初中数学 图形的相似
初中数学 什么是位似
初中数学什么是位似位似是初中数学中的一个重要概念,它是指由两个图形通过平移、旋转、翻转或者这些变换的组合而得到的相似图形。
在本文中,我们将详细介绍位似的定义、性质以及一些例子来帮助理解这个概念。
首先,让我们来定义位似。
如果有两个图形,它们的形状和大小是相似的,但位置可能不同,那么我们可以说这两个图形是位似的。
换句话说,位似是指通过平移、旋转、翻转或者这些变换的组合,将一个图形变换为另一个图形。
接下来,我们来讨论位似的性质。
位似具有以下性质:1. 形状相似:位似图形的形状是相似的,即它们的对应角相等,对应边的比例相等。
2. 大小相似:位似图形的大小是相似的,即它们的对应边的比例是相等的。
3. 位置可能不同:位似图形的位置可能不同,它们可以通过平移、旋转、翻转或者这些变换的组合来得到。
4. 变换保持相似性:位似图形之间的变换(如平移、旋转、翻转)保持它们的相似性,即变换前后仍然是位似图形。
让我们来看一些例子来帮助理解位似。
例子1:考虑两个三角形ABC和DEF,其中∠A = ∠D,∠B = ∠E,∠C = ∠F。
如果我们通过将三角形ABC沿顺时针方向旋转90度,并将它平移到DEF的位置,那么我们可以说三角形ABC和DEF是位似的。
它们具有相似的形状和大小,但位置可能不同。
例子2:考虑一个正方形和一个矩形,它们的边长比例是相等的,但是它们的形状和位置不同。
通过将正方形进行翻转或者旋转,我们可以得到一个与原正方形位似但位置不同的矩形。
例子3:考虑一个正三角形和一个等腰梯形,它们的形状和位置都不同,但是它们的对应边的比例相等。
通过将正三角形进行翻转或者旋转,我们可以得到一个与原正三角形位似但位置不同的等腰梯形。
通过这些例子,我们可以看到位似的性质和应用。
位似可以帮助我们在研究图形的形状和大小时,通过变换来得到相似的图形,从而简化问题的求解。
此外,位似也可以帮助我们理解和应用其他几何概念,如相似三角形、比例关系等。
《图形的相似》教学反思
《图形的相似》教学反思《图形的相似》是人教版九年级数学下册第27章《相似图形》的第1节内容,它是在全等图形知识的基础上的拓广和发展。
相似图形承接全等图形,从特殊到一般的成比例予以深化,从一般到特殊引出相似图形的概念,并应用这一概念解决一些实际问题,为下一步学习相似三角形的判定定理做感性和理性的准备,因此本节课具有承前启后的联系和纽带作用。
本节课我从复习全等多边形的概念、表示法及相似比的定义入手,引导学生类比相似多边形,得出相似图形的定义、表示法、相似比的概念,让学生经历从一般到特殊的过程,通过类比得出结论,初步领略类比的数学思想,体会数学内容的内在联系;接着引导学生比较相似图形与全等图形的异同,得出全等图形是特殊的相似图形,使学生进一步体会数学内容的内在联系,初步认识特殊与一般的辩证关系;然后引导学生根据定义思考、讨论特殊图形的相似性,目的在于通过对相似图形定义的直接应用,巩固对定义的理解;接着让学生通过思考教材中“想一想”的问题,得出相图形的性质,并用数学语言表示出来,再让学生做两道相关练习,意使学生认识定义所揭示的相似图形的本质属性,加深对相似图形的认识;然后配以教材“随堂练习”的练习,以加强学生应用相似图形性质应用的能力;最后引导学生梳理本课所学内容,以让学生及时吸收、深化本节知识,并布置作业。
对于这节课的教学,我有以下几点感受:1、这一节课通过情景创设,引入新知较恰当,较切合实际。
我在回顾以前所学的全等多边形的相关知识后,展示教学用的三角板和与这块三角板相似的学生用三角板,问学生这两块三角板有什么特点,它们之间是否有关系,引入新课,这样引入能激发起学生应用所学知识探索新知的兴趣;2、相似比的概念和对应边的确定是学生掌握本课知识的一个难点,学生对“对应边成比例”这一提法理解透彻。
针对这一问题,在教学中,我花了较多时间引导学生通过对应顶点找对应角和对应边,并教给学生通过相似三角形的表示方式确定对应角和对应边;由相似三角形写对应边的比例式时,引导学生发现每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,让学生在作业和实际应用中减少这种错误;3、在每讲解一个知识点后都配上相应的习题,以让学生及时将理论知识应用到解题实践中,从而加深对知识的理解,培养学生分析问题、解决问题的能力;4、利用多媒体课件,通过字体颜色的变换、图形的动态变换等,突出本课重点知识,使教学更形象、生动些。
初中数学《图形的相似》单元教学设计
二级任务为基于大任务和教材具体知识,划分为九个学习 任务,如下:
任务一:成比例线段
任务二:平行线分线段成比例
图
任务三:相似多边形
形
任务四:探索三角形相似的条件
的
相
任务五:相似三角形判定定理的证明
似
任务六:黄金分割
任务七:利用相似三角形测高 任务八:三角形相似的性质 任务九:利用位似放缩图形
二级任务为基于大任务和教材具体知识,划分为九个学习 任务,课时分配如下:
四人小组、合作探究: ·一个人画△ABC,使得∠A=45º,∠B=60°; ·另一个人画△DEF,使得∠D=45º,∠E=60°; ·第三人测量∠C与∠F、三角形各边的长; ·最后一人计算三组对应边的比。
回答下面的问题:
(1)∠C与∠F相等吗?
(2)三边的比
AB DE
,
AC DF
,
BC EF
相等吗?(测量精确到1mm)
初中数学《图形的相似》单元教学设计
一、课标要求与定位
《数学课程标准(2022年版)》在“图形与几 何”中指出,要求七-九学段学生: ①了解比例的基本性质、线段的比、成比例的 线段;通过建筑、艺术上的实例了解黄金分割。 ②通过具体实例认识图形的相似。了解相似多 边形和相似比。 ③掌握基本事实:两条直线被一组平行线所截, 所得的对应线段 成比例。 ④了解相似三角形的判定定理:两角分别相等 的两个三角形相 似;两边成比例且夹角相等的 两个三角形相似;三边成比例的两个三 角形相 似。了解相似三角形判定定理的证明。
二、本章内容的定位
图形与图 形间的变
换
全等三角 形
基础
相似三角 形
关键
解直角三 角形
圆
最新初中数学图形的相似技巧及练习题附答案解析
最新初中数学图形的相似技巧及练习题附答案解析一、选择题1.要做甲、乙两个形状相同(相似)的三角形框架,已知甲三角形框架三边的长分别为50 cm、60 cm、80 cm,乙三角形框架的一边长为20 cm,则符合条件的乙三角形框架共有().A.1种B.2种C.3种D.4种【答案】C【解析】试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm的边可以当最短边,最长边和中间大小的边.故选:C.点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.2.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OEOF AF=;设B为(a,1a-),A为(b,2b),得到OE=-a,EB=1a-,OF=b,AF=2b,进而得到222a b=,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=22为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴BE OE OF AF=,设点B 为(a ,1a -),A 为(b ,2b ), 则OE=-a,EB=1a-,OF=b ,AF=2b , 可代入比例式求得222a b =,即222a b =, 根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b +=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b b b++==++=222214()24b b b b ++=22 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.3.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上.若正方形ABCD 的边长为2,则点F 坐标为( )A .(8,6)B .(9,6)C .19,62⎛⎫ ⎪⎝⎭ D .(10,6)【答案】B【解析】【分析】直接利用位似图形的性质结合相似比得出EF的长,进而得出△OBC∽△OEF,进而得出EO 的长,即可得出答案.【详解】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴13 BC OBEF EO==,∵BC=2,∴EF=BE=6,∵BC∥EF,∴△OBC∽△OEF,∴136BOBO=+,解得:OB=3,∴EO=9,∴F点坐标为:(9,6),故选:B.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出OB的长是解题关键.4.如图,正方形OABC的边长为6,D为AB中点,OB交CD于点Q,Q是y=kx上一点,k的值是()A.4 B.8 C.16 D.24【答案】C【解析】【分析】延长根据相似三角形得到:1:2BQ OQ=,再过点Q作垂线,利用相似三角形的性质求出QF、OF,进而确定点Q的坐标,确定k的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q ,OCQ BDQ ∴∆∆∽, ∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽, ∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.5.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+, 解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==.6.矩形ABCO如图摆放,点B在y轴上,点C在反比例函数ykx=(x>0)上,OA=2,AB=4,则k的值为()A.4 B.6 C.325D.425【答案】C【解析】【分析】根据矩形的性质得到∠A=∠AOC=90°,OC=AB,根据勾股定理得到OB22OA AB=+=5C作CD⊥x轴于D,根据相似三角形的性质得到CD85=,OD45=求得8545,)于是得到结论.【详解】解:∵四边形ABCO是矩形,∴∠A=∠AOC=90°,OC=AB,∵OA=2,AB=4,∴过C作CD⊥x轴于D,∴∠CDO=∠A=90°,∠COD+∠COB=∠COB+∠AOB=90°,∴∠COD=∠AOB,∴△AOB∽△DOC,∴OB AB OA OC CD OD==,2542CD OD==,∴CD855=,OD45=,∴C(455,855),∴k325 =,【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为()A.9 B.12 C.14 D.18【答案】A【解析】【分析】如图,BC=2m,CE=12m,AB=1.5m,利用题意得∠ACB=∠DCE,则可判断△ACB∽△DCE,然后利用相似比计算出DE的长.【详解】解:如图,BC=2m,CE=12m,AB=1.5m,由题意得∠ACB=∠DCE,∵∠ABC=∠DEC,∴△ACB∽△DCE,∴AB BCDE CE=,即1.5212DE=,∴DE=9.即旗杆的高度为9m.故选A.【点睛】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.8.在相同时刻,物高与影长成正比,如果高为1米的标杆影长为2米,那么影长为30米的旗杆的高为( )A .20米B .18米C .16米D .15米【答案】D【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似,利用标杆的高:标杆影长=旗杆的高:旗杆的影长,列出方程,求解即可得出旗杆的高度.【详解】解:根据题意解:标杆的高:标杆影长=旗杆的高:旗杆的影长,即1:2=旗杆高:30, ∴旗杆的高=130=152⨯米. 故选:D .【点睛】 本题主要考察的是相似三角形的应用,正确列出方程是解决本题的关键.9.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则AB 的长为( )A .10B .12C .16D .20【答案】D【解析】【分析】连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.【详解】解:连接BD ,如图,AB Q 为直径,90ADB ACB ∴∠=∠=︒,AD CD =Q ,DAC DCA ∴∠=∠,而DCA ABD ∠=∠,DAC ABD ∴∠=∠,DE AB ∵⊥,90ABD BDE ∴∠+∠=︒,而90ADE BDE ∠+∠=︒,ABD ADE ∴∠=∠,ADE DAC ∴∠=∠,5FD FA ∴==,在Rt AEF ∆中,3sin 5EF CAB AF ∠==Q , 3EF ∴=, 22534AE ∴-=,538DE =+=,ADE DBE ∠=∠Q ,AED BED ∠=∠,ADE DBE ∴∆∆∽,::DE BE AE DE ∴=,即8:4:8BE =,16BE ∴=,41620AB ∴=+=.故选:D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.10.如图,三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2∶3,若三角尺的一边长为8 cm ,则这条边在投影中的对应边长为( )A .8 cmB .12 cmC .16 cmD .24 cm【答案】B【解析】试题分析:利用相似比为2:3,可得出其对应边的比值为2:3,进而求出即可.解:∵三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2:3,三角尺的一边长为8cm ,∴设这条边在投影中的对应边长为:x ,则=,解得:x=12.故选B .考点:位似变换.11.如图,点D 是ABC V 的边BC 上一点,,2BAD C AC AD ∠=∠= ,如果ACD V 的面积为15,那么ABC V 的面积为( )A .20B .22.5C .25D .30 【答案】A【解析】【分析】先证明C ABD BA ∽△△,再根据相似比求出ABC V 的面积即可.【详解】∵,BAD C B B ∠=∠=∠∠∴C ABD BA ∽△△∵2AC AD =∴4S ABD S CBA =V V ∴43S ACD S CBA =V V ∵ACD V 的面积为15 ∴44152033S CBA S ACD ==⨯=V V故答案为:A .【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.12.如图,在ABC V 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A .4B .23C .33D .3【答案】D【解析】【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC V V ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】 此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.13.如图,△ABC 中,∠BAC =45°,∠ACB =30°,将△ABC 绕点A 顺时针旋转得到△AB 1C 1,当点C 1、B 1、C 三点共线时,旋转角为α,连接BB 1,交AC 于点D .下列结论:①△AC 1C 为等腰三角形;②△AB 1D ∽△BCD ;③α=75°;④CA =CB 1,其中正确的是( )A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故④正确.故选:B.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.14.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2yx =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D【解析】 【分析】 过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD 又∵3AO BO =,2OC CA =∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V∴42k =,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.15.如图,顶角为36o 的等腰三角形,其底边与腰之比等k ,这样的三角形称为黄金三角形,已知腰AB=1,ABC ∆为第一个黄金三角形,BCD ∆为第二个黄金三角形,CDE ∆为第三个黄金三角形以此类推,第2020个黄金三角形的周长()A .2018kB .2019kC .20182k k + D .2019(2)k k +【答案】D【解析】【分析】根据相似三角形对应角相等,对应边成比例,求出前几个三角形的周长,进而找出规律:第n 个黄金三角形的周长为k n-1(2+k ),从而得出答案.【详解】解:∵AB=AC=1,∴△ABC 的周长为2+k ;△BCD 的周长为k+k+k 2=k (2+k );△CDE 的周长为k 2+k 2+k 3=k 2(2+k );依此类推,第2020个黄金三角形的周长为k 2019(2+k ).故选:D .【点睛】此题考查黄金分割,相似三角形的性质,找出各个三角形周长之间的关系,得出规律是解题的关键.16.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】B【解析】【分析】 根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =,∴14EFCBCDDSS=VV,∴18EFCABCDSS=V四边形,∴1176824AGH EFCABCDS SS+=+=V V四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.17.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH长为()A.1 B.1.2 C.2 D.2.5【答案】B【解析】【分析】由AB∥GH∥CD可得:△CGH∽△CAB、△BGH∽△BDC,进而得:GH CHAB BC=、GH BHCD BC=,然后两式相加即可.【详解】解:∵AB∥GH,∴△CGH∽△CAB,∴GH CHAB BC=,即2GH CHBC=①,∵CD∥GH,∴△BGH∽△BDC,∴GH BHCD BC=,即3GH BHBC=②,①+②,得:123GH GH CH BHBC BC+=+=,解得:61.25GH==.故选:B.【点睛】本题考查了相似三角形的判定和性质,属于基本题型,熟练掌握相似三角形的判定和性质是解题的关键.18.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CB BDCD=D.AD ABAB AC=【答案】C【解析】【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.19.如图,在ABC∆中,,D E分别是边,AB AC的中点,ADE∆和四边形BCED的面积分别记为12,S S,那么12SS的值为()A.12B.14C.13D.23【答案】C【解析】【分析】根据已知可得到△ADE∽△ABC,从而可求得其面积比,则不难求得12SS的值.【详解】∵,D E分别是边,AB AC的中点,∴DE∥BC,∴△ADE∽△ABC,∴DE:BC=1:2,所以它们的面积比是1:4,所以1211 =413S S= -,故选C.【点睛】本题考查了三角形的中位线定理和相似三角形的性质:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.20.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则较大多边形的周长为 )A.48 cm B.54 cm C.56 cm D.64 cm【答案】A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:3.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=48.大多边形的周长为48cm.故选A.考点:相似多边形的性质.。
初中数学图形的相似练习题及参考答案
初中数学图形的相似练习题及参考答案相似是初中数学中的一个重要概念,它描述了两个图形在形状上的相似程度。
相似的图形具有相同的形状但不一定相等的大小。
在这篇文章中,我们将介绍几道关于相似图形的练习题,并提供参考答案供大家参考。
题目一:已知三角形ABC和三角形DEF相似,且比例系数为3:4。
若AB=6cm,BC=8cm,DE=12cm,求EF的长度。
解答一:根据相似三角形的定义,相似三角形的对应边长之比相等。
即AB/DE=BC/EF。
代入已知条件,得到以下等式:6/12=8/EF通过交叉乘法可以求解EF的长度:6*EF=12*8EF=16cm所以,EF的长度为16cm。
题目二:如果一个正方形的边长为6cm,那么和它相似的另一个正方形的边长是多少?解答二:由于两个正方形相似,所以它们的对应边长之比相等。
设另一个正方形的边长为x,则根据相似三角形的性质得到以下等式:x/6=6/6通过交叉乘法可以求解x的长度:x=6cm所以,和给定正方形相似的另一个正方形的边长也是6cm。
题目三:已知一个矩形的长为10cm,宽为5cm。
如果和它相似的另一个矩形的长为15cm,求这个矩形的宽。
解答三:根据相似矩形的性质,两个矩形的边长比相等。
设相似矩形的宽为x,则根据已知条件可以得到以下等式:10/x=15/5通过交叉乘法可以求解x的长度:10*5=15*x50=15*xx=50/15x=10/3 cm所以,这个矩形的宽为10/3 cm。
题目四:如果一个三角形的三边分别为3cm,4cm和5cm,那么和它相似的另一个三角形的三边分别是多少?解答四:根据相似三角形的性质,两个三角形的边长比相等。
设相似三角形的三边分别为x、y、z,则根据已知条件可以得到以下等式:x/3=y/4=z/5通过交叉乘法可以求解x、y、z的长度:x=3*(4/5)=12/5 cmy=4*(4/5)=16/5 cmz=5*(4/5)=20/5 cm所以,和给定三角形相似的另一个三角形的三边分别是:12/5 cm、16/5 cm和20/5 cm。
初中数学教学课例《图形的相似》教学设计及总结反思
2、请学生继续观察 ΔAOB,画出绕 O 旋转 1800 的 图形写出了对应点坐标,四人小组讨论对应点坐标变化 情况,并作汇报。问旋转任意角度呢?对应点的坐标作 如何变化?(留给学生思考)(图形关于原点对称,横 纵皆为相反数)
3、三角形变大(缩小)时顶点坐标变化情况。 问:(1)ΔAOB 和它缩小后得到 ΔCOD 三角形顶 点是多少? (2)你能求出它们的相似比吗?(3)对应点的坐 标有什么关系?(放大或缩小,横坐标都扩大或缩小相 同的倍数) 4、学生取出自己准备的坐标纸建立直角坐标系, 并任意画出自己所熟悉喜欢的图形,画出以 X 轴 Y 轴对 称的对称图形作出它经过平移、旋转、轴对称、放大或 缩小的图形并写出对应点的坐标。 5、完成课堂练习 P91 习题 1、2 设计意图:让学生自己动手、观察,动脑,与同学 合作交流达到本节目标。使学生明确图形运动与坐标变 化规律,解决本节重点问题。培养学生的动手能力与观 察能力,发展学生数形结合思想,解决难点问题。打破 教材束缚画三角形、四边形的范围,由学生画自己“喜 欢的图形”进一步研究图形运动与坐标;激发学生学习
初中数学教学课例《图形的相似》教学设计及总结反思
学科
初中数学
教学课例名
《图形的相似》
称
本章继轴对称、平移、旋转后介绍了相似,相似也
是图形之间的一种变换,生活中有大量存在相似图形,
从生活实际出发,认识相似图形的特征并用于解决一些
简单的实际问题,让学生体会图形经过平移、旋转、轴
对称、相似变换后坐标的变化情况。加深对图形的认识,
放大、缩小);并发展学生数形结合的思想。
教学目标
能力目标:培养学生的观察能力和动手能力。
情感态度目标:在观察、探索的过程让学生获得发
初三数学图形的相似试题
初三数学图形的相似试题1.若,则= .【答案】.【解析】先用b表示出a,然后代入比例式进行计算即可得解;∵,∴.∴.【考点】比例的性质.2.如图,测得BD="120" m,DC="60" m,EC="50" m,则河宽AB为().A.120 m B.100 m C.75 m D.25 m【答案】B.【解析】根据题意易知:△ABD∽△ECD∴∴m.故选B.【考点】相似三角形的判定与性质.3.如图,在正方形ABCD中,E是BC上的一点,连结AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:(1)CG=BH,(2)FC2=BF·GF,(3)=.【答案】见解析【解析】证明:(1)∵BF⊥AE,CG∥AE,∴CG⊥BF.∵在正方形ABCD中,∠ABH+∠CBG=90°,∠CBG+∠BCG=90°,∠BAH+∠ABH=90°,∴∠BAH=∠CBG,∠ABH=∠BCG,AB=BC,∴△ABH≌△BCG,∴CG=BH;(2)∵∠BFC=∠CFG,∠BCF=∠CGF=90°,∴△CFG∽△BFC,∴=,即FC2=BF·GF;(3)由(2)可知,△BCG∽△BFC∴=,∴BC2=BG·BF,∵AB=BC,∴AB2=BG·BF,∴==即=.4.已知:如图9,在△ABC中,已知点D在BC上,联结AD,使得,DC=3且﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.【答案】(1);(2).【解析】(1)根据等高的三角形的面积的比等于底边的比求出BD=2CD,然后求出BC,再根据两组角对应相等两三角形相似求出△ABC和△DAC相似,然后根据相似三角形对应边成比例可得AC:CD="BC:AC" ,代入数据计算即可得解;(2)根据翻折的性质可得∠E=∠C,DE=CD,再根据两直线平行,内错角相等可得∠B=∠EDF,然后求出∠EDF=∠CAD,再根据两组角对应相等两三角形相似求出△EFD和△ADC相似,根据相似三角形面积的比等于相似比的平方求解即可.试题解析:(1)∵﹦1﹕2∴CD:BD=1:2∵DC="3" ∴BD="6"在△ACD和△BCA中,∠CAD=∠B,∠C=∠C∴△ACD∽△BCA∴即∴.(2)∵翻折∴∠C=∠E,∠1=∠2,DE="DC=3"∵AB∥DE∴∠3=∠B∵∠1=∠B∴∠1=∠3∴△ACD∽△DEF∴.【考点】1.相似三角形的判定与性质;2.翻折变换(折叠问题).5.若x:y=6:5,则下列等式中不正确的是()A.B.C.D.【答案】D.【解析】∵x:y=6:5,∴设x=6k,y=5k,A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.【考点】比例的性质.6.如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F.现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为;AD的中点E的对应点记为.若∽,则AD=__________.【答案】.【解析】利用勾股定理列式求出AC,设AD=2x,得到AE=DE=DE1=A1E1=x,然后求出BE1,再利用相似三角形对应边成比例列式求出DF,然后利用勾股定理列式求出E1F,然后根据相似三角形对应边成比例列式求解得到x的值,从而可得AD的值.试题解析:∵∠ACB=90°,AB=10,BC=6,∴AC=,设AD=,∵点E为AD的中点,将△ADF沿DF折叠,点A对应点记为A1,点E的对应点为E1,∴AE=DE=DE1=A1E1=,∵DF⊥AB,∠ACB=90°,∠A=∠A,∴△ABC∽△AFD,∴=,即,解得DF=,在Rt△DE1F中,=,又∵BE1=AB﹣AE1=10﹣3x,△E1FA1∽△E1BF,∴,∴,即,解得,∴AD的长为.故答案为:.【考点】1.相似三角形的性质;2.坐标与图形性质;3.翻折变换(折叠问题).7.如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.【答案】(1)作图见解析;(2)2:1 ;(3)(6,0),(3,-2),(4,-4),作图见解析.【解析】(1)对应点连线的交点即为位似中心点;(2)根据网格中的距离即可写出△ABC与△A′B'C'的位似比;(3)作出△A'B'C'关于点 O中心对称的△A″B″C″,根据平面直角坐标系中的位置写出△A″B″C″各顶点的坐标.试题解析:(1)图中点O为所求:(2)△ABC与△A'B'C'的位似比等于2:1 .(3)△A''B''C''为所求,A''(6,0);B''(3,-2); C''(4,-4).【考点】1.作图(位似和中心对称变换);2.平面直角坐标系和点的坐标.8.如图1,在Rt△ABC中,∠ACB=900,点P以每秒1cm的速度从点A出发,沿折线AC-CB运动,到点B停止。
相似图形的性质与判断
相似图形的性质与判断相似图形是初中数学中一个重要的概念,它在几何学中有着广泛的应用。
掌握相似图形的性质与判断方法,不仅可以帮助我们解决各种几何问题,还能培养我们的逻辑思维和分析能力。
本文将详细介绍相似图形的性质与判断方法,以帮助中学生和他们的家长更好地理解和应用这一概念。
一、相似图形的定义相似图形是指形状相似但大小不同的两个或多个图形。
在相似图形中,对应角度相等,对应边的比例相等。
例如,两个三角形的对应角度相等且对应边的比例相等,那么这两个三角形就是相似的。
二、相似图形的性质1. 相似三角形的边比例性质:在相似三角形中,对应边的比例相等。
例如,若三角形ABC与三角形DEF相似,则AB/DE = BC/EF = AC/DF。
2. 相似三角形的角度性质:在相似三角形中,对应角度相等。
例如,若三角形ABC与三角形DEF相似,则∠A = ∠D,∠B = ∠E,∠C = ∠F。
3. 相似图形的周长比例性质:在相似图形中,对应边的比例等于对应边的长度比例,即周长比例等于边长比例。
例如,若两个矩形的对应边长比例为a:b,则它们的周长比例也为a:b。
4. 相似图形的面积比例性质:在相似图形中,对应边的比例的平方等于对应面积的比例。
例如,若两个三角形的对应边长比例为a:b,则它们的面积比例为a²:b²。
三、相似图形的判断方法1. 角度判断法:若两个图形的对应角度相等,则它们是相似的。
例如,若两个三角形的对应角度分别为60°、30°和90°、60°,则它们是相似的。
2. 边长比例法:若两个图形的对应边的比例相等,则它们是相似的。
例如,若两个矩形的对应边长比例为3:4,则它们是相似的。
3. 边长比例加角度判断法:若两个图形的对应边的比例相等且对应角度相等,则它们是相似的。
例如,若两个三角形的对应边长比例为2:3且对应角度分别为60°、30°和120°、60°,则它们是相似的。
中考数学《图形的相似》真题汇编含解析
图形的相似(29题)一、单选题1(2023·重庆·统考中考真题)如图,已知△ABC ∽△EDC ,AC :EC =2:3,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.5【答案】B【分析】根据相似三角形的性质即可求出.【详解】解:∵△ABC ∽△EDC ,∴AC :EC =AB :DE ,∵AC :EC =2:3,AB =6,∴2:3=6:DE ,∴DE =9,故选:B .【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC 、△DEF 成位似关系,则位似中心的坐标为()A.-1,0B.0,0C.0,1D.1,0【答案】A【分析】根据题意确定直线AD 的解析式为:y =x +1,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:A 1,2 ,D 3,4 ,设直线AD 的解析式为:y =kx +b ,将点代入得:2=k +b 4=3k +b ,解得:k =1b =1 ,∴直线AD 的解析式为:y =x +1,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当y =0时,x =-1,∴位似中心的坐标为-1,0 ,故选:A .【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,△ABC 的三个顶点分别为A 1,2 ,B 2,1 ,C 3,2 ,现以原点O 为位似中心,在第一象限内作与△ABC 的位似比为2的位似图形△A B C ,则顶点C 的坐标是()A.2,4B.4,2C.6,4D.5,4【答案】C【分析】直接根据位似图形的性质即可得.【详解】解:∵△ABC 的位似比为2的位似图形是△A B C ,且C 3,2 ,∴C 2×3,2×2 ,即C 6,4 ,故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.4(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A.6.4mB.8mC.9.6mD.12.5m【答案】B【分析】根据镜面反射性质,可求出∠ACB =∠ECD ,再利用垂直求△ABC ∽△EDC ,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB ⊥BD ,CD ⊥DE ,CF ⊥BD∴∠ABC =∠CDE =90°.∵根据镜面的反射性质,∴∠ACF =∠ECF ,∴90°-∠ACF =90°-∠ECF ,∴∠ACB =∠ECD ,∴△ABC ∽△EDC ,∴AB DE =BC CD.∵小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,∴AB =1.6m ,BC =2m ,CD =10m .∴1.6DE =210.∴DE =8m .故选:B .【点睛】本题考查了相似三角形的应用,解题的关键在于熟练掌握镜面反射的基本性质和相似三角形的性质.5(2023·安徽·统考中考真题)如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.10【答案】B 【分析】根据平行线分线段成比例得出DE EM =AF FB =2,根据△ADE ∽△CME ,得出AD CM =DE EM =2,则CM =12AD =32,进而可得MB =32,根据BC ∥AD ,得出△GMB ∽△GDA ,根据相似三角形的性质得出BG =3,进而在Rt △BGM 中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,AF =2,FB =1,∴AD =BC =AB =AF +FG =2+1=3,AD ∥CB ,AD ⊥AB ,CB ⊥AB ,∵EF ⊥AB ,∴AD ∥EF ∥BC∴DE EM =AFFB=2,△ADE∽△CME,∴AD CM =DEEM=2,则CM=12AD=32,∴MB=3-CM=32,∵BC∥AD,∴△GMB∽△GDA,∴BG AG =MBDA=323=12∴BG=AB=3,在Rt△BGM中,MG=MB2+BG2=322+32=352,故选:B.【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.6(2023·湖北黄冈·统考中考真题)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()A.10B.11C.23D.4【答案】A【分析】由作图可知BP平分∠CBD,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,根据角平分线的性质可知RQ=RC,进而证明Rt△BCR≌Rt△BQR,推出BC=BQ=4,设RQ=RC=x,则DR=CD-CR=3-x,解Rt△DQR求出QR=CR=43.利用三角形面积法求出OC,再证△OCR∽△DCN,根据相似三角形对应边成比例即可求出CN.【详解】解:如图,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,∵矩形ABCD中,AB=3,BC=4,∴CD =AB =3,∴BD =BC 2+CD 2=5.由作图过程可知,BP 平分∠CBD ,∵四边形ABCD 是矩形,∴CD ⊥BC ,又∵RQ ⊥BD ,∴RQ =RC ,在Rt △BCR 和Rt △BQR 中,RQ =RC BR =BR ,∴Rt △BCR ≌Rt △BQR HL ,∴BC =BQ =4,∴QD =BD -BQ =5-4=1,设RQ =RC =x ,则DR =CD -CR =3-x ,在Rt △DQR 中,由勾股定理得DR 2=DQ 2+RQ 2,即3-x 2=12+x 2,解得x =43,∴CR =43.∴BR =BC 2+CR 2=4310.∵S △BCR =12CR ⋅BC =12BR ⋅OC ,∴OC =CR ⋅BC BR =43×44310=2510.∵∠COR =∠CDN =90°,∠OCR =∠DCN ,∴△OCR ∽△DCN ,∴OC DC =CR CN ,即25103=43CN,解得CN =10.故选:A .【点睛】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出BP 平分∠CBD ,通过勾股定理解直角三角形求出CR .7(2023·四川内江·统考中考真题)如图,在△ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC ∥DG ∥EF ,点H 为AF 与DG 的交点.若AC =12,则DH 的长为()A.1B.32C.2D.3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB,解得EF =4,则DH =12EF =2.【详解】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴∠BEF =∠BAC ,∠BFE =∠BCA ,∴△BEF ∽△BAC ,∴EF AC =BE AB,即EF 12=BE 3BE ,解得:EF =4,∴DH =12EF =12×4=2,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.8(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,O 为原点,OA =OB =35,点C 为平面内一动点,BC =32,连接AC ,点M 是线段AC 上的一点,且满足CM :MA =1:2.当线段OM 取最大值时,点M 的坐标是()A.35,65B.355,655C.65,125D.655,1255 【答案】D【分析】由题意可得点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,先证△OAM ∽△DAC ,得OM CD =OA AD =23,从而当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,然后分别证△BDO ∽△CDF ,△AEM ∽△AFC ,利用相似三角形的性质即可求解.【详解】解:∵点C 为平面内一动点,BC =32,∴点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,∵OA =OB =35,∴AD =OD +OA =952,∴OA AD=23,∵CM :MA =1:2,∴OA AD =23=CM AC,∵∠OAM =∠DAC ,∴△OAM ∽△DAC ,∴OM CD =OA AD=23,∴当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,∵OA =OB =35,OD =352,∴BD =OB 2+OD 2=35 2+352 2=152,∴CD =BC +BD =9,∵OM CD=23,∴OM =6,∵y 轴⊥x 轴,CF ⊥OA ,∴∠DOB =∠DFC =90°,∵∠BDO =∠CDF ,∴△BDO ∽△CDF ,∴OB CF =BD CD 即35CF=1529,解得CF =1855,同理可得,△AEM ∽△AFC ,∴ME CF =AM AC =23即ME 1855=23,解得ME =1255,∴OE =OM 2-ME 2=62-1255 2=655,∴当线段OM 取最大值时,点M 的坐标是655,1255,故选:D .【点睛】本题主要考查了勾股定理、相似三角形的判定及性质、圆的一般概念以及坐标与图形,熟练掌握相似三角形的判定及性质是解题的关键.9(2023·山东东营·统考中考真题)如图,正方形ABCD 的边长为4,点E ,F 分别在边DC ,BC 上,且BF =CE ,AE 平分∠CAD ,连接DF ,分别交AE ,AC 于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN ⊥AC 垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM +PN 的最小值为32;③CF 2=GE ⋅AE ;④S ΔADM =62.其中正确的是()A.①②B.②③④C.①③④D.①③【答案】D【分析】根据正方形的性质和三角形全等即可证明∠DAE =∠FDC ,通过等量转化即可求证AG ⊥DM ,利用角平分线的性质和公共边即可证明△ADG ≌△AMG ASA ,从而推出①的结论;利用①中的部分结果可证明△ADE ∽△DGE 推出DE 2=GE ⋅AE ,通过等量代换可推出③的结论;利用①中的部分结果和勾股定理推出AM 和CM 长度,最后通过面积法即可求证④的结论不对;结合①中的结论和③的结论可求出PM +PN 的最小值,从而证明②不对.【详解】解:∵ABCD 为正方形,∴BC =CD =AD ,∠ADE =∠DCF =90°,∵BF =CE ,∴DE =FC ,∴△ADE ≌△DCF SAS .∴∠DAE =∠FDC ,∵∠ADE =90°,∴∠ADG +∠FDC =90°,∴∠ADG +∠DAE =90°,∴∠AGD =∠AGM =90°.∵AE 平分∠CAD ,∴∠DAG =∠MAG .∵AG =AG ,∴△ADG ≌△AMG ASA .∴DG =GM ,∵∠AGD =∠AGM =90°,∴AE 垂直平分DM ,故①正确.由①可知,∠ADE =∠DGE =90°,∠DAE =∠GDE ,∴△ADE ∽△DGE ,∴DE GE=AE DE ,∴DE 2=GE ⋅AE ,由①可知DE =CF ,∴CF 2=GE ⋅AE .故③正确.∵ABCD 为正方形,且边长为4,∴AB =BC =AD =4,∴在Rt △ABC 中,AC =2AB =4 2.由①可知,△ADG ≌△AMG ASA ,∴AM =AD =4,∴CM =AC -AM =42-4.由图可知,△DMC 和△ADM 等高,设高为h ,∴S △ADM =S △ADC -S △DMC ,∴4×h 2=4×42-42-4 ⋅h 2,∴h =22,∴S △ADM =12⋅AM ⋅h =12×4×22=4 2.故④不正确.由①可知,△ADG ≌△AMG ASA ,∴DG =GM ,∴M 关于线段AG 的对称点为D ,过点D 作DN ⊥AC ,交AC 于N ,交AE 于P ,∴PM +PN 最小即为DN ,如图所示,由④可知△ADM 的高h =22即为图中的DN ,∴DN =2 2.故②不正确.综上所述,正确的是①③.故选:D .【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点.10(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是()A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得∠QDF =∠CDF =∠QEF ,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出MQ =AM =4,再求出BQ 即可判断②正确;由△CDP ∽△BQP 得CP BP =CD BQ=53,求出BP 即可判断③正确;根据EF DE ≠QE BE 即可判断④错误.【详解】由折叠性质可知:∠CDF =∠QDF ,CD =DQ =5,∵CD ∥AB ,∴∠CDF =∠QEF .∴∠QDF =∠QEF .∴DQ =EQ =5.故①正确;∵DQ =CD =AD =5,DM ⊥AB ,∴MQ =AM =4.∵MB =AB -AM =5-4=1,∴BQ =MQ -MB =4-1=3.故②正确;∵CD ∥AB ,∴△CDP ∽△BQP .∴CP BP =CD BQ=53.∵CP +BP =BC =5,∴BP =38BC =158.故③正确;∵CD ∥AB ,∴△CDF ∽△BEF .∴DF EF =CD BE =CD BQ +QE=53+5=58.∴EF DE =813.∵QE BE =58,∴EF DE ≠QE BE.∴△EFQ 与△EDB 不相似.∴∠EQF ≠∠EBD .∴BD 与FQ 不平行.故④错误;故选:A .【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.11(2023·黑龙江·统考中考真题)如图,在正方形ABCD中,点E,F分别是AB,BC上的动点,且AF ⊥DE,垂足为G,将△ABF沿AF翻折,得到△AMF,AM交DE于点P,对角线BD交AF于点H,连接HM,CM,DM,BM,下列结论正确的是:①AF=DE;②BM∥DE;③若CM⊥FM,则四边形BHMF是菱形;④当点E运动到AB的中点,tan∠BHF=22;⑤EP⋅DH=2AG⋅BH.()A.①②③④⑤B.①②③⑤C.①②③D.①②⑤【答案】B【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解:∵四边形ABCD是正方形,∴∠DAE=∠ABF=90°,DA=AB,∵AF⊥DE,∴∠BAF+∠AED=90°,∵∠BAF+∠AFB=90°,∴∠AED=∠BFA,∴△ABF≌△AED AAS,∴AF=DE,故①正确,∵将△ABF沿AF翻折,得到△AMF,∴BM⊥AF,∵AF⊥DE,∴BM∥DE,故②正确,当CM⊥FM时,∠CMF=90°,∵∠AMF=∠ABF=90°,∴∠AMF+∠CMF=180°,即A,M,C在同一直线上,∴∠MCF=45°,∴∠MFC=90°-∠MCF=45°,通过翻折的性质可得∠HBF=∠HMF=45°,BF=MF,∴∠HMF=∠MFC,∠HBC=∠MFC,∴BC∥MH,HB∥MF,∴四边形BHMF是平行四边形,∵BF=MF,∴平行四边形BHMF是菱形,故③正确,当点E运动到AB的中点,如图,设正方形ABCD的边长为2a,则AE=BF=a,在Rt △AED 中,DE =AD 2+AE 2=5a =AF ,∵∠AHD =∠FHB ,∠ADH =∠FBH =45°,∴△AHD ∽△FHB ,∴FH AH =BF AD=a 2a =12,∴AH =23AF =253a ,∵∠AGE =∠ABF =90°,∴△AGF ∽△ABF ,∴AE AF =EG BF =AG AB =a 5a=55,∴EG =55BF =55a ,AG =55AB =255a ,∴DG =ED -EG =455a ,GH =AH -AG =4515a ,∵∠BHF =∠DHA ,在Rt △DGH 中,tan ∠BHF =tan ∠DHA =DG GH=3,故④错误,∵△AHD ∽△FHB ,∴BH DH=12,∴BH =13BD =13×22a =223a ,DH =23BD =23×22a =423a ,∵AF ⊥EP ,根据翻折的性质可得EP =2EG =255a ,∴EP ⋅DH =255a ⋅423a =81015a 2,2AG ⋅BH =2⋅255a ⋅223a =81015a 2,∴EP ⋅DH =2AG ⋅BH =81015a 2,故⑤正确;综上分析可知,正确的是①②③⑤.故选:B .【点睛】本题考查了正方形的性质,翻折的性质,相似三角形的判定和性质,正切的概念,熟练按照要求做出图形,利用寻找相似三角形是解题的关键.二、填空题12(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1位似,原点O 是位似中心,且AB A 1B 1=3.若A 9,3 ,则A 1点的坐标是.【答案】3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设A1m,n∵△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A9,3,∴位似比为31,∴9 m =31,3n=31,解得m=3,n=1,∴A13,1故答案为:3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.13(2023·吉林长春·统考中考真题)如图,△ABC和△A B C 是以点O为位似中心的位似图形,点A 在线段OA 上.若OA:AA =1:2,则△ABC和△A B C 的周长之比为.【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:∵OA:AA =1:2,∴OA:OA =1:3,设△ABC周长为l1,设△A B C 周长为l2,∵△ABC和△A B C 是以点O为位似中心的位似图形,∴l1l2=OAOA=13.∴l1:l2=1:3.∴△ABC和△A B C 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.14(2023·四川乐山·统考中考真题)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE 交于点F .若AE EB =23,则S △ADF S △AEF =.【答案】52【分析】四边形ABCD 是平行四边形,则AB =CD ,AB ∥CD ,可证明△EAF ∽△DCF ,得到DF EF =CD AE =AB AE,由AE EB =23进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠EAF =∠DCF ,∴△EAF ∽△DCF ,∴DF EF =CD AE =AB AE ,∵AE EB =23,∴AB AE =52,∴S △ADF S △AEF =DF EF =AB AE=52.故答案为:52【点睛】此题考查了平行四边形的性质、相似三角形的判定和性质等知识,证明△EAF ∽△DCF 是解题的关键.15(2023·江西·统考中考真题)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,∠ABC 和∠AQP 均为直角,AP 与BC 相交于点D .测得AB =40cm ,BD =20cm ,AQ =12m ,则树高PQ =m .【答案】6【分析】根据题意可得△ABD ∽△AQP ,然后相似三角形的性质,即可求解.【详解】解:∵∠ABC 和∠AQP 均为直角∴BD ∥PQ ,∴△ABD ∽△AQP ,∴BD PQ =AB AQ∵AB =40cm ,BD =20cm ,AQ =12m ,∴PQ =AQ ×BD AB=12×2040=6m ,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.16(2023·四川成都·统考中考真题)如图,在△ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ;③以点M 为圆心,以MN 长为半径作弧,在∠BAC 内部交前面的弧于点N :④过点N 作射线DN 交BC 于点E .若△BDE 与四边形ACED 的面积比为4:21,则BE CE的值为.【答案】23【分析】根据作图可得∠BDE =∠A ,然后得出DE ∥AC ,可证明△BDE ∽△BAC ,进而根据相似三角形的性质即可求解.【详解】解:根据作图可得∠BDE =∠A ,∴DE ∥AC ,∴△BDE ∽△BAC ,∵△BDE 与四边形ACED 的面积比为4:21,∴S △BDC S △BAC =421+4=BE BC2∴BE BC =25∴BE CE =23,故答案为:23.【点睛】本题考查了作一个角等于已知角,相似三角形的性质与判定,熟练掌握基本作图与相似三角形的性质与判定是解题的关键.17(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则AD DC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC ,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD =52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB =AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF ⊥AB ,∴∠FDB =45°,∴△DFB 是等腰直角三角形,∴DF =BF ,∵S △ADB =12×BC ×AD =12×DF ×AB ,即AD =10DF ,∵∠C =∠AFD =90°,∠CAB =∠FAD ,∴△AFD ∼△ACB ,∴DF BC =AF AC,即AF =3DF ,又∵AF =10-DF ,∴DF =104,∴AD =10×104=52,CD =3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A =90°,则BN =AB 2+AN 2=2,∴BN =ND =2∴AD =AN +ND =2+1,综上,AD 的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.19(2023·辽宁大连·统考中考真题)如图,在正方形ABCD 中,AB =3,延长BC 至E ,使CE =2,连接AE ,CF 平分∠DCE 交AE 于F ,连接DF ,则DF 的长为.【答案】3104【分析】如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,由CF 平分∠DCE ,可知∠FCM =∠FCN =45°,可得四边形CMFN 是正方形,FM ∥AB ,设FM =CM =NF =CN =a ,则ME =2-a ,证明△EFM ∽△EAB ,则FM AB=ME BE ,即a 3=2-a 3+2,解得a =34,DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2,计算求解即可.【详解】解:如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,则四边形CMFN 是矩形,FM ∥AB ,∵CF 平分∠DCE ,∴∠FCM =∠FCN =45°,∴CM =FM ,∴四边形CMFN 是正方形,设FM =CM =NF =CN =a ,则ME =2-a ,∵FM ∥AB ,∴△EFM ∽△EAB ,∴FM AB =ME BE ,即a 3=2-a 3+2,解得a =34,∴DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2=3104,故答案为:3104.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20(2023·广东·统考中考真题)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图,由题意可知AD =DC =10,CG =CE =GF =6,∠CEF =∠EFG =90°,GH =4,∴CH =10=AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ AAS ,∴CJ =DJ =5,∴EJ =1,∵GI ∥CJ ,∴△HGI ∽△HCJ ,∴GI CJ =GH CH=25,∴GI =2,∴FI =4,∴S 梯形EJIF =12EJ +FI ⋅EF =15;故答案为:15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.21(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.【答案】3;13【分析】(1)过点E 作EH ⊥AD ,根据正方形和等腰三角形的性质,得到AH 的长,再利用勾股定理,求出EH 的长,即可得到△ADE 的面积;(2)延长EH 交AG 于点K ,利用正方形和平行线的性质,证明△ABF ≌△KEF ASA ,得到EK 的长,进而得到KH 的长,再证明△AHK ∽△ADG ,得到KH GD =AH AD ,进而求出GD 的长,最后利用勾股定理,即可求出AG的长.【详解】解:(1)过点E作EH⊥AD,∵正方形ABCD的边长为3,∴AD=3,∵△ADE是等腰三角形,EA=ED=52,EH⊥AD,∴AH=DH=12AD=32,在Rt△AHE中,EH=AE2-AH2=522-32 2=2,∴S△ADE=12AD⋅EH=12×3×2=3,故答案为:3;(2)延长EH交AG于点K,∵正方形ABCD的边长为3,∴∠BAD=∠ADC=90°,AB=3,∴AB⊥AD,CD⊥AD,∵EK⊥AD,∴AB∥EK∥CD,∴∠ABF=∠KEF,∵F为BE的中点,∴BF=EF,在△ABF和△KEF中,∠ABF=∠KEF BF=EF∠AFB=∠KFE,∴△ABF≌△KEF ASA,∴EK=AB=3,由(1)可知,AH=12AD,EH=2,∴KH=1,∵KH∥CD,∴△AHK∽△ADG,∴KH GD =AH AD,∴GD=2,在Rt△ADG中,AG=AD2+GD2=32+22=13,故答案为:13.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22(2023·四川泸州·统考中考真题)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP ∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP=27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.23(2023·山西·统考中考真题)如图,在四边形ABCD 中,∠BCD =90°,对角线AC ,BD 相交于点O .若AB =AC =5,BC =6,∠ADB =2∠CBD ,则AD 的长为.【答案】973【分析】过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,根据等腰三角形性质得出BH =HC =12BC =3,根据勾股定理求出AH =AC 2-CH 2=4,证明∠CBD =∠CED ,得出DB =DE ,根据等腰三角形性质得出CE =BC =6,证明CD ∥AH ,得出CD AH=CE HE ,求出CD =83,根据勾股定理求出DE =CE 2+CD 2=62+83 2=2973,根据CD ∥AH ,得出DE AD =CE CH ,即2973AD=63,求出结果即可.【详解】解:过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,如图所示:则∠AHC =∠AHB =90°,∵AB =AC =5,BC =6,∴BH =HC =12BC =3,∴AH =AC 2-CH 2=4,∵∠ADB =∠CBD +∠CED ,∠ADB =2∠CBD ,∴∠CBD =∠CED ,∴DB =DE ,∵∠BCD =90°,∴DC ⊥BE ,∴CE =BC =6,∴EH =CE +CH =9,∵DC ⊥BE ,AH ⊥BC ,∴CD ∥AH ,∴△ECD ~△EHA ,∴CD AH =CE HE ,即CD 4=69,解得:CD =83,∴DE =CE 2+CD 2=62+83 2=2973,∵CD ∥AH ,∴DE AD=CE CH ,即2973AD =63,解得:AD =973.故答案为:973.【点睛】本题主要考查了三角形外角的性质,等腰三角形的判定和性质,勾股定理,平行线分线段成比例,相似三角形的判定与性质,平行线的判定,解题的关键是作出辅助线,熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.三、解答题24(2023·湖南·统考中考真题)在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高.(1)证明:△ABD ∽△CBA ;(2)若AB =6,BC =10,求BD 的长.【答案】(1)见解析(2)BD =185【分析】(1)根据三角形高的定义得出∠ADB =90°,根据等角的余角相等,得出∠BAD =∠C ,结合公共角∠B =∠B ,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵∠BAC =90°,AD 是斜边BC 上的高.∴∠ADB =90°,∠B +∠C =90°∴∠B +∠BAD =90°,∴∠BAD =∠C又∵∠B =∠B∴△ABD ∽△CBA ,(2)∵△ABD ∽△CBA∴AB CB =BD AB,又AB =6,BC =10∴BD =AB 2CB=3610=185.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.25(2023·湖南·统考中考真题)如图,CA ⊥AD ,ED ⊥AD ,点B 是线段AD 上的一点,且CB ⊥BE .已知AB =8,AC =6,DE =4.(1)证明:△ABC∽△DEB.(2)求线段BD的长.【答案】(1)见解析(2)BD=3【分析】(1)根据题意得出∠A=∠D=90°,∠C+∠ABC=90°,∠ABC+∠EBD=90°,则∠C=∠EBD,即可得证;(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.【详解】(1)证明:∵AC⊥AD,ED⊥AD,∴∠A=∠D=90°,∠C+∠ABC=90°,∵CE⊥BE,∴∠ABC+∠EBD=90°,∴∠C=∠EBD,∴△ABC∽△DEB;(2)∵△ABC∽△DEB,∴AB DE =AC BD,∵AB=8,AC=6,DE=4,∴8 4=6 BD,解得:BD=3.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26(2023·四川眉山·统考中考真题)如图,▱ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H,若AG=2,FG=6,求GH的长.【答案】(1)见解析(2)65【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,证明△AEF≅△DEC ASA,推出AF= CD,即可解答;(2)通过平行四边形的性质证明GC=GF=6,再通过(1)中的结论得到DC=AB=AF=8,最后证明△AGH∽△DCH,利用对应线段比相等,列方程即可解答.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠EAF=∠D,∵E是AD的中点,∴AE=DE,∵∠AEF =∠CED ,∴△AEF ≅△DEC ASA ,∴AF =CD ,∴AF =AB ;(2)解:∵四边形ABCD 是平行四边形,∴DC =AB =AF =FG +GA =8,DC ∥FA ,∴∠DCF =∠F ,∠DCG =∠CGB ,∵∠FCG =∠FCD ,∴∠F =∠FCG ,∴GC =GF =6,∵∠DHC =∠AHG ,∴△AGH ∽△DCH ,∴GH CH =AG DC,设HG =x ,则CH =CG -GH =6-x ,可得方程x 6-x =28,解得x =65,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.27(2023·四川凉山·统考中考真题)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E .(1)求证:AC ⊥BD ;(2)若AB =10,AC =16,求OE 的长.【答案】(1)见详解(2)92【分析】(1)可证AB =CB ,从而可证四边形ABCD 是菱形,即可得证;(2)可求OB =6,再证△EBO ∽△BAO ,可得EO BO =BO AO,即可求解.【详解】(1)证明:∵∠CAB =∠ACB ,∴AB =CB ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC ⊥BD .(2)解:∵四边形ABCD 是平行四边形,∴OA =12AC =8,∵AC ⊥BD ,BE ⊥AB ,∴∠AOB =∠BOE =∠ABE =90°,∴OB =AB 2-OB 2=102-82=6,∵∠EBO +∠BEO =90°,∠ABO +∠EBO =90°,∴∠BEO =∠ABO ,∴△EBO ∽△BAO ,∴EO BO =BO AO ,∴EO 6=68解得:OE =92.【点睛】本题考查了平行四边形的性质,菱形的判定及性质,勾股定理,三角形相似的判定及性质,掌握相关的判定方法及性质是解题的关键.28(2023·江苏扬州·统考中考真题)如图,点E 、F 、G 、H 分别是▱ABCD 各边的中点,连接AF 、CE 相交于点M ,连接AG 、CH 相交于点N .(1)求证:四边形AMCN 是平行四边形;(2)若▱AMCN 的面积为4,求▱ABCD 的面积.【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:AM ∥CN ,AN ∥CM ,即可得证;(2)连接HG ,AC ,EF ,推出S △ANH S △ANC =HN CN=12,S △FMC S △AMC =12,进而得到S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,求出S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,再根据S ▱ABCD =2S ▱AFCH ,即可得解.【详解】(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,AB =CD ,AD =BC ,∵点E 、F 、G 、H 分别是▱ABCD 各边的中点,∴AE =12AB =12CD =CG ,AE ∥CG ,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴AM ∥CN ,AN ∥CM ,∴四边形AMCN 是平行四边形;(2)解:连接HG ,AC ,EF ,∵H ,G 为AD ,CD 的中点,∴HG ∥AC ,HG =12AC ,∴△HNG ∽△CNA ,∴HN CN =HG AC =12,∴S △ANH S △ANC =HN CN=12,同理可得:S △FMC S △AMC =12∴S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,∴S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,∵AH =12AD ,∴S ▱ABCD =2S ▱AFCH =12.【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.29(2023·上海·统考中考真题)如图,在梯形ABCD 中AD ∥BC ,点F ,E 分别在线段BC ,AC 上,且∠FAC =∠ADE ,AC =AD(1)求证:DE =AF(2)若∠ABC =∠CDE ,求证:AF 2=BF ⋅CE【答案】见解析【分析】(1)先根据平行线的性质可得∠DAE =∠ACF ,再根据三角形的全等的判定可得△DAE ≅△ACF ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得∠AFC =∠DEA ,从而可得∠AFB =∠CED ,再根据相似三角形的判定可得△ABF ∼△CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:∵AD ∥BC ,∴∠DAE =∠ACF ,在△DAE和△ACF中,∠DAE=∠ACF AD=CA∠ADE=∠CAF,∴△DAE≅△ACF ASA,∴DE=AF.(2)证明:∵△DAE≅△ACF,∴∠AFC=∠DEA,∴180°-∠AFC=180°-∠DEA,即∠AFB=∠CED,在△ABF和△CDE中,∠AFB=∠CED ∠ABF=∠CDE,∴△ABF∼△CDE,∴AF CE =BF DE,由(1)已证:DE=AF,∴AF CE =BF AF,∴AF2=BF⋅CE.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。
人教版数学九年级下册27.1《图形的相似》教学设计
人教版数学九年级下册27.1《图形的相似》教学设计一. 教材分析人教版数学九年级下册第27.1节《图形的相似》是整个初中数学的重要内容,也是九年级数学的重点和难点。
本节内容主要介绍了相似图形的概念、性质和判定方法,以及相似图形的应用。
通过本节的学习,学生能够理解相似图形的概念,掌握相似图形的性质和判定方法,并能运用相似图形解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的性质和判定方法有一定的了解。
但是,对于相似图形的概念和性质,以及如何运用相似图形解决实际问题,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出相似图形的概念,并通过大量的练习,使学生能够熟练掌握相似图形的性质和判定方法。
三. 教学目标1.了解相似图形的概念,掌握相似图形的性质和判定方法。
2.能够运用相似图形解决实际问题。
3.培养学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.相似图形的判定方法。
3.相似图形的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出相似图形的概念。
2.通过大量的练习,使学生能够熟练掌握相似图形的性质和判定方法。
3.采用小组合作的学习方式,让学生在合作中思考,在思考中合作。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备一些实际的例子,用于引导学生从实际问题中抽象出相似图形的概念。
3.准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过展示一些实际的例子,让学生观察并思考:这些图形有什么共同的特点?引导学生从实际问题中抽象出相似图形的概念。
2.呈现(10分钟)介绍相似图形的定义、性质和判定方法。
通过PPT和教材,详细解释相似图形的概念,以及相似图形的性质和判定方法。
3.操练(10分钟)让学生通过练习题,运用相似图形的性质和判定方法,解决实际问题。
教师可以设置一些难度不同的练习题,让学生根据自己的能力选择相应的题目。
初中数学图形的相似性质与应用
初中数学图形的相似性质与应用一、图形的相似性质数学中的相似性质是指两个图形在形状上相似的特征。
当两个图形的形状相似时,它们的相应角度相等,相应边长成比例,具有一定的对应关系。
图形的相似性质在初中数学中具有重要的意义,它不仅可以用于解决实际问题,还能够帮助我们更好地理解几何形状之间的关系。
相似三角形是图形相似性质的一个重要应用。
在相似三角形中,对应角相等,对应边成比例。
根据相似三角形的性质,我们可以利用已知信息来求解未知量。
例如,如果我们知道一个三角形的一个角度和两条边的比例,我们就可以利用相似三角形的特征,计算出其余未知量的值。
同样地,利用相似性质可以解决一些实际问题。
例如,在测量高塔的高度时,我们可以利用相似三角形的原理,通过测量阴影的长度和角度,推算出高塔的实际高度。
这种应用在实际生活中非常常见,帮助我们测量那些无法直接测量的物体尺寸。
二、相似图形的应用1. 测量物体的距离和高度相似性质可以广泛应用于测量物体的距离和高度。
例如,当我们要测量一座高楼的高度时,可以先测量我们自身的身高和身影的长度,然后利用测量结果与自身身高的比值,推算出高楼的高度。
同样地,当我们要测量一座桥的长度时,我们可以在桥上测量两段阴影的长度,并测量阴影和桥的夹角。
通过相似性质,我们可以根据阴影和桥的长度比例关系,计算出桥的长度。
2. 利用相似三角形进行缩放相似三角形的性质可以用于图形的缩放。
例如,我们可以通过相似性质将一个实际物体的图像缩小或放大,以满足一定的需求。
这在建筑设计、地图绘制等领域中被广泛应用。
通过相似性质进行缩放时,我们需要注意比例关系。
如果我们要将一个图形放大两倍,那么相应的边长也应该放大两倍。
这样,我们就可以保持图形的形状和比例关系,实现图形的放大或缩小。
3. 解决几何问题相似性质还可以帮助我们解决一些几何问题。
例如,在解决房屋设计中的一些布局问题时,相似性质能够帮助我们计算合适的尺寸比例和角度。
这样,我们就可以保持房屋的整体比例和美观度。
初中数学——图形的相似
图形的相似与位似一、选择题1. 如图,已知矩形ABCD 的长AB 为5,宽BC 为4.E 是BC 边上的一个动点,AE ⊥上EF ,EF 交CD 于点F .设BE =x ,FC =y ,则点 E 从点B 运动到点C 时,能表示y 关于x 的函数关系的大致图象是( )分析:易证△ABE ∽△ECF ,根据相似比得出函数表达式,在判断图像.解答:因为△ABE ∽△ECF ,则BE :CF =AB :EC ,即x :y =5:(4-x )y ,整理,得y =-51 (x -2)2+54, 很明显函数图象是开口向下、顶点坐标是(2,54)的抛物线.对应A 选项. 故选:A .2. 下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是( )A . ②③B . ①②C . ③④D . ②③④分析: 利用位似图形的定义与性质分别判断得出即可.解答: 解:①相似图形不一定是位似图形,位似图形一定是相似图形,故此选项错误; ②位似图形一定有位似中心,此选项正确;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,此选项正确;④位似图形上任意两点与位似中心的距离之比等于位似比,此选项错误.正确的选项为②③.故选:A .A . 1:25B . 1:5C . 1:2.5D . 1:分析: 根据相似多边形的面积的比等于相似比的平方解答.解答:解:∵两个相似多边形面积的比为1:5,∴它们的相似比为1:.故选D.4.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()A.B.C.D.解答:解:作FG⊥AB于点G,∵∠DAB=90°,∴AE∥FG,∴=,∵AC⊥BC,∴∠ACB=90°,又∵BE是∠ABC的平分线,∴FG=FC,在RT△BGF和RT△BCF中,∴RT△BGF≌RT△BCF(HL),∴CB=GB,∵AC=BC,∴∠CBA=45°,∴AB=BC,∴====+1.故选:C.5.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5 B.1.6 C.1.5 D.1分析:连接OD、OE,先设AD=x,再证明四边形ODCE是矩形,可得出OD=CE,OE=CD,从而得出CD=CE=4﹣x,BE=6﹣(4﹣x),可证明△AOD∽OBE,再由比例式得出AD的长即可.解答:解:连接OD、OE,设AD=x,∵半圆分别与AC、BC相切,∴∠CDO=∠CEO=90°,∵∠C=90°,∴四边形ODCE是矩形,∴OD=CE,OE=CD,∴CD=CE=4﹣x,BE=6﹣(4﹣x)=x+2,∵∠AOD+∠A=90°,∠AOD+∠BOE=90°,∴∠A=∠BOE,∴△AOD∽OBE,∴=,∴=,解得x=1.6,故选B.6.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之闻函数关系的是()A.B.C.D.分析:通过相似三角形△EFB∽△EDC 的对应边成比例列出比例式=,从而得到y 与x之间函数关系式,从而推知该函数图象.解答:解:根据题意知,BF=1﹣x,BE=y﹣1,且△EFB∽△EDC,则=,即=,所以y=(0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选C.二、填空题= 1:4 .1.如图,D、E分别是△ABC的边AB、AC上的中点,则S△ADE:S△ABC分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC且DE=BC,再求出△ADE和△ABC相似,根据相似三角形面积的比等于相似比的平方解答.解答:解:∵D、E是边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC且DE=BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=(1:2)2=1:4.故答案为:1:4.2..如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC的面积比为1:4 .分析:根据三角形的中位线得出DE=BC,DE∥BC,推出△ADE∽△ABC,根据相似三角形的性质得出即可.解答:解:∵D、E分别为AB、AC的中点,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴=()2=,故答案为:1:4.3.今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG 经过A点,则FH= 1.05 里.分析:首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.解答:解:EG⊥AB,FE⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴,解得:FH=1.05里.故答案为:1.05.4.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为9 m.分析:根据△OCD和△OAB相似,利用相似三角形对应边成比例列式求解即可.解答:解:由题意得,CD∥AB,∴△OCD∽△OAB,∴=,即=,解得AB=9.故答案为:9.5.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.4.其中正确的结论是①②③④.(把你认为正确结论的序号都填上)分析:①根据有两组对应角相等的三角形相似即可证明.②由BD=6,则DC=10,然后根据有两组对应角相等且夹边也相等的三角形全等,即可证得.③分两种情况讨论,通过三角形相似即可求得.④依据相似三角形对应边成比例即可求得.解答:解:①∵AB=AC,∴∠B=∠C,又∵∠ADE=∠B∴∠ADE=∠C,∴△ADE∽△ACD;故①结论正确,②AB=AC=10,∠ADE=∠B=α,cosα=,∴BC=16,∵BD=6,∴DC=10,∴AB=DC,在△ABD与△DCE中,∴△ABD≌△DCE(ASA).故②正确,③当∠AED=90°时,由①可知:△ADE∽△ACD,∴∠ADC=∠AED,∵∠AED=90°,∴∠ADC=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且cosα=.AB=10,BD=8.当∠CDE=90°时,易△CDE∽△BAD,∵∠CDE=90°,∴∠BADF=90°,∵∠B=α且cosα=.AB=10,∴cos∠B==,∴BD=.故③正确.④易证得△CDE∽△BAD,由②可知BC=16,设BD=y,CE=x,∴=,∴=,整理得:y2﹣16y+64=64﹣10x,即(y﹣8)2=64﹣10x,∴0<y<8,0<x<6.4.故④正确.6.已知:如图,在△ABC中,点A1,B1,C1分别是BC、AC、AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△A n B n C n的周长为.分析:由于A1、B1、C1分别是△ABC的边BC、CA、AB的中点,就可以得出△A1B1C1∽△ABC,且相似比为,△A2B2C2∽△ABC的相似比为,依此类推△A n B n C n∽△ABC的相似比为,解答:解:∵A1、B1、C1分别是△ABC的边BC、CA、AB的中点,∴A1B1、A1C1、B1C1是△ABC的中位线,∴△A1B1C1∽△ABC,且相似比为,∵A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,∴△A2B2C2∽△A1B1C1且相似比为,∴△A2B2C2∽△ABC的相似比为依此类推△A n B n C n∽△ABC的相似比为,∵△ABC的周长为1,∴△A n B n C n的周长为.故答案为.三、解答题1. 已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)联结AE,交BD于点G,求证:=.分析:(1)证△△BAD≌≌△CDA,推出∠ABD=∠ACD=∠CDE,推出AC∥DE即可;(2)根据平行得出比例式,再根据比例式的性质进行变形,即可得出答案.解答:证明:(1)∵梯形ABCD,AD∥BC,AB=CD,∴∠BAD=∠CDA,在△BAD和△CDA中∴△BAD≌△CDA(SAS),∴∠ABD=∠ACD,∵∠CDE=∠ABD,∴∠ACD=∠CDE,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵AD∥BC,∴=,=,∴=,∵平行四边形ACED,AD=CE,∴=,∴=,∴=,∴=.2. 如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2.(3)求△A1B1C1与△A2B2C2的面积比,即:= 1:4 (不写解答过程,直接写出结果).分析:(1)根据关于x轴对称点的性质得出对应点位置进而得出答案;(2)根据将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得出各点坐标,进而得出答案;(3)利用位似图形的性质得出位似比,进而得出答案.解答:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求;(3)∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2的相似比为:1:2,∴:=1:4.故答案为:1:4.3. 如图,已知在△ABC中,AD是BC边上的中线,以AB为直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长线于点N,过点B作BG⊥MN于G.(1)求证:△BGD∽△DMA;(2)求证:直线MN是⊙O的切线.分析:(1)根据垂直定义得出∠BGD=∠DMA=90°,由圆周角定理、三角形内角和定理、对顶角性质及等角的余角相等得出∠DBG=∠ADM,再根据两角对应相等的两三角形相似即可证明△BGD∽△DMA;(2)连结OD.由三角形中位线的性质得出OD∥AC,根据垂直于同一直线的两直线平行得出AC∥BG,由平行公理推论得到OD∥BG,再由BG⊥MN,可得OD⊥MN,然后根据切线的判定定理即可证明直线MN是⊙O的切线.解答:证明:(1)∵MN⊥AC于点M,BG⊥MN于G,∴∠BGD=∠DMA=90°.∵以AB为直径的⊙O交BC于点D,∴AD⊥BC,∠ADC=90°,∴∠ADM+∠CDM=90°,∵∠DBG+∠BDG=90°,∠CDM=∠BDG,∴∠DBG=∠ADM.在△BGD与△DMA中,,∴△BGD∽△DMA;(2)连结OD.∵BO=OA,BD=DC,∴OD是△ABC的中位线,∴OD∥AC.∵MN⊥AC,BG⊥MN,∴AC∥BG,∴OD∥BG,∵BG⊥MN,∴OD⊥MN,∴直线MN是⊙O的切线.4. 如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP交BA的延长线于点Q,求sin∠BQP 的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM 和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.分析:(1)由四边形ABCD 是正方形,可得∠ABE =∠BCF =90°,AB =BC ,又由BE =CF ,即可证得△ABE ≌△BCF ,可得∠BAE =∠CBF ,由∠ABF +∠CBF =900可得∠ABF +∠BAE =900,即AE ⊥BF ; (2)由△BCF ≌△BPF , 可得CF =PF ,BC =BP ,∠BFE =∠BFP ,由CD ∥AB 得∠BFC =∠ABF ,从而QB =QF ,设PF 为x ,则BP 为2x ,在Rt △QBF 中可求 QB 为25x ,即可求得答案; (3)由2)(AMAN AHM AGN =∆∆可求出△AGN 的面积,进一步可求出四边形GHMN 的面积.解答:(1)证明:∵E 、F 分别是正方形ABCD 边BC 、CD 的中点,∴CF =BE ,∴Rt △ABE ≌Rt △BCF ∴∠BAE =∠CBF 又∵∠BAE +∠BEA =900,∴∠CBF +∠BEA =900,∴∠BGE =900, ∴AE ⊥BF(2)根据题意得:FP =FC ,∠PFB =∠BFC ,∠FPB =900,∵CD ∥AB , ∴∠CFB =∠ABF ,∴∠ABF =∠PFB .∴QF =QB 令PF =k (k >O ),则PB =2k , 在Rt △BPQ 中,设QB =x , ∴x 2=(x -k )2+4k 2, ∴x =25k ,∴sin ∠BQP =54252==k k QP BP (3)由题意得:∠BAE =∠EAM ,又AE ⊥BF , ∴AN =AB =2, ∵ ∠AHM =900, ∴GN //HM , ∴2)(AM AN AHM AGN =∆∆ ∴54)52(12==ΛAGN ∴ 四边形GHMN =S ΔAHM - S ΔAGN =1一54= 54答:四边形GHMN 的面积是54.5. 如图,AB 是⊙O 的直径,延长AB 至P ,使BP =OB ,BD 垂直于弦BC ,垂足为点B ,点D 在PC 上.设∠PCB =α,∠POC =β.求证:tan α•tan =.分析:连接AC 先求出△PBD ∽△PAC ,再求出=,最后得到tan α•tan=.解答:证明:连接AC ,则∠A =∠POC =,∵AB是⊙O的直径,∴∠ACB=90°,∴tanα=,BD∥AC,∴∠BPD=∠A,∵∠P=∠P,∴△PBD∽△PAC ,∴=,∵PB=0B=OA ,∴=,∴tana•tan =•==.6.如图,在直角梯形OABC中,BC//AO,∠AOC=900,点A、B的坐标分别为(5,0)、(2,6),点D为AB上一点,且BD=2AD.双曲线y=kx(x>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积。
初中数学 什么是相似
初中数学什么是相似
在初中数学中,相似是一个重要的概念。
当我们讨论两个几何图形相似时,意味着它们具有相同的形状,但可能具有不同的大小。
相似性是基于以下两个条件之一:
1. 对应角相等:两个图形的对应角度相等。
这意味着,如果我们有两个三角形ABC和DEF,其中∠A = ∠D,∠B = ∠E,∠C = ∠F,那么这两个三角形是相似的。
2. 对应边成比例:两个图形的对应边的长度成比例。
这意味着,如果我们有两个三角形ABC 和DEF,其中AB/DE = BC/EF = AC/DF,那么这两个三角形是相似的。
需要注意的是,相似性不仅适用于三角形,也适用于其他几何图形,如矩形、正方形和圆等。
相似性的重要性在于它允许我们在不进行具体测量的情况下推断图形的性质。
例如,如果我们知道一个三角形是相似的,我们可以使用比例关系来求解未知边长或角度。
此外,相似性还可以用于解决实际问题,如测量高楼的高度或计算不可测量的距离。
总结一下,相似是指两个几何图形具有相同的形状,但可能具有不同的大小。
相似性可以基于对应角相等或对应边成比例来定义。
相似性在几何学中具有广泛的应用,可以帮助我们推断未知的边长和角度,解决实际问题。
哪几种图形一样是什么数学问题
哪几种图形一样是什么数学问题1、相似图形概念:形状完全相同的图形叫做相似图形。
只说了形状完全一样,没有说大小,若大小也一样就是全等图形了。
例如,正三角形,正方形,正六边形之间彼此都是相似图形。
2、相似图形的性质我们回忆一下三角形的相似,从三角形相似来总结出图形相似的性质。
初中的时候我们学过三角形的相似,三角形相似有三种判定方法,分别是角角角,边角边和边边边,我们依次来看一下。
(1)角角角两个三角形,如果三个角都对应的相等,就可以说这两个三角形相似。
其实两角对象相等就可以说明相似,因为三角形的内角和是180°,两个角对应相等,那另外一个角自然也就相等。
(2)边角边两个三角形,如果两条对应的边之比相等且两边的夹角也相等,即两边对应成比例且夹角相等,就可以说这两个三角形相似。
(3)边边边两个三角形,如果三条对应的边之比均相等,即三边对应成比例,就可以说这两个三角形相似。
从三角形相似的判定,我们不难发现,满足其中一条就可以判定这两个三角形相似,一旦这两个三角形相似,这三个条件就都满足,即对应角相等对应边成比例。
这一性质也符合所有的相似多边形。
值得一提的是,两个多边形相似,对应边成比例的这个比例叫做两个图形相似的相似比,相似多边形的周长比等于相似比,面积比等于相似比的平方。
梯形ABCD的两条对角线AD、BC相交于O,EF平行于两条边且过O点。
现已知AB=6,CD=18。
问EF的长度为多少?A.8.5B.9C.9.5D.10答案:B解析:由于是梯形,因此AB平行于CD,所以有内错角相等,进而推出三角形ABO相似于三角形DCO,那么OA/OD=OB/OC=AB/CD=1/3,又有OE/AB=OC/BC=OD/AD=OF/AB=3/4,故OE=OF=0.75AB。
EF=OE+OF=2*0.75AB=9,故选择B。
初中数学相似图形课件
一、选择题(每小题 6 分,共 18 分) 9.如图,正五边形 FGHMN 与正五边形 ABCDE 相似,若 AB∶FG=2∶3,则下列结论 正确的是( B ) A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F
10.(2014·牡丹江)若 x∶y=1∶3,2y=3z,则2zx-+yy的值是( A )
2.(4 分)对于线段 a,b,如果 a∶b=2∶3,那么下列四个选项一定正确的是( C )
A.2a=3b
B.b-a=1
C.ba++23=23
D.a+b b=52
3.(4 分)在比例尺为 1∶10 000 000 的地图上,量得甲、乙两地的距离是 30 cm,则两地
的实际距离是( C )
A.30 km
解:分别把原图形的各边扩大到原来的 2 倍、3 倍即可
17.(8 分)如图,请在图②中画出与图①相似的缩小图形. 解:每个“叶片”内缩 2 格即可
18.(8 分图形.
解:图略
【综合运用】 19.(8 分)正方形网格中有一条简笔画“鱼”,请你将这条“鱼”放大,使新 图形与原图形的对应线段的比是 2∶1.
解:图略
第二十七章 图形的相似
27.1 图形的相似 第2课时 相似多边形
1.对于四条线段 a,b,c,d,如果其中两条线段的_ 比 _与另外两条线段的 _ 比 _相等,如_ba=dc(ad=_b,c) 我们就说这四条线段成比例线段.
2.两个边数相同的多边形,如果它们的角分别 相等_,边_成比例 _,那么这
点拨:设 AF 的长为 xcm,在 Rt△AEF 中,AE2+AF2=EF2,EF=FD=6-x,∴32+ x2=(6-x)2,解得 x=94,∴AF=94,FD=145,由△ AEF∽△BGE,得 BG=4,EG=5,∴△ EBG 的周长为 12.
人教初中数学九年级下册《27-1 图形的相似》(教学设计)
人教初中数学九年级下册《27-1 图形的相似》(教学设计)一. 教材分析人教初中数学九年级下册《27-1 图形的相似》是整个九年级下册数学知识的重点和难点,同时也是学生对几何知识的一个深入理解和运用。
本节课主要通过探究图形的相似性质和判定方法,培养学生的逻辑思维能力和空间想象能力。
教材中通过丰富的例题和练习题,使学生能够熟练掌握相似图形的性质和判定方法,并能够应用于实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了相似图形的初步知识,对图形的相似性质和判定方法有一定的了解。
但学生在应用相似知识解决实际问题时,还存在一定的困难。
因此,在教学过程中,教师需要引导学生通过观察、操作、思考、交流等活动,进一步理解和掌握相似图形的性质和判定方法,提高学生的解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握相似图形的性质和判定方法,能够运用相似知识解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等数学活动,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:让学生在探究相似图形的性质和判定方法的过程中,体验数学的趣味性和应用性,增强学生对数学的兴趣和信心。
四. 教学重难点1.教学重点:相似图形的性质和判定方法。
2.教学难点:相似图形的性质和判定方法在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活中的实际问题,激发学生的学习兴趣,引导学生主动探究相似图形的性质和判定方法。
2.动手操作法:让学生通过动手画图、折纸等活动,直观地感受相似图形的性质,提高学生的空间想象能力。
3.小组合作法:引导学生分组讨论、交流,培养学生的团队协作能力和表达能力。
4.引导发现法:教师引导学生发现问题、解决问题,培养学生的逻辑思维能力。
六. 教学准备1.教具准备:黑板、粉笔、多媒体设备、几何画板等。
2.学具准备:笔记本、尺子、圆规、剪刀、彩笔等。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如房屋设计、电路布局等,引导学生观察其中的图形,并提出问题:“这些图形有什么共同的特点?”让学生思考相似图形的性质和判定方法。
初中数学 如何判断两个图形是否相似
初中数学如何判断两个图形是否相似要判断两个图形是否相似,我们可以考虑以下几个方法:1. 观察对应角度是否相等:如果两个图形的对应角度相等,那么它们很可能是相似的。
对应角度是指在两个图形中相同位置的角度。
例如,如果两个三角形的对应角度相等,那么它们可能是相似的。
2. 比较对应边长是否成比例:如果两个图形的对应边长成比例,那么它们可能是相似的。
对应边长是指在两个图形中相同位置的边长。
例如,如果两个三角形的对应边长成比例,那么它们可能是相似的。
3. 使用相似三角形的性质:根据相似三角形的性质,我们可以判断两个三角形是否相似。
相似三角形的性质包括对应角度相等和对应边长成比例。
如果两个三角形满足这些性质,那么它们是相似的。
4. 利用比例关系:如果我们知道一个图形的各个部分之间的比例关系,我们可以根据这个比例关系来判断另一个图形是否相似。
比例关系可以是长度比例、面积比例等。
如果两个图形的各个部分之间的比例关系相同,那么它们可能是相似的。
5. 使用相似性判定定理:相似性判定定理是几何学中用来判断两个图形是否相似的定理。
根据不同的定理,我们可以利用一些特定的条件来判断相似性。
例如,AA判定定理指出,如果两个三角形的两个对应角度相等,那么它们是相似的。
需要注意的是,判断两个图形是否相似通常需要多个条件的共同验证。
只有满足所有相似性的条件,我们才能确定两个图形是相似的。
总结一下,判断两个图形是否相似可以通过观察对应角度是否相等、比较对应边长是否成比例、使用相似三角形的性质、利用比例关系和应用相似性判定定理等方法。
在判断过程中,需要注意验证多个条件,确保满足相似性的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的相似
考点一、比例线段 (3分)
1、比例线段的相关概念
如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n
在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项。
在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段
若四条a ,b ,c ,d 满足或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项,线段的d 叫做a ,b ,c 的第四比例项。
如果作为比例内项的是两条相同的线段,即
c
b b a =或a :b=b :
c ,那么线段b 叫做线段a ,c 的比例中项。
2、比例的性质
(1)基本性质
①a :b=c :d ⇔ad=bc
②a :b=b :c ac b =⇔2
(2)更比性质(交换比例的内项或外项)
d b c a =(交换内项) ⇒=d c b a a
c b
d =(交换外项) a b c d =(同时交换内项和外项) (3)反比性质(交换比的前项、后项):
c
d a b d c b a =⇒= (4)合比性质:
d
d c b b a d c b a ±=±⇒= (5)等比性质:
b
a n f d
b m e
c a n f
d b n m f
e d c b a =++++++++⇒≠++++==== )0( 3、黄金分割
把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=
2
15-AB ≈0.618AB 考点二、平行线分线段成比例定理 (3~5分)
三条平行线截两条直线,所得的对应线段成比例。
n m b a =d c b a =
推论:
(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
(2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。
考点三、相似三角形(3~8分)
1、相似三角形的概念
对应角相等,对应边成比例的三角形叫做相似三角形。
相似用符号“∽”来表示,读作“相似于”。
相似三角形对应边的比叫做相似比(或相似系数)。
2、相似三角形的基本定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
用数学语言表述如下:
∵DE∥BC,∴△ADE∽△ABC
相似三角形的等价关系:
(1)反身性:对于任一△ABC,都有△ABC∽△ABC;
(2)对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC
(3)传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’。
3、三角形相似的判定
(1)三角形相似的判定方法
①定义法:对应角相等,对应边成比例的两个三角形相似
②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似
(2)直角三角形相似的判定方法
①以上各种判定方法均适用
②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
4、相似三角形的性质
(1)相似三角形的对应角相等,对应边成比例
(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比
(3)相似三角形周长的比等于相似比
(4)相似三角形面积的比等于相似比的平方。
5、相似多边形
(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比(或相似系数)
(2)相似多边形的性质
①相似多边形的对应角相等,对应边成比例
②相似多边形周长的比、对应对角线的比都等于相似比
③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比
④相似多边形面积的比等于相似比的平方
6、位似图形
如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。
性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。
由一个图形得到它的位似图形的变换叫做位似变换。
利用位似变换可以把一个图形放大或缩小。
微商货源网 NiR6CW8uCsjp。