)2=0,则b a=.一十一.有理数的混合运算(共8小题)19.(2022秋•怀柔区校级月考)如果a>0,那么下面各式计算结果最大的是()A.B.C.D.20.(2022秋•西城区校级月考)(1)﹣5+1﹣(﹣2);(2)(﹣)2+8×(﹣);(3)(+﹣)÷(﹣);(4)[﹣33×()2﹣|﹣1|]×(﹣).21.(2022秋•朝阳区校级月考)计算(能用简便方法的用简便方法):(1)(﹣3)+12+(﹣17)+(+8);(2);(3);(4).22.(2022•越秀区校级开学)39×+148×+48×.23.(2022•越秀区校级开学).24.(2022秋•宛城区校级月考)某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:与标准重量的差值(单位:千克)﹣0.5﹣0.2500.250.30.5箱数1246n2(1)求n的值及这20箱樱桃的总重量:(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.25.(2022秋•朝阳区校级月考)对于任意的非零有理数a,b,定义:,解决以下问题:(1)计算(﹣3)*4;(2)计算(﹣6)*2*(﹣3);(3)请你举例验证一下交换律即a*b=b*a在这一运算中是否成立.(举一个例子即可).26.(2022秋•庐江县期中)小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时,;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,.(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0];(3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.一十二.科学记数法—表示较大的数(共2小题)27.(2022秋•沈丘县月考)2021年末河南省常住人口9883万人,其中城镇常住人口5579万人,乡村常住人口4304万人;常住人口城镇化率为56.45%,比上年末提高1.02个百分点,数据“9883万”用科学记数法可以表示为()A.9.883×107B.9.883×108C.98.83×107D.98.83×10628.(2022秋•茅箭区校级月考)据国家航天局消息,航天科技集团所研制的天问一号探测器由长征五号运载火箭发射,并成功着陆于火星预选着陆区,距离地球320000000千米.其中320000000用科学记数法表示为.一十三.实数大小比较(共1小题)29.(2021秋•松山区期中)已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置,并将这四个数从小到大排列;(2)若数b与其相反数相距16个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a与数b的相反数表示的点相距4个单位长度,则a表示的数是多少?一十四.规律型:数字的变化类(共1小题)30.(2020秋•新市区校级月考)阅读下面的解答过程.计算:.解:因为,所以原式====.根据以上解题方法计算:(1)=﹣(n为正整数);(2).(3).。
有理数及其运算(易错题归纳)(解析版)—2024-2025学年七年级数学上册单元速记巧练(北师大版)
有理数及其运算(易错题归纳)易错点一认为带“+”的数是正数,带“_”的数是负数正数前面的“+”可有可无,但负数前面一定带“_”1.下列各数中:5,―5,―3,0,―25.8,+2,负数有()7A.1个B.2个C.3个D.4个2.在15,―0.23,0,5,―0.65,2,―,316%这几个数中,非负数的个数是()5A.4个B.5个C.6个D.7个【答案】B【分析】本题考查非负数的识别,熟练掌握其定义是解题的关键.非负数即0和正数,据此进行判断即可.【详解】解:15,0,5,2,316%是非负数,共5个,故选:B.易错点二画数轴时,容易缺少某个要素数轴必须具备三个要素:原点、正方向和单位长度。
在画数轴时易出现的错误有:(1)缺少正方向;(2)缺少原点;(3)单位长度不统一3.下列图形中是数轴的是( )A.B.C.D.【答案】D【分析】本题考查了数轴的定义,掌握数轴的定义是解题的关键,数轴是规定了原点、正方向和单位长度的直线.【详解】解:A、没有正方向,不是数轴,故本选项不符合题意;B、负半轴的数据标注错误,不是数轴,故本选项不符合题意;C、单位长度不等,不是数轴,故本选项不符合题意;D、符合数轴的定义,是数轴,故本选项符合题意;故选:D.4.如图是一些同学在作业中所画的数轴,其中,画图正确的是( )A.B.C.D.5.下列四个选项中,所画数轴正确的是()A.B.C.D.【答案】D【分析】本题考查数轴定义,熟记数轴三要素:原点、单位长度和正方向,逐项验证即可得到答案,熟记构成数轴的三要素是解决问题的关键.【详解】解:A、没有原点,所画数轴错误,不符合题意;B、单位长度不统一,所画数轴错误,不符合题意;C、数轴上的点表示的数必须是左边小、右边大,所画数轴错误,不符合题意;D、所画数轴正确,符合题意;故选:D.6.如果两数和为正数、下列说法中正确的是()A.两个加数都是正数B.一个加数是正数,另一个加数是负数C.两个加数的差是正数D.绝对值数较大的加数必是正数【答案】D【分析】根据有理数的加法计算法则可知,两数相加时,符号取绝对值大的数的符号,因为结果为正数,则其中大的那个加数的符号为正,据此可得答案.【详解】解:∵两数和为正数,∴绝对值大的数的符号为正,故选D.【点睛】本题主要考查了有理数的加法计算法则,熟知两数相加时,符号取绝对值大的数的符号是解题的关键.7.如果两个数的和是正数,那么( )A.这两个加数都是正数B.一个加数为正数,另一个加数为0C.一个加数为正数,另一个加数为负数,且正数的绝对值大于负数的绝对值D.以上皆有可能【答案】D【分析】根据有理数的加法法则分析判断即可.【详解】解:如果两个数的和是正数,可能这两个加数都是正数,如1+1=2;一个数为正数,另一个加数为0,两个数的和是正数,如0+2=2;一个加数为正数,另一个加数为负数,且正数的绝对值大于负数的绝对值,则两个数的和为正数,如―1+3=2.故选:D.【点睛】本题主要考查了有理数的加法法则,理解并熟练掌握有理数的加法法则是解题关键.易错点三对绝对值意义理解不透,认为只有正数的绝对值是它本身正数和0的绝对值是它本身,负数的绝对值是它的相反数8.当|x|=―x时,则x一定是( )A.负数B.正数C.负数或0D.0【答案】C【分析】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=―a.根据绝对值的意义得到x≤0.【详解】解:∵|x|=―x,∴x≤0.故选:C.9.已知a=―5,|a|=|b|,则b=()A.+5B.―5C.0D.+5或―5易错点四已知一个数的绝对值求这个数的时,容易漏掉其中一个互为相反数的两个数的绝对值相等,是同一个数10.如果|a|=7,|b|=5,a、b异号.试求a―b的值为( )A.2或―2B.―12或―2C.2或12D.12或―12【答案】D【分析】本题考查求代数式的值,绝对值,熟练掌握以上知识是解题的关键.先根据绝对值的性质求出a与b的值,再代入进行计算即可.【详解】解:∵|a|=7,|b|=5,a、b异号,∴a=7,b=―5或a=―7,b=5,∴a―b=7―(―5)=12或a―b=―7―5=―12.故选:D.11.一个数的绝对值等于34,则这个数是()A.34B.―34C.±34D.±43易错点五在进行有理数加法运算时,容易忽略符号在进行有理数加法运算时,可分为两步:1.确定符号;2.进行运算12.将5―(+6)―(―7)+(―8)写成省略正号和括号的形式,正确的是()A.5―6+7―8B.5―6―7―8C.5―6+7+8D.5―6―7+813.计算:(1)(+7)+(―6)+(―7);(2)13+(―12)+17+(―18);(3)++52+(4)(―20)+379+20+(5)(―3.75)+2+―(6)5.6+(―0.9)+4.4+(―8.1).【答案】(1)―6(2)0(3)0(4)314.用适当的方法计算:(1)0.34+(―7.6)+(―0.8)+(―0.4)+0.46;(2)(―18.35)+(+6.15)+(―3.65)+(―18.15).【答案】(1)―8(2)―34【分析】本题考查了有理数的加法,解题的关键是掌握有理数的加法法则.(1)利用结合律简便计算法计算;(2)利用结合律简便计算法计算.【详解】(1)解:0.34+(―7.6)+(―0.8)+(―0.4)+0.46=(0.34+0.46)+(―0.8)+[(―0.4)+(―7.6)]=0.8+(―0.8)+(―8)=―8;(2)(―18.35)+(+6.15)+(―3.65)+(―18.15)=(―18.35)+(―3.65)+[(―18.15)+6.15]=―22+(―12)=―34.易错点六认为两数之和一定大于每一个加数两正数相加时,两数之和一定大于每一个加数;但是,两有理数相加数之和不一定大于每一个加数。
专题训练(二) 有理数易错题归纳1
专题训练(二)有理数易错题归纳►易错点一基本概念理解不透1. -0.4的倒数是()A. 0.4B. -0.4C. -D.2. 下列说法正确的是()A. 最小的正整数是0B.-a是负数C. 符号不同的两个数互为相反数D.-a的相反数是a►易错点二考虑问题不全面3. 已知a=-8, |a|=|b|, 则b的值等于()A. 8B. -8C. 0D. 8或-84. 绝对值不大于4的整数的积是()A. 16B. 0C. 576D. -15.若ab≠0, 则+的值不可能是()A. 2B. 0C. -2D. 16.已知|x|=2, |y|=3, 且xy<0, 则x+y的值为________.►易错点三错误套用分配律7. 计算: 12÷=________.►易错点四混淆-a n与(-a)n的意义8. 计算-24的结果是()A. 8B. -8C. 16D. -169. 计算:-24÷(-2)2+2×(-2)3=________.►易错点五混淆运算符号和性质符号10. 计算: (1)-6-9;(2)1-(-12+14-13); (3)-60×⎝⎛⎭⎫-15+12-112+56. ► 易错点六 运算顺序错误11. 计算: (1)-2÷5×;(2)3×42+43÷2;(3)-81÷94×49÷(-16); (4)-22+|5-8|+24÷(-3)×13. ► 易错点七 确定近似数的精确度时出错12. 2019·合肥五十四中模拟G20峰会来了, 在全民的公益热潮中, 杭州的志愿者们摩拳擦掌, 想为世界展示一个美丽幸福文明的杭州. 据统计, 目前杭州市注册志愿者已达9.17×105人. 而这个数字, 还在不断地增加. 请问近似数9.17×105的精确度是( )A. 百分位B. 个位C. 千位D. 十万位13.某市2019年财政收入取得重大突破, 地方公共财政收入用四舍五入取近似值后为27.39亿元, 那么这个数值精确到________位.专题训练(二) 有理数易错题归纳1. C2.D3. D4. B5. D6. 1或-17.8. D9. -2010. 解: (1)原式=-6+(-9)=-15.(2)1-(-12+14-13)=1-(-56+14)=1-(-712)=1+712=1712. (3)原式=(-60)×(-15)+(-60)×12-(-60)×112+(-60)×56=12-30+5-50=-63.11. 解: (1)-2÷5×=-2××=.(2)原式=80.(3)原式=-81×49×49×(-116)=36×49×116=1. (4)原式=-4+|-3|+24×(-13)×13=-4+3-83=-113. 12. C .13. 百万。
语法知识—有理数的易错题汇编含解析
一、填空题1.a ,b ,c ,d 为互不相等的有理数,且3c =,1a c b c d b -=-=-=,则a d -=__________.2.有理数在a ,b ,c 在数轴上的位置如图所示, 则a c +-c b -=__________.3.若|x ﹣y|+2y -=0,则xy+1的值为_____.4.把数轴上(如图所示)表示的三个数(a ,b ,c)用“>”连接起来______________.5.若|2x-1|=7,则|5x+7|=______.6.到数轴上表示6-和表示10的两点距离相等的点表示的数是______.7.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A 、B 、C 、D ,先将圆周上的字母A 对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向右滚动:()1数轴上的2所对应的点将与圆周上的字母______所对应的点重合;()2数轴上的数2019所对应的点将与圆周上的字母______所对应的点重合.8.若2|9|(3)0x y x y +-+-+=,则3x y -=______。
9.点A 在数轴上的位置如图所示,则点A 表示的数的相反数是_____.10.若1x y -++(2-x )2=0,则xy =__________二、解答题11.3y 1-332x -互为相反数,且x-y+4的平方根是它本身,求x 、y 的值. 12.某水果商店经销一种苹果,共有20筐,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如表: 与标准质量的差值(单位;千克) -3 -2 -1.5 0 1 2.5 筐数142328(1)这20筐苹果中,最重的一筐比最轻的一筐多重多少千克? (2)与标准重量比较,这20筐苹果总计超过或不足多少千克?(3)若苹果每千克售价8.5元,则出售这20筐苹果可卖多少元? 13.计算:131822---- 14.如图,数轴上A 、B 两点对应的有理数分別为20和30,点P 和点Q 分别同时从点A 和点O 出发,以每秒2个单位长度,每秒4个单位长度的速度向数轴正方向运动,设运动时间为t 秒.(1)当2t =时,则P 、Q 两点对应的有理数分别是______;PQ =_______; (2)点C 是数轴上点B 左侧一点,其对应的数是x ,且2CB CA =,求x 的值; (3)在点P 和点Q 出发的同时,点R 以每秒8个单位长度的速度从点B 出发,开始向左运动,遇到点Q 后立即返回向右运动,遇到点P 后立即返回向左运动,与点Q 相遇后再立即返回,如此往返,直到P 、Q 两点相遇时,点R 停止运动,求点R 运动的路程一共是多少个单位长度?点R 停止的位置所对应的数是多少?15.若a ,b ,c 是△ABC 的三边,且a ,b 满足关系式|a-6|+(b-8)2=0,c 是不等式组()25443241x x x x +⎧-⎪⎨⎪++⎩><的最大整数解,求△ABC 的周长. 三、1316.下列语句:①一个数的绝对值一定是正数; ②-a 一定是一个负数;③没有绝对值为-3的数;④若a =a ,则a 是一个正数;⑤离原点左边越远的数就越小;正确的有( )个.A .0B .3C .2D .417.下列说法中,正确的是( ) A .在数轴上表示-a 的点一定在原点的左边 B .有理数a 的倒数是1aC .一个数的相反数一定小于或等于这个数D .如果a a =-,那么a 是负数或零18.若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是( )A .--a c b c >B .a c b c +<+C .ac bc >D .a b c c> 19.下列各数中最大的是( ) A .B .1C .D .20.实数a 、b 、c 在数轴上的对应点如图所示,化简|a ﹣b |+|c ﹣b |=( )A .a +c ﹣2bB .a ﹣cC .2bD .2b ﹣a ﹣c21.有理数a, b, c 在数轴上的位置如图,化简|a+b|-|c-b|的结果为( )A .a+cB .a-cC .-a-2 b+cD .-a+c22.已知实数a 在数轴上的位置如图所示,则化简|a -1|+|a |的结果为( )A .1B .1-C .12a -D .21a -23.下列说法中正确的是( ) ①任何数的绝对值都是正数; ②实数和数轴上的点一一对应; ③任何有理数都大于它的相反数; ④任何有理数都小于或等于他的绝对值. A .①②B .③④C .①③D .②④ 24.下列各数不是1的相反数的是( ) A .3(1)-B .1--C .21-D .()224-÷-25.已知点A 、B 、C 分别是数轴上的三个点,点A 表示的数是1-,点B 表示的数是2,且B 、C 两点的距离是A 、B 两点间距离的3倍,则点C 表示的数是( ) A .11 B .9 C .9或11 D .7-或11【参考答案】***试卷处理标记,请不要删除一、填空题1.3【解析】【分析】根据题意分别求出ab 的值然后分情况讨论求出对应的d 的值再分别计算即可【详解】解:∵abcd 为互不相等的有理数且c =3|a −c|=|b −c|=1∴a=2b =4或a =4b =2当a =2b 解析:3 【解析】 【分析】根据题意分别求出a 、b 的值,然后分情况讨论求出对应的d 的值,再分别计算即可. 【详解】解:∵a 、b 、c 、d 为互不相等的有理数,且c =3,|a−c|=|b−c|=1, ∴a =2,b =4或a =4,b =2, 当a =2,b =4,|d−b|=1时,d =3或5, ∵c =3,∴d=5,则|a−d|=3,当a=4,b=2,|d−b|=1时,d=3或1,∵c=3,∴d=1,则|a−d|=3,综上所述:|a−d|=3.【点睛】本题考查的是绝对值的概念和性质,掌握绝对值等于一个正数的数有两个,绝对值等于0的数有一个,绝对值不可能等于负数是解题的关键,注意分情况讨论思想的正确运用.2.-a-2c+b【解析】【分析】根据数轴上点的位置判断出绝对值里式子的正负利用绝对值的代数意义化简计算即可得到结果【详解】解:根据题意得:a<b <0<c且|c|<|b|<|a|∴a+c<0c-b>0则解析:-a-2c+b【解析】【分析】根据数轴上点的位置判断出绝对值里式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:a<b<0<c,且|c|<|b|<|a|,∴a+c<0,c-b>0,则原式=-a-c-c+b=-a-2c+b;故答案为:-a-2c+b.【点睛】本题考查了整式的加减,掌握整式的加减实质上就是合并同类项是解题的关键.3.【分析】根据非负数的和为0那么每个非负数都为0列出方程组求出xy;最后代入解析式即可【详解】解:由题意得:解得x=2y=2所以xy+1=2×2+1=5故答案为5【点睛】本题考查非负数的性质其解答关键解析:【分析】根据非负数的和为0,那么每个非负数都为0,列出方程组求出x,y;最后代入解析式即可.【详解】解:由题意得:20x yy-=⎧⎨-=⎩,解得x=2,y=2所以xy+1=2×2+1=5故答案为5.【点睛】本题考查非负数的性质,其解答关键是“非负数的和为0,那么每个非负数都为0”.4.c>a>b【解析】【分析】在数轴上右边的点所表示的数比左边的点表示的数要大依此即可求解【详解】把数轴上(如图所示)表示的三个数(abc)用>连接起来为:c >a >b 【点睛】本题考查了有理数的大小比较:解析:c >a >b 【解析】 【分析】在数轴上,右边的点所表示的数比左边的点表示的数要大,依此即可求解. 【详解】把数轴上(如图所示)表示的三个数(a ,b ,c)用“>”连接起来为:c >a >b . 【点睛】本题考查了有理数的大小比较:在数轴上,右边的点所表示的数比左边的点表示的数要大.5.27或8【解析】【分析】根据绝对值得出x 的值进而解答即可【详解】解:∵|2x -1|=7∴2x -1=±7解得:x=4或x=-3把x=4代入|5x+7|=27把x=-3代入|5x+7|=8故答案为27或解析:27或8 【解析】 【分析】根据绝对值得出x 的值,进而解答即可. 【详解】 解:∵|2x-1|=7, ∴2x-1=±7, 解得:x=4或x=-3, 把x=4代入|5x+7|=27, 把x=-3代入|5x+7|=8, 故答案为27或8. 【点睛】此题考查绝对值问题,关键是根据绝对值得出x 的值.6.2【解析】【分析】根据数轴上两点的中点求法即两数和的一半直接求出即可【详解】解:到数轴上表示和表示10的两点距离相等的点表示的数是故答案为:2【点睛】本题考查了数轴上两点之间中点求法我们把数和点对应解析:2 【解析】 【分析】根据数轴上两点的中点求法,即两数和的一半,直接求出即可. 【详解】解:到数轴上表示6-和表示10的两点距离相等的点表示的数是61022-+=, 故答案为:2. 【点睛】本题考查了数轴上两点之间中点求法,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.7.DC 【解析】【分析】因为圆沿着数轴向右滚动依次与数轴上数字顺序重合的是ADCB 即表示的数都与A 点重合数轴上表示4n 的点大于都与点B 重合依此按序类推【详解】解:当圆周向右转动一个单位时可得D 点与数轴上解析:D C 【解析】 【分析】因为圆沿着数轴向右滚动,依次与数轴上数字顺序重合的是A 、D 、C 、B ,即表示4n 1+的数都与A 点重合,数轴上表示4n 的点(大于1)都与点B 重合,依此按序类推. 【详解】()1解:当圆周向右转动一个单位时,可得D 点与数轴上的2对应的点重合,故答案为D .()2解:设数轴上的一个整数为x ,由题意可知当x 4n 1=+时(n 为整数),A 点与x 重合; 当x 4n 2=+时(n 为整数),D 点与x 重合; 当x 4n 3=+时(n 为整数),C 点与x 重合; 当x 4n =时(n 1≥的整数),B 点与x 重合;而201950443=⨯+,所以数轴上的2019所对应的点与圆周上字母C 重合. 故答案为C . 【点睛】本题考查了数轴上数字在圆环旋转过程中的对应规律,看清圆环的旋转方向是重点,关键要找到旋转过程中数字的对应方式.8.3【分析】利用非负数的性质列出方程组求出方程组的解得到与的值即可求出所求【详解】解:①②得:解得:①②得:∴则故答案为:3【点睛】此题考查了解二元一次方程组以及非负数的性质熟练掌握运算法则是解本题的解析:3 【分析】利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可求出所求. 【详解】 解:29(3)0x y x y +-+-+=,∴9030x y x y +-=⎧⎨-+=⎩①②,①+②得:26=0x -, 解得:3x =,①-②得:6y =, ∴36x y =⎧⎨=⎩, 则3963x y -=-=, 故答案为:3 【点睛】此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.9.﹣2【分析】点A 在数轴上表示的数是2根据相反数的含义和求法判断出点A 表示的数的相反数是多少即可【详解】解:∵点A 在数轴上表示的数是2∴点A 表示的数的相反数是﹣2故答案为:﹣2【点睛】考核知识点:相反解析:﹣2. 【分析】点A 在数轴上表示的数是2,根据相反数的含义和求法,判断出点A 表示的数的相反数是多少即可. 【详解】解:∵点A 在数轴上表示的数是2, ∴点A 表示的数的相反数是﹣2. 故答案为:﹣2. 【点睛】考核知识点:相反数.理解相反数再数轴上的特点是关键.10.6【解析】【分析】由于|x-y+1|+(2-x )2=0而|x-y+1|和(2-x )2都是非负数由此可以得到它们中每一个都等于0由此即可求出xy 的值代入代数式求值即可【详解】∵|x-y+1|+(2-x解析:6 【解析】 【分析】由于|x-y+1|+(2-x )2=0,而|x-y+1|和(2-x )2都是非负数,由此可以得到它们中每一个都等于0,由此即可求出x 、y 的值,代入代数式求值即可. 【详解】∵|x-y+1|+(2-x )2=0,|x-y+1|≥0和(2-x )2≥0, ∴|x-y+1|=0,(2-x )2=0, 解得x=2,y=3. ∴xy=6. 故答案是:6. 【点睛】考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论即可解决此类问题.二、解答题11.x=6,y=10.【解析】【分析】根据已知得出方程y-1=-(3-2x),x-y+4=0,求出两方程组成的方程组的解即可.【详解】互为相反数,∴y-1=-(3-2x),∵x-y+4的平方根是它本身,∴x-y+4=0,即13240y x x y-=-+⎧⎨-+=⎩,解得:x=6,y=10.【点睛】本题考查了相反数、平方根、解二元一次方程组的应用,关键是能根据题意得出方程组.12.(1)5.5千克(2)与标准重量比较,20筐苹果总计超过8千克(3)4318元【解析】【分析】(1)根据表格中的数据将最重的一筐与最轻的一筐相减即可;(2)将表格中的20个数据相加计算即可;(3)根据总价=单价×数量列式,计算即可.【详解】(1)由表格可知,最重的一筐比最轻的一筐重:2.5-(-3)=5.5(千克),答:最重的一筐比最轻的一筐多重5.5千克.(2)由表格可得,(-3)×1+(-2)×4+(-1.5)×2+0×3+2×1+2.5×8=(-3)+(-8)+(-3)+0+2+20=8(千克),答:与标准重量比较,20筐苹果总计超过8千克;(3)由题意可得,(20×25+8)×8.5=4318(元),即出售这20筐苹果可卖4318元.【点睛】本题考查正数和负数,利用了有理数的加减法运算,解题的关键是明确正数和负数在题目中的实际意义.13.-2【解析】 【分析】先运用绝对值、立方根、负次幂的知识进行化简,然后运算即可. 【详解】解:1122--- =11222-- =-2【点睛】本题考查了绝对值、立方根、负次幂的知识,解题的关键在于对这些知识的灵活应用. 14.(1)24,8;16;(2)703或10;(3)80;40. 【解析】 【分析】(1)根据路程=速度×时间,先求出OQ ,OP 的值,进而可求出PQ 的值. (2)由CB=2CA ,可得30-x=2(x-20)或30-x=2(20-x ),解方程即可.(3)设t 秒后P 、Q 相遇.则有4t-2t=20,t=10,此时P 、Q 、R 在同一点,由此可以确定点R 的位置. 【详解】(1)t=2时,OQ=2×4=8,PA=2×2=4,OP=24, ∴P 、Q 分别表示24和8,PQ=24-8=16, 故答案为24,8;16. (2)∵CB=2CA ,∴30-x=2(x-20)或30-x=2(20-x ), ∴x=703或10. (3)设t 秒后P 、Q 相遇.则有4t-2t=20, ∴t=10,∴R 运动的路程一共是8×10=80.此时P 、Q 、R 在同一点,所以点R 的位置所对应的数是40. 【点睛】本题考查一元一次方程的应用、数轴上两点间的距离等知识,解题的关键是理解题意,学会用方程的思想思考问题,属于中考常考题型. 15.【解析】 【分析】根据非负数的性质得到a 、b 的值;再由不等式组()25443241x x x x +⎧-⎪⎨⎪++⎩><的求出c 的值,进而得出三角形的周长. 【详解】 |a-6|+(b-8)2=0 ∴a-6=0,b-8=0, ∴a=6,b=8.∵由不等式组()25443241x x x x +⎧-⎪⎨⎪++⎩>①<②的解得5<x <212,∵c 是不等式组()25443241x x x x +⎧-⎪⎨⎪++⎩><的最大整数解,∴c=10.∴△ABC 的周长为:6+8+10=24. 【点睛】本题主要考查了非负数的性质,一元一次不等式组的整数解,涉及的知识点较多,难度中等.三、13 16.C解析:C 【分析】根据绝对值的性质进行解答. 【详解】①0的绝对值是0,故①错误; ②当a ⩽0时,−a 是非负数,故②错误;③绝对值是非负数,所以没有绝对值为−3的数,故③正确; ④|a|=a ,则a ⩾0,故④错误;⑤离原点左边越远的数绝对值越大,而绝对值大的负数反而小,故⑤正确; 所以正确的结论是③和⑤. 故选C. 【点睛】此题考查绝对值,非负数的性质:绝对值,解题关键在于掌握其定义.17.D解析:D 【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答. 【详解】解:A 、如果a<0,那么在数轴上表示-a 的点在原点的右边,故选项错误;B 、只有当a≠0时,有理数a 才有倒数,故选项错误;C 、负数的相反数大于这个数,故选项错误;D 、如果a a =-,那么a 是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.18.B解析:B【分析】首先根据题意,判定a b c 、、的关系,再逐一根据不等式的性质进行判定各选项的不等式.【详解】解:由题意,得0a b c <<<A 选项,不等式两边同时加上c ,得a b >,不符合题意;B 选项,不等式两边同时减去c ,得a b <,符合题意;C 选项,不等式两边同时除以c ,得a b >,不符合题意;D 选项,不等式两边同时乘以c ,得a b >,不符合题意;故答案为B.【点睛】此题主要考查不等式的基本性质,熟练掌握,即可解题.19.B解析:B【解析】【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出最大的数即可.【详解】根据题意首先可以判断2<<3, ∴<0,0<<1,0<<1 ∴最大的数是1 故选:B.【点睛】此题考查有理数大小比较,解题关键在于掌握其比较的法则. 20.B解析:B【解析】【分析】先根据各点在数轴上的位置判断出a-b及c-b的符号,再去括号,合并同类项即可【详解】由题意可得:c<b<a,∴a﹣b>0,c﹣b<0,∴|a﹣b|=a﹣b,|c﹣b|=﹣(c﹣b),∴原式=a﹣b﹣(c﹣b)=a﹣b﹣c+b=a﹣c.故选B.【点睛】本题考查的是实数的运算,熟知绝对值的性质是解答此题的关键.21.A解析:A【解析】【分析】根据数轴可以判断a、b、c的正负以及它们绝对值的大小,从而可以化简|a+b|-|c-b|.【详解】解:由数轴可得,c<a<0<b,|c|>|b|>|a|,∴a+b>0,c-b<0,∴|a+b|-|c-b|=a+b-[-(c-b)]=a+b-b+c=a+c.故选A.【点睛】本题考查整式的加减、数轴、绝对值,解题的关键是根据数轴判断a、b、c的正负和绝对值的大小,将所求式子的绝对值符号去掉.22.A解析:A【解析】【分析】先根据点a在数轴上位置确定a的取值范围,再根据绝对值的性质把原式化简即可.【详解】解:∵由数轴上a点的位置可知,0<a<1,∴a-1<0,∴原式=1-a+a=1.故选:A.【点睛】考查的是绝对值的性质及数轴的特点,能够根据已知条件正确地判断出a 的取值范围是解答此题的关键.23.D解析:D【解析】【分析】根据实数、相反数、绝对值以及数轴进行判断即可.【详解】①任何数的绝对值都是非负数,故①错误;②实数和数轴上的点一一对应,故②正确;③任何正有理数都大于它的相反数,故③错误;④任何有理数都小于或等于他的绝对值,故④正确.故选D .【点睛】本题考查了实数、相反数、绝对值以及数轴,掌握实数、相反数、绝对值以及数轴的性质是解题的关键.24.D解析:D【解析】【分析】分别计算后即可确定正确的选项.【详解】解:A 、3(1)1-=-,是1的相反数,不符合题意;B 、11--=-,是1的相反数,不符合题意;C 、211-=-,是1的相反数,不符合题意;D 、()2241-÷-=,不是1的相反数,符合题意; 故选D .【点睛】本题考查了有理数的乘方、相反数及绝对值的知识,属于基础运算,比较简单.25.D解析:D【解析】【分析】直接根据题意画出图形,进而分类讨论得出答案.【详解】如图所示:∵点A表示的数是-1,点B表示的数是2,∴A、B两点间距离为3,∵B、C两点间的距离是A、B两点间距离的3倍,∴BC=9,故点C表示的数是:-7或11.故选:D.【点睛】此题主要考查了数轴,正确分类讨论是解题关键.第II卷(非选择题)请点击修改第II卷的文字说明。
语法知识—有理数的易错题汇编附答案
一、填空题1.如图,某点从数轴上的A 点出发,第1次向右移动1个单位长度至B 点,第2次从B 点向左移动2个单位长度至C 点,第3次从C 点向右移动3个单位长度至D 点,第4次从D 点向左移动4个单位长度至E 点,…,依此类推,经过_________次移动后该点到原点的距离为2019个单位长度.2.若2|3|(2)0x y ++-=,则2x y +的值为___________. 3.比较大小:56-______67-.(填“>”、“=”或“<”) 4.有理数a 、b 、c 在数轴上的位置如图所示,且a b =,化简c a c b a b -+-++=________.5.比较大小:(﹣2)3__()2-3 6.已知()2-230a b ++=,则()2019a b +=___________7.有理数,,a b c 在数轴上的位置如图所示,化简||||||a a b c a +-+-的值为________.8.已知2322(25)0y x x y ++++-=,则x =__,y =__.9.数轴上点O 表示原点,点A 表示数﹣4,点P 表示数x ,当PA =PO 时,|x|=_____.二、解答题10.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.11.已知数轴上,点O 为原点,点A 对应的数为9,点B 对应的数为b ,点C 在点B 右侧,长度为2个单位的线段BC 在数轴上移动.(1)如图,当线段BC 在O 、A 两点之间移动到某一位置时,恰好满足线段AC =OB ,求此时b 的值;(2)当线段BC 在数轴上沿射线AO 方向移动的过程中,若存在AC ﹣OB =13AB ,求此时满足条件的b 的值;(3)当线段BC 在数轴上移动时,满足关系式|AC ﹣OB |=711|AB ﹣OC |,则此时b 的取值范围是12.阅读下面一段文字:在数轴上点A ,B 分别表示数a ,b.A ,B 两点间的距离可以用符号AB 表示,利用有理数减法和绝对值可以计算A ,B 两点之间的距离AB .例如:当a=2,b=5时,AB =5-2=3;当a=2,b=-5时,AB =5--2=7;当a=-2,b=-5时,AB =5(2)---=3.综合上述过程,发现点A 、B 之间的距离AB =b a -(也可以表示为a b -).请你根据上述材料,探究回答下列问题: (1)数轴上表示1和3两点之间的距离是 ; (2)表示数a 和-2的两点间距离是6,则a= ;(3)如果数轴上表示数a 的点位于-4和3之间,求43a a ++-的值.(4)是否存在数a ,使代数式123a a a -+-+-的值最小?若存在,请求出代数式的最小值,并直接写出数a 的值或取值范围,若不存在,请简要说明理由.13.如图,数轴上有两定点A 、B ,点A 表示的数为6,点B 在点A 的左侧,且AB=20,动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒(t>0).(1)写出数轴上点B 表示的数______,点P 表示的数用含t 的式子表示:_______; (2)设点M 是AP 的中点,点N 是PB 的中点.点P 在直线AB 上运动的过程中,线段MN 的长度是否会发生变化?若发生变化,请说明理由;若不变化,求出线段MN 的长度. (3)动点R 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、R 同时出发;当点P 运动多少秒时?与点R 的距离为2个单位长度.14.画出数轴并在数轴上表示出下面的有理数,然后把它们用“<”连接起来. -2,|-1.5|,0,-(-3),122,(-1)2019 15.在数轴上表示下列各数,再将其按从大到小的顺序用“>”连接起来 |3|,﹣5,0,﹣2.5,﹣22,﹣(﹣1).三、1316.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1<﹣b <aB .|b|<1<|a|C .1<|b|<aD .﹣1<﹣b <a17.设有理数a 、b 在数轴上对应的位置如图所示,化简a b a b a --+-的结果是( )A .2a b -+B .2a b --C .a -D .b18.如图,A B ,两点表示的有理数分别是,a b ,则下列式子正确的是( )A .()()110a b +->B .()()110a b -->C .0a b ->D .0ab >19.下列关于0的说法错误的是( )A .任何情况下,0的实际意义就是什么都没有B .0是偶数不是奇数C .0不是正数也不是负数D .0是整数也是有理数20.若x 、y 互为相反数,c 、d 互为倒数,m 的绝对值为9,则20192020()3x y cd m +⎛⎫--+ ⎪⎝⎭的值为( )A .8B .9C .10D .8或10-21.a b 、互为倒数,mn 、互为相反数,则代数式()382m n ab +-的值是( ) A .32-B .94-C .32 D .9422.若实数a ,b 在数轴上的位置如图所示,则下列判断正确的是( )A .a>0B .ab>0C .a<bD .a ,b 互为倒数23.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。
(易错题精选)初中数学有理数单元汇编及解析
(易错题精选)初中数学有理数单元汇编及解析一、选择题1.四个有理数﹣2,1,0,﹣1,其中最小的数是()A.1 B.0 C.﹣1 D.﹣2【答案】D【解析】【分析】根据正数大于零,零大于负数,可得答案.【详解】∵-2<-1<0<1,最小的是-2.故选D.【点睛】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.如图,下列判断正确的是()A.a的绝对值大于b的绝对值B.a的绝对值小于b的绝对值C.a的相反数大于b的相反数D.a的相反数小于b的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a|,|b|,有可能|a|>|b|,|a|=|b|,|a|<|b|.由数轴上的点表示的数右边的总比左边的大,得a<b,由不等式的性质,得﹣a>﹣b,故C符合题意;故选:C.【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.3.若a为有理数,且|a|=2,那么a是()A.2 B.﹣2 C.2或﹣2 D.4【答案】C【解析】【分析】利用绝对值的代数意义求出a 的值即可.【详解】若a 为有理数,且|a|=2,那么a 是2或﹣2,故选C .【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.4.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.5.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=,则23a +=,解得:1a =, Q 3tan 60︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.6.在实数-3、0、5、3中,最小的实数是( )A .-3B .0C .5D .3【答案】A【解析】试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A .考点:有理数的大小比较.7.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.8.下列四个数中,是正整数的是()A.﹣2 B.﹣1 C.1 D.1 2【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A、﹣2是负整数,故选项错误;B、﹣1是负整数,故选项错误;C、1是正整数,故选项正确;D、12不是正整数,故选项错误.故选:C.【点睛】考查正整数概念,解题主要把握既是正数还是整数两个特点.9.实数a、b在数轴上的位置如图所示用下列结论正确的是( )A.a+b>a>b>a−b B.a>a+b>b>a−bC.a−b>a>b>a+b D.a−b>a>a+b>b【答案】D【解析】【分析】首先根据实数a,b在数轴上的位置可以确定a、b的取值范围,然后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b两点的位置可知,∵b<0,a>0,|b|<|a|,设a=6,b=-2,则a+b=6-2=4,a-b=6+2=8,又∵-2<4<6<8,∴a-b>a>a+b>b.故选:D.【点睛】此题主要考查了实数与数轴之间的对应关系,解答此题的关键是根据数轴上a,b的位置估算其大小,再取特殊值进行计算即可比较数的大小.10.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.11.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.12.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.13.数轴上的A 、B 、C 三点所表示的数分别为a 、b 、1,且|a ﹣1|+|b ﹣1|=|a ﹣b |,则下列选项中,满足A 、B 、C 三点位置关系的数轴为( )A .B .C .D .【答案】A【解析】【分析】 根据绝对值的意义,在四个答案中分别去掉绝对值进行化简,等式成立的即为答案;【详解】A 中a <1<b ,∴|a ﹣1|+|b ﹣1|=1﹣a+b ﹣1=b ﹣a ,|a ﹣b|=b ﹣a ,∴A 正确;B 中a <b <1,∴|a ﹣1|+|b ﹣1|=1﹣a+1﹣b =2﹣b ﹣a ,|a ﹣b|=b ﹣a ,∴B 不正确;C 中b <a <1,∴|a ﹣1|+|b ﹣1|=1﹣a+1﹣b =2﹣b ﹣a ,|a ﹣b|=a ﹣b ,∴C 不正确;D 中1<a <b ,∴|a ﹣1|+|b ﹣1|=a ﹣1+b ﹣1=﹣2+b+a ,|a ﹣b|=b ﹣a ,∴D 不正确;故选:A .【点睛】本题考查数轴和绝对值的意义;熟练掌握绝对值的意义是解题的关键.14.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】 本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键. 15.如图数轴所示,下列结论正确的是( )A .a >0B .b >0C .b >aD .a >b【答案】A【解析】【分析】根据数轴,可判断出a 为正,b 为负,且a 距0点的位置较近,根据这些特点,判定求解【详解】 ∵a 在原点右侧,∴a >0,A 正确;∵b 在原点左侧,∴b <0,B 错误;∵a 在b 的右侧,∴a >b ,C 错误;∵b 距离0点的位置远,∴a <b ,D 错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大16.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤【答案】D【解析】【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【详解】如果||a a =-,即一个数的绝对值等于它的相反数,则0a ≤.故选D .【点睛】本题考查绝对值,熟练掌握绝对值的性质是解题关键.17.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.b>a B.ab>0 C.a>b D.|a|>|b|【答案】C【解析】【分析】本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.【详解】A、∵b<﹣1<0<a<1,∴b<a,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a>b,故选项C正确;D、∵b<﹣1<0<a<1,∴|b|>|a|,即|a|<|b|,故选项D错误.故选C.【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.18.如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.5【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C表示的数.【详解】∵点A,B互为相反数,∴AB的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C在正半轴距原点3个单位长度,∴点C表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键. 19.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A .a b >B .0a b +>C .0ac >D .a c >【答案】D【解析】【分析】 根据数轴的特点:判断a 、b 、c 正负性,然后比较大小即可.【详解】根据数轴的性质可知:a <b <0<c ,且|c|<|b|<|a|;所以a >b ,0a b +>,ac >0错误;|a|>|c|正确;故选D .【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上离原点的距离判断绝对值的大小.20.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.。
语法知识—有理数的易错题汇编含答案解析
一、填空题1.有理数a,b,c在数轴上的对应点如图所示,化简a c c b b c a b+-++---=______.2.比较大小:-227______-3(填“>”“<”或“=”)3.已知数轴上的点A、B分别表示数-3、+1,若点C是线段AB的中点,则点C所表示的数是__________.4.比较大小:1_____﹣2(填“>,<或=”)5.比较大小:72-_______-3(填“>”“<”或“=”).6.点,,A B C在同一条数轴上,且点A表示的数为-1,点B表示的数为5.若2BC AC=,则点C表示的数为____________.7.分数35的相反数是__________.8.已知实数a,b,在数轴上的对应点位置如图所示,则a+b﹣2_____0(填“>”“<”或“=”).9.设a、b、c为非零实数,且a+b+c≤0,则的值是_____.二、解答题10.已知x、y满足x1-+|y+1|=0,求x2-4y的平方根.11.某水库上周日的水位已达到警戒水位150米,本周内的水位变化情况如下:周一水位+0.4米,周二水位+1.3米,周三水位+0.5米,周四水位+1.2米,周五水位﹣0.5米,周六水位+0.4米,请问:(1)计算说明本周那一天水位最高,有多少米?(2)如果水位超过警戒水位0.6米就要放水,且放出后需保证水位在警戒水位,那么请说明本周应在哪几天放水?(注:正号表示水位比前一天上升,负号表示水位比前一天下降) 12.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑到学校.如果小明跑步的速度均匀的,到达小彬家用了8分钟,整个跑步过程用时共32分钟.(1)以小明家为原点、向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家;(2)用点C表示出学校的位置;(3)求小彬家与学校之间的距离.13.解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车每千米耗油0.2升,这次共耗油多少升?14.已知数轴上三点M,O,N对应的数分别为﹣2,0,4,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M点N的距离相等,则x=.(2)数轴上是否存在点P,使点P到点M、点N的距离之和是10?若存在,求出x的值;若不存在,请说明理由.(3)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.15.如图所示,已知A,B分别为数轴上的两点,点A对应的数为-28,点B对应的数为110.(1)若一只电子蚂蚁P从点A出发,以每秒5个单位长度的速度向右运动,2秒钟后到达点M,则点M对应的数是多少?(2)若该电子蚂蚁P从点M继续以每秒5个单位长度的速度向右运动,4秒钟后,另一只电子蚂蚁Q恰好从点B出发,以每秒4个单位长度的速度向左运动,两只蚂蚁在数轴上的点C相遇.你知道点C对应的数是多少吗?a点B对应的数为b,16.已知数轴上点A和点B分别位于原点O两侧,点A对应的数为,且AB=9.b=-,直接写出a的值;(1)若6(2)若C为AB的中点,对应的数为c,且OA=2OB,求c的值.17.数轴上点A、B、C所表示的数分别是+4,﹣6,x,线段AB的中点为D.(1)求线段AB的长;(2)求点D所表示的数;(3)若AC=8,求x的值.18.如图,图中数轴的单位长度为1.(1)如果点P,T表示的数互为相反数,那么点S表示的数是多少?(2)如果点R,T表示的数互为相反数,那么点S表示的数是正数,还是负数?此时图中表示的5个点中,哪一点表示的数的绝对值最大?为什么?三、1319.有理数a 、b 、c 在数轴上的对应点如图所示,化简代数式:|a ﹣b |﹣|c ﹣a |=( )A .﹣2a ﹣b +cB .﹣b ﹣cC .﹣2a ﹣b ﹣cD .b ﹣c20.下列各式正确的是( )A .0<|﹣1|B .34-=﹣34C .﹣3>﹣2D .|﹣18|<﹣(﹣10) 21.若23(2)0x y ++-=,则2x y +的值为( )A .7B .-7C .1D .-122.表示a ,b 两数的点在数轴上的位置如图所示,则下列判断不正确的是( )A .0a b +<B .a b a ->C .30b <D .0b a> 23.数轴上与表示-3的点距离4个单位长度的点所表示的数为( )A .-7或1B .-1或7C .-7D .124.在﹣2,0.01,﹣32,﹣1四个数中,最小的数是( ) A .﹣2 B .0.01 C .﹣32 D .﹣125.有理数a ,b 在数轴上的位置如图所示,则下列判断正确的是( )A .a b >0B .a +b >0C .|a |<|b |D .a -b <0【参考答案】***试卷处理标记,请不要删除一、填空题1.【解析】【分析】由数轴知去绝对值符号合并同类项即可【详解】解:由数轴知故答案为:【点睛】本题考查了绝对值的性质确定绝对值符号内代数式的性质符号解析:b c -+【解析】【分析】由数轴知,a c 0+<,c b 0+<,b c 0-<,a b 0-<,去绝对值符号合并同类项即可.【详解】解:由数轴知,a c 0+<,c b 0+<,b c 0-<,a b 0-<.a c cb bc a b +-++---()()()()a c b c b c a b =-+++--+-a cbc b c a b =--++-++-b c =-+,故答案为:b c -+.【点睛】本题考查了绝对值的性质,解题关键是确定绝对值符号内代数式的性质符号.2.<【分析】根据两个负数绝对值大的其值反而小解答即可【详解】∵|-|=>|-3|=3∴-<-3故答案为<【点睛】本题考查的是有理数的大小比较有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数解析:<【分析】根据两个负数,绝对值大的其值反而小解答即可.【详解】∵|-227|=227>|-3|=3 ∴-227<-3, 故答案为<【点睛】本题考查的是有理数的大小比较,有理数大小比较的法则:①正数都大于0; ②负数都小于0; ③正数大于一切负数; ④两个负数,绝对值大的其值反而小.3.-1【分析】本题可根据中点的计算方法得出答案【详解】解:根据题意得:AB 中点表示的数为故答案为-1【点睛】本题考查了数轴解决本题的关键是明确若点A 表示的数是a 点B 表示的数是b 则线段的中点表示的数解析:-1【分析】本题可根据中点的计算方法得出答案.【详解】解:根据题意得:AB 中点表示的数为()13112⨯-+=-, 故答案为-1.【点睛】本题考查了数轴,解决本题的关键是明确若点A 表示的数是a,点B 表示的数是b,则线段的中点表示的数2a b +. 4.>【解析】【分析】根据有理数的大小比较法则比较即可【详解】∵负数都小于正数∴1>﹣2故答案为:>【点睛】本题考查了对有理数的大小比较法则的应用注意:负数都小于正数解析:>.【解析】【分析】根据有理数的大小比较法则比较即可.【详解】∵负数都小于正数,∴1>﹣2,故答案为:>.【点睛】本题考查了对有理数的大小比较法则的应用,注意:负数都小于正数.5.<【分析】根据负数的绝对值越大负数越小可得答案【详解】这是两个负数比较大小先求他们的绝对值|-|=|-3|=3∵>3∴-<-3故答案为<【点睛】本题考查了有理数大小比较利用负数的绝对值越大负数越小是解析:<【分析】根据负数的绝对值越大负数越小,可得答案.【详解】这是两个负数比较大小,先求他们的绝对值,|-72|=72,|-3|=3,∵72>3,∴-72<-3,故答案为<.【点睛】本题考查了有理数大小比较,利用负数的绝对值越大负数越小是解题关键.6.-7或1【分析】AB=6分点C在A左边和点C在线段AB上两种情况来解答【详解】AB=5-(-1)=6C在A左边时∵BC=2AC∴AB+AC=2AC∴AC=6此时点C表示的数为-1-6=-7;C在线段解析:-7或1.【分析】AB=6,分点C在A左边和点C在线段AB上两种情况来解答.【详解】AB=5-(-1)=6,C在A左边时,∵BC=2AC,∴AB+AC=2AC,∴AC=6,此时点C表示的数为-1-6=-7;C在线段AB上时,∵BC=2AC,∴AB-AC=2AC,∴AC=2,此时点C表示的数为-1+2=1,故答案为-7或1.【点睛】本题考查了数轴及两点间的距离;本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.7.【分析】正数的相反数就是直接在该数前加一个负号即可【详解】解:分数的相反数是故答案为【点睛】本题考查了相反数的概念解析:3 5 -.【分析】正数的相反数就是直接在该数前加一个负号即可.【详解】解:分数35的相反数是35-,故答案为3 5 -.【点睛】本题考查了相反数的概念.8.<【解析】【分析】首先根据数轴判断出ab的符号和二者绝对值的大小进而解答即可【详解】解:∵a在原点左边b在原点右边∴-1<a<01<b<2∴0<a+b<2∴a+b-2<0故答案为<【点睛】本题考查了解析:<【解析】【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,进而解答即可.【详解】解:∵a在原点左边,b在原点右边,∴-1<a<0,1<b<2,∴0<a+b<2,∴a+b-2<0.故答案为<.本题考查了实数与数轴,有理数的加法法则,根据数轴得出a、b的符号和二者绝对值的大小关系是解题的关键.9.﹣4或0【解析】【分析】分abc三个数有1个负数2个负数3个负数讨论求出aabbccabcabc的值然后代入代数式进行计算即可得解【详解】解:∵a+b+c≤0存在以下三种情况:abc三个数有1个负数解析:﹣4或0【解析】【分析】分a、b、c三个数有1个负数、2个负数、3个负数讨论求出的值,然后代入代数式进行计算即可得解.【详解】解:∵a+b+c≤0,存在以下三种情况:a、b、c三个数有1个负数时,则=﹣1+1+1﹣1=0,有2个负数时,则=1﹣1﹣1+1=0,3个负数时,则的值x=﹣1﹣1﹣1﹣1=﹣4,故答案为:﹣4或0.【点睛】本题考查了代数式求值,绝对值的性质,有理数的除法,难点在于分情况讨论后代入求值.二、解答题10.±5【解析】【分析】根据非负数的性质列出算式求出x、y的值,代入代数式计算,根据平方根的概念计算得到答案.【详解】由题意得,x-1=0,y+1=0,解得,x=1,y=-1,则x2-4y=5,5的平方根是±5则x2-4y的平方根是±5.本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键,注意平方根的概念的应用.11.(1)星期四的水位最高,为153.4米;(2)本周需在星期二,星期四放水.【解析】【分析】(1)计算出周一到周六每天的水位,得出周四最高,把前几个数相加再加上150米即可;(2)计算每一天的水位,然后再确定.【详解】解:(1)星期一水位:150+0.4=150.4米,星期二水位:150.4+1.3=151.7米,星期三水位:151.7+0.5=152.2米,星期四水位:152.2+1.2=153.4米,星期五水位:153.4﹣0.5=152.9米,星期六水位:152.9+0.4=153.3 m所以星期四的水位最高,为153.4米.(2)星期一水位150.4米,没有超过150.6米,所以不用放水,星期二水位151.7米,超过150.6米,故需要放水1.7米后变为150米.星期三水位150+0.5=150.5米,不需要放水.星期四水位150.5+1.2=151.7米,需要放水1.7米后变为150米.星期五水位150﹣0.5=149.5米,不需要放水.星期六水位149.5+0.4=149.9米,不需要放水.所以本周需在星期二,星期四放水.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.(1)见解析;(2)点C对应数字是﹣1;(3)小彬家与学校位置的距离是1千米.【解析】【分析】(1)根据跑步跑步方向和距离确定A、B距离;(2)先计算跑步速度,再计算跑步的总路程,可确定学校位置;(3)根据小彬家和学校位置对应数字确定二者距离.【详解】解:(1)A、B位置如图(2)2÷8=0.25,32×0.25=83.5﹣4.5=﹣1故点C对应数字是﹣1,位置如下图;(3)小彬家与学校位置的距离是1千米.【点睛】考查了数轴,有理数的加减运算,绝对值等知识点的应用,此题的关键是能根据题意列出算式,把实际问题转化成数学问题来解决.13.(1)答案见解析;(2)7.5千米;(3)4升.【解析】【分析】(1)根据题目的叙述1个单位长度表示1千米,表示即可;(2)根据(1)得到的数轴,得到表示小明家与小彬家的两点之间的距离,利用1个单位长度表示1千米,即可得到实际距离;(3)路程是20千米,乘以0.2即可求得耗油量.【详解】(1);(2)根据数轴可知:小明家据小彬家是7.5个单位长度,因而是7.5千米;(3)路程是2×10=20千米,则耗油量是:20×0.2=4升.答:小明家距小彬家7.5千米,这次共耗油4升.【点睛】本题考查了利用数轴表示一对具有相反意义的量,借助数轴用几何方法解决问题,有直观、简捷,举重若轻的优势.14.(1)1,(2)x的值为-4或6,(3)6或23分钟时点P到点M、点N的距离相等【分析】(1)根据P为MN中点即可求出x;(2)已知MN距离为6,故可分P点在M左侧与N点右侧两种情况计算;(3)可分点M、 N在P同侧与异侧分别讨论计算即可.【详解】(1)由题意知P为MN中点,则x=242-+=1,故填1;(2)当P点在M左侧时,PM=-2-x,PN=4-x,故(-2-x)+(4-x)=10,解得x=-4;点P点在N点右侧时,PM=x-(-2)=x+2,PN=x-4,故(x+2)+(x-4)=10,解得x=6;故x的值为-4或6;(3)根据题意知点P运动时代表的数为-t, M运动时代表的数为-2-2t,N运动时代表的数当M、N在P同侧时,即M、N两点重合,即-2-2t=4-3t,解得t=6s;当M、N在P异侧时,点M位于P点左侧,点N位于P点右侧,PM=(-t)-(-2-2t)=t+2,PN=(4-3t)-(-t)=4-2t,∴t+2=4-2t,解得t=2 3 ,故6或23分钟时点P到点M、点N的距离相等.【点睛】此题主要考察数轴上的动点问题,根据题意认真分析不同情况是解题的关键.15.(1)点M对应的数是-18;(2)点C对应的数是62.【解析】【分析】(1)先求出电子蚂蚁P移动的距离AM,再根据两点间距离的定义即可求出点M对应的数;(2)先求出MB的长,再设电子蚂蚁Q出发x秒后P、Q相遇即可得出关于x的一元一次方程,求出x的值,可求出P、Q相遇时点Q移动的距离,进而可得出C点对应的数.【详解】(1)∵-28+2×5=-18,∴点M对应的数是-18.(2)设电子蚂蚁Q出发x秒后,两只蚂蚁在点C处相遇.依题意,得5(4+x)+4x=128.解得x=12.而4x=4 × 12=48 ,110-48=62,即点C对应的数是62.【点睛】本题考查了一元一次方程的应用,数轴.熟知数轴上两点间距离的定义是解答此题的关键.16.(1)3(2)1.5或-1.5【分析】(1)由AB的值和b的值可分析计算a的值(2)分两种情况讨论:A在原点左侧,B在原点右侧;A在原点右侧,B在原点左侧【详解】(1)∵AB=9∴|a|+|b|=9∵b=-6,点A和点B分别位于原点O两侧∴a=3(2)当A在原点左侧,B在原点右侧,a=-6,b=3时,c=-1.5;当A在原点右侧,B在原点左侧,a=6,b=-3时,c=1.5;【点睛】数轴上对应点的数值是本题的考点,分类讨论是解题的关键.17.(1)10.(2)﹣1.(3)﹣4或12.【解析】【分析】(1)根据数轴上两点间的距离公式即可求出线段AB的长;(2)根据线段中点的定义可得AD=BD=5,设点D表示的数为a,根据数轴上两点间的距离公式进行求解即可;(3)分两种情况讨论,①点A在点C左边,②点A在点C右边,依次求解即可.【详解】(1)+4﹣(﹣6)=4+6=10,所以线段AB的长为10;(2)因为点D是AB的中点,所以AD=BD=5,设点D表示的数为a,因为4﹣a=5,所以a=﹣1,故点D表示的数为﹣1;(3)当点C在点A的左侧时,4﹣x=8,x=﹣4,当点C在点A的右侧时,x﹣4=8,x=12,所以x表示的数是﹣4或12.【点睛】本题考查了数轴,一元一次方程的应用等,正确理解题意,熟练掌握数轴上两点间距离的求解方法是解题的关键.18.(1)0 (2)负数,点Q,因为点Q离原点的距离最远【分析】(1)根据互为相反数的两数表示的点关于原点对称可知PT的中点即为原点,据此即可得出答案;(2)根据互为相反数的两数表示的点关于原点对称可知RT的中点即为原点,据此即可得出答案;【详解】解:(1)如图所示:S表示的数是0;(2)如图所示:R为-3,T为3,S表示-1是负数,Q点表示的数的绝对值最大,绝对值是7.【点睛】此题考查数轴,利用相反数的意义确定出原点的位置是解决问题的关键.三、1319.D解析:D【解析】【分析】根据数轴上a、b、c对应的位置,判断a﹣b、c﹣a正负,然后对绝对值进行化简即可.【详解】由图形可知c>0>b>a∴a﹣b<0,c﹣a>0∴|a﹣b|﹣|c﹣a|=b﹣a﹣c+a=b﹣c故选D.【点睛】本题考查的是关于绝对值的化简,利用数轴对绝对值内的代数式判断正负是解决问题的关键.20.A解析:A【解析】【分析】根据有理数大小比较的方法逐一进行比较即可得.【详解】A、0<|﹣1|=1,正确;B、34=34,错误;C、﹣3<﹣2,错误;D、|﹣18|>﹣(﹣10),错误,故选A.【点睛】本题考查有理数的大小比较,熟练掌握有理数大小比较的方法是解题的关键. 21.C解析:C【解析】【分析】直接利用偶次方的性质以及绝对值的性质得出x,y的值,进而得出答案.【详解】∵|x+3|+(y-2)2=0,∴x+3=0,y-2=0,解得:x=-3,y=2,故x+2y=-3+4=1.故选C .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确得出x ,y 的值是解题关键.22.D解析:D【解析】【分析】先根据a 、b 两点在数轴上的位置判断出a 、b 的符号及绝对值的大小,再对各选项进行逐一分析即可.【详解】由图可知,0a >, 2.b a b <-<,A 、0a b +<,故本选项正确;B 、a b a ->,故本选项正确;C 、30b <,故本选项正确;D 、0b a<,故本选项错误. 故选D .【点睛】本题考查的是数轴,先根据a 、b 两点在数轴上的位置判断出a 、b 的符号及绝对值的大小是解答此题的关键.23.A解析:A【解析】【分析】设该点表示的数为x ,根据两点间的距离公式即可得出关于x 的含绝对值符号的一元一次方程,解之即可得出结论.【详解】设该点表示的数为x ,根据题意得:|-3-x|=4,解得:x=-7或x=1.故选A .【点睛】本题考查了数轴、两点之间的距离公式以及解一元一次方程,根据两点间的距离公式列出关于x 的含绝对值符号的一元一次方程是解题的关键.24.A解析:A【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】根据有理数比较大小的方法,可得−2<−32<-1<0.01,∴在−2,−32,-1,0.01,四个数中,最小的数是−2.故答案选:A.【点睛】本题考查的知识点是有理数大小比较,解题的关键是熟练的掌握有理数大小比较.25.D解析:D【解析】【分析】根据数轴可得a、b的符号和绝对值的大小关系,分别利用有理数的除法、加法和减法法则对各个选项进行验证即可.【详解】解:由图可知:a<0<b,|a|>|b|,∴ab<0,a+b<0,a-b<0.所以只有选项D成立.故选:D.【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.。
语法知识—有理数的易错题汇编及答案解析
一、选择题1.3-的相反数是( ) A .3-B .0C .13-D .32.绝对值不大于5的非正整数有( ) A .5个 B .6个 C .10个 D .11个3.数a 、b 在数轴上的位置如图所示,正确的是( ).A .a b >B .0a b +>C .0ab >D .a b > 4.若|a|=4,|b|=5,且ab <0,则a+b 的值是( ) A .1B .﹣9C .9或﹣9D .1或﹣15.身份证号码告诉我们很多信息,某人的身份证号码是××××××199704010012,其中前六位数字是此人所属的省 (市、自治区)、市、县 (市、区) 的编码,1997、04、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是××××××200306224522的人的生日是( ) A .5月22日 B .6月22日 C .8月22日 D .2月24日6.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣c|+7b -=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( ) A .12B .15C .17D .207.下列运算结果为﹣2的是( )A .+(﹣2)B .﹣(﹣2)C .+|﹣2|D .|﹣(+2)| 8.式子17的值( ) A .在2到3之间B .在3到4之间C .在4到5之间D .等于349.若﹣|a|=﹣3.2,则a 是( ) A .3.2 B .﹣3.2 C .±3.2 D .以上都不对 10.下列各式中结果为负数的是( ) A .﹣(﹣1)B .|﹣1|C .|1﹣2|D .﹣|﹣1|二、填空题11.如图,已知在纸面上有一数轴,折叠纸面,若表示1的点与表示3-的点重合,则这个折叠中,表示数4的点与表示数 的点重合.12.若m ,n 满足|m ﹣6|+(7+n )2=0,则(m +n )2018=_____.13.已知a ,b 都不是零,写出x=a b aba b ab++的所有可能的值_____.14.若|a +1|+|a ﹣2|=5,|b ﹣2|+|b +3|=7,则a +b =_____.15.有理数a 、b 、c 在数轴如图所示,且a 与b 互为相反数,则|b+c|-|a-c|= ______.16.如图,点A 、B 在数轴上对应的实数分别是a ,b ,则A 、B 间的距离是____.(用含a 、b 的式子表示)17.已知|x|=3,y 2=16,xy <0,则x ﹣y=_____.18.如果(2m ﹣6)x |m|﹣2=m 2是关于x 的一元一次方程,那么m 的值是_____. 19.若21(2)03x y -++=,则y =________; 三、解答题20.(1)比较下列各式的大小:|5|+|3| |5+3|,|﹣5|+|﹣3| |(﹣5)+(﹣3)|, |﹣5|+|3| |(﹣5)+3|,|0|+|﹣5| |0+(﹣5)|… (2)通过(1)的比较、观察,请你猜想归纳:当a 、b 为有理数时,|a|+|b| |a+b|.(填入“≥”、“≤”、“>”或“<”)(3)根据(2)中你得出的结论,求当|x|+|﹣2|=|x ﹣2|时,直接写出x 的取值范围.21.数学魔术:如图所示,数轴上的点A 、B 、C 、D 分别表示131042--,,,,请回答下列问题:(1)在数轴上描出A 、B 、C 、D 四个点;(2)B 、C 两点间的距离是多少?A 、D 两点间的距离是多少?(3)现在把数轴的原点取在点B 处,其余都不变,那么点A 、B 、C 、D 、分别表示什么数?22.把下列各数用数轴表示出来,并用“<”连接起来: ﹣52,0,﹣(﹣35),﹣(+3.5),﹣43-.23.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,规定向东为正方向.当天航行路程记录如下:(单位:千米) 14,﹣9,-18,﹣7,13,﹣6,10,﹣5 问:(1)B 地在A 地的何位置;(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油? 24.在数轴上表示下列各数,并将各数按从小到大的顺序用“<”连接. ﹣1.5,|﹣1|,0,﹣12,﹣13,2.5. 25.如图,己知数轴上点A 表示的数为8, B 是数轴上—点(B 在A 点左边),且AB=10,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B 所表示的数 ;(2)点P 所表示的数 ;(用含t 的代数式表示);(3)C 是AP 的中点,D 是PB 的中点,点P 在运动的过程中,线段CD 的长度是否发生化?若变化,说明理由,若不变,请你画出图形,并求出线段CD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】依据相反数的概念求值即可. 【详解】 -3的相反数是3. 故答案为:D . 【点睛】本题主要考查相反数的概念,解题的关键是掌握:.只有符号不同的两个数互为相反数,0的相反数是0.2.B解析:B【解析】分析: 根据绝对值的意义,可到答案.详解: 绝对值不大于5的非正整数有-5,-4,-3,-2,-1,0, 故选:B.点睛: 本题考查了有理数大小比较,理解绝对值不大于5的非正整数是解题关键.3.D解析:D 【分析】根据数据在数轴上的位置关系判断. 【详解】选项A. 如图a b < ,错误.选项 B. a 点离原点的距离比b 点离原点距离远,故0a b +<,错误. 选项 C. ,a b 一正一负,所以0ab <,错误.选项D. a 点离原点的距离比b 点离原点距离远,故a b >,故选D. 【点睛】利用数轴比较大小,数轴左边的小于右边,离原点距离越大,数的绝对值越大,原点左边的是负数,右边的是正数.4.D解析:D【解析】试题分析:∵|a|=4,|b|=5,且ab<0,∴a=4,b=﹣5;a=﹣4,b=5,则a+b=1或﹣1,故选D.5.B解析:B【解析】解:由题意:身份证号码是××××××200306224522,则2003、06、22是此人出生的年、月、日,452是顺序码,2为校验码.故选B.6.C解析:C【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c|+,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.7.A解析:A【解析】分析:根据绝对值的性质和相反数的性质逐一计算可得.详解:A、+(-2)=-2,此选项符合题意;B、-(-2)=2,此选项不符合题意;C、+|-2|=2,此选项不符合题意;D、|-(+2)|=2,此选项不符合题意.点睛:本题主要考查绝对值和相反数,解题的关键是熟练掌握绝对值和相反数的性质.8.C解析:C【解析】介于哪两个整数之间,从而找到其对应的点.<<故选C.点睛:本题考查了无理数的估算以及数轴上的点和数之间的对应关系,解题的关键是求出介于哪两个整数之间.9.C解析:C【解析】分析: 计算绝对值要根据绝对值的定义求解.详解: :∵-|a|=-3.2,∴|a|=3.2,∴a=±3.2.故选:C.点睛: 解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.D解析:D【解析】--=是正数.试题解析:A.()11,-=是正数.B.11,-=是正数.C.121,--=-是负数.D. 11,故选D.二、填空题11.-6【解析】【分析】根据折叠的性质先找出中心再根据对称关系可以确定与表示数4的点重合的点【详解】因为表示1的点与表示的点重合所以中心是-1根据折叠的特点表示数4的点与表示数-6的点重合故答案为:-6解析:-6.【解析】【分析】根据折叠的性质,先找出中心,再根据对称关系,可以确定与表示数4的点重合的点.因为表示1的点与表示3-的点重合,所以,中心是-1,根据折叠的特点,表示数4的点与表示数-6的点重合. 故答案为:-6 【点睛】本题考核知识点:数轴上的点. 解题关键点:理解折叠的特点.12.1【解析】【分析】根据非负数的性质列式求出mn 的值然后代入代数式进行计算即可得解【详解】由题意得m-6=07+n=0解得m=6n=-7所以(m+n)2018=(6-7)2018=1故答案为1【点睛】解析:1 【解析】 【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解. 【详解】由题意得,m-6=0,7+n=0, 解得m=6,n=-7, 所以,(m+n)2018=(6-7)2018=1. 故答案为1. 【点睛】此题考查了非负数的运算性质,几个非负数和为0,那么每一个必为0.13.3或﹣1【分析】要对ab 所有可能出现的不同情况进行分类讨论找出符合要求的取值代入求值【详解】对ab 的取值情况分类讨论如下:①当ab 都是正数时x==1+1+1=3;②当ab 都是负数时x==﹣1﹣1+1解析:3或﹣1 【分析】要对a ,b 所有可能出现的不同情况进行分类讨论,找出符合要求的取值,代入求值. 【详解】对a ,b 的取值情况分类讨论如下:①当a ,b 都是正数时,x=||||||a b ab a b ab ++=1+1+1=3; ②当a ,b 都是负数时,x=||||||a b ab a b ab ++=﹣1﹣1+1=﹣1; ③当a ,b 中有一个正数,一个负数时,a b aba b ab、、中有一个1,两个﹣1,所以和为﹣1.||||||a b ab a b ab ++的可能值是3或﹣1. 故答案是:3或﹣1.主要考查了绝对值的定义及分类讨论的思想.注意分类讨论时要全面,要做到不重复不遗漏.14.±1或±6【解析】分析:先根据绝对值的性质分类讨论求得ab的值再分别代入a+b计算可得详解:当a≤-1时-a-1+2-a=5解得a=-2;当-1<x<2时a+1+2-a=3≠5舍去;当a≥2时a+1解析:±1或±6【解析】分析:先根据绝对值的性质分类讨论求得a、b的值,再分别代入a+b计算可得.详解:当a≤-1时,-a-1+2-a=5,解得a=-2;当-1<x<2时,a+1+2-a=3≠5,舍去;当a≥2时,a+1+a-2=5,解得a=3;当b≤-3时,2-b-b-3=7,解得b=-4;当-3<b<2时,-b-3+b-2=-5≠7,舍去;当b≥2时,b-2+b+3=7,解得b=3;综上a=-2或a=3,b=-4或b=3;当a=-2、b=-4时,a+b=-6;当a=-2、b=3时,a+b=1;当a=3、b=-4时,a+b=-1;当a=3、b=3时,a+b=6;即a+b=±1或±6;故答案为±1或±6.点睛:本题主要考查有理数的加法和绝对值,解题的关键是根据绝对值的性质求得a、b的值及分类讨论思想的运用.15.0【解析】由数轴上的点以及已知可得:b<0<a<c|b|=|a|<|c|a+b=0∴b+c>0a-c<0∴|b+c|-|a-c|=(b+c)--(a-c)=b+c+a-c=0故答案为0【点睛】本题考解析:0【解析】由数轴上的点以及已知可得:b<0<a<c,|b|=|a|<|c|,a+b=0,∴b+c>0,a-c<0,∴|b+c|-|a-c|=(b+c)-[-(a-c)]=b+c+a-c=0,故答案为0.【点睛】本题考查了绝对值、数轴、相反数等,解题的关键是要注意借助数轴用几何方法化简含有绝对值的式子.16.b-a【解析】分析:注意数轴上两点间的距离等于较大的数减去较小的数又数轴上右边的总大于左边的数故AB间的距离是b-a详解:∵a<0b<0且|a|>|b|∴它们之间的距离为:b-a故答案为:b-a点睛【解析】分析:注意数轴上两点间的距离等于较大的数减去较小的数,又数轴上右边的总大于左边的数,故A ,B 间的距离是b-a . 详解:∵a <0,b <0,且|a|>|b| ∴它们之间的距离为:b-a . 故答案为:b-a .点睛:明确数轴上两点间的距离公式,同时注意数轴上右边的数>左边的数.17.±7【解析】分析:本题是绝对值平方根和有理数减法的综合试题同时本题还渗透了分类讨论的数学思想详解:因为|x|=3所以x=±3因为y2=16所以y=±4又因为xy <0所以xy 异号当x=3时y=-4所以解析:±7【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想.详解:因为|x|=3,所以x=±3. 因为y 2=16,所以y=±4. 又因为xy <0,所以x 、y 异号, 当x=3时,y=-4,所以x-y=7; 当x=-3时,y=4,所以x-y=-7. 故答案为:±7. 点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论.18.﹣3【解析】由题意得:|m|﹣2=1且2m ﹣6≠0解得:m=﹣3故答案为﹣3解析:﹣3 【解析】由题意得:|m |﹣2=1,且2m ﹣6≠0, 解得:m=﹣3, 故答案为﹣3.19.【解析】∵∴x-2=0=0∴x=0y=-故答案是:- 解析:13-【解析】 ∵()21203x y -++=, ∴x -2=0,13y +=0, ∴x=0,y=-13, 故答案是:-13.三、解答题20.(1)=;=;>;=(2)≥;(3)x≤0.【分析】(1)利用绝对值的代数意义化简,判断即可;(2)归纳总结得到一般性规律,写出即可;(3)判断得到x的范围即可.【详解】解:(1))比较下列各式的大小:|5|+|3|=|5+3|,|-5|+|-3|=|(-5)+(-3)|,|-5|+|3|>|(-5)+3|,|0|+|-5|=|0+(-5)|…(2)通过(1)的比较、观察,请你猜想归纳:当a、b为有理数时,|a|+|b|≥|a+b|.(填入“≥”、“≤”、“>”或“<”)(3)根据(2)中你得出的结论,当|x|+|-2|=|x-2|时,x的取值范围x≤0.【点睛】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.21.(1)见解析;(2)B、C两点的距离为112,A、D两点的距离为7;(3)点A表示的数为﹣412,点B表示的数为0,点C表示的数为﹣112,点D表示的数为212.【解析】分析:(1)在数轴上描出四个点的位置即可;(2)B、C两点的距离=0-(-112),A、D两点的距离=4-(-3);(3)原点取在B处,相当于将原数减去112,从而计算即可.详解:(1);(2)B、C两点的距离=0﹣(﹣112)=112,A、D两点的距离=4﹣(﹣3)=7;(3)点A表示的数为:﹣3﹣112=﹣412,点B表示的数为0,点C表示的数为﹣112,点D表示的数为4﹣112=212.点睛: 本题考查了数轴的知识,注意数轴上的点与实数一一对应.22.再数轴上表示见解析,﹣(+3.5)<﹣52|<﹣43<0<﹣(﹣35)【解析】分析:先计算出:-|-43|=-43,-(-35)=35,-(+3.5)=-3.5,然后在数轴上表示各数,再根据数轴表示数的方法比较数的大小.详解:﹣|﹣43|=﹣43,﹣(﹣35)=35,﹣(+3.5)=﹣3.5,在数轴上表示为:所以﹣(+3.5)<﹣52|<﹣43<0<﹣(﹣35).点睛: 本题考查了有理数大小比较:比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.23.(1)B在A正西方向,离A有8千米;(2)途中要补油12升.【分析】向东为正方向,则向西方向为负,要求B地在A地何位置,把他们的记录结果相加即可.求途中需补充多少升油,需先求他们走了多少千米.【详解】解:(1)∵14-9-18-7+13-6+10-5=-8,∴B在A正西方向,离A有8千米.(2)∵|14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82千米,∴82×0.5-29=12升.∴途中要补油12升.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,要活学活用.24.﹣1.5<﹣<﹣<0<|﹣1|<2.5【解析】试题分析:首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.试题解析:解:在数轴上表示如图:∴﹣1.5<﹣12<﹣13<0<|﹣1|<2.5.点睛:本题主要考查了有理数大小比较的方法,以及在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.25.(1)-2;(2)8-6t ;(3)线段CD 的长度不会发生变化,始终是5.【解析】试题分析:(1)根据已知可得B 点表示的数为8﹣10=-2;(2)根据已知可得点P 表示的数为8﹣6t ;(3)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.试题解析:(1)8-10=-2,故答案为-2;(2)AP=6t ,A 点表示的数是8,P 在A 的左边,所以点P 表示的数为8-6t ,故答案为8-6t ;(3)分两种情况:①如图,当P 点在线段AB 上运动时,CD=()111152222BP AP BP AP AB +=+==; 2)如图,当P 点运动到点B 左侧时,CD=()1111661052222CP PD AP PB t t -=-=⋅--=, 综上所述,线段CD 的长度不会发生变化,始终是5.。
语法知识—有理数的易错题汇编含解析
一、填空题1.有理数a 和b 在数轴上的位置如图所示,则下列结论中:(1)a -b >0(2)ab >0(3)-a <b <0(4)-a <-b <a(5)|a |+|b |=|a -b |其中正确的是______(把所有正确结论的序号都选上)2.如图,x 是0到4之间(包括0,4)的一个实数,那么|x-1|+|x-2|+|x-3|+|x-4|的最小值等于______.3.若a 与2b 互为相反数,b 与c 互为倒数,则3a +6b -3bc 的值为_____________.4.若()2120a b -++=,则(a +b )2017+a 2018的值为 ______________.5.数a ,b ,c 在数轴上的位置如图所示.化简:2|b ﹣a|﹣|c ﹣b|+|a+b|=_____.6.如果|x +1|+(y +1)2=0,那么代数式x 2017﹣y 2018的值是_____.7.如图,观察表示a ,b 的点在数轴上的位置,化简2|a -2|-3|b +1|的结果为_________.8.若(a +3)2+|b ﹣2|=0,则(a +b )2011=______.9.若a 是绝对值最小的数,b 是最大的负整数,则a ﹣b=_____.二、解答题10.同学们都知道,|4-(-2)|表示4与-2的差的绝对值,实际上也可理解为4与-2两数在数轴上所对应的两点之间的距离;同理|x -3|也可理解为x 与3两数在数轴上所对应的两点之间的距离,试探索并完成填空.(1)求|4-(-2)|=______,|-3-5|=______;(2)若|x -2|=5,则x =______.11.若点A 、B 、C 在数轴上对应的数分别为a 、b 、c 满足|a +5|+|b -1|+|c -2|=0.(1)在数轴上是否存在点P ,使得P A +PB =PC ?若存在,求出点P 对应的数;若不存在,请说明理由;(2)若点A ,B ,C 同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴负方向运动.经过t (t ≥1)秒后,试问AB -BC 的值是否会随着时间t 的变化而变化?请说明理由.12.在数轴上,点A ,B ,C 表示的数分别是-6,10,12.点A 以每秒3个单位长度的速度向右运动,同时线段BC 以每秒1个单位长度的速度也向右运动.(1)运动前线段AB 的长度为________;(2)当运动时间为多长时,点A 和线段BC 的中点重合?(3)试探究是否存在运动到某一时刻,线段AB=12AC ?若存在,求出所有符合条件的点A 表示的数;若不存在,请说明理由.13.把下列各数填入它所属的集合内: 5.2,0,π2,227,()4+-,324-,()3--,0.2555,0.0300003-(1)分数集合:{ …}(2)非负整数集合: { …}(3)有理数集合: { …}14.已知|a |=2,|b |=7,且a <b ,求a ﹣b .三、13 15.若|a+b|=﹣(a+b ),则下列符合条件的数轴是( )A .①②B .②③C .③④D .①③ 16.已知有理数a 、b 、c 在数轴上的位置如图所示,则化简|a+b|﹣|b ﹣c|的结果是( )A .a+cB .c ﹣aC .﹣a ﹣cD .a+2b ﹣c17.有理数a 、b 在数轴上的位置如图所示,那么下列式子中成立的是( )A .>0B .ab >0C .a <bD .a ﹣b >018.下列四个数中最小的数是A .B .C .0D .519.的绝对值是( )A .﹣B .C .D .20.如果|a|=-a ,那么a 可以是 ( )A .+(+5)B .-(-5)C .2(5)-D .|5|--21.下列各对数中,不是互为相反数的是( )A .()3--与3--B .23-与(-3)²C .100-与(-10)²D .3(2)-与32- 22.a 、b 在数轴上的位置如图所示,则下列式子正确的是( )A .b >﹣aB .a b <0C .|﹣a |>|﹣b|D .a + b >a ﹣b 23.若m 、n≠0,则|n|+m m n 的取值不可能是( ) A .0 B .1C .2D .-2 24.有理数a ,b ,c 在数轴上的位置如图所示,则下列结论正确的是( )A .a+c=0B .a+b >0C .b ﹣a >0D .bc <0 25.A 为数轴上表示1-的点,将点A 沿数轴向右平移3个单位到点B ,则点B 所表示的实数为( )A .3B .2C .4-D .2或 4-【参考答案】***试卷处理标记,请不要删除一、填空题1.(1)(3)(4)(5)【分析】根据数轴上点的位置关系可得ab 的大小根据绝对值的意义判断即可【详解】解:由数轴上点的位置关系得a >0>b|a|>|b|(1)a-b >0正确;(2)ab <0错误;(3)解析:(1)、(3)、(4)、(5)【分析】根据数轴上点的位置关系,可得a 、b 的大小,根据绝对值的意义,判断即可.【详解】解:由数轴上点的位置关系,得a >0>b ,|a|>|b|.(1)a-b >0,正确;(2)ab <0,错误;(3)-a <b <0,正确;(4)-a <-b <a ,正确,(5)|a|+|b|=|a-b|,正确;故答案为(1),(3),(4),(5).【点睛】本题考查了有理数的大小比较,利用数轴确定a 、b 的大小即|a|与|b|的大小是解题关键.2.4【分析】根据数轴上两点间的距离公式以及绝对值的意义可求|x-1|+|x-2|+|x-3|+|x-4|的最小值【详解】解:根据|x-1|+|x-2|+|x-3|+|x-4|的几何意义可得|x-1|+解析:4【分析】根据数轴上两点间的距离公式以及绝对值的意义,可求|x-1|+|x-2|+|x-3|+|x-4|的最小值.【详解】解:根据|x-1|+|x-2|+|x-3|+|x-4|的几何意义,可得|x-1|+|x-2|+|x-3|+|x-4|表示x到数轴上1,2,3,4四个数的距离之和,∴当x在2和3之间的任意位置时,|x-1|+|x-2|+|x-3|+|x-4|有最小值,最小值为4.故答案为4.【点睛】本题主要考查了数轴以及数轴上两点间的距离公式的综合应用,解决问题的关键是掌握:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.解题时注意:数轴上任意两点分别表示的数是a、b,则这两点间的距离可表示为|a-b|.3.-3【分析】根据倒数和相反数的定义可知:a+2b=0bc=1然后代入计算即可【详解】由题意得:a+2b=0bc=1所以3a+6b-3bc=3(a+2b)-3c=3×0-3=-3故答案为-3【点睛】本解析:-3【分析】根据倒数和相反数的定义可知:a+2b=0,bc=1,然后代入计算即可.【详解】由题意得:a+2b=0,bc=1,所以,3a+6b-3bc=3(a+2b)-3c=3×0-3=-3.故答案为-3.【点睛】本题主要考查的是求代数式的值,根据题意得到2ab=1,-2c+d=0,x=±3是解题的关键.4.0【分析】根据非负数的性质列式求出ab再根据乘方法则计算即可【详解】由题意得a-1=0b+2=0解得a=1b=-2;则(a+b)2017+a2018=-1+1=0故答案为0【点睛】本题考查的是非负数解析:0【分析】根据非负数的性质列式求出a、b,再根据乘方法则计算即可.【详解】由题意得,a-1=0,b+2=0,解得,a=1,b=-2;则(a+b)2017+a2018=-1+1=0.故答案为0.【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.5.3a﹣2b+c【分析】根据数轴即可将绝对值去掉然后合并即可【详解】由数轴可知:c<b<ab﹣a<0c﹣b<0a+b>0则原式=﹣2(b﹣a)+(c﹣b)+(a+b)=﹣2b+2a+c﹣b+a+b=3解析:3a﹣2b+c【分析】根据数轴即可将绝对值去掉,然后合并即可.【详解】由数轴可知:c<b<a,b﹣a<0,c﹣b<0,a+b>0,则原式=﹣2(b﹣a)+(c﹣b)+(a+b)=﹣2b+2a+c﹣b+a+b=3a﹣2b+c.故答案为3a﹣2b+c.【点睛】本题考查了整式化简运算,涉及数轴,绝对值的性质,整式加减运算,解题的关键是熟练掌握这些知识.6.﹣2【分析】首先根据非负数的性质求出xy的值然后再代值求解【详解】由题意得:x+1=0y+1=0即x=﹣1y=﹣1;所以x2017﹣y2018=﹣1﹣1=﹣2故答案为﹣2【点睛】本题考查了非负数的性解析:﹣2【分析】首先根据非负数的性质求出x、y的值,然后再代值求解.【详解】由题意,得:x+1=0,y+1=0,即x=﹣1,y=﹣1;所以x2017﹣y2018=﹣1﹣1=﹣2.故答案为﹣2.【点睛】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.7.2a+3b-1【解析】试题解析:由图可得b<-1a>2所以b+1<0a-2>0则2|a-2|-3|b+1|=2(a-2)+3(b+1)=2a+3b-1解析:2a+3b-1【解析】试题解析:由图可得,b<-1, a>2,所以b+1<0,a-2>0,则2|a -2|-3|b +1|=2(a-2)+3(b+1)= 2a+3b-1.8.﹣1【解析】【分析】根据非负数的性质列式求出ab 的值然后代入代数式进行计算即可得解【详解】根据题意得a+3=0b−2=0解得a=−3b=2所以故答案为−1【点睛】考查非负数的性质两个非负数的和为0则解析:﹣1【解析】【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】根据题意得,a +3=0,b −2=0,解得a =−3,b =2,所以,()20112011()32 1.a b +=-+=-故答案为−1.【点睛】考查非负数的性质,两个非负数的和为0,则它们都为0是解题的关键. 9.1【解析】【详解】分析:根据a 是绝对值最小的数b 是最大的负整数求得ab 的值再代入求值即可详解:若a 是绝对值最小的数b 是最大的负整数则a=0b=﹣1a ﹣b=0﹣(﹣1)=1故答案为:1点睛:本题考查了解析:1【解析】【详解】分析:根据a 是绝对值最小的数,b 是最大的负整数,求得a 、b 的值,再代入求值即可. 详解:若a 是绝对值最小的数,b 是最大的负整数,则a=0,b=﹣1,a ﹣b=0﹣(﹣1)=1.故答案为:1.点睛:本题考查了绝对值的性质、负整数、有理数的减法等知识点,根据题意求得a 、b 的值是解题的关键.二、解答题10.(1)6,8;(2)7或-3.【解析】【分析】根据题意给出的定义即可求出答案.【详解】(1)|4-(-2)|=6,|-3-5|=8;(2)∵|x-2|=5,∴x-2=±5,∴x=7或-3;故答案为(1)6,8;(2)7或-3.【点睛】本题考查了数轴,绝对值的定义,涉及绝对值的几何意义,掌握这些定义是解题的关键.11.(1)-4或-6;(2)当1≤t<3时,AB-BC的值会随着时间t的变化而变化.当t≥3时,AB-BC的值不会随着时间t的变化而变化,理由详见解析.【解析】【分析】(1)根据非负数的性质可求a=-5,b=1,c=2,设点P表示的数为x,分①P在AB之间,②P在A的左边,③P在BC的中间,④P在C的右边,进行讨论即可求解;(2)表示出点A表示的数为-5-t,点B表示的数为1-3t,点C表示的数为2-5t,分①当1-3t>-5-t,即t<3时,②当t≥3时,进行讨论即可求解.【详解】解:(1)∵|a+5|+|b-1|+|c-2|=0,∴a+5=0,b-1=0,c-2=0,解得a=-5,b=1,c=2,设点P表示的数为x,∵P A+PB=PC,①P在AB之间,[x-(-5)]+(1-x)=2-x,x+5+1-x=2-x,x=2-1-5,x=-4;②P在A的左边,(-5-x)+(1-x)=2-x,-5-x+1-x=2-x,-x=2-1+5,x=-6;③P在BC的中间,(5+x)+(x-1)=2-x,2x+4=2-x,3x=-2,x=-(舍去);④P在C的右边,(x+5)+(x-1)=x-2,2x+4=x-2,x=-6(舍去).综上所述,x=-4或x=-6.(2)∵运动时间为t(t≥1),A的速度为每秒1个单位长度,B的速度为每秒3个单位长度,C的速度为每秒5个单位长度,∴点A表示的数为-5-t,点B表示的数为1-3t,点C表示的数为2-5t,①当1-3t>-5-t,即t<3时,AB=(1-3t)-(-5-t)=-2t+6,BC=(1-3t)-(2-5t)=2t-1,AB-BC=(-2t+6)-(2t-1)=7-4t,∴AB-BC的值会随着时间t的变化而变化.②当t≥3时,AB=(-5-t)-(1-3t)=2t-6,BC=(1-3t)-(2-5t)=2t-1,AB-BC=(2t-6)-(2t-1)=-5,∴AB-BC的值不会随着时间t的变化而变化.综上所述,当1≤t<3时,AB-BC的值会随着时间t的变化而变化.当t≥3时,AB-BC的值不会随着时间t的变化而变化.【点睛】本题考查了一元一次方程的应用,数轴上两点间的距离的表示,熟练掌握两点间的距离的表示方法是解题的关键,难点在于分情况讨论.12.(1)16;(2)172;(3)15或19.【分析】(1)根据两点间的距离公式即可求解;(2)先根据中点坐标公式求得B、C的中点,再设当运动时间为x秒长时,点A和线段BC的中点重合,根据路程差的等量关系列出方程求解即可;(3)设运动时间为y秒,分两种情况:①当点A在点B的左侧时,②当点A在线段AC 上时,列出方程求解即可.【详解】(1)运动前线段AB的长度为10﹣(﹣6)=16;(2)设当运动时间为x秒长时,点A和线段BC的中点重合,依题意有﹣6+3t=11+t,解得t=故当运动时间为秒长时,点A和线段BC的中点重合(3)存在,理由如下:设运动时间为y秒,①当点A在点B的左侧时,依题意有(10+y)﹣(3y﹣6)=2,解得y=7,﹣6+3×7=15;②当点A在线段BC上时,依题意有(3y-6)-(10+y)=解得y=综上所述,符合条件的点A表示的数为15或19.【点睛】本题考查了实数与数轴的知识点,解题的关键是熟练的掌握实数与数轴的相关知识点. 13.见解析【分析】按照实有理数的分类,⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数有理数正分数分数负分数求解即可.【详解】解:分数集合:{5.2、227、324-、0.2555}非负整数集合:{0、()3--}有理数集合:{5.2、0、227、()4+-、324-、()3--、0.2555}【点睛】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数是解决本题的关键. 14.-5或-9【解析】试题分析:根据绝对值的性质,求出a、b的大致取值,然后根据a<b,进一步确定a、b、c的值,然后代值求解即可.试题解析:∵|a|=2,|b|=7,∴a=±2,b=±7,∵a<b,∴当a=2时,b=7,则a﹣b=﹣5,当a=﹣2时,b=7,则a﹣b=﹣9,综上,a-b的值为-5或-9.【点睛】本题主要考查的是绝对值的性质和有理数的加法,能够正确的判断出a 、b 的值是解答此题的关键.三、1315.D解析:D【解析】【分析】根据|a+b|=﹣(a+b ),可以得到a+b 的正负情况,从而可以解答本题.【详解】 ∵()a b a b +=-+,∴a+b <0,∴列符合条件的数轴是①③,故选D .【点睛】本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,利用绝对值的知识解 答.16.A解析:A【分析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出(a+b ),(b ﹣c )的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】根据图形,c <a <0<b ,且|a|<|b|<|c|,∴a+b >0,b ﹣c >0,∴原式=(a+b )﹣(b ﹣c )=a+b ﹣b+c=a+c .故选A .【点睛】本题考查了数轴与绝对值的性质,根据数轴判断出a 、b 、c 的情况以及(a+b ),(b ﹣c )的正负情况是解题的关键,也是难点.17.D解析:D【解析】【分析】根据数轴可以判断a 、b 的正负,进而解答即可.【详解】由表示a 和b 的点位置可知,b <0<a 且|b|<|a|,所以<0,ab<0,a>b;故A,B,C不成立;a-b>0,故D成立.故选:D.【点睛】本题考查了数轴上的点表示的数和数的大小的比较,以及两数相乘或相除的符号的判断,会根据数轴比较数的大小是解题的关键.18.A解析:A【解析】【分析】负数<0<正数;负数的绝对值越大,该数越小.【详解】解:<-3<0<5,故选择A.【点睛】本题考查了有理数的比较大小.19.B解析:B【解析】【分析】正数的绝对值是它本身.【详解】解:||=,故选择B.【点睛】本题考查了绝对值的定义.20.D解析:D【解析】【分析】根据绝对值的意义可得a≤0,再对选项进行判断即可.【详解】∵|a|=-a,∴a≤0,A. +(+5)=5>0,不符合题意;B. -(-5)=5>0,不符合题意;C. ()25-=25>0,不符合题意;--=-5<0,符合题意.D. 5故选D.【点睛】本题主要考查了绝对值的意义.21.D解析:D【解析】【分析】分别根据绝对值的性质、有理数的乘方及相反数的定义对各选项进行逐一分析即可.【详解】A.∵-(-3)=3,-|-3|=-3,3与-3互为相反数,∴-(-3)与-|-3|互为相反数,故本选项错误;B.∵-32=-9,(-3)2=9,-9与-9互为相反数,∴、-32与(-3)2互为相反数,故本选项错误;C.∵(-10)2=100,100与-100互为相反数,∴100与(-10)2互为相反数,故本选项错误;D.∵(-2)3=-8,-23=-8,∴(-2)3与-23相等,故本选项正确.故选:D.【点睛】本题考查了相反数的定义及绝对值的性质、有理数的乘方法则,解题的关键是掌握只有符号不同的两个数叫做互为相反数.22.B解析:B【分析】根据数轴上点的位置关系,可得a,b的关系,根据有理数的运算,可得答案.【详解】解:由数轴上点的位置,得b<0<a,|b|>|a|.A、﹣a在原点的左侧,距离原点比b近,所以b<﹣a,故A不符合题意;B、a,b异号,ab<0,故B符合题意;C、a到原点的距离比b到原点的距离小,因此|﹣a |<|﹣b|,故C不符合题意;D、a+b<0<a-b,故D不符合题意;故选B.【点睛】本题考查了数轴,利用数轴上点的位置关系得出b<0<a,|b|>|a|是解题关键.23.B解析:B【解析】【详解】若m、n都是正数,则|n|+mm n=m nm n=1+1=2;若m、n都是负数,则|n|+mm n=m nm n--+=-1-1=-2;若m>0、n<0,则|n|+mm n=m nm n-+=1-1=0;若m<0、n>0,则|n|+mm n=m nm n-+=-1+1=0;综上可知|n|+mm n的值为0或2或-2,不可能是1,故选B.【点睛】本题考查了绝对值的化简,分类讨论m、n的不同情况是解决本题的关键.24.B解析:B【分析】根据数轴上a、b、c的位置可以判定a、b、c的大小与符号;据此逐项分析得出答案即可.【详解】由图可知:c<b<0< a,A. a+c<0,故此选项错误;B. a+b>0,故此选项正确;C. b−a<0,故此选项错误;D. bc>0,故此选项错误.故答案选:B.【点睛】本题考查了数轴的知识点,解题的关键是根据数轴上的位置判定其大小符号.25.B解析:B【分析】结合数轴的特点,运用数轴的平移变化规律即可计算求解.【详解】根据题意,点B表示的数是-1+3=2.故选B.【点睛】本题主要考查了实数与数轴之间的对应关系,解决此类问题,一定要结合数轴的特点,根据数轴的平移变化规律求解.第II卷(非选择题)请点击修改第II卷的文字说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-9
-8 -7
-6
-5
-4
-3
-2
-1
0
1
2
3 B
4
5
A
-9 -8 -7 -6 -5 -4 -3 -2
C B 点的运动速度; (2)第几秒钟时,A、B 两点相距 6 个单位长度;
3
(3)设 C 点对应的数为-1.在运动过程中,是否正好在某一时刻使得 CA-CB=1?若存 在,求出这个时间;若不存在,请说明理由.
(2) (4 分)若 M、N 两点以(1)中的速度运动, 在某点相遇, 求相遇点到原点的距离; A -8 O B 2
(3) (5 分)C 点在 A、B 之间, N 点从 B 点出发向数轴负方向运动, 当 N 点走到 B、C 两点的 中点 D 处时, 它到 A、C 两点的距离和为多少? A -8 O B 2
c
O
b
a
a b ab 的所有可能的值有 a b ab
A.2 个 B.3 个 C.4 个 D.无数个 4.下列说法:①一个整数不是奇数就是偶数;②若 a b 0 ,则 a , b 互为相反数;③如 果 a b ,那么 a b 或 a b 0 ;④ a (b c d ) a b a c a d 。其中正 确的个数有: A.1 个 B.2 个
29. (本题 12 分)数轴上两个点 A、B 所对应的数为-8、2, 若 M、N 两点分别从 A、B 两点 同时出发, 各自以一定速度在数轴上运动, 且 M 点的运动速度为 2 个单位/秒. (1) (3 分)若 M、N 两点均向数轴正方向运动, 当 N 点运动到 6 时, M 点恰好到达原点, 求 N 点的运动速度; A -8 O B 2
24、 (本题 6 分)有理数 a,b 在数轴上的位置如图所示,求化简 a b 1 b 所得的结果.
A
-9 -8 -7 -6 -5 -4
a
-1 0
b
1
25、 (本题 6 分)若 a 4 , b 2 ,且 a+b>0,求 a b 的值.
26、 (本题 6 分)若 ab>0,求
a a
有理数易错题讲练
( ( ) 1. 已知 b<0,a+b>0,则 a、b、a+b 三个数中最大的数是( ) A.a B.b C.a+b D.无法确定 ) 2.有理数 a,b,c 在数轴上对应的点的位置如图,下列式子:①b+c>0;②a+b>a+c; ③ a c b c ;④ a b c a ,其中正确的是( A.②③④ 3.式子 B.①③④ C.②③ D.①② )
2 19.已知 x 2 3 , ( y 1) 4 ,求 x y 的值。
20.已知关于 x 的方程, x 2 1 a 只有三个整数解,试求 a 的值,并解方程。 (10 分) 21. (本题 8 分)已知 abc≠0, 且满足 a a , ac ac , a+b>0, a c . (1) 请将 a、b、c 填入下列括号内; ( ) 0( ) ( )
a
②若 a+b+c=0,则(a+b)2=c2 ④若|a|>|b|,则(a+b)(a-b)>0
1 a
7. 在数轴上表示 a、b 两个实数的点的位置如图所示, 则化简 a b a b 的结果是( A.2a B.-2a C.0 D.2b ) a 0
·
o
b
·
·
b
8. 给出下列等式:①a+b=0;② 互为相反数的有( A.1 B.2 (A) a b b a )个 C.3
b b
ab ab
的值.
27、 (本题 8 分) (1)已知: a 2011 b 3 0 ,求 a+b 的值;
2 (2)已知: a b 2011 2011 ,求 a+b 的值.
28、 (本题 10 分)如图,在数轴上,点 A 和点 B 分别从对应的数为-8 和 4 的两个位置出发, 各自以匀速在数轴上相向运动,在原点处相遇后并继续运动,且 A 点的运动速度为 2 个单位/秒. A B
4
a b ,则 5※(-8)= ab
.
17、在数轴上的某个点到表示-3 的点的距离是 6,该点表示的数是_____________. 18. 已知 a 是|—2|的相反数,b 是 3 的倒数的相反数,c 是 d 是 2
1 的绝对值的倒数的相反数, 3
2 的绝对值。求 | a | | b | | c | | d | 的值。 3
z | b c | | a | 3 ,则 x+2y+3z 的值为
.
14. 观察下列三行数: -2, 4, -8, 16, -32, 64, ……; 0, 6, -6, 18, -30, 66, ……; -1, 2, -4, 8, -16, 32, ……. 按此规律, 每行中第 7 个数的和是__________. 15. A、 B、 C 三点在数轴上对应的数分别为 2、 -4、 x, 若 A、 B、 C 三点的距离相等, x=__________. 16、如果规定符号“※”的运算意义是 a※b= 则
b 1 ;③ a 2 b2 0 ;④ a3 b3 0 . 其中可以推得 a、b a
D.4 ) .
9、当 ab≠0 时,下列运算正确的是( (B) a b a
1 b
(C) a b b
1 a
(D) a b
1 1 a b
1
10、两个有理数 a、b, a < b ,并且 a>0,b<0,则以下结论正确的是( (A)-a<b<a<-b (C)-a<-b<b<a (B)b<-a<a<-b (D)b<-a<-b<a
C.3 个
D.4 个
5.设 S x 1 x 1 ,则下面四个结论中正确的是 A.S 没有最小值; B.有限个 x (不止一个)使 S 取最小值 C.只有一个 x 使 S 取最小值 D.有无穷个 x 使 S 取最小值 6. 下列说法: ①若 | a 1| (ab 3) 2 0 ,则 ax2 bx2 2 x2 ③若-1<a<0,则 a2 其中正确的有( A. ①②③ ) B. ①②④ C. ①③④ D. ②③④
(2) 去绝对值符号: b c =________, a c =________, a b =________.
2
22. (本题 8 分)若 a 1 2 , (b 2)2 9 , 且 ab ab , 求 a+b.
23. (本题 8 分) 定义新运算:a*b=(a-b)b. (1) 求(-1) *3;(2) 若 b=2, 且 a*b+ c 3 =0, 求 c*a.
) .
11.若 a 3 , b 4 ,且 a> b ,那么 a b ____________________12. 已知|a|=|4|,|b|=3,若 a、b 同号,则 a+b= ;若 a、b 异号,则 a+b= 。 a |b| c ab 13. 设 有 理 数 a 、 b 、 c 满 足 a+b+c=0 及 abc > 0 , 若 x , y , |a| b |c| 2c