西门子间接寻址详解
s7寻址方式,直接寻址,间接寻址,指针使用

偏移量0.0不起作用。输出Q10.0 等于8.7 (AR1) 加偏移量1.1。结果是10.0 ,而不是9.8,参见指针格式。
存储区域交叉寻址例程
在存储区域交叉寻址中,指针中包含指示存储区域的信息(例子中为 I 和 Q)。
L P#I8.7 把指针值及存储区域标识装载到累加器1
1. 直接地址:例如I0.0,Q1.7,PIW256,PQW512,MD20,T15,C16,DB1.DBB10,L10.0等
2. 符号寻址:例如qq,ww.aa等
二寻址
存储器间接寻址:16位指针,例如OPN DB[MW2]
LAR1 把存储区域I 和地址8.7装载到AR1
L P#Q8.7 把指针值和地址标识符装载到累加器1
LAR2 把存储区域Q和地址8.7装载到AR2
A [AR1,P#0.0] 查询输入位I8.7的信号状态
存储区域内部寻址例程
指针不包含指示存储区域的信息:
L P#8.7 把指针值装载到累加器1
LAR1 把指针从累加器1装载到AR1
A I[AR1,P#0.0] 查询I8.7的信号状态
= Q[AR1,P#1.1] 给输出位Q10.0赋值
32位指针,例如A I[MD0]
寄存器间接寻址:32位指针,例如A I[AR1,P#0.0],A [AR1,P#0.0]
1.2 S7-300/400寻址方式图解
2 如何使用指针
指针用来指向一个地址。使用这种寻址方式的优点在于可以在程序运行过程中实现变址。
A I[MD2] 查询I8.7的信号状态
= Q[MD2] 给输出位Q8.7赋值
存储区域内部寻址及交叉寻址
程序中采用这些寻址方式的语句包含一个指令以及下列内容:地址标识符、地址寄存器标识符、偏移量。地址寄存器(AR1、AR2)及偏移量必须写在方括号内。
S7-200SMART间接寻址

S7-200 SMART 间接寻址一、间接寻址概念:1、间接寻址是指用指针来访问存储区的数据。
指针以双字的形式存储其它存储区的地址,只能将V 存储单元、L 存储单元或累加器寄存器(AC1、AC2、AC3)用作指针。
注意:S7-200 SMART CPU 允许指针访问下列存储区:I、Q、V、M、S、AI、AQ、SM、T(仅限当前值)和C(仅限当前值)。
不能使用间接寻址访问单个位或访问HC、L 或累加器存储区。
2、指针存储的就是存储器的内存地址或编号,如下所示,VB0表示的是一个存储器,而内存地址:16#08000000则就是VB0这个存储区所对应的内存地址,通过对这个内存地址的改变就可以实现对不同的存储区的访问,这就是间接寻址的过程。
3、间接寻址的使用过程主要分为建立指针,改变指针,通过指针实现存储器三步骤。
二、建立指针:要创建指针,用“&”符号加上要访问的存储区地址可建立一个指针,必须使用“移动双字”指令,将间接寻址的存储单元地址移至指针位置。
注意:修改指针的值时,请记住调整所访问数据的大小:访问字节时,指针值加1;访问定时器或计数器的字或当前值时,指针值加2;访问双字时,指针值加4。
三、修改指针:对指针中的数据进行修改,可以实现对存储地址的改变,如图所示通过对指针进行加法操作来改变指针中的所存的数据,该数据指向的是PLC中存储器的内存地址。
四、通过指针对数据进行存取:当指针的内容修改完后,需要根据修改后的指针的内容访问对应的存储区的数据,此时指令中的操作数是指针是,应该在操作数前面加上“*”号。
例程1.通过指针访问数据表所实现的功能:索引号VW1008=0时,将指定的配方0(VB100~VB104) 数据传送到(VB1500~VB1504) 索引号VW1008=1时,将指定的配方1(VB105~VB109) 数据传送到(VB1500~VB1504) 索引号VW1008=2时,将指定的配方2(VB110~VB114) 数据传送到(VB1500~VB1504) 索引号VW1008=3时,将指定的配方3(VB115~VB119) 数据传送到(VB1500~VB1504)例程2.通过指针存储数据表所实现的功能:索引号VW1008=0时,将(VB1500~VB1504)数据传送到指定的配方0(VB100~VB104) 索引号VW1008=1时,将(VB1500~VB1504)数据传送到指定的配方1(VB105~VB109) 索引号VW1008=2时,将(VB1500~VB1504)数据传送到指定的配方2(VB110~VB114) 索引号VW1008=3时,将(VB1500~VB1504)数据传送到指定的配方3(VB115~VB119)例程3.通过地址偏移量来访问V存储区数据所实现的功能:本例程可以实现对区任意字节数据的访问。
西门子S7-1200的间接寻址功能(2)

西门子S7-1200的间接寻址功能(2)
前面介绍了读取和写入数组中元素值的指令Field Read和Field Write两条指令,同时给大家简单的分析了程序的设计思路。
接下来就使用Field Read来实现本功能,在程序的设计过程中可能还需要用到循环跳转指令。
例子说明:
假设需要从一组数据中找出一个最大值,并记录这个最大值是这组数据中的第几个数据。
第一步:
添加一个全局DB块,并在DB块中建立一个变量名为data_1#,数据类型为数组的变量,用于存储需要找出最大的数据,同时建立一些相应的变量,如下图所示。
第二步:
初始化相应的存储器并把存储最大值的存储器的值设置为最小值。
程序如下所示:
第三步:
编写判断数据的挨个比较是否完成,当执行的次数与设定的次数相等时,则表示完成,可以跳出最大值查找的程序,让程序跳转到最后执行。
程序如下所示:
第四步:
编写读取数组中元素的值,然后与存储最大值的存储器中的值做比较,用于判断数据存储器存储的值是否是最大值,若不是最大值进行数据交换,同时记录位置,然后INDEX的值加1,同时记录执行次数并与设定次数做比较,如未达到设定次数,则跳转换前面继续通过Field Read指令读取数据出来继续做比较。
程序仅供参考,希望对大家在以后使用此功能上时有所帮助。
寄存器间接寻址

寄存器间接寻址在S7-300PLC中有两个专门存放地址的寄存器AR1和AR2通过这两个寄存器进行寻址的方式我们称之为寄存器间接寻址1、内部区域寄存器间接寻址1) 存储格式交叉区域寄存器间接寻址在地址寄存器中的排列可分为三个区域,分别是存储位信息的区域,存储字节、字、双字信息区域,和无效区域。
2)寻址格式地址存储器标示符[AR1/AR2,P#X]在内部区域寄存器间接寻址中,地址存储器标示符表示的是要寻址的所在的区域,如M区、I区、Q区,AR1/AR2表示指针自身所占用的存储空间是AR1(地址寄存器1)或者AR2(地址寄存器2),P#X表示偏移量,表示在地址寄存器中地址的基础上进行偏移的幅度。
3)程序示例例1LAR1 P#2.0 //装载地址2.0到AR1L MW [AR1,P#0.0] //装载MW2L MW [AR1,P#2.0] //装载MW4+I //MW2+MW4T MW [AR1,P#4.0] //将加法结果存放到MW62 、交叉区域寄存器间接寻址1) 存储格式交叉区域寄存器间接寻址在地址寄存器中的排列可分为五个区域,分别是存储位信息的区域,存储字节、字、双字信息区域,存储区域地址标示符信息区域,交叉区域指针标识位和无效区域。
此处我们需要将区域地址标识位和相对应的地址信息向大家一一列举如图2-2所示2)寻址格式访问宽度[AR1/AR2,P#X]在内部区域寄存器间接寻址中,访问宽度表示寻址数据的长度W 表示长度是字D表示长度是双字,AR1/AR2表示指针自身所占用的存储空间是AR1(地址寄存器1)或者AR2(地址寄存器2),P#X表示偏移量,表示在地址寄存器中地址的基础上进行偏移的幅度。
此处需要注意由于地址寄存器中已经包含区域标识符信息所以在寻址时只需要访问宽度信息,不需要区域标识符信息,具体使用方法参照下面例子。
3)程序示例例1LAR1 P#M 12.0 //装载M12.0到地址寄存器1L W [AR1,P#0.0] //装载MW12 L W [AR1,P#2.0] //装载MW14 +I//MW12+MW14T W [AR1,P#4.0] //将结果存放到。
详解西门子间接寻址 (2)

详解西门子间接寻址【地址的概念】完整的一条指令,应该包含指令符+操作数(当然不包括那些单指令,比如NOT 等)。
其中的操作数是指令要执行的目标,也就是指令要进行操作的地址。
我们知道,在PLC中划有各种用途的存储区,比如物理输入输出区P、映像输入区I、映像输出区Q、位存储区M、定时器T、计数器C、数据区DB和L等,同时我们还知道,每个区域可以用位(BIT)、字节(BYTE)、字(WORD)、双字(DWORD)来衡量,或者说来指定确切的大小。
当然定时器T、计数器C不存在这种衡量体制,它们仅用位来衡量。
由此我们可以得到,要描述一个地址,至少应该包含两个要素:1、存储的区域2、这个区域中具体的位置比如:A其中的A是指令符,是A的操作数,也就是地址。
这个地址由两部分组成:Q:指的是映像输出区:就是这个映像输出区第二个字节的第0位。
由此,我们得出,一个确切的地址组成应该是:〖存储区符〗〖存储区尺寸符〗〖尺寸数值〗.〖位数值〗,例如:。
DB X 200 . 0其中,我们又把〖存储区符〗〖存储区尺寸符〗这两个部分合称为:地址标识符。
这样,一个确切的地址组成,又可以写成:地址标识符+ 确切的数值单元【间接寻址的概念】寻址,就是指定指令要进行操作的地址。
给定指令操作的地址方法,就是寻址方法。
在谈间接寻址之前,我们简单的了解一下直接寻址。
所谓直接寻址,简单的说,就是直接给出指令的确切操作数,象上面所说的,A ,就是直接寻址,对于A这个指令来说,就是它要进行操作的地址。
这样看来,间接寻址就是间接的给出指令的确切操作数。
对,就是这个概念。
比如:A Q[MD100] ,A T[DBW100]。
程序语句中用方刮号[ ] 标明的内容,间接的指明了指令要进行的地址,这两个语句中的MD100和DBW100称为指针Pointer,它指向它们其中包含的数值,才是指令真正要执行的地址区域的确切位置。
间接由此得名。
西门子的间接寻址方式计有两大类型:存储器间接寻址和寄存器间接寻址。
详解西门子间接寻址完整版

详解西门子间接寻址HEN system office room [HEN 16H-HENS2AHENS8Q8-HENH1688] 详解西门子间接寻址【地址的概念】完整的一条指令,应该包含指令符+操作数(当然不包括那些单指令,比如\0T 等)。
其中的操作数是指令要执行的LI标,也就是指令要进行操作的地址。
我们知道,在PLC中划有各种用途的存储区,比如物理输入输出区P、映像输入区I、映像输出区Q、位存储区M、定时器T、计数器C、数据区DB和L等,同时我们还知道,每个区域可以用位(BIT)、字节(BYTE)、字(WORD)、双字(DWORD)来衡量,或者说来指定确切的大小。
当然定时器T、计数器C不存在这种衡量体制,它们仅用位来衡量。
山此我们可以得到,要描述一个地址,至少应该包含两个要素:1、存储的区域2、这个区域中具体的位置比如:A其中的A是指令符,是A的操作数,也就是地址。
这个地址由两部分组成:Q:指的是映像输出区:就是这个映像输出区第二个字节的笫0位。
由此,我们得出,一个确切的地址组成应该是:[[存储区符K存储区尺寸符K尺寸数值)]・K位数值》,例如:。
DB X 200 . 0其中,我们乂把K存储区符1 K存储区尺寸符』这两个部分合称为:地址标识符。
这样,一个确切的地址组成,又可以写成:地址标识符+确切的数值单元【间接寻址的概念】寻址,就是指定指令要进行操作的地址。
给定指令操作的地址方法,就是寻址方法。
在谈间接寻址之前,我们简单的了解一下直接寻址。
所谓直接寻址,简单的说,就是直接给出指令的确切操作数,象上面所说的,A ,就是直接寻址,对于A 这个指令来说,就是它要进行操作的地址。
这样看来,间接寻址就是间接的给出指令的确切操作数。
对,就是这个概念。
比如:A QEMD100] , A T[DBW100]o程序语句中用方刮号[]标明的内容,间接的指明了指令要进行的地址,这两个语句中的MD100和DBW100称为指针Pointer,它指向它们其中包含的数值,才是指令真正要执行的地址区域的确切位置。
西门子plc的4种寻址方式

西门子plc的4种寻址方式立即寻址是对操作数是常数或常量的寻址方式,其特点是操作数值直接表示在指令中,出现在指令中的操作数称为立即数。
有些指令的操作数是唯一的,为简化起见,并不在指令中写出。
立即寻址方式可用来提供常数、设置初值等。
常数值可分为字节、字、双字型等数据。
CPU以二进制方式存储所有常数。
在指令中可用十进制、十六进制、ASCII码或浮点数形式来表示操作数。
立即寻址示例:SET 说明:把RLO置1OW W#16#320 将常量W#16#320与ACCU1“或”运算L 1352 把整数1352装入ACCU1L‘ABCD’把ASCII码字符ABCD装入ACCU1L C#100 把BCD码常数100(计数值)装入ACCU1AW W#16#3A12 常数W316#3 A12与ACCU1的低位相“与”,运算结果在ACCU1的低字中。
存储器直接寻址包括对寄存器和存储器的直接寻址。
在直接寻址的指令中,直接给出操作数的存储单元地址,包括寄存器或存储器的区域、长度和位置,根据这个地址就可以立即找到该数据。
例如,用MW200指定位存储区中的字,地址为200;MB100表示以字节方式存取,MW100表示存取MB100、MB101组成的字,MD100表示存取MB100~ MB103组成的双字。
在指令中,数据类型应与指令标识符相匹配。
直接寻址编程示例:A IO.0 说明:对输入位10.0进行“与”逻辑操作S L20.0 把本地数据位I20.0置“l”= M115.4 使存储区位M115.4的内容等于RLO的内容L IB10 把输入字节IB10的内容装入ACCU1T DBD12 把ACCU1中的内容传送给数据双字DBD12中。
存储器间接寻址简称间接寻址。
该寻址方式在指令中以存储器的形式给出操作数所在存储器单元的地址,也就是说该存储器的内容是操作数所在存储器单元的地址。
该存储器一般称为地址指针,在指令中需写在方括号“[]”内。
西门子S7-1200 PLC的间接寻址功能及实例

S7-1200指针数据- 已解决问题看了这个问题的网友还看了∙西门子模拟量电压问题西门子博图V14安装步骤∙S7-200/S7-1200/S7-300 EPLAN宏下载S7-1200 怎么实现与上位机进行Modbus_TCP/TP通讯∙打开S7-PLCSIM V13就提示几个文件签名无效,然后报错退出。
关于博图软件怎样安装∙1200PLC编程时,同样是16个位,怎样把数组转换为INT?西门子plc1200编程软件下载∙wincc与s7-1200怎么通讯1200PLC不能与PC机链接,找不到设备,输入输出,如附件IF #EXCUTE = True THENPOKE_BLK(area_src:= #AREA_SRC, (* 源数据类型:16#81:I,16#82:Q,16#83:M,16#84:DB *) dbNumber_src:= #DB_NUM_SRC, (* 源数据块:非DB=0 *)byteOffset_src:= #START_BIT_SRC, (* 源数据起始位号 DB[#DB_NUM_SRC].DBB[#START_BIT_SRC] *)area_dest:= #AREA_TYPE, (* 目标存储类型:16#81:I,16#82:Q,16#83:M,16#84:DB *)dbNumber_dest:= #DB_NUM, (* 目标数据块:非DB=0 *)byteOffset_dest:= #START_BIT, (* 目标起始位位号 DB[#DB_NUM].DBB[#START_BIT] *)count:= #BYTE_COUNT); (* 复制长度字节 *)END_IF;图片说明:回答者:sunnic - 高级技术员第7级2016-08-14 17:08:21提问者对于答案的评价:谢谢已有1人评论展开6wenhua6:你好,我按照你做的,怎么不行西门子S7-1200循环程序间接寻址的方法循环程序的关键是间接寻址,西门子S7-1200的间接寻址离不开数组。
西门子PLC高级编程3_间接寻址及地址寄存器指令

A DBX 0.0
从0字节的第0位开始扫描
L DB19.DBW4 从DB 19中装载数据字4
L “Values”.Number_1 符号访问变量
Number_1. DB19 具有变量名“Values”
A DB10.DBX4.7 从DB 10 的第4个字节的第7位开始扫描
SIMATIC S7
Siemens AG 2001. All rights reserved.
地址标识符
Bit 31=0: 内部区域 Bit 31=1: 交叉区域
字节地址(无符号整数)
位地址
地址标识符:
000 I/O
010 输出(PIQ) 100 DB寄存器中的数据 110 自有本地数据
001 输入(PII) 011 位(Bit)存储器 101 DB寄存器2中的数据(DI) 111 调用块的LD(本地数据)
Date: File:
2018/7/13 PRO2_04E.2
SITRAIN Training for
Automation and Drives
地址
I Q PIB PQB M T C DBX DIX L
变量直接寻址
存储单元位置 (示例)
37.4 27.7 655 653 55.0 114 13 2001.6 406.1 88.5
循环删除
// 将终端地址(DBW18)作为指针 // 传送到MD 40; // 将循环计数器值设置为10 // 传到MB 50中; // 装载初始值 // 传到DB50中; // 装载指针 // 并减去2个字节 // 然后再传回 // 到MD 40; // 装载循环计数器 // 减去2个字节,条件满足则跳转;
L 11 T MW 60
SIEMENSSTEP7间接寻址

02 Siemens Step7 中的间接寻址
Step7 中的间接寻址方式
01
间接寻址是通过间接地址指针来访问存储单元的寻址方 式。在 Step7 中,间接寻址主要应用于数组、结构体等 复杂数据类型的访问。
02
间接寻址通过使用指针变量来间接指向目标数据,从而 实现数据的间接访问。
03
间接寻址的地址计算涉及指针变量的值计算,以确定目 标数据的实际地址。
Siemens Step7 间 接寻址
目录
• 间接寻址简介 • Siemens Step7 中的间接寻址 • 间接寻址的编程示例 • 间接寻址的优缺点 • 间接寻址的常见问题与解决方案 • 间接寻址的未来发展与展望
间接寻址简介
01
定义与特点
01
定义
间接寻址是一种在编程中通过间接变量访问实际变量的 方法。在Siemens Step7中,间接寻址允许我们通过间 接变量来访问数据块中的数据。
间接寻址的地址计算
01
地址计算是间接寻址中关键的一步,它涉及到指针 变量的值调整和偏移计算。
02
地址计算通常涉及加减运算,以根据指针变量当前 指向的地址,计算出目标数据的实际地址。
03
地址计算过程中需要考虑数据类型的大小和字节顺 序,以确保正确访问目标数据。
间接寻址的指令应用
01
间接寻址在 Step7 中广泛应用于指令操作,如数据块读写、结 构体访问等。
数据块访问权限问题
总结词
在Step7中,数据块访问权限问题也是一个常见问题,可能导致程序无法正常访问数据 块。
详细描述
当使用间接寻址时,如果访问的数据块没有正确的访问权限,程序将无法读取或写入数 据块。为了避免这个问题,程序员需要确保数据块具有正确的访问权限,并且在使用间
plc寻址方式

plc寻址方式数据文件既可以根据上面的文件地址形式直接寻址,也支持间接寻址、变址寻址及符号寻址。
1.间接寻址所谓间接寻址,就是用另一个地址的值来代替某一逻辑地址中的寻址单元,如文件号、元素号、位号等。
替代地址必须是下列类型的数据文件之一:N、T、C、R、B、I、O或S,任何T、C或R3字元素的地址必须是子元素(即字)的地址。
2.变址寻址所谓变址寻址,就是实际地址为用户选择的元素地址加上一个偏移量。
偏移量放在处理器状态文件的偏移量字(S:24)中,因此处理器是在基地址加上偏移量后形成的地址上开始操作。
变址寻址用变址符“#”直接放在文件类型标识符前面来识别,如#N7:5。
3.符号寻址所谓符号寻址,就是用一个名称代替一个地址,因此地址就可同实际应用联系起来。
其名称用一字母字符开头,最多可包括十个下列字符:A~Z(大、小写)、0~9、()、下划线和@。
4.程序常数在一些指令中,可以将整数或浮点常数直接输入到梯形图中,而不通过数据表。
5.物理寻址物理寻址也就是I/O模块在物理框架中的位置,常以第几框架第几槽中的第几个端子表示。
如第0个框架中的1号槽放了一个32点输入模块,要指出其5号端子,其物理地址就是0框架1号槽5号端子。
6.逻辑地址逻辑地址是对应于内存中的地址,常以第几号机架( Rack)第几号I/O组(Group)的第几位来表示。
其中一个机架由8个I/O组组成。
一个I/O组对应于一个输入映像表字(16位)和一个输出映像表字(16位),相当于16个输入端子和16个输出端子。
如I:021/12中的I 代表输入模块,02代表2号机架,1代表1号I/O组,斜杆后的12代表12号端子。
(完整版)S7-200间接寻址解析

(完整版)S7-200间接寻址解析对指令的操作数的指定方式,我将其理解为“寻址”。
下面将以我个人的理解对西门子S7-200的寻址方式进行描述,如有不当之处,还请广大读者指正。
在程序中绝大部分的指令都带有操作数,所谓的操作数,是执行这一指令时被这一指令加以操作、处理的数值。
对指令的操作数的指令方式大致的总结一下,可以概括为如下几个类型:1:指令的操作数为“立即数”,(如:15、16#F、2#1111等、、、、、、)。
LD M0.0MOVW +255, VW0+I +45, VW0这是一条加法指令,被加数为:255、加数为45执行这条指令后计算出来的“和”存放在VW0这一存储器内。
LD M0.0MOVB 15, VB0这是一条传指令,译为:将15传送至存储器VB0内。
2:指令的操作数没有直接的给出,而是给出它所在的地址。
LD M0.0MOVW VW0, VW4-I VW2, VW4这是一条减法指令,译为:将存储器VW0内的数值减去存储器VW2内的数值,将“差”存放在存储器VW4内。
3:指令的操作数没有直接的给出,而是给出它所在的地址的“地址”,在S7-200中,将这种寻址方式称之为“指针寻址”。
下面,我们一起来学习一下关于指针的使用方法:在使用指针进行间接寻址的过程中,会涉及到的两个符号:&:建立指针(进行间接访问的区域)*:读取指针(读取指针间接指定的地址)下面是使用指针的一般步骤:1:建立指针建立指针需要使用双字传送指令,如下所示:LD M0.0MOVD &MB0, VD10译为:在VD10建立指针,指针指向被间接访问的首地址MB0。
在建立指针时需要注意如下几个问题:①可以进行间接访问的区域,包括如下几个区域:I、Q、M、S、V、T(当前值)、C(当前值)。
在S7-200中位状态是不能进行间接指定的,所以这里特别强调只是访问定时器及计数器的当前值,而不是其位状态。
②可以作为建立指针的区域,包括如下几个区域:V、L、及累加器AC1至AC3。
西门子S7300高级编程培训4间接寻址和地址寄存器

0 0 0 0 0 0 0 0 0 0 0 0 0 BBBBBBBBBBBBBBBBXXX
215
20 22 20
未定义
字节地址(无符号整数)
位地址
指令语法规则:
LAR1 P#10.0
// 设置AR1 AR1: 00000000 0000 0000 0000 0000 0101 0000
LM W
[AR1, P#200.0]
Date: File:
2023/11/8 PRO2_04E.12
SITRAIN Training for
Automation and Drives
用于装载地址寄存器的指令
装载地址寄存器
LARn (n =1 or 2): 将ACCU1中的内容装载到ARn LARn <地址> 将<地址>中的内容装载到ARn LARn P#<地址> 将<地址>中的地址装载到ARn
Date: File:
2023/11/8 PRO2_04E.7
SITRAIN Training for
Automation and Drives
存储器间接寻址的特性
用于存储16位和32位指针的地址区域:
位(Bit)存储区(绝对寻址或符号寻址) 例如: OPN DB[MW30],OPN DI[“Motor_1”] 等。
交叉区域,寄存器间接寻址
AR 1或AR 2中的交叉区域指针:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 RRR0 0 0 0 0 BBBBBBBBBBBBBBBBXXX
西门子间接寻址的详细介绍

西门子间接寻址的详细介绍在先前所说的存储器间接寻址中,间接指针用M、DB、DI和L直接指定,就是说,指针指向的存储区内容就是指令要执行的确切地址数值单元。
但在寄存器间接寻址中,指令要执行的确切地址数值单元,并非寄存器指向的存储区内容,也就是说,寄存器本身也是间接的指向真正的地址数值单元。
从寄存器到得出真正的地址数值单元,西门子提供了两种途径:1、区域内寄存器间接寻址2、区域间寄存器间接寻址地址寄存器间接寻址的一般格式是:〖地址标识符〗〖寄存器,P#byte.bit〗,比如:DIX[AR1,P#1.5] 或M[AR1,P#0.0] 。
〖寄存器,P#byte.bit〗统称为:寄存器寻址指针,而〖地址标识符〗在上帖中谈过,它包含〖存储区符〗+〖存储区尺寸符〗。
但在这里,情况有所变化。
比较一下刚才的例子:DIX [AR1,P#1.5]X [AR1,P#1.5]DIX可以认为是我们通常定义的地址标识符,DI是背景数据块存储区域,X是这个存储区域的尺寸符,指的是背景数据块中的位。
但下面一个示例中的M呢?X只是指定了存储区域的尺寸符,那么存储区域符在哪里呢?毫无疑问,在AR1中!DIX [AR1,P#1.5] 这个例子,要寻址的地址区域事先已经确定,AR1可以改变的只是这个区域内的确切地址数值单元,所以我们称之为:区域内寄存器间接寻址方式,相应的,这里的[AR1,P#1.5] 就叫做区域内寻址指针。
X [AR1,P#1.5] 这个例子,要寻址的地址区域和确切的地址数值单元,都未事先确定,只是确定了存储大小,这就是意味着我们可以在不同的区域间的不同地址数值单元以给定的区域大小进行寻址,所以称之为:区域间寄存器间接寻址方式,相应的,这里的[AR1,P#1.5] 就叫做区域间寻址指针。
既然有着区域内和区域间寻址之分,那么,同样的AR1中,就存有不同的内容,它们代表着不同的含义。
【AR的格式】地址寄存器是专门用于寻址的一个特殊指针区域,西门子的地址寄存器共有两个:AR1和AR2,每个32位。
西门子PLC寻址方式

寻址方式
所谓寻址方式是指指令得到操作数的方式,可以直接或间接给出操作数的地址。
STEP-7有4种寻址方式:立即寻址、存储器直接寻址、存储器间接寻址和寄存器间接寻址。
1、立即寻址
立即寻址是对常数或常量的寻址方式,其特点是操作数直接包含其中,或指令操作数是唯一的。
2、存储器直接寻址
存储器直接寻址的特点是直接给出存储器的存储单元地址。
3、存储器间接寻址
存储器间接寻址的特点是用指针进行寻址。
操作数存储在由于指针给出的存储单元中,根据要描述的地址复杂程度,地址指针可以是字或双字的,存储指针的存储器也应是字或双字的。
对于T、C、FB、FC、DB,由于其地址范围为-,可使用字指针;对于I、Q、M等,可能要使用双字指针。
使用双字指针时,必须保证指针中的位编号为“0”。
4、寄存器间接寻址
寄存器间接寻址的特点是通过地址寄存器寻址。
S7中有两个地址寄存器:AR1和AR2,地址寄存器的内容加上偏移量形成地址指针,指向操作数所在的存储单元。
寄存器间接寻址有两种形式:区域内寄存器间接寻址和区域司寄存器间接寻址。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完整的一条指令,应该包含指令符+操作数(当然不包括那些单指令,比如NOT等)。
其中的操作数是指令要执行的目标,也就是指令要进行操作的地址。
我们知道,在PLC中划有各种用途的存储区,比如物理输入输出区P、映像输入区I、映像输出区Q、位存储区M、定时器T、计数器C、数据区DB和L等,同时我们还知道,每个区域可以用位(BIT)、字节(BYTE)、字(WORD)、双字(DWORD)来衡量,或者说来指定确切的大小。
当然定时器T、计数器C 不存在这种衡量体制,它们仅用位来衡量。
由此我们可以得到,要描述一个地址,至少应该包含两个要素:1、存储的区域2、这个区域中具体的位置比如:A Q2.0其中的A是指令符,Q2.0是A的操作数,也就是地址。
这个地址由两部分组成:Q:指的是映像输出区2.0:就是这个映像输出区第二个字节的第0位。
由此,我们得出,一个确切的地址组成应该是:〖存储区符〗〖存储区尺寸符〗〖尺寸数值〗.〖位数值〗,例如:DBX200.0。
DB X 200 . 0其中,我们又把〖存储区符〗〖存储区尺寸符〗这两个部分合称为:地址标识符。
这样,一个确切的地址组成,又可以写成:地址标识符+ 确切的数值单元【间接寻址的概念】寻址,就是指定指令要进行操作的地址。
给定指令操作的地址方法,就是寻址方法。
在谈间接寻址之前,我们简单的了解一下直接寻址。
所谓直接寻址,简单的说,就是直接给出指令的确切操作数,象上面所说的,A Q2.0,就是直接寻址,对于A这个指令来说,Q2.0就是它要进行操作的地址。
这样看来,间接寻址就是间接的给出指令的确切操作数。
对,就是这个概念。
比如:A Q[MD100] ,A T[DBW100]。
程序语句中用方刮号[ ] 标明的内容,间接的指明了指令要进行的地址,这两个语句中的MD100和DBW100称为指针Pointer,它指向它们其中包含的数值,才是指令真正要执行的地址区域的确切位置。
间接由此得名。
西门子的间接寻址方式计有两大类型:存储器间接寻址和寄存器间接寻址。
【存储器间接寻址】存储器间接寻址的地址给定格式是:地址标识符+指针。
指针所指示存储单元中所包含的数值,就是地址的确切数值单元。
存储器间接寻址具有两个指针格式:单字和双字。
单字指针是一个16bit的结构,从0-15bit,指示一个从0-65535的数值,这个数值就是被寻址的存储区域的编号。
双字指针是一个32bit的结构,从0-2bit,共三位,按照8进制指示被寻址的位编号,也就是0-7;而从3-18bit,共16位,指示一个从0-65535的数值,这个数值就是被寻址的字节编号。
指针可以存放在M、DI、DB和L区域中,也就是说,可以用这些区域的内容来做指针。
单字指针和双字指针在使用上有很大区别。
下面举例说明:L DW#16#35 //将32位16进制数35存入ACC1T MD2 //这个值再存入MD2,这是个32位的位存储区域L +10 //将16位整数10存入ACC1,32位16进制数35自动移动到ACC2T MW100 //这个值再存入MW100,这是个16位的位存储区域OPN DBW[MW100] //打开DBW10。
这里的[MW100]就是个单字指针,存放指针的区域是M区,MW100中的值10,就是指针间接指定的地址,它是个16位的值!--------L L#+10 //以32位形式,把10放入ACC1,此时,ACC2中的内容为:16位整数10T MD104 //这个值再存入MD104,这是个32位的位存储区域A I[MD104] //对I1.2进行与逻辑操作!=DIX[MD2] //赋值背景数据位DIX6.5!--------A DB[MW100].DBX[MD2] //读入DB10.DBX6.5数据位状态=Q[MD2] //赋值给Q6.5--------A DB[MW100].DBX[MD2] //读入DB10.DBX6.5数据位状态=Q[MW100] //错误!!没有Q10这个元件---------------------------------------------------------------------------------------------------从上面系列举例我们至少看出来一点:单字指针只应用在地址标识符是非位的情况下。
的确,单字指针前面描述过,它确定的数值是0-65535,而对于byte.bit这种具体位结构来说,只能用双字指针。
这是它们的第一个区别,单字指针的另外一个限制就是,它只能对T、C、DB、FC和FB进行寻址,通俗地说,单字指针只可以用来指代这些存储区域的编号。
相对于单字指针,双字指针就没有这样的限制,它不仅可以对位地址进行寻址,还可以对BYTE、WORD、DWORD寻址,并且没有区域的限制。
不过,有得必有失,在对非位的区域进行寻址时,必须确保其0-2bit 为全0!总结一下:单字指针的存储器间接寻址只能用在地址标识符是非位的场合;双字指针由于有位格式存在,所以对地址标识符没有限制。
也正是由于双字指针是一个具有位的指针,因此,当对字节、字或者双字存储区地址进行寻址时,必须确保双字指针的内容是8或者8的倍数。
现在,我们来分析一下上述例子中的A I[MD104] 为什么最后是对I1.2进行与逻辑操作。
通过L L#+10 ,我们知道存放在MD104中的值应该是:MD104:0000 0000 0000 0000 0000 0000 0000 1010当作为双字指针时,就应该按照3-18bit指定byte,0-2bit指定bit来确定最终指令要操作的地址,因此:0000 0000 0000 0000 0000 0000 0000 1010 = 1.2详解西门子间接寻址<2>【地址寄存器间接寻址】在先前所说的存储器间接寻址中,间接指针用M、DB、DI和L直接指定,就是说,指针指向的存储区内容就是指令要执行的确切地址数值单元。
但在寄存器间接寻址中,指令要执行的确切地址数值单元,并非寄存器指向的存储区内容,也就是说,寄存器本身也是间接的指向真正的地址数值单元。
从寄存器到得出真正的地址数值单元,西门子提供了两种途径:1、区域内寄存器间接寻址2、区域间寄存器间接寻址地址寄存器间接寻址的一般格式是:〖地址标识符〗〖寄存器,P#byte.bit〗,比如:DIX[AR1,P#1.5] 或M[AR1,P#0.0] 。
〖寄存器,P#byte.bit〗统称为:寄存器寻址指针,而〖地址标识符〗在上帖中谈过,它包含〖存储区符〗+〖存储区尺寸符〗。
但在这里,情况有所变化。
比较一下刚才的例子:DIX [AR1,P#1.5]X [AR1,P#1.5]DIX可以认为是我们通常定义的地址标识符,DI是背景数据块存储区域,X是这个存储区域的尺寸符,指的是背景数据块中的位。
但下面一个示例中的M呢?X只是指定了存储区域的尺寸符,那么存储区域符在哪里呢?毫无疑问,在AR1中!DIX [AR1,P#1.5] 这个例子,要寻址的地址区域事先已经确定,AR1可以改变的只是这个区域内的确切地址数值单元,所以我们称之为:区域内寄存器间接寻址方式,相应的,这里的[AR1,P#1.5] 就叫做区域内寻址指针。
X [AR1,P#1.5] 这个例子,要寻址的地址区域和确切的地址数值单元,都未事先确定,只是确定了存储大小,这就是意味着我们可以在不同的区域间的不同地址数值单元以给定的区域大小进行寻址,所以称之为:区域间寄存器间接寻址方式,相应的,这里的[AR1,P#1.5] 就叫做区域间寻址指针。
既然有着区域内和区域间寻址之分,那么,同样的AR1中,就存有不同的内容,它们代表着不同的含义。
【AR的格式】地址寄存器是专门用于寻址的一个特殊指针区域,西门子的地址寄存器共有两个:AR1和AR2,每个32位。
当使用在区域内寄存器间接寻址中时,我们知道这时的AR中的内容只是指明数值单元,因此,区域内寄存器间接寻址时,寄存器中的内容等同于上帖中提及的存储器间接寻址中的双字指针,也就是:其0-2bit,指定bit位,3-18bit指定byte字节。
其第31bit固定为0。
AR:0000 0000 0000 0BBB BBBB BBBB BBBB BXXX这样规定,就意味着AR的取值只能是:0.0 ——65535.7例如:当AR=D4(hex)=0000 0000 0000 0000 0000 0000 1101 0100(b),实际上就是等于26.4。
而在区域间寄存器间接寻址中,由于要寻址的区域也要在AR中指定,显然这时的AR中内容肯定于寄存器区域内间接寻址时,对AR内容的要求,或者说规定不同。
AR:1000 0YYY 0000 0BBB BBBB BBBB BBBB BXXX比较一下两种格式的不同,我们发现,这里的第31bit被固定为1,同时,第24、25、26位有了可以取值的范围。
聪明的你,肯定可以联想到,这是用于指定存储区域的。
对,bit24-26的取值确定了要寻址的区域,它的取值是这样定义的:区域标识符26、25、24位P(外部输入输出)000I(输入映像区)001Q(输出映像区)010M(位存储区)011DB(数据块)100DI(背景数据块)101L(暂存数据区,也叫局域数据)111如果我们把这样的AR内容,用HEX表示的话,那么就有:当是对P区域寻址时,AR=800xxxxx当是对I区域寻址时,AR=810xxxxx当是对Q区域寻址时,AR=820xxxxx当是对M区域寻址时,AR=830xxxxx当是对DB区域寻址时,AR=840xxxxx当是对DI区域寻址时,AR=850xxxxx当是对L区域寻址时,AR=870xxxxx经过列举,我们有了初步的结论:如果AR中的内容是8开头,那么就一定是区域间寻址;如果要在DB 区中进行寻址,只需在8后面跟上一个40。
84000000-840FFFFF指明了要寻址的范围是:DB区的0.0——65535.7。
例如:当AR=840000D4(hex)=1000 0100 0000 0000 0000 0000 1101 0100(b),实际上就是等于DBX26.4。
我们看到,在寄存器寻址指针[AR1/2,P#byte.bit] 这种结构中,P#byte.bit又是什么呢?【P#指针】P#中的P是Pointer,是个32位的直接指针。
所谓的直接,是指P#中的#后面所跟的数值或者存储单元,是P直接给定的。
这样P#XXX这种指针,就可以被用来在指令寻址中,作为一个“常数”来对待,这个“常数”可以包含或不包含存储区域。
例如:● L P#Q1.0 //把Q1.0这个指针存入ACC1,此时ACC1的内容=82000008(hex)=Q1.0★L P#1.0 //把1.0这个指针存入ACC1,此时ACC1的内容=00000008(hex)=1.0● L P#MB100 //错误!必须按照byte.bit结构给定指针。