浅析射影几何及其应用讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析射影几何及其应用
湖北省黄冈中学
一、概述
射影几何是欧几里得几何学的一个重要分支,研究的是在射影变换中图形所具有的性质。在高等数学中,射影几何的定义是根据克莱因的变换群理论与奥古斯特·费迪南德·莫比乌斯(1970-1868)的齐次坐标理论,这一部分已经涉及了群论和解析几何,但是这两位数学家对于射影几何的发展作出的巨大贡献是令人钦佩的。在本次综合性学习中小组成员对于射影几何的纯几何内容进行了探究,对以下专题进行了研究:
1、射影几何的基本概念及交比不变性
2、笛沙格定理(早期射影几何中最重要的定理之一)
3、对偶原理
4、二次曲线在射影几何上的应用
5、布列安桑定理和帕斯卡定理
6、二次曲线蝴蝶定理
二、研究过程
1、射影几何的基本概念及交比不变性
射影几何虽然不属于高考内容,射影几何与较为容易的中学几何具有更加抽象、难以理解的特点,但是射影几何所研究的图形的性质是极具有吸引力的,可以说是中学几何的一个延伸。
射影几何所研究的对象是图形的位置关系,和在射影变换下图形的性质。射影,顾名思义,就是在光源(可以是平行光源或者是点光源),图形保持的性质。在生活中,路灯下人的影子会被拉长,矩形和圆在光源照射下会出现平行四边形和椭圆的影子,图形的形状和大小发生了变化。然而,在这种变换中图形之间的有些位置关系没有变,比如,相切的椭圆和直线在变换之后仍相切。此外,射影几何最重要的概念之一——交比也不会发生改变。
在中学的几何中,我们认为两条平行的直线是不相交的。但是在射影几何中,我们可以规定一簇平行直线相交于平面上一个无穷远点,而通过这个点的所有直线是一簇有确定方向的平行直线。一条直线有且只有一个无穷远点,平面上方向不同的直线经过不同的无穷远点。所有这样的无穷远点构成了一条无穷远直线,同样在三维空间中可类似地定义出无穷远平面,这样就扩充了两个公理:
1、过两点有且只有一条直线
2、两条直线有且只有一个交点
这两条公理对普通点(即非无穷远点)和无穷远点均成立。这两条公
里是何其相似,这与对偶原理有联系,实际上这是对偶原理的根本来源,其基本思想是:把线和点看作是对等的两类元素,这在中学几何中几乎是无法理解的。但是通过这样,可以将点和线定义成两种元素,两条公理可以统一为:有且只有一个元素与另外两个不同种元素相关联。这里“相关联”的意思是“点在直线上”或“直线通过点”。 所谓的射影变换,就是在一次或多次点光源或线光源的投影下进行的变换
。
如图表示的是在点光源(O 为光源,射影点)和平行光源下进行的射影变换。下面引入交比的概念。直线上四个点(可以是无穷远点)组成的点列(有顺序)A 、B 、C 、D 的交比定义为
DB DA CB CA CD AB /),(
需要注意的是这里的线段都是有向线段,即需先规定直线的正方向。交比的最基本的性质是:在射影变换下交比不变。
的,故交比不变其对应角的正弦是相等和对于同理有两式相除得,中,由正弦定理
和△证明:在△)'''',''''(),(sin sin /sin sin /sin sin sin sin sin sin sin sin D C B A CD AB DOB
DOA COB COA DB DA CB CA DOB
DOA OB OA DB DA COB
COA OB OA CB CA COB OCB
OB CB COA OCA OA CA OBC OAC ∠∠∠∠=∴∠∠⋅=∠∠⋅=∠⋅∠=∠⋅∠=交比的不变性在射影几何中有广泛的应用,在二次曲线中也有涉及。并且,若两条直线上的对应点都具有交比不变的性质,那么这个对应无论是怎么确定的(即使是非投影的方法)都可叫做射影对应。与此同时,我们还可定义出直线列、面列的交比,都可变成一条直线通过他们时的四个交点的交比,这里不详尽讨论。
2、笛沙格定理
笛沙格定理有空间和平面两种形式,但其本质是相同的,内容如下:
两个(或同一个)平面内有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
空间形式的笛沙格定理易于证明。
三点共线。
、、故的交线上
、在、同理的交线上
、在即证明:I H G I H G G EF G BC G ββββ∂∂∂∈∴∂
⊂∈⊂∈,,
空间形式的笛沙格定理的逆定理也成立,可以用同一法给出证明:
D
D
P
CF
∂
BE=
,D
PA
于
通过证明
,'
交
证明逆定理
交于
证明:设'
、
值得一提的是,笛沙格定理的对偶定理是它的逆定理。
平面中的笛沙格定理可以看做是空间图形“压下去了”,但是实际叙述中有很大难度,是否严谨也有待考究。平面中的证明需要用到梅涅劳斯定理,利用它也可以对空间图形进行证明。由于超出高考范围,这里不再深究,感兴趣的同学可以查阅资料进行探究。
以上是平面中笛沙格定理的一个证明。
来源:百度百科
3、对偶原理
对偶原理是射影几何中最引人注目的一个结论之一。其思想的精髓所在,早已超出了经典几何学,延伸到物理、化学等学科中。
在数学中,对偶原理被描述为:如果在一个射影几何学定理(正确的)中把点与直线的概念对换一下,把点的共线定义换成线的共点定义,所得命题仍然是正确的。这就是为什么要将点和线之间的关系描述为“相关联的”。下面所要介绍的布列安桑定理和帕斯卡定理就是一组对偶定理。(梅涅劳斯定理虽然和塞瓦定理形式相似,但他们属于度量几何学,不属于射影几何学的范畴)
物理学中对偶原理也有应用。例如在电磁学中,均匀导电媒质中的恒定电场与均匀介质中的静电场对偶,电流密度矢量J与电位移矢量D,电流I与电荷量q对偶,描述的也是点与线的关系。经典物理学中的最高成就,除了牛三大运动定律,就是麦克斯韦(J.Maxwell,1831-1879)方程组,具有极强的对称性,描述了电与磁之间的关系。只可惜天妒英才,这位伟大的物理学家在1865年提出后不久就去世了。在爱因斯坦(Albert Einstein, 1879-1955)提出相对论后,许多经典物理学中的公式和定义被改写(包括牛顿三大定律,甚至对空间和时间的概念),惟一没有变化的就是麦克斯韦方程组。具有优美数学形式,描述了自然界的本质的方程,历经沧桑之后仍能保持其本质,也是理所当然的。对偶原理是自然界最基本的原理之一,事实上,能够被称为“原理”的命题寥寥无几。