一元二次方程根与系数关系(附答案)解析

合集下载

(完整)一元二次方程根与系数的关系

(完整)一元二次方程根与系数的关系

12.4一元二次方程的根与系数的关系中考考点1.理解一元二次方程的根与系数的关系(韦达定理)。

2.会运用根与系数的关系,由已知的一元二次方程的一个根求出另一个根与未知系数。

3.会求一元二次方程两个根的倒数和与平方和。

考点讲解1.若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=—,x1·x2=。

2.以x1,x2为根的一元二次方程是(x—x1)(x-x2)=0,展开代入两根和与两根积,仍得到方程ax2+bx+c=0 (a≠0)。

3.对二次项系数为1的方程x2+px+q=0的两根为x1,x2时,那么x1+x2=—p,x1·x2=q.反之,以x1,x2为根的一元二次方程是:(x-x1)(x-x2)=0,展开代入两根和与两根积,仍得到方程:x2+px+q=0。

4.一元二次方程的根与系数关系的应用主要有以下几方面:(1)已知一元二次方程的一个根,求另一个根,可用两根和或两根积的关系求另一个根。

(2)已知含有字母系数的一元二次方程的一个根,求另一个根及字母系数的值。

可用根与系数关系式,一个关系式求得另一个根,再用另一个关系式求得字母系数的值.(3)已知一元二次方程,不解方程,可求与所给方程两根和、两根积的某些代数式的值。

如,方程2x2—3x+1=0的两根为x1,x2,不解方程,求x12+x22的值。

[∵x1+x2=,x1·x2=,∴x12+x22=(x1+x2)2-2x1x2=()2-2×=](4)验根、求根、确定根的符号。

(5)已知两根,求作一元二次方程(注意最后结果要化为整系数方程)。

(6)已知两数和与积,求这两个数.(7)解特殊的方程或方程组。

考题评析1.(北京市东城区)如果一元二次方程x2+3x-2=0的两个根为x1,x2,那么x1+x2与x1·x2的值分别为()(A)3,2 (B)—3,—2 (C)3,—2 (D)—3,2考点:一元二次方程的根与系数关系。

一元二次方程根与系数的关系(韦达定理) 浙教版八年级下册培优讲义(含解析)

一元二次方程根与系数的关系(韦达定理) 浙教版八年级下册培优讲义(含解析)

第2讲 韦达定理命题点一:利用判别式求值例1若关于x 的方程ax 2+2(a +2)x +a =0有实数解,则实数a 的取值范围是 a ≥-1 .例2(1)如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( D ) A .k <12 B .k <12且k ≠0 C .-12≤k <12 D .-12≤k <12且k ≠0 (2)若关于x 的一元二次方程12x 2-2mx -4m +1=0有两个相等的实数根,则(m -2)2-2m (m -1)的值为 72. 命题点二:巧用韦达定理妙解代数式例3若m ,n 是方程x 2+x -1=0的两个实数根,则m 2+2m +n 的值为 0 .例4(1)已知α,β是方程x 2-x -1=0的两个实数根,则代数式α2+α(β2-2)的值为 0 .(2)若关于x 的一元二次方程2x 2-2x +3m -1=0的两个实数根为x 1,x 2,且x 1x 2>x 1+x 2-4,则实数m 的取值范围是( D )A .m >-53B .m ≤12C .m <-53D .-53<m ≤12命题点三:根据根的范围求值例5已知关于x 的方程ax 2+(a +1)x +6a =0有两个不相等的实数根x 1,x 2(x 1<1<x 2),则实数a 的取值范围是( C )A .-1<a <0B .a <-1C .-18<a <0D .a <-18例6已知关于x 的方程x 2+2px +1=0的两个实数根一个大于1,另一个小于1,则实数p 的取值范围是 p <-1 .命题点四:解绝对值方程例7设方程||x 2+ax =4只有3个不相等的实数根,求a 的值和相应的3个根.解:方程等价于如下两个方程:x 2+ax -4=0,① x 2+ax +4=0. ②∵原方程只有3个不相等的实根,又∵两个方程不可能有公共根,∴必有且只有方程①或②有重根,Δ1=a 2+16≥0,Δ2=a 2-16≥0.由于Δ1>Δ2,故只可能是Δ2=0,即a =±4.∴当a =4时,相应的根为-2,-2±22;∴当a =-4时,相应的根为2,2±2 2.例8若关于x 的方程x 2-(m +5)||x +4=m 恰好有3个实数解,则实数m = 4 .命题点五:构造方程求值例9已知m 2-2m -1=0,n 2+2n -1=0且mn ≠1,则mn +n +1n 的值为 3 . 例10已知mn ≠1,且5m 2+2 018m +9=0,9n 2+2 018n +5=0,则m n值为( B ) A.59 B.95 C.6703D .-402 命题点六:三角形边的问题例11如果方程(x -1)(x 2-2x +m )=0的三个根可以作为一个三角形的三边之长,那么实数m 的取值范围是( C ) A .0≤m ≤1 B .m ≥34 C.34<m ≤1 D.34≤m ≤1 例12△ABC 的一边长为5,另外两边长恰为方程2x 2-12x +m =0的两个根,则m 的取值范围是112<m ≤18 . 命题点七:整数根问题例13已知整数p ,q 满足p +q =2 010,且关于x 的一元二次方程67x 2+px +q =0的两个根均为正整数,则p = -2278 .例14求满足如下条件的所有k 的值:使关于x 的方程kx 2+(k +1)x +(k -1)=0的根都是整数.解:分k =0和k ≠0两种情况讨论.当k =0时,所给方程为x -1=0,有整数根x =1.当k ≠0时,所给方程为二次方程.设两个整数根为x 1和x 2,则x 1+x 2=-k +1k =-1-1k ,① x 1·x 2=k -1k =1-1k .② 由①-②,得x 1+x 2-x 1·x 2=-2,整理,得(x 1-1)(x 2-1)=3.∵方程的根都是整数,∴(x 1-1)(x 2-1)=3=1×3=(-1)×(-3).有x 1-1=1,x 2-1=3或x 1-1=-1,x 2-1=-3.故x 1+x 2=6或x 1+x 2=-2,即-1-1k=6或-1-1k =-2,解得k =-17或k =1. 又∵Δ=(k +1)2-4k (k -1)=-3k 2+6k +1,当k =-17或k =1时,都有Δ>0.∴满足要求的k 值为0,-17,1. 课后练习1.已知关于x 的一元二次方程mx 2-(m +2)x +m 4=0有两个不相等的实数根x 1,x 2,若1x 1+1x 2=4m ,则m 的值为( A )A .2B .-1C .2或-1D .不存在2.已知关于x 的方程x 2-(a 2-2a -15)x +a -1=0的两个根互为相反数,则a 的值是( B )A .5B .-3C .5或-3D .13.已知四个互不相等的正实数a ,b ,c ,d 满足(a 2012-c 2012)(a 2012-d 2012)=2 012,(b 2012-c 2012)(b 2012-d 2012)=2 012,则(ab )2012-(cd )2012的值为( A )A .-2 012B .-2 011C .2 012D .2 0114.若实数a ,b 满足12a -ab +b 2+2=0,则实数a 的取值范围是( C ) A .a ≤-2 B .a ≥4 C .a ≤-2或a ≥4 D .-2≤a ≤45.已知关于x 的方程x 2+(k -2)x +5-k =0有两个大于2的实数根,则k 的取值范围是( A )A .-5<k ≤-4B .k >-5C .k ≤-4D .-4≤k <-26.关于x 的一元二次方程x 2-2kx +k 2-k =0的两个实数根分别是x 1,x 2,且x 21+x 22=4,则x 21-x 1x 2+x 22的值为 4 .7.如果m ,n 是两个不相等的实数,且满足m 2-m =3,n 2-n =3,那么代数式2n 2-mn +2m +2 015= 2026 .8.设a ,b 是一元二次方程x 2-x -1=0的两个根,则3a 3+4b +2a 2的值为 11 . 9.若方程||x 2-5x =a 有且只有相异的两个实数根,则a 的取值范围是 a =0或a >254. 10.若p +q =198,则方程x 2+px +q =0的最大整数解为 200 .11.关于x 的一元二次方程x 2-mx +2m -1=0的两个实数根分别是x 1,x 2,且x 21+x 22=7,求下列代数式的值:(1)(x 1-x 2)2. (2)x 2x 1+2+x 1x 2. 解:由根与系数的关系,得x 1+x 2=m ,x 1·x 2=2m -1.∵x 21+x 22=(x 1+x 2)2-2x 1x 2=m 2-2×(2m -1)=7, ∴m 2-4m -5=0.∴m 1=5,m 2=-1.当m 1=5时,Δ=m 2-4(2m -1)=25-36=-9<0(不合题意,舍去);当m 2=-1时,Δ=1-(-12)=13>0.∴m =-1.∴x 1+x 2=-1,x 1x 2=-3.∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=13,x 2x 1+2+x 1x 2=(x 1+x 2)2x 1·x 2=-13.12.已知方程x 2+px +q =0的两个根是x 1,x 2,那么x 1+x 2=-p ,x 1x 2=q .请根据以上结论,解决下列问题:(1)已知a ,b 满足a 2-15a -5=0,b 2-15b -5=0,求a b +b a的值. (2)已知a ,b ,c 均为实数,且a +b +c =0,abc =16,求正数c 的最小值.解:(1)当a ≠b 时,则a ,b 为方程x 2-15x -5=0的两个根,∴a +b =15,ab =-5.∴原式=a 2+b 2ab =(a +b )2-2ab ab =152-2×(-5)-5=-47. 当a =b 时,原式=2.综上所述,a b +b a的值为-47或2. (2)由条件,得a +b =-c ,ab =16c ,则a ,b 为方程x 2+cx +16c=0的两个实数根, ∴Δ=c 2-4×16c≥0,c 3≥64,即c ≥4. 故正数c 的最小值为4.13.(自主招生模拟题)已知x 1,x 2,x 3(x 1<x 2<x 3)为关于x 的方程x 3-3x 2+(a +2)x -a =0的三个实数根,则4x 1-x 21+x 22+x 23的值为( A )A .5B .6C .7 D.814.(自主招生模拟题)设a ,b ,c ,d 为四个不同的实数,若a ,b 为方程x 2-10cx -11d =0的根,c ,d 为方程x 2-10ax -11b =0的根,则a +b +c +d = 1210 .15.(自主招生真题)设x 为正数,求分式x (x +1)2的最大值. 解:设k =x (x +1)2. 整理,得kx 2+(2k -1)x +k =0.由Δ=(2k -1)2-4k 2≥0,得k ≤14, 即分式x (x +1)2的最大值为14.。

苏科版九年级上1.3一元二次方程的根与系数的关系含答案解析

苏科版九年级上1.3一元二次方程的根与系数的关系含答案解析

1.3 一元二次方程的根与系数的关系当堂检测1.一元二次方程x 2+4x -3=0的两根为x 1,x 2,则x 1x 2的值是( )A .4B .-4C .3D .-32.一元二次方程x 2-2x -3=0的两根之和为________,两根之积为________.3.若一元二次方程x 2-2x -1=0的两根分别为x 1,x 2,则x 1+x 2-x 1x 2的值为________.4.如果x 1,x 2是一元二次方程x 2-6x -5=0的两个实数根,那么x 1+x 2=________,x 1x 2=________,x 12+x 22=________.5.已知α,β是方程x 2+2x -3=0的两个实数根,求下列各式的值.(1)α2+β2;(2)β2-2α.课后训练一、选择题1. 若x 1,x 2是一元二次方程x 2+10x +16=0的两个根,则x 1+x 2的值是( )A .-10B .10C .-16D .162.已知关于x 的一元二次方程x 2+mx +n =0的两个实数根分别为x 1=-2,x 2=4,则m +n 的值是( )A .-10B .10C .-6D .23.设x 1,x 2是方程x 2+5x -3=0的两个根,则x 12+x 22的值是( )A .19B .25C .30D .314.设x 1,x 2是方程x 2+3x -3=0的两个实数根,则x 2x 1+x 1x 2的值为( ) A .5 B .-5 C .1 D .-15.若方程x 2+x -1=0的两实数根为α,β,则下列说法不正确...的是( ) A .α+β=-1 B .αβ=-1 C .α2+β2=3 D .1α+1β=-1 6.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m 的值是( ) A .3 B .1 C .3或-1 D .-3或17.方程x 2-(m +6)x +m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则m 的值是A.-2或3 B.3 C.-2 D.-3或28.[2014·包头]若关于x的一元二次方程x2+2(m-1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤12B.m≤12且m≠0 C.m<1 D.m<1且m≠0二、填空题9.已知一元二次方程x2-4x-3=0的两根为m,n,则m2-mn+n2=________.10.若关于x的一元二次方程x2-(a+5)x+8a=0的两个实数根分别为2和b,则ab=________.11.若m,n是方程x2+x-1=0的两个实数根,则m2+2m+n的值为________.12.若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为________.13.已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k的值是________.14.已知关于x的一元二次方程x2+(2k+1)x+k2-2=0的两根为x1,x2,且(x1-2)(x1-x2)=0,则k的值是________.15.若关于x的方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,且x12+x22=3,则m=________.16.如果m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,那么代数式2n2-mn+2m+2015=________.三、解答题17.已知关于x的方程x2+x+n=0的两个实数根分别为-2,m,求m,n的值.18.已知关于x的方程x2-2mx=-m2+2x的两个实数根x1,x2满足|x1|=x2,求实数m 的值.19.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两个实数根x1,x2满足|x1|+|x2|=x1x2,求k的值.答案及解析当堂检测1.D [解析] x 1x 2=-3.故选D.2.2 -33.3 [解析] 根据题意,得x 1+x 2=2,x 1x 2=-1,所以x 1+x 2-x 1x 2=2-(-1)=3.4.6 -5 465.解:∵α,β是方程x 2+2x -3=0的两个实数根,∴α+β=-2,αβ=-3.(1)原式=(α+β)2-2αβ=4+6=10.(2)原式=3-2β-2α=3-2(α+β)=3-2×(-2)=7.课后训练1.[解析] A 在已知方程中,因为a =1,b =10,c =16,所以x 1+x 2=-b a =-101=-10.故选A .2.[解析] A ∵关于x 的一元二次方程x 2+mx +n =0的两个实数根分别为x 1=-2,x 2=4,∴-2+4=-m ,-2×4=n ,解得m =-2,n =-8,∴m +n =-10.故选A .3.[解析] D ∵x 1,x 2是方程x 2+5x -3=0的两个根,∴x 1+x 2=-5,x 1x 2=-3,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=25+6=31.故选D .4.[解析] B 先利用根与系数的关系求出两根之和与两根之积,将所求式子通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将两根之和与两根之积代入计算即可求出结果.∵x 1,x 2是方程x 2+3x -3=0的两个实数根,∴x 1+x 2=-3,x 1x 2=-3,∴原式=x 12+x 22x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=9+6-3=-5. 故选B .[点评] 此题考查了一元二次方程的根与系数的关系,熟练掌握根与系数的关系是解本题的关键.5.[解析] D 由一元二次方程根与系数的关系,知α+β=-1,αβ=-1,因此,α2+β2=(α+β)2-2αβ=(-1)2-2×(-1)=3,显然选项A ,B ,C 均正确.故选D .6.[解析] A 根据条件,知α+β=-(2m +3),αβ=m 2,∴1α+1β=β+ααβ=-(2m +3)m 2=-1, 即m 2-2m -3=0,∴⎩⎪⎨⎪⎧m 2-2m -3=0,(2m +3)2-4m 2>0, 解得m =3.故选A .[点评] 本题考查一元二次方程根与系数的关系与根的判别式及不等式组的综合应用能力.一元二次方程根的情况:(1)b 2-4ac >0⇔方程有两个不相等的实数根;(2)b 2-4ac =0⇔方程有两个相等的实数根;(3)b 2-4ac <0⇔方程没有实数根.7.[解析] C ∵方程x 2-(m +6)x +m 2=0有两个相等的实数根,∴b 2-4ac =[-(m +6)]2-4m 2=0,解得m =6或m =-2.又∵x 1+x 2=m +6,x 1x 2=m 2,x 1+x 2=x 1x 2,∴m +6=m 2,解得m =3或m =-2.∵b 2-4ac =0,∴m =3不符合题意,舍去,即m =-2.故选C .8.[解析] B 因为一元二次方程有实数根,所以b 2-4ac =4(m -1)2-4m 2=4-8m ≥0,所以m ≤12.因为x 1+x 2=-2(m -1)>0,所以m<1.因为x 1x 2=m 2>0,所以m ≠0.所以m ≤12且m ≠0.故选B .9.[答案] 25[解析] ∵m ,n 是一元二次方程x 2-4x -3=0的两个根,∴m +n =4,mn =-3,则m 2-mn +n 2=(m +n)2-3mn =16+9=25.10.[答案] 4[解析] ∵关于x 的一元二次方程x 2-(a +5)x +8a =0的两个实数根分别为2和b , ∴由根与系数的关系,得2+b =a +5,2b =8a ,解得a =1,b =4,∴ab =1×4=4.11.[答案] 0[解析] ∵m ,n 是方程x 2+x -1=0的两个实数根,∴m +n =-1,m 2+m =1,则原式=(m 2+m)+(m +n)=1-1=0.12.[答案] 16[解析] 设矩形的长和宽分别为x ,y ,根据题意,得x +y =8,所以矩形的周长=2(x +y)=16.13.[答案] 2[解析] ∵方程x 2-6x +k =0的两个根分别为x 1,x 2,∴x 1+x 2=6,x 1x 2=k ,1x 1+1x 2=x 1+x 2x 1x 2=6k=3, 解得k =2.14.[答案] -2或-94[解析] ∵(x 1-2)(x 1-x 2)=0,∴x 1-2=0或x 1-x 2=0,解得x 1=2或x 1=x 2.当x =2时,原方程可变为22+(2k +1)×2+k 2-2=0,解得k =-2;当x 1=x 2时,此时一元二次方程有两个相等的实数根,∴b 2-4ac =0,即(2k +1)2-4(k 2-2)=0,解得k =-94.故答案为-2或-94. 15.[答案] 0[解析] ∵x 1+x 2=2m -1,x 1x 2=m 2-1,x 12+x 22=(x 1+x 2)2-2x 1x 2=3,∴(2m -1)2-2(m 2-1)=3,解得m 1=0,m 2=2.∵方程x 2-(2m -1)x +m 2-1=0有两个实数根,∴b 2-4ac =(2m -1)2-4(m 2-1)≥0,解得m ≤54. ∴m =0.故答案为0.16.[答案] 2026[解析] 由题意可知:m ,n 是两个不相等的实数,且满足m 2-m =3,n 2-n =3, 所以m ,n 是一元二次方程x 2-x -3=0的两个不相等的实数根,则根据根与系数的关系可知:m +n =1,mn =-3.又因为n 2=n +3,则2n 2-mn +2m +2015=2(n +3)-mn +2m +2015=2n +6-mn +2m +2015=2(m +n)-mn +2021=2×1-(-3)+2021=2+3+2021=2026.17.解:由题意,得m +(-2)=-1,∴m =1.又∵-2m =n ,∴n =-2.18.解:原方程可变形为x 2-2(m +1)x +m 2=0.∵x 1,x 2是原方程的两个实数根,∴4(m +1)2-4m 2≥0,∴8m +4≥0,解得m ≥-12. 又∵x 1,x 2满足|x 1|=x 2,∴x 1=x 2或x 1=-x 2,即b 2-4ac =0或x 1+x 2=0.由b 2-4ac =0,即8m +4=0,得m =-12; 由x 1+x 2=0,即2(m +1)=0,得m =-1(不合题意,舍去).故当|x 1|=x 2时,m 的值为-12. 19.[解析] (1)根据方程有两个不相等的实数根可得b 2-4ac =(2k +1)2-4(k 2+1)=4k 2+4k +1-4k 2-4=4k -3>0,求出k 的取值范围;(2)首先判断出两根均小于0,然后去掉绝对值,进而得到2k +1=k 2+1,结合k 的取值范围解方程即可.解:(1)∵原方程有两个不相等的实数根,∴b 2-4ac =(2k +1)2-4(k 2+1)=4k 2+4k +1-4k 2-4=4k -3>0,解得k >34. (2)∵k >34, ∴x 1+x 2=-(2k +1)<0.又∵x 1x 2=k 2+1>0,∴x 1<0,x 2<0,∴|x 1|+|x 2|=-x 1-x 2=-(x 1+x 2)=2k +1.∵|x 1|+|x 2|=x 1x 2,∴2k +1=k 2+1,∴k 1=0,k 2=2.又∵k >34, ∴k =2.20.解:(1)方程整理,得x 2-2(k +1)x +k 2+2k =0.∵b 2-4ac =4(k +1)2-4(k 2+2k)=4>0,∴实数k 的取值范围是任意实数.(2)根据题意,得x 1+x 2=2(k +1),x 1x 2=k 2+2k ,x 12+x 22-x 1·x 2+1=(x 1+x 2)2-3x 1x 2+1=4(k +1)2-3(k 2+2k)+1=k 2+2k +5=(k +1)2+4.∴当k =-1时,代数式x 12+x 22-x 1·x 2+1取得最小值,该最小值为4.21.解:(1)b 2-4ac =4+4k.∵方程有两个不相等的实数根,∴b 2-4ac >0,即4+4k >0,∴k >-1.(2)由根与系数的关系可知α+β=-2,αβ=-k ,∴α1+α+β1+β=α(1+β)+β(1+α)(1+α)(1+β)=α+β+2αβ1+α+β+αβ=-2-2k 1-2-k=2. 【数学活动】[解析] (1)根据判别式的意义得到b 2-4ac =(2m -1)2-4m 2≥0,然后解不等式即可;(2)把x =1代入原方程可得到关于m 的一元二次方程,然后解此一元二次方程即可;(3)根据根与系数的关系得到α+β=-(2m -1),αβ=m 2,利用α2+β2-αβ=6得到(α+β)2-3αβ=6,则(2m -1)2-3m 2=6,然后解方程后利用(1)中m 的取值范围确定m 的值.解:(1)根据题意,得b 2-4ac =(2m -1)2-4m 2≥0,解得m ≤14. (2)把x =1代入方程,得1+2m -1+m 2=0,解得m 1=0,m 2=-2.即m 的值为0或-2.(3)存在.根据题意,得α+β=-(2m-1),αβ=m2. ∵α2+β2-αβ=6,∴(α+β)2-3αβ=6,即(2m-1)2-3m2=6,整理,得m2-4m-5=0,解得m1=5,m2=-1.∵m≤1 4,∴m的值为-1. =-1.。

专题21.9 一元二次方程的根与系数的关系(基础检测)(解析版)

专题21.9 一元二次方程的根与系数的关系(基础检测)(解析版)

专题21.9 一元二次方程的根与系数的关系(基础检测)一、单选题1.已知关于x 的方程x 2+5x +a =0有一个根为﹣2,则另一个根为( ) A .3 B .﹣7 C .7 D .﹣3【答案】D【分析】首先根据一元二次方程根与系数的关系得出125x x +=-,然后求解即可. 【详解】由根与系数的关系可知,125x x +=-, ∵一个根为-2,∴另一根为()52523---=-+=-, 故选:D .【点睛】本题主要考查一元二次方程的根,掌握根与系数的关系是关键.2.已知12,x x 是方程2270x x --=的两根,则2112x x x -+的值为( )A .9B .7C .5D .3【答案】A【分析】利用12bx x a +=-,12c x x a⨯=,解答即可. 【详解】解:.∵12,x x 是方程2270x x --=的两根, ∴122x x +=,12x x =7,211270x x --= ∴21127x x =+∴2112x x x -+=21x +7-1x +2x =127x x ++ =2+7 =9.【点睛】本题考查了根与系数的关系,掌握根与系数的关系是解题的关键.3.如果1x 、2x 是方程2540x x -+=的两个根,那么12x x ⋅等于( ) A .5 B .5-C .4D .4-【答案】C【分析】直接利用根与系数的关系求解即可求得答案. 【详解】解:∵x 1,x 2是方程2540x x -+=的两个根,1a =,5b =-,4c =,∴12441c x x a ===. 故选:C .【点睛】本题考查了根与系数的关系.注意12x x 、是方程20ax bx c ++=(0a ≠)的两根时,12b x x a+=-,12cx x a=. 4.已知m ,n 是方程x 2﹣2x ﹣5=0的两个不同的实数根,则m +n 的值为( ) A .﹣2 B .2C .﹣5D .5【答案】B【分析】根据根与系数的关系即可得到2m n +=. 【详解】解:m ,n 是方程2250x x --=的两个实数根, ∴2m n +=, 故选:B .【点睛】本题主要考查了根与系数的关系,掌握根与系数的关系是解题的关键. 5.设m 、n 是方程220210x x +-=的两个实数根,则22m m n ++的值为( ) A .2018 B .2019C .2020D .2021【答案】C【分析】由于m 、n 是方程x 2+x -2021=0的两个实数根,根据根与系数的关系可以得到m +n =-1,并且m 2+m -2021=0,然后把m 2+2m +n 可以变为m 2+m +m +n ,把前面的值代入即可求出结果. 【详解】解:∵m 、n 是方程x 2+x -2021=0的两个实数根, ∴m +n =-1,且m 2+m -2021=0, ∴m 2+m =2021,∴m 2+2m +n =m 2+m +m +n =2021-1=2020.故选C .【点睛】本题主要考查了根与系数的关系,代数式求值,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.6.设关于x 的方程()210x a b x ab -++-=的两个实数根为1x 、2x ,现给出三个结论:①22x x ≠;②12x x ab <;③222212.x x a b +<+则正确结论的个数是( )A .1B .2C .3D .无法确定【答案】B【分析】根据一元二次方程的根与系数的关系,根的判别式和完全平方公式进行判断即可. 【详解】①∵方程 x 2−(a+b)x+ab−1=0 中,△=(a+b )2﹣4(ab ﹣1)=(a ﹣b )2+4>0, ∴x 1≠x 2;故①正确;②∵x 1x 2=ab ﹣1<ab ;故②正确; ③∵x 1+x 2=a+b ,即(x 1+x 2)2=(a+b )2; ∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2 =(a+b )2﹣2ab+2=a 2+b 2+2>a 2+b 2, 即x 12+x 22>a 2+b 2;故③错误; 综上所述,正确的结论的个数是:2, 故选:B.【点睛】本题考查了一元二次方程的根与系数的关系,以及根的判别式,完全平方公式,解题的关键是,熟记根的判别式,两根之和,与两根之积,与各项系数之间的关系.二、填空题7.方程x 2﹣2x ﹣4=0的两根为x 1、x 2,则x 1+x 2的值为_____. 【答案】2【分析】根据一元二次方程中根与系数关系,即可得出x 1+x 2的值. 【详解】解:∵方程x 2﹣2x ﹣4=0的两根为x 1、x 2, ∴x 1+x 2=2. 故答案为:2.【点睛】本题考查一元二次方程中根与系数的关系,“在一元二次方程20ax bx c ++=(0a ≠,a b c 、、都为常数)中,两根1x ,2x 与系数的关系为12bx x a +=-,12c x x a=”. 8.若,a b 是一元二次方程2230x x --=的两个根,则ab =________. 【答案】3-.【分析】根据一元二次方程的根与系数关系即可求出. 【详解】解:,a b 是一元二次方程2230x x --=的两个根,3ab ∴=-,故答案为:3-.【点睛】本题考查了一元二次方程的根与系数关系,掌握一元二次方程的根与系数关系.9.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a =____【答案】1【分析】直接利用根与系数的关系得到a 的值.【详解】解:∵关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,∴2x x x ⋅=a =1. 故答案为:1.【点睛】本题考查了根与系数的关系:若1x ,2x 是一元二次方程20ax bx c ++=(0a ≠)的两根时,12b x x a +=-,2x cx x a⋅=.10.已知m ,n 是一元二次方程x 2﹣x ﹣3=0的两个实数根,则代数式m 3+4n 2﹣19的值为_____. 【答案】0.【分析】把m 与n 代入方程得到关系式,原式变形后代入计算即可求出值. 【详解】解:∵m ,n 是一元二次方程x 2﹣x ﹣3=0的两个实数根, ∴m 2﹣m ﹣3=0,n 2﹣n ﹣3=0,即m 2=m +3,n 2=n +3,m +n =1, 则m 3+4n 2﹣19 =m 2•m +4n 2﹣19=m (m +3)+4(n +3)﹣19 =m 2+3m +4n +12﹣19 =m +3+3m +4n ﹣7=4(m +n )﹣4,把m +n =1代入得:原式=4﹣4=0. 故答案为:0.【点睛】本题考查了一元二次方程的解,根与系数的关系,熟练掌握根与系数的关系是解题的关键. 11.已知方程3x 2﹣x ﹣1=0的两根分别是x 1和x 2,则321x ﹣2x 1﹣x 2的值=_____. 【答案】23【分析】根据一元二次方程的解的定义以及根与系数的关系可得321x ﹣x 1﹣1=0,x 1+x 2=13,那么321x =x 1+1,再将它们代入321x ﹣2x 1﹣x 2,计算即可.【详解】解:∵方程3x 2﹣x ﹣1=0的两根分别是x 1和x 2, ∴321x ﹣x 1﹣1=0,x 1+x 2=13, ∴321x =x 1+1,∴321x ﹣2x 1﹣x 2=x 1+1﹣2x 1﹣x 2=﹣(x 1+x 2)+1=﹣13+1=23.故答案为23. 【点睛】本题考查了根与系数的关系:x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣b a,x 1•x 2=ca.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.也考查了一元二次方程的解的定义.12.已知x 1,x 2是关于x 的方程x 2﹣kx +3=0的两根,且满足x 1+x 2﹣x 1x 2=4,则k 的值为_____. 【答案】7【分析】根据两根关系列出等式,再代入第二个代数式计算即可. 【详解】∵x 1、x 2是方程x 2﹣kx +3=0的两个根, ∴x 1+x 2=k ,x 1x 2=3. ∵x 1+x 2﹣x 1x 2=k ﹣3=4, ∴k =7. 故答案为:7.【点睛】本题考查一元二次方程的两根关系,关键在于熟练掌握基础知识,代入计算.13.若1x ,2x 是一元二次方程2560x x -+=的两个根,则1211+x x 的值是__________. 【答案】56【分析】利用根与系数的关系得出125b x x a+=-=,126cx x a ==,再将1211+x x 通分为1212x x x x +,再代入求出即可.【详解】解:∵1x ,2x 是一元二次方程2560x x -+=的两个根, ∴125bx x a+=-=, 126cx x a==, ∵1212121156x x x x x x ++==, 故答案为:56. 【点睛】本题考查一元二次方程根与系数的关系,即韦达定理,是重要考点,难度较易,掌握相关知识是解题关键.14.已知关于x 的一元二次方程2220x x a --=有两个不相等的实数根12,x x ,则12x x +=________;若21118x x +=-,则a =________. 【答案】2 12±【分析】根据根与系数的关系可得12x x +和12x x ,再根据21118x x +=-得到21128x x x x =+-,代入即可求出a 值.【详解】解:由题意可得:12221x x -+=-=,212x x a =-, ∵122112118x x x x x x ++==-, ∴21128x x x x =+-,∴()228a =-⨯-,解得:12a =±, 故答案为:2,12±.【点睛】本题考查了一元一次方程根与系数的关系,解题的关键是根据方程得到12x x +和12x x .三、解答题15.已知关于x 的方程x 2+2x +a –2=0的一个根为1. (1)求a 的值;(2)求此方程的另一个根. 【答案】(1)a =-1;(2)-3.【分析】(1)把1x =代入已知方程即可求得a 的值; (2)利用根与系数的关系即可求得方程的另一根. 【详解】(1)将x =1代入方程22?20x x a ++=得:12?20a ++=,解得:1a =-;(2)方程为:22?30x x +=, 设方程的另一根为1x , ∴112bx a+=-=- ∴13x =-即此方程的另一个根为:3-.【点睛】本题考查了根与系数的关系以及一元二次方程的解,将x =1代入原方程求出a 的值是解题的关键. 16.已知1x 、2x 是关于x 的一元二次方程()222120x k x k -+++=的两实根,且()()12118x x ++=,求k 的值. 【答案】k 的值为1.【分析】由题意先根据根与系数的关系得到()1221x x k +=+,2122x x k =+,再变形已知条件得到()221218k k ++++=,解得123,1k k =-=,然后根据判别式的意义确定k 的值.【详解】解:由已知定理得:()1221x x k +=+,2122x x k =+,∴()()()()212121211121218x x x x x x k k ++=+++=++++=,即2230k k +-=,解得:1231k k =-=,,当13k =-时,△=()()222414244110k k +-+=-⨯<,∴13k =-舍去;当21k =时, △=()()()22241424430k k +-+=--⨯>,∴k 的值为1.【点睛】本题考查根与系数的关系与根的判别式,注意掌握若1x 、2x 是一元二次方程()200ax bx c a ++=≠的两根时,1212bc x x x x a a+=-=,. 17.已知关于x 的方程()22210x m x m +++-=,当m 为何值时,方程的两根相互为相反数?并求出此时方程的解.【答案】m =-2;12x x ==【分析】先由两根互为相反数得出两根之和为0,即()20m -+=,据此可得m 的值,代入方程,求变形方程的根即可.【详解】解:∵关于x 的方程()22210x m x m +++-=两根相互为相反数,∴()20m -+=, 解得 2m =-,∴方程变形为250x -=,解得12x x =【点睛】本题考查了一元二次方程根与系数的关系定理,一元二次方程的解法,熟练掌握根与系数关系定理,灵活选择方法求方程的根是解题的关键.18.已知关于x 的一元二次方程:2(2)(3)0x x p ---=.(1)小明说:“不论p 取任何实数,该方程都有两个不相等的实数根.”他的说法正确吗?为什么?(2)若方程:2(2)(3)0x x p ---=的两个实数根α,β满足:111αβ+=,请求出P 的值.【答案】(1)小明的说法正确;(2)p 的值为±1【分析】(1)表示出根的判别式,配方后得到根的判别式大于0,进而确定出方程总有两个不相等的实数根; (2)利用根与系数的关系可以得到5αβ+=,26p αβ=-,再把111a β+=进行变形可得265p -=,然后代入计算即可求解.【详解】解:(1)方程2(2)(3)0x x p ---=可化为22560x x p -+-=,∵()22(5)416p ∆=-⨯⨯-2225244140p p =-+=+>,∴对于任意实数p ,方程都有两个不相等实数根,小明的说法正确, (2)方程22560x x p -+-=由根与系数的关系得:5αβ+=,26p αβ=-∵111a β+=, ∴1a a ββ+= ∴2516p=-,变形得265p -= ∴1p =±,即p 的值为±1.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根. 19.己知关于x 的一元二次方程2(5)4(1)0x m x m -+++=. (1)求证:该一元二次方程总有两个实数根;(2)若该一元二次方程的两个实数根分别为12,x x ,且127n x x =+-,判断动点(,)P m n 所形成的函数图象是否经过点(1,1)A -,并说明理由.【答案】(1)证明见解析;(2)经过,理由见解析.【分析】(1)先求出该一元二次方程的△的值,再根据一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根即可得出答案. (2)根据121257x x m n x x +=+=+-,,表示出n ,再把点(1,1)A -代入,即可得出答案. 【详解】(1)证明:22[(5)]44(1)(3)0m m m ∆=-+-⨯+=-∴该一元二次方程总有两个实数根; (2)121257x x m n x x +=+=+-,2n m ∴=-当1m=时,=121n -=-∴动点(,)P m n 所形成的函数图象是经过点(1,1)A -.【点睛】本题考查了根的判别式、根与系数的关系,解题的关键是掌握根的判别式、根与系数的关系的表达式;一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.20.若m 为实数,关于x 的方程2420x x m -+-=的两个非负实数根为a 、b ,求代数式22(1)(1)--a b 的最大值. 【答案】9【分析】根据根的判别式和根与系数的关系进行列式求解即可;【详解】∵420=16-4(2)0+=⎧⎪⋅=-≥⎨⎪∆-≥⎩a b a b m m ,()2016420m m -≥⎧∴⎨--≥⎩,26∴≤≤m , 22(1)(1)--a b , 222=(ab)()1-++a b ,22=(ab)()21⎡⎤-+-+⎣⎦a b ab ,2=(m-2)162(2)1-+-+m ,当2m =时,原式=-15,m=时,原式=9,当6∴代数式22a b的最大值为9.(1)(1)--【点睛】本题主要考查了一元二次方程的知识点,准确应用根的判别式和根与系数的关系是解题的关键.。

一元二次方程根及系数的关系习题精选含答案解析

一元二次方程根及系数的关系习题精选含答案解析

. .. .一元二次方程根与系数的关系习题精选〔含答案〕一.选择题〔共22小题〕1.〔2021•〕假设关于x的一元二次方程的两个根为x1=1,x2=2,那么这个方程是〔〕A.x2+3x﹣2=0 B.x2﹣3x+2=0C.x2﹣2x+3=0D.x2+3x+2=02.〔2021•〕x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,那么x1•x2等于〔〕A.﹣4 B.﹣1 C.1D.43.〔2021•〕x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?那么正确的结论是〔〕A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在4.〔2021•〕假设α,β是方程x2﹣2x﹣3=0的两个实数根,那么α2+β2的值为〔〕A.10 B.9C.7D.55.〔2021•贵港〕假设关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,那么b+c的值是〔〕A.﹣10 B.10 C.﹣6 D.﹣16.〔2021•〕关于x的方程x2﹣ax+2a=0的两根的平方和是5,那么a的值是〔〕A.﹣1或5 B.1C.5D.﹣17.〔2021•〕假设方程x2+x﹣1=0的两实根为α、β,那么以下说法不正确的选项是〔〕A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣18.〔2021•威海〕方程x2﹣〔m+6〕x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,那么m的值是〔〕A.﹣2或3 B.3C.﹣2 D.﹣3或29.〔2021•模拟〕假设关于x的一元二次方程x2+〔k+3〕x+2=0的一个根是﹣2,那么另一个根是〔〕A.2B.1C.﹣1 D.010.〔2021•黄冈样卷〕设a,b是方程x2+x﹣2021 =0的两个实数根,那么a2+2a+b的值为〔〕A.2021 B.2021 C.2021 D.202111.〔2021•模拟〕一元二次方程x2﹣2x﹣3=0与3x2﹣11x+6=0的所有根的乘积等于〔〕A.﹣6 B.6C.3D.﹣312.〔2021•峨眉山市二模〕x1、x2是方程x2﹣〔k﹣2〕x+k2+3k+5=0的两个实数根,那么的最大值是〔〕A.19 B.18 C.15 D.1313.〔2021•陵县模拟〕:x1、x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,那么a、b的值分别是〔〕A.a=﹣3,b=1 B.a=3,b=1 C.a=﹣,b=﹣1 D.a=﹣,b=114.〔2021•〕α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,那么α2+αβ+β2的值为〔〕A.﹣1 B.9C.23 D.2715.〔2021•〕关于x的一元二次方程x2+2x+a﹣1=0有两根为x1和x2,且x12﹣x1x2=0,那么a的值是〔〕A.a=1 B.a=1或a=﹣2 C.a=2 D.a=1或a=216.〔2021•天河区二模〕一元二次方程x2﹣4x+3=0两根为x1、x2,那么x1+x2=〔〕A.4B.3C.﹣4 D.﹣317.〔2021•青神县一模〕m和n是方程2x2﹣5x﹣3=0的两根,那么的值等于〔〕A.B.C.D.18.〔2021•莱芜〕m、n是方程x2+2x+1=0的两根,那么代数式的值为〔〕A.9B.±3C.3D.519.〔2021•天门〕如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为〔〕A.3B.﹣3 C.13 D.﹣1320.〔2021•锦江区模拟〕假设方程x2﹣3x﹣2=0的两实根为x1、x2,那么〔x1+2〕〔x2+2〕的值为〔〕A.﹣4 B.6C.8D.1221.〔2021•模拟〕p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,那么的值为〔〕A.1B.2C.D.22.〔2021•滨湖区一模〕假设△ABC的一边a为4,另两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,那么△ABC 的周长为〔〕A.9B.10 C.9或10 D.8或9或10二.填空题〔共4小题〕23.〔2021•莱芜〕假设关于x的方程x2+〔k﹣2〕x+k2=0的两根互为倒数,那么k= _________ .24.〔2021•呼和浩特〕m,n是方程x2+2x﹣5=0的两个实数根,那么m2﹣mn+3m+n= _________ .25.〔2021•〕假设关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,那么x1〔x2+x1〕+x22的最小值为_________ .26.〔2021•〕关于x的一元二次方程x2+〔2k+1〕x+k2﹣2=0的两根为x1和x2,且〔x1﹣2〕〔x1﹣x2〕=0,那么k的值是_________ .三.解答题〔共4小题〕27.〔2021•〕x1,x2是关于x的一元二次方程x2﹣2〔m+1〕x+m2+5=0的两实数根.〔1〕假设〔x1﹣1〕〔x2﹣1〕=28,求m的值;〔2〕等腰△ABC的一边长为7,假设x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.28.〔2021•日照二模〕x1,x2是关于x的一元二次方程x2+〔3a﹣1〕x+2a2﹣1=0的两个实数根,其满足〔3x1﹣x2〕〔x1﹣3x2〕=﹣80.数a的所有可能值.29.〔2021•〕关于x的一元二次方程x2﹣〔2k+1〕x+k2+2k=0有两个实数根x1,x2.〔1〕数k的取值围;〔2〕是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?假设存在,请求出k的值;假设不存在,请说明理由.30.〔2001•〕关于x的一元二次方程,〔1〕求证:不管k取何值,方程总有两个不相等的实数根;〔2〕设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.一元二次方程根与系数的关系习题精选〔含答案〕参考答案与试题解析一.选择题〔共22小题〕1.〔2021•〕假设关于x的一元二次方程的两个根为x1=1,x2=2,那么这个方程是〔〕A.x2+3x﹣2=0 B.x2﹣3x+2=0C.x2﹣2x+3=0D.x2+3x+2=0考点:根与系数的关系.分析:解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的积是1×2=2.解题时检验两根之和是否为3及两根之积是否为2即可.解答:解:两个根为x1=1,x2=2那么两根的和是3,积是2.A、两根之和等于﹣3,两根之积等于﹣2,所以此选项不正确;B、两根之和等于3,两根之积等于2,所以此选项正确;C、两根之和等于2,两根之积等于3,所以此选项不正确;D、两根之和等于﹣3,两根之积等于2,所以此选项不正确,应选:B.点评:验算时要注意方程中各项系数的正负.2.〔2021•〕x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,那么x1•x2等于〔〕A.﹣4 B.﹣1 C.1D.4考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据韦达定理得x1•x2=1.应选:C.点评:此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程两个为x1,x2,那么x1+x2=﹣,x1•x2=.3.〔2021•〕x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?那么正确的结论是〔〕A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在考点:根与系数的关系.分析:先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,那么=0,求出m=0,再用判别式进展检验即可.解答:解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,那么=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.应选:A.点评:此题主要考察了一元二次方程根与系数的关系:如果x1,x2是方程x2+px+q=0的两根时,那么x1+x2=﹣p,x1x2=q.4.〔2021•〕假设α,β是方程x2﹣2x﹣3=0的两个实数根,那么α2+β2的值为〔〕A.10 B.9C.7D.5考点:根与系数的关系.分析:根据根与系数的关系求得α+β=2,αβ=﹣3,那么将所求的代数式变形为〔α+β〕2﹣2αβ,将其整体代入即可求值.解答:解:∵α,β是方程x2﹣2x﹣3=0的两个实数根,∴α+β=2,αβ=﹣3,∴α2+β2=〔α+β〕2﹣2αβ=22﹣2×〔﹣3〕=10.应选:A.点评:此题主要考察了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.5.〔2021•贵港〕假设关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,那么b+c的值是〔〕A.﹣10 B.10 C.﹣6 D.﹣1考点:根与系数的关系.分析:根据根与系数的关系得到﹣2+4=﹣b,﹣2×4=c,然后可分别计算出b、c的值,进一步求得答案即可.解答:解:∵关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,∴根据根与系数的关系,可得﹣2+4=﹣b,﹣2×4=c,解得b=﹣2,c=﹣8∴b+c=﹣10.应选:A.点评:此题考察根与系数的关系,解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2=.6.〔2021•〕关于x的方程x2﹣ax+2a=0的两根的平方和是5,那么a的值是〔〕A.﹣1或5 B.1C.5D.﹣1考点:根与系数的关系;根的判别式.专题:计算题.分析:设方程的两根为x1,x2,根据根与系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到〔x1+x2〕2﹣2x1•x2=5,那么a2﹣4a﹣5=0,然后解方程,满足△≥0的a的值为所求.解答:解:设方程的两根为x1,x2,那么x1+x2=a,x1•x2=2a,∵x12+x22=5,∴〔x1+x2〕2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.应选:D.点评:此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程的两根为x1,x2,那么x1+x2=﹣,x1•x2=.也考察了一元二次方程的根的判别式.7.〔2021•〕假设方程x2+x﹣1=0的两实根为α、β,那么以下说法不正确的选项是〔〕A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣1考点:根与系数的关系.专题:计算题.分析:先根据根与系数的关系得到α+β=﹣1,αβ=﹣1,再利用完全平方公式变形α2+β2得到〔α+β〕2﹣2αβ,利用通分变形+得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进展判断.解答:解:根据题意得α+β=﹣1,αβ=﹣1.所以α2+β2=〔α+β〕2﹣2αβ=〔﹣1〕2﹣2×〔﹣1〕=3;+===1.应选:D.点评:此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程两个为x1,x2,那么x1+x2=﹣,x1•x2=.8.〔2021•威海〕方程x2﹣〔m+6〕x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,那么m的值是〔〕A.﹣2或3 B.3C.﹣2 D.﹣3或2考点:根与系数的关系;根的判别式.专题:判别式法.分析:根据根与系数的关系有:x1+x2=m+6,x1x2=m2,再根据x1+x2=x1x2得到m的方程,解方程即可,进一步由方程x2﹣〔m+6〕+m2=0有两个相等的实数根得出b2﹣4ac=0,求得m的值,由一样的解解决问题.解答:解:∵x1+x2=m+6,x1x2=m2,x1+x2=x1x2,∴m+6=m2,解得m=3或m=﹣2,∵方程x2﹣〔m+6〕x+m2=0有两个相等的实数根,∴△=b2﹣4ac=〔m+6〕2﹣4m2=﹣3m2+12m+36=0解得m=6或m=﹣2∴m=﹣2.应选:C.点评:此题考察了一元二次方程ax2+bx+c=0〔a≠0,a,b,c为常数〕根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考察了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程的两根为x1,x2,那么x1+x2=﹣,x1•x2=.9.〔2021•模拟〕假设关于x的一元二次方程x2+〔k+3〕x+2=0的一个根是﹣2,那么另一个根是〔〕A.2B.1C.﹣1 D.0考点:根与系数的关系.分析:根据一元二次方程的根与系数的关系x1•x2=来求方程的另一个根.解答:解:设x1、x2是关于x的一元二次方程x2+〔k+3〕x+2=0的两个根,由韦达定理,得x1•x2=2,即﹣2x2=2,解得,x2=﹣1.即方程的另一个根是﹣1.应选C.点评:此题主要考察了根与系数的关系.在利用根与系数的关系x1+x2=﹣、x1•x2=时,要注意等式中的a、b、c 所表示的含义.10.〔2021•黄冈样卷〕设a,b是方程x2+x﹣2021 =0的两个实数根,那么a2+2a+b的值为〔〕A.2021 B.2021 C.2021 D.2021考点:根与系数的关系;一元二次方程的解.专题:计算题.分析:先根据一元二次方程的解的定义得到a2+a﹣2021 =0,即a2+a=2021 ,那么a2+2a+b变形为a+b+2021 ,再根据根与系数的关系得到a+b=﹣1,然后利用整体代入的方法计算.解答:解:∵a是方程x2+x﹣2021 =0的根,∴a2+a﹣2021 =0,即a2+a=2021 ,∴a2+2a+b=a+b+2021 ,∵a,b是方程x2+x﹣2021 =0的两个实数根∴a+b=﹣1,∴a2+2a+b=a+b+2021 =﹣1+2021 =2021.应选C.点评:此题考察了根与系数的关系:假设x1,x2是一元二次方程ax2+bx+c=0〔a≠0〕的两根时,x1+x2=,x1x2=.也考察了一元二次方程的解.11.〔2021•模拟〕一元二次方程x2﹣2x﹣3=0与3x2﹣11x+6=0的所有根的乘积等于〔〕A.﹣6 B.6C.3D.﹣3考点:根与系数的关系.分析:由一元二次方程x2﹣2x﹣3=0和3x2﹣11x+6=0先用判别式判断方程是否有解,再根据根与系数的关系,即可直接得出答案.解答:解:由一元二次方程x2﹣2x﹣3=0,∵△=4+16=20>0,∴x1x2=﹣3,由一元二次方程3x2﹣11x+6=0,∵△=121﹣4×3×6=49>0,∴x1x2=2∴﹣3×2=﹣6应选A.点评:此题考察了一元二次方程根与系数的关系.解此类题目要把代数式变形为两根之积的形式.12.〔2021•峨眉山市二模〕x1、x2是方程x2﹣〔k﹣2〕x+k2+3k+5=0的两个实数根,那么的最大值是〔〕A.19 B.18 C.15 D.13考点:根与系数的关系;二次函数的最值.分析:根据x1、x2是方程x2﹣〔k﹣2〕x+〔k2+3k+5〕=0的两个实根,由△≥0即可求出k的取值围,然后根据根与系数的关系求解即可.解答:解:由方程有实根,得△≥0,即〔k﹣2〕2﹣4〔k2+3k+5〕≥0所以3k2+16k+16≤0,所以〔3k+4〕〔k+4〕≤0解得﹣4≤k≤﹣.又由x1+x2=k﹣2,x1•x2=k2+3k+5,得x12+x22=〔x1+x2〕2﹣2x1x2=〔k﹣2〕2﹣2〔k2+3k+5〕=﹣k2﹣10k﹣6=19﹣〔k+5〕2,当k=﹣4时,x12+x22取最大值18.应选:B.点评:此题考察了根与系数的关系,属于根底题,关键是根据△≥0先求出k的取值围再根据根与系数的关系进展求解.13.〔2021•陵县模拟〕:x1、x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,那么a、b的值分别是〔〕A.a=﹣3,b=1 B.a=3,b=1 C.a=﹣,b=﹣1 D.a=﹣,b=1考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到得x1+x2=﹣2a,x1x2=b,即﹣2a=3,b=1,然后解一次方程即可.解答:解:根据题意得x1+x2=﹣2a,x1x2=b,所以﹣2a=3,b=1,解得a=﹣,b=1.应选D.点评:此题考察了根与系数的关系:假设x1,x2是一元二次方程ax2+bx+c=0〔a≠0〕的两根时,x1+x2=,x1x2=.14.〔2021•〕α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,那么α2+αβ+β2的值为〔〕A.﹣1 B.9C.23 D.27考点:根与系数的关系.分析:根据根与系数的关系α+β=﹣,αβ=,求出α+β和αβ的值,再把要求的式子进展整理,即可得出答案.解答:解:∵α,β是方程x2﹣5x﹣2=0的两个实数根,∴α+β=5,αβ=﹣2,又∵α2+αβ+β2=〔α+β〕2﹣βα,∴α2+αβ+β2=52+2=27;应选D.点评:此题考察了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法,假设方程两个为x1,x2,那么x1+x2=﹣,x1x2=.15.〔2021•〕关于x的一元二次方程x2+2x+a﹣1=0有两根为x1和x2,且x12﹣x1x2=0,那么a的值是〔〕A.a=1 B.a=1或a=﹣2 C.a=2 D.a=1或a=2考点:根与系数的关系;一元二次方程的解.专题:压轴题.分析:根据x12﹣x1x2=0可以求得x1=0或者x1=x2,所以①把x1=0代入原方程可以求得a=1;②利用根的判别式等于0来求a的值.解答:解:解x12﹣x1x2=0,得x1=0,或x1=x2,①把x1=0代入方程,得a﹣1=0,解得:a=1;②当x1=x2时,△=4﹣4〔a﹣1〕=0,即8﹣4a=0,解得:a=2.综上所述,a=1或a=2.应选:D.点评:此题考察了根与系数的关系、一元二次方程的解的定义.解答该题的技巧性在于巧妙地利用了根的判别式等于0来求a的另一值.16.〔2021•天河区二模〕一元二次方程x2﹣4x+3=0两根为x1、x2,那么x1+x2=〔〕A.4B.3C.﹣4 D.﹣3考点:根与系数的关系.分析:根据一元二次方程x2﹣4x+3=0两根为x1、x2,直接利用x1+x2=﹣求出即可.解答:解:∵一元二次方程x2﹣4x+3=0两根为x1、x2,∴x1+x2=﹣=4.应选A.点评:此题主要考察了一元二次方程根与系数的关系,正确记忆根与系数关系公式是解决问题的关键.17.〔2021•青神县一模〕m和n是方程2x2﹣5x﹣3=0的两根,那么的值等于〔〕A.B.C.D.考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到m+n=,mn=﹣,再变形+得到,然后利用整体思想计算.解答:解:根据题意得m+n=,mn=﹣,所以+===﹣.应选D.点评:此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程两个为x1,x2,那么x1+x2=﹣,x1•x2=.18.〔2021•莱芜〕m、n是方程x2+2x+1=0的两根,那么代数式的值为〔〕A.9B.±3C.3D.5考点:根与系数的关系;二次根式的化简求值.专题:整体思想.分析:根据一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系得到m+n=﹣2,mn=1,再变形得,然后把m+n=﹣2,mn=1整体代入计算即可.解答:解:∵m、n是方程x2+2x+1=0的两根,∴m+n=﹣2,mn=1,∴====3.应选C.点评:此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程两根分别为x1,x2,那么x1+x2=﹣,x1•x2=.也考察了二次根式的化简求值.19.〔2021•天门〕如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为〔〕A.3B.﹣3 C.13 D.﹣13考点:根与系数的关系;根的判别式.分析:利用根与系数的关系求得x1x2=a,x1+x2=﹣4,然后将其代入x1x2﹣2x1﹣2x2﹣5=x1x2﹣2〔x1+x2〕﹣5=0列出关于a的方程,通过解方程即可求得a的值.解答:解:∵x1,x2是关于x的一元二次方程x2+4x+a=0的两个不相等实数根,∴x1x2=a,x1+x2=﹣4,∴x1x2﹣2x1﹣2x2﹣5=x1x2﹣2〔x1+x2〕﹣5=a﹣2×〔﹣4〕﹣5=0,即a+3=0,解得,a=﹣3;应选B.点评:此题考察了根与系数的关系.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20.〔2021•锦江区模拟〕假设方程x2﹣3x﹣2=0的两实根为x1、x2,那么〔x1+2〕〔x2+2〕的值为〔〕A.﹣4 B.6C.8D.12考点:根与系数的关系.分析:根据〔x1+2〕〔x2+2〕=x1x2+2x1+2x2+4=x1x2+2〔x1+x2〕+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.解答:解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1•x2=﹣2.又∵〔x1+2〕〔x2+2〕=x1x2+2x1+2x2+4=x1x2+2〔x1+x2〕+4.将x1+x2=3、x1•x2=﹣2代入,得〔x1+2〕〔x2+2〕=x1x2+2x1+2x2+4=x1x2+2〔x1+x2〕+4=〔﹣2〕+2×3+4=8.应选C点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.21.〔2021•模拟〕p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,那么的值为〔〕A.1B.2C.D.考点:根与系数的关系.专题:计算题.分析:首先把1﹣q﹣q2=0变形为,然后结合p2﹣p﹣1=0,根据一元二次方程根与系数的关系可以得到p与是方程x2﹣x﹣1=0的两个不相等的实数根,那么利用根与系数的关系即可求出所求代数式的值.解答:解:由p2﹣p﹣1=0和1﹣q﹣q2=0,可知p≠0,q≠0,又∵pq≠1,∴,∴由方程1﹣q﹣q2=0的两边都除以q2得:,∴p与是方程x2﹣x﹣1=0的两个不相等的实数根,那么由韦达定理,得p+=1,∴=p+=1.应选A.点评:此题考察了根与系数的关系.首先把1﹣q﹣q2=0变形为是解题的关键,然后利用根与系数的关系就可以求出所求代数式的值.22.〔2021•滨湖区一模〕假设△ABC的一边a为4,另两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,那么△ABC 的周长为〔〕A.9B.10 C.9或10 D.8或9或10考点:根与系数的关系;三角形三边关系.专题:压轴题.分析:由于两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,那么b、c可以看作方程x2﹣5x+6=0的两根,根据根与系数的关系可以得到b+c=5,bc=6,而△ABC的一边a为4,由此即可求出△ABC的一边a为4周长.解答:解:∵两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,∴b、c可以看作方程x2﹣5x+6=0的两根,∴b+c=5,bc=6,而△ABC的一边a为4,①假设b=c,那么b=c=3或b=c=2,但2+2=4,所以三角形不成立,故b=c=3.∴△ABC的周长为4+3+3=10或4+2+2②假设b≠c,∴△ABC的周长为4+5=9.应选C.点评:此题把一元二次方程的根与系数的关系与三角形的周长结合起来,利用根与系数的关系来三角形的周长.此题要注意分类讨论.二.填空题〔共4小题〕23.〔2021•莱芜〕假设关于x的方程x2+〔k﹣2〕x+k2=0的两根互为倒数,那么k= ﹣1 .考点:根与系数的关系.专题:判别式法.分析:根据和根与系数的关系x1x2=得出k2=1,求出k的值,再根据原方程有两个实数根,求出符合题意的k的值.解答:解:∵x1x2=k2,两根互为倒数,∴k2=1,解得k=1或﹣1;∵方程有两个实数根,△>0,∴当k=1时,△<0,舍去,故k的值为﹣1.故答案为:﹣1.点评:此题考察了根与系数的关系,根据x1,x2是关于x的一元二次方程ax2+bx+c=0〔a≠0,a,b,c为常数〕的两个实数根,那么x1+x2=﹣,x1x2=进展求解.24.〔2021•呼和浩特〕m,n是方程x2+2x﹣5=0的两个实数根,那么m2﹣mn+3m+n= 8 .考点:根与系数的关系;一元二次方程的解.专题:常规题型.分析:根据m+n=﹣=﹣2,m•n=﹣5,直接求出m、n即可解题.解答:解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,∵m2+2m﹣5=0∴m2=5﹣2mm2﹣mn+3m+n=〔5﹣2m〕﹣〔﹣5〕+3m+n=10+m+n=10﹣2=8故答案为:8.点评:此题主要考察了一元二次方程根根的计算公式,根据题意得出m和n的值是解决问题的关键.25.〔2021•〕假设关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,那么x1〔x2+x1〕+x22的最小值为.考点:根与系数的关系;二次函数的最值.专题:判别式法.分析:由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.解答:解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,那么△=b2﹣4ac=4m2﹣4〔m2+3m﹣2〕=8﹣12m≥0,∴m≤,∵x1〔x2+x1〕+x22=〔x2+x1〕2﹣x1x2=〔﹣2m〕2﹣〔m2+3m﹣2〕=3m2﹣3m+2=3〔m2﹣m+﹣〕+2=3〔m﹣〕2 +;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.点评:此题考察了一元二次方程根与系数关系,考察了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:〔1〕△>0⇔方程有两个不相等的实数根;〔2〕△=0⇔方程有两个相等的实数根;〔3〕△<0⇔方程没有实数根.26.〔2021•〕关于x的一元二次方程x2+〔2k+1〕x+k2﹣2=0的两根为x1和x2,且〔x1﹣2〕〔x1﹣x2〕=0,那么k的值是﹣2或﹣.考点:根与系数的关系;根的判别式.分析:先由〔x1﹣2〕〔x1﹣x2〕=0,得出x1﹣2=0或x1﹣x2=0,再分两种情况进展讨论:①如果x1﹣2=0,将x=2代入x2+〔2k+1〕x+k2﹣2=0,得4+2〔2k+1〕+k2﹣2=0,解方程求出k=﹣2;②如果x1﹣x2=0,那么将x1+x2=﹣〔2k+1〕,x1x2=k2﹣2代入可求出k的值,再根据判别式进展检验.解答:解:∵〔x1﹣2〕〔x1﹣x2〕=0,∴x1﹣2=0或x1﹣x2=0.①如果x1﹣2=0,那么x1=2,将x=2代入x2+〔2k+1〕x+k2﹣2=0,得4+2〔2k+1〕+k2﹣2=0,整理,得k2+4k+4=0,解得k=﹣2;②如果x1﹣x2=0,那么〔x1﹣x2〕2=〔x1+x2〕2﹣4x1x2=[﹣〔2k+1〕]2﹣4〔k2﹣2〕=4k+9=0,解得k=﹣.又∵△=〔2k+1〕2﹣4〔k2﹣2〕≥0.解得:k≥﹣.所以k的值为﹣2或﹣.故答案为:﹣2或﹣.点评:此题考察了一元二次方程的根与系数的关系,根的判别式,注意在利用根与系数的关系时,需用判别式进展检验.三.解答题〔共4小题〕27.〔2021•〕x1,x2是关于x的一元二次方程x2﹣2〔m+1〕x+m2+5=0的两实数根.〔1〕假设〔x1﹣1〕〔x2﹣1〕=28,求m的值;〔2〕等腰△ABC的一边长为7,假设x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.考点:根与系数的关系;三角形三边关系;等腰三角形的性质.专题:代数几何综合题.分析:〔1〕利用〔x1﹣1〕〔x2﹣1〕=x1•x2﹣〔x1+x2〕+1=m2+5﹣2〔m+1〕+1=28,求得m的值即可;〔2〕分7为底边和7为腰两种情况分类讨论即可确定等腰三角形的周长.解答:解:〔1〕∵x1,x2是关于x的一元二次方程x2﹣2〔m+1〕x+m2+5=0的两实数根,∴x1+x2=2〔m+1〕,x1•x2=m2+5,∴〔x1﹣1〕〔x2﹣1〕=x1•x2﹣〔x1+x2〕+1=m2+5﹣2〔m+1〕+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;〔2〕①当7为底边时,此时方程x2﹣2〔m+1〕x+m2+5=0有两个相等的实数根,∴△=4〔m+1〕2﹣4〔m2+5〕=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;②当7为腰时,设x1=7,代入方程得:49﹣14〔m+1〕+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.点评:此题考察了根与系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别与系数的关系.28.〔2021•日照二模〕x1,x2是关于x的一元二次方程x2+〔3a﹣1〕x+2a2﹣1=0的两个实数根,其满足〔3x1﹣x2〕〔x1﹣3x2〕=﹣80.数a的所有可能值.考点:根与系数的关系;根的判别式.专题:计算题.分析:根据△的意义由一元二次方程x2+〔3a﹣1〕x+2a2﹣1=0的两个实数根得到△≥0,即〔3a﹣1〕2﹣4〔2a2﹣1〕=a2﹣6a+5≥0,根据根与系数的关系得到x1+x2=﹣〔3a﹣1〕,x1•x2=2a2﹣1,由〔3x1﹣x2〕〔x1﹣3x2〕=﹣80变形得到3〔x1+x2〕2﹣16x1x2=﹣80,于是有3〔3a﹣1〕2﹣16〔2a2﹣1〕=﹣80,解方程得到a=3或a=﹣,然后代入△验算即可得到实数a的值.解答:解:∵x1,x2是关于x的一元二次方程x2+〔3a﹣1〕x+2a2﹣1=0的两个实数根,∴△≥0,即〔3a﹣1〕2﹣4〔2a2﹣1〕=a2﹣6a+5≥0所以a≥5或a≤1.…〔3分〕∴x1+x2=﹣〔3a﹣1〕,x1•x2=2a2﹣1,∵〔3x1﹣x2〕〔x1﹣3x2〕=﹣80,即3〔x12+x22〕﹣10x1x2=﹣80,∴3〔x1+x2〕2﹣16x1x2=﹣80,∴3〔3a﹣1〕2﹣16〔2a2﹣1〕=﹣80,整理得,5a2+18a﹣99=0,∴〔5a+33〕〔a﹣3〕=0,解得a=3或a=﹣,当a=3时,△=9﹣6×3+5=﹣4<0,故舍去,当a=﹣时,△=〔﹣〕2﹣6×〔﹣〕+6=〔〕2+6×+6>0,∴实数a的值为﹣点评:此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:如果方程的两根为x1,x2,那么x1+x2=﹣,x1•x2=.也考察了一元二次方程根的判别式以及代数式的变形能力.29.〔2021•〕关于x的一元二次方程x2﹣〔2k+1〕x+k2+2k=0有两个实数根x1,x2.〔1〕数k的取值围;〔2〕是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?假设存在,请求出k的值;假设不存在,请说明理由.考点:根与系数的关系;根的判别式.专题:压轴题.分析:〔1〕根据一元二次方程的根的情况,得到根的判别式△≥0,据此列出关于k的不等式[﹣〔2k+1〕]2﹣4〔k2+2k〕≥0,通过解该不等式即可求得k的取值围;〔2〕假设存在实数k使得≥0成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k的值.解答:解:〔1〕∵原方程有两个实数根,∴[﹣〔2k+1〕]2﹣4〔k2+2k〕≥0,∴4k2+4k+1﹣4k2﹣8k≥0∴1﹣4k≥0,∴k≤.∴当k≤时,原方程有两个实数根.〔2〕假设存在实数k使得≥0成立.∵x1,x2是原方程的两根,∴.由≥0,得≥0.∴3〔k2+2k〕﹣〔2k+1〕2≥0,整理得:﹣〔k﹣1〕2≥0,∴只有当k=1时,上式才能成立.又∵由〔1〕知k≤,∴不存在实数k使得≥0成立.点评:此题综合考察了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.30.〔2001•〕关于x的一元二次方程,〔1〕求证:不管k取何值,方程总有两个不相等的实数根;〔2〕设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.考点:根与系数的关系;根的判别式.专题:计算题;证明题;压轴题.分析:〔1〕要保证方程总有两个不相等的实数根,就必须使△>0恒成立;〔2〕欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:〔1〕关于x的一元二次方程,∴△=〔﹣2k〕2﹣4×〔k2﹣2〕=2k2+8,∵2k2+8>0恒成立,∴不管k取何值,方程总有两个不相等的实数根.〔2〕∵x1、x2是方程的两个根,∴x1+x2=2k,x1•x2=k2﹣2,∴x12﹣2kx1+2x1x2=x12﹣〔x1+x2〕x1+2x1x2=x1x2=k2﹣2=5,解得k=±.点评:此题主要考察了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.。

中考复习——一元二次方程的根与系数的关系(解析版)

中考复习——一元二次方程的根与系数的关系(解析版)

中考复习——一元二次方程的根与系数的关系一、选择题1、已知x1,x2是一元二次方程x2-2x=0的两根,则x1+x2的值是().A. 0B. 2C. -2D. 4答案:B解答:∵x1,x2是一元二次方程x2-2x=0的两根,∴x1+x2=2.选B.2、若x1,x2是一元二次方程x2-2x-3=0的两个根,则x1·x2的值是().A. 2B. -2C. 4D. -3答案:D解答:∵x1,x2是一元二次方程x2-2x-3=0的两个根,∴x1·x2=-3.3、关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为().A. m=-2B. m=3C. m=3或m=-2D. m=3或m=2答案:A解答:设x1,x2是x2+2mx+m2+m=0的两个实数根,∴Δ=-4m≥0,∴m≤0,∴x1+x2=-2m,x1·x2=m2+m,∴x12+x22=(x1+x2)2-2x1·x2=4m2-2m2-2m=2m2-2m=12,∴m=3或m=-2;∴m=-2.选A.4、一元二次方程x2-3x-2=0的两根为x1,x2,则下列结论正确的是().A. x1=-1,x2=2B. x1=1,x2=-2C. x1+x2=3D. x1x2=2解答:∵方程x2-3x-2=0的两根为x1,x2,∴x1+x2=-ba=3,x1·x2=ca=-2,∴C选项正确.5、α,β是关于x的一元二次方程x2-2x+m=0的两实根,且1α+1β=-23,则m等于().A. –2B. –3C. 2D. 3答案:B解答:α,β是关于x的一元二次方程x2-2x+m=0的两实根,∴α+β=2,αβ=m,∵1α+1β=αβαβ+=2m=-23,∴m=-3.选B.6、已知m,n是关于x的一元二次方程x2-2tx+t2-2t+4=0的两实数根,则(m+2)(n+2)的最小值是().A. 7B. 11C. 12D. 16答案:D解答:∵m,n是关于x的一元二次方程x2-2tx+t2-2t+4=0的两实数根,∴m+n=2t,mn=t2-2t+4,∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.∵方程有两个实数根,∴Δ=(-2t)2-4(t2-2t+4)=8t-16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.选D.7、若一元二次方程ax2=b,(ab>0)的两个根分别是m+1与2m-4,则ba=().A. -4B. 1C. 2D. 4解答:系数化为1时,由于一元二次方程的两个根互为相反数,所以和为0,即可求得m的值为1,两根分别为2,-2,所以ba=x2=4.8、若x1,x2是一元二次方程x2+x-3=0的两个实数根,则x23-4x12+17的值为().A. -2B. 6C. -4D. 4答案:A解答:∵x1,x2是一元二次方程x2+x-3=0的两个实数根,∴x12+x1-3=0,x22+x2-3=0,∴x22=-x2+3,x12=-x1+3,∴x23-4x12+17=x2·(-x2+3)-4(-x1+3)+17=-x22+3x2-4(-x1+3)+17=-(-x2+3)+3x2-4(-x1+3)+17=4x2-3+4x1-12+17=4(x1+x2)+2,根据根与系数的关系可得:x1+x2=-1,∴原式=4(x1+x2)+2=-4+2=-2.选A.9、方程x2-(m+6)x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,则m的值是().A. -2或3B. 3C. -2D. -3或2答案:C解答:∵x1+x2=m+6,x1x2=m2,x1+x2=x1x2,∴m+6=m2,解得m=3或m=-2,∵方程x2-(m+6)+m2=0有两个相等的实数根,∴Δ=b2-4ac=(m+6)2-4m2=-3m2+12m+36=0,解得m=6或m=-2,∴m=-2.10、已知a,b,c是△ABC三边的长,b>a=c,且方程ax2+c=0的两根的差的绝对,则△ABC中最大角的度数是().A. 150°B. 120°C. 90°D. 60°答案:B解答:设x1、x2是ax2+c=0的两根,则x1+x2,x1x2=ca=1,∵x1-x2,∴|x1-x2,解以上方程组:(x1+x2)2-4x1x2=2,解得:b,∵b>a=c,∴等腰三角形以b为底,∴∠A=∠C=30°,∴∠B=120°.二、填空题11、若关于x的一元二次方程x2-(a+5)x+8a=0的两个实数根分别为2和b,则ab=______.答案:4解答:∵关于x的一元二次方程x2-(a+5)x+8a=0的两个实数根分别为2和b,∴由韦达定理,得2528b ab a+=+⎧⎨=⎩,解得,14 ab=⎧⎨=⎩.∴ab=1×4=4.12、若关于x的方程x2+(k-2)x+k2=0的两根互为倒数,则k=______.答案:-1解答:设方程的两根为x 1,x 2,则x 1x 2=k 2,∵x 1与x 2互为倒数, ∴k 2=1,解得k =1或k =-1; ∵方程有两个实数根,Δ>0,∴当k =1时,Δ<0,舍去,故k 的值为-1. 13、已知一元二次方程x 2+2x -8=0的两根为x 1、x 2,则21x x +2x 1x 2+12xx =______. 答案:-372解答:∵x 1、x 2是方程x 2+2x -8=0的两根, ∴x 1+x 2=-2,x 1x 2=-8. ∴21x x +2x 1x 2+12x x ={}{}222112x x x x ++2x 1x 2=()21212122x x x x x x +-+2x 1x 2=()()22288--⨯--+2×(-8)=4168+--16 =-52-16 =-372. 14、已知关于x 的方程x 2+6x +k =0的两个根分别是x 1、x 2,且11x +21x =3,则k 的值为______. 答案:-2解答:∵关于x 的方程x 2+6x +k =0的两个根分别是x 1、x 2, ∴x 1+x 2=-6,x 1x 2=k ,∵11x +21x =1212x x x x +=3,∴6k-=3, ∴k =-2.15、若关于x 的方程x 2+2mx +m 2+3m -2=0有两个实数根x 1、x 2,则x 1(x 2+x 1)+x 22的最小值为______. 答案:54解答:关于x 的方程x 2+2mx +m 2+3m -2=0有两个实数根x 1、x 2,Δ=4m 2-4(m 2+3m -2)≥0,解得m ≤23由韦达定理可知x 1+x 2=-2m ,x 1·x 2=m 2+3m -2. x 1(x 2+x 1)+x 22 =x 1x 2+x 12+x 22 =(x 1+x 2)2-x 1x 2 =(-2m )2-m 2-3m +2 =3m 2-3m +2=3(m -12)2+54. ∵m ≤23,∴当m =12时,取得最小值为54.16、对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)-5=0的两根记为m 、n ,则m 2+n 2=______. 答案:6解答:∵(x ◆2)-5=x 2+2x +4-5, ∴m 、n 为方程x 2+2x -1=0的两个根, ∴m +n =-2,mn =-1, ∴m 2+n 2=(m +n )2-2mn =6. 故答案为:6.17、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a. 根据该材料填空:已知x 1,x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为______. 答案:10解答:由题意知,x 1+x 2=-6,x 1x 2=3,所以21x x +12x x =222112·x x x x +=()21212122·x x x x x x +-⋅=()26233--⨯=10.三、解答题18、已知关于x 的方程x 2+2x +a -2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围. (2)当该方程的一个根为1时,求a 的值及方程的另一根. 答案:(1)a 的取值范围是a <3. (2)a 的值是-1,该方程的另一根为-3.解答:(1)∵b 2-4ac =(2)2-4×1×(a -2)=12-4a >0, 解得:a <3.∴a 的取值范围是a <3.(2)设方程的另一根为x 1,由根与系数的关系得:111212x x a +=-⎧⎨⋅=-⎩,解得:113a x =-⎧⎨=-⎩, 则a 的值是-1,该方程的另一根为-3.19、已知关于x 的方程x 2-4x +k +1=0有两实数根. (1)求k 的取值范围.(2)设方程两实数根分别为x 1、x 2,且13x +23x =x 1x 2-4,求实数k 的值. 答案:(1)k ≤3. (2)k =-3.解答:(1)∵关于x 的一元二次方程x 2-4x +k +1=0有两个实数根, ∴Δ=(-4)2-4×1×(k +1)≥0, 解得:k ≤3,故k 的取值范围为:k ≤3.(2)由根与系数的关系可得x 1+x 2=4,x 1x 2=k +1, 由13x +23x =x 1x 2-4可得()12123x x x x +=x 1x 2-4, 代入x 1+x 2和x 1x 2的值,可得:121k +=k +1-4, 解得:k 1=-3,k 2=5(舍去), 经检验,k =-3是原方程的根, 故k =-3.20、已知关于x 的一元二次方程x 2+(2m +1)x +m -2=0. (1)求证:无论m 取何值,此方程总有两个不相等的实数根. (2)若方程有两个实数根x 1,x 2,且x 1+x 2+3x 1x 2=1,求m 的值. 答案:(1)证明见解答. (2)8.解答:(1)依题意可得Δ=(2m +1)2-4(m -2), =4m 2+9>0.故无论m 取何值,此方程总有两个不相等的实数根. (2)由根与系数的关系可得:()1212212x x m x x m ⎧+=-+⎨=-⎩, 由x 1+x 2+3x 1x 2=1,得-(2m +1)+3(m -2)=1, 解得m =8.21、已知关于x 的方程x 2+2x +a -2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围. (2)若该方程的一个根为1,求a 的值及该方程的另一根. 答案:(1)a 的取值范围是a <3. (2)a 的值是-1,该方程的另一根为-3.解答:(1)∵b 2-4ac =22-4×1×(a -2)=12-4a >0, 解得:a <3.∴a 的取值范围是a <3.(2)设方程的另一根为x 1,由根与系数的关系得:11121?2x x a +=-⎧⎨=-⎩,解得:113a x =-⎧⎨=-⎩,则a的值是-1,该方程的另一根为-3.22、已知x 1,x 2是一元二次方程x 2-2x +k +2=0的两个实数根. (1)求k 的取值范围. (2)是否存在实数k ,使得等式11x +21x =k -2成立?如果存在,请求出k 的值;如果不存在,请说明理由. 答案:(1)k ≤-1. (2)存在,k 值为.解答:(1)∵一元二次方程x 2-2x +k +2=0有两个实数根, ∴Δ=(-2)2-4×1×(k +2)≥0, 解得:k ≤-1.(2)∵x 1,x 2是一元二次方程x 2-2x +k +2=0的两个实数根, ∴x 1+x 2=2,x 1x 2=k +2, ∵11x +21x =k -2, ∴1212x x x x +=22k +=k -2, ∴k 2-6=0,解得:k 1,k 2, 又∵k ≤-1, ∴k,∴存在这样的k 值,使得等式11x +21x =k -2成立,k 值为. 23、已知关于x 的一元二次方程x 2-4x -m 2=0. (1)求证:该方程有两个不等的实根.(2)若该方程的两个实数根x 1、x 2满足x 1+2x 2=9,求m 的值. 答案:(1)证明见解答.(2)m=解答:(1)∵在方程x2-4x-m2=0中,Δ=(-4)2-4×1×(-m2)=16+4m2>0,∴该方程有两个不等的实根.(2)∵该方程的两个实数根分别为x1、x2,∴x1+x2=4①,x1·x2=-m2②.∵x1+2x2=9③,∴联立①③解之,得:x1=-1,x2=5,∴x1·x2=-5=-m2,解得:m=24、关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1·x2,求k的值.答案:(1)k>34.(2)k=2.解答:(1)∵原方程有两个不相等的实数根,∴Δ=(2k+1)2-4(k2+1)=4k2+4k+1-4k2-4=4k-3>0,解得:k>34.(2)∵k>3 4∴x1+x2=-(2k+1)<0,又∵x1·x2=k2+1>0∴x1<0,x2<0∴|x1|+|x2|=-x1-x2=-(x1+x2)=2k+1,∵|x1|+|x2|=x1·x2,∴2k+1=k2+1,∴k1=0,k2=2,又∵k>34,∴k=2.。

【初高中衔接】第6讲 一元二次方程根与系数的关系(含答案)

【初高中衔接】第6讲 一元二次方程根与系数的关系(含答案)

【第6讲】 一元二次方程根与系数的关系【基础知识回顾】知识点1 一元二次方程的根的判断式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= (1) 当240b ac ->时,右端是正数,方程有两个不相等的实数根:x =(2) 当240b ac -=时,右端是零.因此,方程有两个相等的实数根:1,22bx a =-(3) 当240b ac -<时,右端是负数.因此,方程没有实数根.由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac ∆=- 知识点2 一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:12bx x a +=+=-,221222()422(2)4b b b ac cx x a a a a a-+---⋅=⋅===韦达定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么: 1212,b c x x x x a a +=-=【合作探究】探究一 ∆与根个数之间的关系【例1】不解方程,判断下列方程的实数根的个数:(1)22310x x -+= (2)24912y y +=(3)25(3)60x x +-=归纳总结:【练习1-1】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围: (1) 方程有两个不相等的实数根; (2) 方程有两个相等的实数根 (3)方程有实数根;(4) 方程无实数根.【练习1-2】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.探究二 一元二次方程的根与系数的关系 【例2-1】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --;(4)12||x x -.归纳总结:【练习2】若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1)求| x 1-x 2|的值; (2)求221211x x +的值;(3)x 13+x 23.【例2-2】已知两个数的和为4,积为-12,求这两个数.【例2-2】关于x 的方程221(1)104x k x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.探究三 一元二次方程的根的范围【例3-1】若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.【例3-2】一元二次方程有两个实根,一个比3大,一个比3小,求的取值范围。

中考数学专题复习-一元二次方程的根与系数的关系(含解析)

中考数学专题复习-一元二次方程的根与系数的关系(含解析)

中考数学专题复习-一元二次方程的根与系数的关系(含解析)一、单选题1.设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A. B. 6 C. -6 D. 152.已知a、b是一元次方程x2﹣2x﹣3=0的两个根,则a2b+ab2的值是()A. -1B. -5C. -6D. 63.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A. ﹣4B. ﹣1C. 1D. 44.设方程的两个根为、,那么的值等于( )。

A. B. C. D.5.已知一元二次方程x2﹣3x﹣3=0的两根为α与β,则的值为()A. -1B. 1C. -2D. 26.设x1、x2是一元二次方程x2+x﹣3=0的两根,则x13﹣4x22+15等于()A. -4B. 8C. 6D. 07.若、是一元二次方程x2+5x+4=0的两个根,则的值是().A. -5B. 4C. 5D. -48.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是( ).A. 1B. 2C. -2D. -19.一元二次方程的两实数根相等,则的值为()A. B. 或 C. D. 或10.若方程x2+x﹣2=0的两个实数根分别是x1、x2,则下列等式成立的是()A. x1+x2=1,x1•x2=﹣2B. x1+x2=﹣1,x1•x2=2C. x1+x2=1,x1•x2=2D. x1+x2=﹣1,x1•x2=﹣211.下列一元二次方程两实数根和为﹣4的是()A. x2+2x﹣4=0B. x2﹣4x+4=0C. x2+4x+10=0D. x2+4x﹣5=012.已知x1,x2是一元二次方程x2+4x﹣3=0的两个实数根,则x1+x2﹣x1x2的值是()A. 6B. 0C. 7D. -113.若方程x2+x﹣1=0的两实根为α、β,那么下列式子正确的是()A. α+β=1B. αβ=1C. α2+β2=2D. =1二、填空题14.写出以2,﹣3为根的一元二次方程是________.15.一元二次方程的两根和是________;16.已知α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α2+2αβ+β2的值为________.17.已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x1﹣1)2+(x2﹣1)2的最小值是________18.若关于x的一元二次方程为ax2+bx+c=0的两根之和为3,则关于x的方程a(x+1)2+b(x+1)+c=0的两根之和为________.三、计算题19.已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.20.设方程4x2﹣7x﹣3=0的两根为x1,x2,不解方程求下列各式的值:(1)x12x2+x1x22.(2)+ .21.已知是方程的两个根,利用根与系数的关系,求下列各式的值:(1);(2)22.已知一元二次方程x2﹣6x+4=0的两根分别是a,b,求(1)a2+b2(2)a2﹣b2的值.23.已知a、b是一元二次方程x2﹣2x﹣1=0的两个根且a2﹣2a﹣1=0,求a2﹣a+b+3ab的值.四、解答题24.关于x的方程(k﹣1)x2﹣x+1=0有实根.(1)求k 的取值范围;(2)设x1、x2是方程的两个实数根,且满足(x1+1)(x2+1)=k﹣1,求实数k的值.25.若关于x的一元二次方程x2+kx+3x+k=0的一个根是﹣2,求方程另一个根和k的值.26.若关于x的方程x2+6x+m=0的一个根为3﹣,求方程的另一个根及m的值.五、综合题27.已知关于x的方程x2﹣5x+3a+3=0(1)若a=1,请你解这个方程;(2)若方程有两个不相等的实数根,求a的取值范围.28.已知抛物线的不等式为y=﹣x2+6x+c.(1)若抛物线与x轴有交点,求c的取值范围;(2)设抛物线与x轴两个交点的横坐标分别为x1,x2.若x12+x22=26,求c的值.(3)若P,Q是抛物线上位于第一象限的不同两点,PA,QB都垂直于x轴,垂足分别为A,B,且△OPA与△OQB全等.求证:c>﹣.答案解析部分一、单选题1.设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A. B. 6 C. -6 D. 15【答案】B【考点】根与系数的关系【解析】【解答】解:设方程x2﹣5x+k=0另一个根为a,则一个根为2a﹣1,则a+2a﹣1=5,解得a=2,2×2﹣1=3因此k=2×3=6.故选:B.【分析】设方程的另一个根为a,则一个根为2a﹣1,根据根与系数的关系得出a+2a﹣1=5,得出a=3,另一个跟为5,进一步利用两根的积得出k的数值即可.2.已知a、b是一元次方程x2﹣2x﹣3=0的两个根,则a2b+ab2的值是()A. -1B. -5C. -6D. 6【答案】C【考点】根与系数的关系【解析】【解答】解:∵a、b是一元次方程x2﹣2x﹣3=0的两个根,∴ab=﹣3,a+b=2,∴a2b+ab2=ab(a+b)=﹣3×2=﹣6,故选C.【分析】根据根与系数的关系,可得出ab和a+b的值,再代入即可.3.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A. ﹣4B. ﹣1C. 1D. 4【答案】C【考点】根与系数的关系【解析】【解答】解:根据题意得x1•x2=1.故选C.【分析】直接根据根与系数的关系求解.4.设方程的两个根为、,那么的值等于( )。

一元二次方程根与系数的关系(5种题型)-2023年新九年级数学(苏科版)(解析版)

一元二次方程根与系数的关系(5种题型)-2023年新九年级数学(苏科版)(解析版)

一元二次方程根与系数的关系(5种题型)1.探索一元二次方程的根与系数的关系.(重点)2.不解方程利用一元二次方程的根与系数的关系解决问题.(难点)韦达定理:如果12x x ,是一元二次方程 20(0)ax bx c a −+=≠的两个根,由解方程中的公式法得,12x x ==. 那么可推得1212b cx x x x a a+=−⋅=,这是一元二次方程根与系数的关系.题型1:求根与系数关系例1.(2023春·江苏南京·九年级专题练习)若1x ,2x 是一元二次方程2230x x −−=的两个根,则12x x +的值是( ) A .2 B .2− C .3 D .3−【答案】A【分析】根据一元二次方程根与系数的关系可得12x x +的值.【详解】解:一元二次方程2230x x −−=的二次项系数是1a =,一次项系数2b =−,∴由根与系数的关系,得122x x +=.故选:A .【点睛】本题考查了一元二次方程根与系数的关系:若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根,12b x x a +=−,12cx x a =,牢记公式是解题的关键.12x x 是【答案】D【分析】利用两根之积等于ca 即可解决问题.【详解】解:一元二次方程22410x x −+=的两个根为1x、2x ,1212x x ∴=,故选:D .【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于ba −,两根之积等于c a ”是解题的关键.题型2:利用根与系数的关系式求代数式的值【答案】4/0.75【分析】根据根与系数的关系求出12x x +和12x x ⋅的值,然后代入221212x x x x +计算即可.【详解】解:∵22310x x +−=,∴1232x x +=−,1212x x ⋅=−,∴()2212121212313224x x x x x x x x ⎛⎫==−⨯−=⎪⎝++⎭. 故答案为:34.【点睛】本题考查了一元二次方程根与系数的关系,若1x ,2x 为方程20(0)ax bx c a ++=≠的两个根,则1x ,2x 与系数的关系式:12b x x a +=−,12cx x a ⋅=. 例4.(2023春·江苏南京·九年级专题练习)若m ,n 分别是一元二次方程2410x x −+=的两个根,则23m m n −+的值为( ) A .3 B .4 C .5 D .6【答案】A【分析】根据一元二次方程解的定义和根与系数的关系得到2410m m −+=,m +n =4,然后利用整体代入的方法计算.【详解】解:∵m ,n 分别是一元二次方程2410x x −+=的两个根,∴2410m m −+=,m +n =4, ∴241m m −=−,∴2234143m m n m m m n −+=−++=−+=,故选:A .【点睛】本题考查了一元二次方程的解,根与系数的关系,若1x ,2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a +=−,12cx x a ⋅=,熟练掌握一元二次方程根与系数的关系是解题的关键. 例5.已知12x x ,是方程2133022x x −−=的两根,求下列各式的值:(1)1211x x +;(2)2212x x −;(3)2212x x +;(4)12||x x−.【答案】(1)2−;(2)−3)42;(4). 【解析】解:由韦达定理,得:126x x +=,123x x =−.原式=12122x x x x +=−;原式()()()1212126x x xx x x=+−=−=±6=±=±•=±原式=()21212242x x x x +−=;原式12x x −==.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用.例6.已知2212510520.1m m n n mn n m−−=+−=≠+,,求的值. 【答案】5−.【解析】由22510m m −−=,可得:25120m m −−=,整理得:21520m m +−=,又由于2520n n +−=,所以可知1m 、n 是方程2520x x +−=的两根, 由韦达定理,可得:15n m +=−.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,而且还考查了一元二次方程的根的灵活应用,要注意观察.例7.已知αβ,是方程:2240x x −−=的两根,求代数式3+8+6αβ的值. 【答案】30.【解析】由题及韦达定理可得:2240αα−−=,2αβ+=,得:224αα=+.3+8+6αβ=286ααβ⋅++=()2486ααβ+++=22486ααβ+++=()224486ααβ++++=()81430αβ++=.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,运用了降次等的思想方法.题型3:已知含字母的一元二次方程的一个根,求另一个根及字母的值例8.(2023春·江苏徐州·九年级校考阶段练习)已知关于x 的方程220x x a +−=的一个根为2,则另一个根是______. 【答案】4−【分析】根据一元二次方程根与系数的关系即可求解.【详解】解:设方程220x x a +−=的另一个根为2x ,则222x +=− 解得:24x =−, 故答案为:4−.【点睛】本题考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程()200axbx c a ++=≠的两根,12b x x a +=−,12cx x a =,掌握一元二次方程根与系数的关系是解题的关键.例9.若方程:2980kx x −+=的一个根为1x =,则k =________;另一个根为________. 【答案】1;8x =.【解析】将1x =代入方程,可得:1k =,再由韦达定理可得:128x x =,得另一根为8x =.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的应用.题型4:有关一元二次方程的根与系数关系的创新题例10.已知一个直角三角形的两个直角边的长恰好是方程:22870x x −+=两个根,求这个直角三角形的周长. 【答案】7.【解析】解:设直角三角形的三边长为a ,b ,c ,且c 是斜边长,由题知,4a b +=,72ab =,由勾股定理,可得:222c a b =+,所以3c =,所以直角三角形的周长7a b c ++=.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,并且考查了直角三角形的性质,即勾股定理的应用.例11.(2023春·江苏苏州·九年级苏州中学校考开学考试)已知关于x 的一元二次方程22430x mx m −+=. (1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的差为2,求m 的值. 【答案】(1)见详解;(2)1m =【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m −+=的两实数根为12,x x ,然后根据一元二次方程根与系数的关系可得212124,3x x m x x m +=⋅=,进而可得()2124x x −=,最后利用完全平方公式代入求解即可.【详解】(1)证明:由题意得:21,4,3a b m c m ==−=,∴22224164134b ac m m m ∆=−=−⨯⨯=,∵20m ≥,∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m −+=的两实数根为12,x x ,则有:212124,3x x m x x m +=⋅=,∵122x x −=,∴()()2222121212416124x x x x x x m m −=+−=−=,解得:1m =±, ∵0m >, ∴1m =.根与系数的关系是解题的关键.【答案】(1)③;(2)4;(3)10【分析】(1)分别求出①②③三个方程的根,然后根据题中所给定义可进行求解;(2)设关于x 的方程260x x c −+=的两个根为12,x x ,然后根据“三倍根方程”可令213x x =,进而根据一元二次方程根与系数的关系及方差的解可进行求解;(3)先把一元二次方程进行因式分解变形,然后根据“三倍根方程”的关系可进行求解.【详解】(1)解:由2320x x −+=可得:121,2x x ==,不满足“三倍根方程”的定义;由230x x −=可得:120,3x x ==,不满足“三倍根方程”的定义;由28120x x −+=可得:122,6x x ==,满足“三倍根方程”的定义;故答案为③;(2)解:设关于x 的方程260x x c −+=的两个根为12,x x ,由一元二次方程根与系数的关系可知:126x x +=,12x x c =,令213x x =,则有146x =, ∴132x =,292x =, ∴274c =; (3)解:由()20x m n x mn −++=可得:()()0x m x n −−=,∴12,x m x n==,令3m n =,则有:2222233910mn n m n n n ==++.【点睛】本题主要考查一元二次方程根与系数的关系及解法,熟练掌握一元二次方程根与系数的关系是解题的关键.一、单选题1.(2022秋·江苏无锡·九年级统考期中)关于下列一元二次方程,说法正确的是( ) A .2560x x ++=的两根之和等于5 B .231x x −=的两根之积等于1C .20x x m ++=两根不可能互为倒数D .210x mx ++=中m =0时,两根互为相反数【答案】C【分析】根据一元二次方程根的判别式以及一元二次方程根与系数的关系进行判断即可求解.【详解】A. 2560x x ++=的两根之和等于5−,故该选项不正确,不符合题意;B. 231x x −=,即方程2310x x −−=的两根之积等于1−,故该选项不正确,不符合题意;C. 20x x m ++=,∵1,1,a b c m ===,24140b ac m ∆=−=−≥,解得14m ≤,∵1m ≠,两根之积为m ,∴方程两根之积不可能互为倒数,故该选项正确,符合题意;D. 210x mx ++=中0m =时,即21x =−,此方程无实根,故该选项不正确,不符合题意.故选C .【点睛】本题考查了一元二次方程根的判别式以及一元二次方程根与系数的关系:若12,x x 是一元二次方程()200ax bx c a ++=≠的两根,12bx x a +=−,12c x x a =.一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.【答案】A【分析】利用根与系数的关系12bx x a +=−即可求解.【详解】解:利用根与系数的关系,可得:1222b a a x x a +=−−=−=,x 的方程220ax ax c −+=的一个解为11x =−,()212213x x ∴=−=−−=,故选:A .【点睛】本题主要考查根与系数的关系,解题的关键是熟练掌握根与系数的关系.【答案】D【分析】根据两根之和为10−,以及两根之间的数量关系,求出两个根,再根据两根之积等于26a +,求出a 的值即可.【详解】解:设方程的两个根为,m n ,4=m n ,由根与系数的关系可得:10m n +=−,即:410n n +=−, 解得:2n =−, ∴()428m =⨯−=−,∵()268216mn a =+=−⨯−=,∴5a=; 故选D .【点睛】本题考查一元二次方程根与系数的关系.熟练掌握两根之和等于ba −,两根之积等于c a ,是解题的关键.【答案】A【分析】根据:若一元二次方程()200ax bx c a ++=≠ 两根分别为12x x ,,则有:1212b x x a c x x a ⎧+=−⎪⎪⎨⎪⋅=⎪⎩, 代入数据计算即可.【详解】解:设方程的另一根为1x ,由根据根与系数的关系可得:11115x mx +=⎧⎨⨯=⎩,解得:156x m =⎧⎨=⎩故选:B.【点睛】本题考查了一元二次方程的根与系数的关系,关键要理解一元二次方程的两根之和只与二次项系数和一次项系数有关,两根之积只与二次项系数和常数项有关,从而快速计算结果.5.(2022·江苏南京·南师附中树人学校校考二模)方程()()1210x x +−+=的根的情况,下列结论中正确的是( ) A .两个正根 B .两个负根 C .一个正根,一个负根 D .无实数根【答案】C 【分析】先把方程()()1210x x -++=化为210x x +−=,再根据2Δ41450b ac =-=+=>可得方程有两个不相等的实数根. 【详解】解:∵()()1210x x -++=(p 为常数),∴210x x +−=,∴2Δ41450b ac =-=+=>,∴方程有两个不相等的实数根,根据根与系数的关系,方程的两个根的积为1−, ∴一个正根,一个负根. 故选:C .【点睛】本题考查一元二次方程根的判别式以及根与系数关系,注意利用偶次方的非负性判断代数式的符号是解决问题的关键. 二、填空题6.(2023·江苏盐城·统考一模)已知关于x 的一元二次方程280x kx +−=的一个根是2-,则它的另一个根为______. 【答案】4【分析】利用根与系数之间的关系来求解. 【详解】解:设方程的另一个根为m ,关于x 的一元二次方程280x kx +−=的一个根是2-,由根与系数之间的关系可得 28m −=− 4m ∴=,故答案为:4.【点睛】本题主要考查了一元二次方程根与系数之间的关系.解题的关键是一元二次方程20ax bx c ++=的两根如果为1x 、2x ,则有12b x x a +=−,12cx x a ⋅=. 7.(2022秋·江苏盐城·九年级统考期中)已知一元二次方程2202210x x −−=的两个根分别是1x 、2x ,则代数式221212x x x x +的值为______. 【答案】2022−【分析】结合题意利用一元二次方程根与系数的关系求得122022x x +=,121x x =−,代入即可求解.【详解】解:一元二次方程2202210x x −−=的两个根分别是1x、2x ,122022x x ∴+=,121x x =−,()2212121212x x x x x x x x ∴+=+12022=−⨯2022=−,故答案为:2022−.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值;熟练掌握根与系数的关系是解题的关键.【答案】2【分析】由根与系数的关系可得12123x x x x m+==,,结合12121x x x x +−=可得出关于m 的一元一次方程,解之即可得出结论. 【详解】解:∵12x x ,是方程230x x m −+=的两个根,∴12123x x x x m+==,, ∵121231x x x x m +−=−=,∴2m =. 故答案为2.【点睛】本题考查了根与系数的关系:若12x x ,是一元二次方程()200ax bx c a ++=≠的两根时,1212cb a a x x x x +=−=,.9.(2023秋·江苏扬州·九年级校考期末)已知1x、2x 是关于x 的方程2250x x −−=的两个根,则12x x +值等于________. 【答案】2【分析】根据一元二次方程根与系数的关系得出两根之和即可求解. 【详解】解:1x 、2x 是关于x 的方程2250x x −−=的两个根,12221x x −∴+=−=,故答案为:2.【点睛】本题主要考查了一元二次方程的根与系数的关系,一元二次方程()200ax bx c a ++=≠的根与系数的关系为:12b x x a +=−,12cx x a ⋅=.【答案】6【分析】根据根与系数关系得到两根和与两根积的值,将式子通分代入求解即可得到答案. 【详解】解:由题意可得, ∵1x ,2x 是一元二次方程2560x x +−=的两个根,∴12551x x +=−=−,12661x x −==−,∴121212115566x x x x x x +−+===− 故答案为:56.【点睛】本题考查一元二次方程根与系数之间的关系,解题的关键是熟练掌握12b x x a +=−,12cx x a =.11.(2023秋·江苏南京·九年级统考期末)关于x 的方程221x x p −−=(p 为常数)有两个不相等的正根,则p 的取值范围是______. 【答案】21p −<<−【分析】根据一元二次方程根的判别式和根与系数得关系解答即可.【详解】由题意得: 221x x p −−=,∴22(1)0x x p −−+=,∴[]224(2)41(1)48b ac p p ∆=−=−−⨯⨯−+=+,∴122b x x a +=−=,12(1)cx x p a ⋅==−+,∵关于x 的方程221x x p −−=(p 为常数)有两个不相等的正根,∴480(1)0p p +>⎧⎨−+>⎩,解得:21p −<<− ∴p 的取值范围是:21p −<<− 故答案为:21p −<<−【点睛】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握相关知识点是解题的关键.【答案】1−/1−【分析】依据根与系数的关系即12bx x a +=−,12c x x a =代入即可求出m n 、的值,最后代入计算即可.1是方程20x mx n ++=的两个根,))11m∴+=−,)()1·1n=,即m =−1n =,1m n ∴+=−, 故答案为:1−.【点睛】本题考查了根与系数的关系,二次根式的混合运算;解题的关键是熟练掌握一元二次方程根与系数的关系.13.(2023·江苏南京·统考二模)若α、β为2240x x +−=的两根,则22ααβα++的值为______. 【答案】0【分析】由已知中α,β是方程2240x x +−=的两个实数根,结合根与系数的关系转化求解即可.【详解】解:α,β是方程2240x x +−=的两个实数根,可得2αβ+=−,∴22()2220ααβαααβααα++=++=−+=.∴22ααβα++的值为0.故答案为:0.【点睛】本题考查的知识点是一元二次方程根与关系,若α,β是一元二次方程20(0)ax bx c a ++=≠的两根时,b a αβ+=−,ca αβ=.14.(2023秋·江苏南京·九年级统考期末)设12,x x 是关于x 的方程2320x x −+=的两个根,则12x x +=_____________.【答案】3【分析】直接利用根与系数的关系12bx x a +=−求解.【详解】解∶根据根与系数的关系12bx x a +=−得123x x +=.故答案为:3.【点睛】本题考車了根与系数的关系∶若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−=.15.(2023秋·江苏南京·九年级南京外国语学校仙林分校校考期末)设1x 、2x 是方程230x mx m +−+=的两个根,则1212x x x x +−=___________. 【答案】3−【分析】根据根与系数关系,求出两根之和、两根之积即可. 【详解】解:1x 、2x 是方程230x mx m +−+=的两个根,所以,12x x m+=−,123x x m =−+,1212(3)3x x x x m m +−=−−−+=−,故答案为:3−.【点睛】本题考查了一元二次方程根与系数关系,解题根据是熟记根与系数关系,求出两根之和、两根之积.16.(2022秋·江苏淮安·九年级校考期末)若一元二次方程2220x x −−=有两个实数根1x ,2x ,则1212x x x x +−的值是________. 【答案】4【分析】根据一元二次方程根与系数的关系,即可求得.【详解】解:一元二次方程2220x x −−=有两个实数根1x ,2x,122x x ∴+=,122x x =−,()1212224x x x x ∴+−=−−=,故答案为:4.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值问题,熟练掌握和运用一元二次方程根与系数的关系是解决本题的关键. 三、解答题17.(2023·江苏扬州·统考二模)已知关于x 的一元二次方程()2120x m x m −−+−=(1)求证:该方程总有两个实数根.(2)若该方程两个实数根的差为3,求m 的值. 【答案】(1)证明见解析 (2)0或6【分析】(1)由()2120x m x m −−+−=,可知1a =,()1b m =−−,2c m =−,根据()()()222414230b ac m m m =−=−−−−=−≥⎡⎤⎣⎦,证明即可;(2)由()2120x m x m −−+−=,可得121bx x m a +=−=−,122c x x m a ⋅==−,由该方程两个实数根的差为3,可得()2129x x −=,即()()221212124x x x x x x −=+−⋅,()()21429m m −−−=,计算求解即可.【详解】(1)证明:()2120x m x m −−+−=,1a =,()1b m =−−,2c m =−,∴()()()222414230b ac m m m =−=−−−−=−≥⎡⎤⎣⎦,∴该方程总有两个实数根;(2)解:∵()2120x m x m −−+−=,∴121b x x m a +=−=−,122cx x m a ⋅==−,∵该方程两个实数根的差为3,∴()2129x x −=,∵()()221212124x xx x x x −=+−⋅,∴()()21429m m −−−=,解得0m =或6m =, ∴m 的值为0或6.【点睛】本题考查了一元二次方程根的判别,一元二次方程根与系数的关系,完全平方公式的变形.解题的关键在于对知识的熟练掌握与灵活运用.18.(2020秋·江苏南京·九年级统考期中)已知关于x 的方程()220x mx m −+=−.(1)求证:不论m 为何值,该方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值以及方程的另一个根. 【答案】(1)见解析(2)m 的值为2,另一个根为0【分析】(1)先计算判别式的值得到2(2)4m ∆=−+,然后根据判别式的意义得到结论; (2)设方程的另一个为t ,利用根与系数的关系得到2,22t m t m +==−,然后解方程组即可. 【详解】(1)证明:∵1,,2a b m c m ==−=−,∴22224()41(2)48(2)4b ac m m m m m −=−−⨯⨯−=−+=−+, ∵2(2)0m −≥, ∴2(2)40m −+>,∴0∆>,∴不论m 为何值,该方程都有两个不相等的实数根; (2)解:设方程的另一个为t ,根据根与系数的关系得:2,22t m t m +==−, ∴222t t +−=,解得0=t , ∴2m =,∴m 的值为2,另一个根为0.【点睛】本题考查了判别式的意义以及根与系数的关系:若x1,x2是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−=.一、单选题1.(2022·江苏·九年级专题练习)设一元二次方程2210x x −−=的两根为1x ,2x ,则1122x x x x −+的值为( ) A .1 B .﹣1 C .0 D .3【答案】D【分析】先利用一元二次方程根与系数的关系得122x x +=,121x x =−,再变形得到11221212x x x x x x x x −+=+−,然后利用整体代入的方法计算.【详解】解:根据根与系数的关系得122x x +=,121x x =−,∴1122x x x x −+1212x x x x =+−()21=−−3=,故选:D .【点睛】本题考查利用一元二次方程根与系数的关系求代数式的值,若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根,则12b x x a +=−,12cx x a =,掌握一元二次方程根与系数的关系是解决问题的关键.2.(2022秋·江苏常州·九年级校考阶段练习)若m 、n 是方程210x x +−=的两个实数根,则22m m n ++的值为( ) A .4 B .2 C .0 D .-1【答案】C【分析】根据根与系数的关系及方程的解的定义即可求解.【详解】∵m 、n 是方程210x x +−=的两个实数根,∴210m m +−=,1bm n a +=−=−,∴21m m +=,∴()()222110m m n m m m n ++=+++=−=,故选:C .【点睛】此题主要考查根与系数的关系,解题的关键是熟知根与系数的关系、一元二次方程根的定义. 3.(2022秋·江苏南京·九年级校考阶段练习)若关于x 的方程260x mx =--的一个根是2−,则另一个根是( ) A .2 B .﹣2 C .﹣3 D .3【答案】D【分析】根据根与系数关系得出两根之积为-6,进而可以求出另一个根. 【详解】解:关于x 的方程260x mx =--的一个根是2−, 根据根与系数关系可知,两根之积为-6,则另一个根为632=−-,故选:D .【点睛】本题考查了一元二次方程根与系数关系,解题关键是利用根与系数关系求出两根之积为-6. 4.(2022秋·九年级课时练习)若α和β是关于x 的方程210x bx +−=的两根,且2211αβαβ−−=−,则b 的值是( ) A .-3 B .3C .-5D .5【答案】C【分析】根据一元二次方程根与系数的关系得出+=,1b αβαβ−=−,代入2211αβαβ−−=−得到关于b 的方程,求出b 的值即可.【详解】解:∵α和β是关于x 的方程210x bx +−=的两根,∴+=,1b αβαβ−=−,∴222()1211b αβαβαβαβ−−=−+=−+=− ∴=5b − 故选:C【点睛】本题考查了根与系数的关系,熟练掌握两根之和为-b a ,两根之积为ca 是解题的关键.5.(2022秋·江苏苏州·九年级校考阶段练习)设x 1,x 2是方程x 2+5x ﹣6=0的两个根,则x 12+x 22的值是( ) A .5 B .13C .35D .37【答案】D【分析】根据根与系数的关系可以得到x1+x2=-5,x1x2=-6,然后利用将代数式的值代入,计算x12+x22=(x1+x2)2-2x1x2的值.【详解】解:根据题意得x1+x2=-5,x1x2=-6, x12+x22=(x1+x2)2-2x1x2=25+12=37. 故选:D .【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,12bx x a +=−,12cx x a •=.【答案】C【分析】设直角三角形的斜边为c ,两直角边分别为a 与b .根据一元二次方程根与系数关系可得8a b +=,14ab =.再根据勾股定理即可求.【详解】解:设直角三角形的斜边为c ,两直角边分别为a 与b ,直角三角形两直角边是方程28140x x −+=的两根,8a b ∴+=,14ab =,根据勾股定理可得:2222()2642836c a b a b ab =+=+−=−=,6c ∴=.故选:C .【点睛】本题考查勾股定理,一元二次方程根与系数关系,熟练掌握一元二次方程根与系数关系是解题的关键.7.(2020秋·江苏连云港·九年级校考阶段练习)两根均为负数的一元二次方程是( ) A .2712+5=0x x - B .26135=0x x -- C .24215=0x x ++ D .2158=0x x -+【答案】C【分析】因为两根均为负数,所以两实数根的和小于零,两根之积大于零.解题时检验两根之和ba −是否小于零,及两根之积ca 是否大于零.【详解】解:A.125>07x x =,1212>07x x +=,两根均为正数;B.125<06x x =-,1213>06x x +=,两根为一正一负;C.125>04x x =,1221<04x x +=-,两根均为负数;D.128<0x x =-,1215<0x x +=-,两根为一正一负.故答案为:C .【点睛】本题考查了根与系数的关系:若1x ,2x 是一元二次方程()2=00ax bx c a ++¹的两根时,12=bx x a +−,12=c x x a .二、填空题8.(2022秋·江苏连云港·九年级校考阶段练习)若a ,b 是方程2220x x +−=的两个实数根,则代数式23a a b ++的值为______. 【答案】0【分析】由一元二次方程的解的定义可得出2220a a +−=,即得出222a a +=.根据一元二次方程根与系数的关系可得出2a b +=−,从而即可求出22320a a b a a a b ++=+++=.【详解】∵a ,b 是方程2220x x +−=的两个实数根,∴2220a a +−=,221a b +=−=−,∴222a a +=,∴22322(2)0a b a a a a b ++=+++=+−=. 故答案为:0.【点睛】本题考查一元二次方程的解的定义,一元二次方程根与系数的关系.掌握方程的解就是使方程成立的未知数的值和熟记一元二次方程根与系数的关系:12b x x a +=−、12cx x a ⋅=是解题关键. 9.(2023春·江苏泰州·九年级泰州市姜堰区第四中学校考阶段练习)设方程2202310x x −−=的两个根分别为12x x 、,则1212x x x x +−的值是___________. 【答案】2024【分析】先根据根与系数的关系可求121220231x x x x +==−,,再把12x x +,12x x 的值整体代入所求代数式计算即可.【详解】解:∵方程2202310x x −−=的两个根分别为12x x、,∴121220231x x x x +==−,,∴1212202312024x x x x =−++=.故答案是:2024.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根与系数的关系:若方程的两根为12x x、,则1212b cx x x x a a +=−⋅=,.10.(2023·江苏南京·九年级专题练习)已知1x 、2x 是一元二次方程250x x −−=的两个实数根,则221122x x x x −+的值是________.【答案】16【分析】先根据根与系数的关系得到121215x x x x +==−,,然后利用整体代入的方法计算.【详解】解:根据题意得121215x x x x +==−,,所以()222211221212313516x x x x x x x x −+=+−=−⨯−=().故答案为:16.【点睛】本题考查了根与系数的关系:若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−⋅=.11.(2022春·江苏南通·九年级校考阶段练习)已知:m 、n 是方程2310x x +−=的两根,则22(33)(33)m m n n ++++=_____.【答案】16【分析】根据m 、n 是方程2310x x +−=的两根,即可得到3m n +=−,1mn =−,2310m m +−=,2310n n +−=,从而得到231m m +=,231n n +=,代入计算即可得到答案.【详解】解:∵m 、n 是方程2310x x +−=的两根,∴3m n +=−,1mn =−,2310m m +−=,2310n n +−=,∴231m m +=,231n n +=,∴()()22(33)(33)131316m m n n ++++=++=,故答案为:16.【点睛】本题考查了一元二次方程根的定义,根与系数的关系,熟知一元二次方程根的定义,根与系数的关系,并根据题意将所求代数式变形是解题关键. 三、解答题12.(2022秋·江苏·九年级专题练习)已知关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x . (1)求m 的取值范围;(2)当11x =−时,求另一个根2x 的值. 【答案】(1)3m ≤ (2)23x =【分析】(1)根据题意得()()22420m ∆=−−−≥,解不等式即可求解; (2)根据根与系数的关系得122x x +=,根据11x =−,即可求解.【详解】(1)解:∵关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x∴()()22420m ∆=−−−≥,解得3m ≤,所以m 的取值范围为3m ≤;(2)解:∵关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x∴122x x +=, ∵11x =−, ∴23x =.【点睛】本题考查了一元二次方程根的判别式,一元二次方程根与系数的关系,掌握以上知识是解题的关键.13.(2022秋·江苏盐城·九年级滨海县第一初级中学校联考阶段练习)已知关于x 的一元二次方程22430x mx m −+=.(1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的平方和为10,求m 的值. 【答案】(1)见解析 (2)1m =【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m −+=的两实数根为1x,2x ,然后根据一元二次方程根与系数的关系可得124x x m+=,2123x x m ⋅=,再根据两个实数根的平方和为10,可得()222121212210x x x x x x +=+−=,由此可解.【详解】(1)证明:由题意得:1a =,4b m =−,23c m =,∴22224164134b ac m m m ∆=−=−⨯⨯=,∵20m ≥,∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m −+=的两实数根为1x ,2x ,则有124x x m +=,2123x x m ⋅=,∵221210x x +=,∴()222222121212216231010x x x x x x m m m +=+−=−⨯==,解得:1m =±, ∵0m >, ∴1m =.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.14.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程()21360x m x m −++−=.(1)求证:方程总有两个实数根; (2)若12127x x x x ++=,求m 的值. 【答案】(1)见解析 (2)3m =【分析】(1 (2)根据一元二次方程根与系数的关系可得1212136x x m x x m +=+=−,,整体代入12127x x x x ++=中,解出m 的值即可.【详解】(1)∵该一元二次方程为()21360x m x m −++−=,∴()1136a b m c m ==−+=−,,,∴()()2222414361025(5)0b ac m m m m m ⎡⎤−=−+−⨯−=−+=−≥⎣⎦,∴该方程总有两个实数根; (2)∵1212136b cx x m x x m a a +=−=+==−,,又∵12127x x x x ++=,∴1367m m ++−=,解得:3m =.【点睛】本题考查根据判别式判断一元二次方程根的情况,一元二次方程的根与系数的关系.掌握一元二次方程20(0)ax bx c a ++=≠的根的判别式为24b ac ∆=−,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根.熟记一元二次方程根与系数的关系:12b x x a +=−和12cx x a ⋅=是解题关键. 15.(2022秋·江苏·九年级专题练习)关于x 的方程:2(x ﹣k )=x ﹣4①和关于x 的一元二次方程:(k ﹣1)x 2+2mx+(3﹣k )+n =0②(k 、m 、n 均为实数),方程①的解为非正数. (1)求k 的取值范围;(2)如果方程②的解为负整数,k ﹣m =2,2k ﹣n =6且k 为整数,求整数m 的值;(3)当方程②有两个实数根x 1、x 2,满足(x 1+x 2)(x 1﹣x 2)+2m (x 1﹣x 2+m )=n+5,且k 为正整数,试判断|m|≤2是否成立?请说明理由.【答案】(1)k≤2且k≠1;(2)m =﹣2或﹣3;(3)成立,见解析【分析】(1)先解出方程①的解,根据一元二次方程的定义和方程①的根为非正数,得出k 的取值范围,即可;(2)先把k =m+2,n =2m ﹣2代入方程②化简,通过因式分解法,用含m 的代数式表示出一元二次方程的两个实数根,根据方程②的解为负整数,m 为整数,即可求出m 的值;(3)根据(1)中k 的取值范围和k 为正整数得出k =2,化简一元二次方程,并将两根和与积代入计算,得出关于m 、n 的等式,结合根的判别式,即可得到结论. 【详解】(1)∵关于x 的方程:2(x ﹣k )=x ﹣4, 解得:x =2k ﹣4,∵关于x 的方程2(x ﹣k )=x ﹣4的解为非正数, ∴2k ﹣4≤0,解得:k≤2, ∵由一元二次方程②,可知k≠1, ∴k≤2且k≠1;(2)∵一元二次方程(k ﹣1)x2+2mx+(3﹣k )+n =0中k ﹣m =2,2k ﹣n =6, ∴k =m+2,n =2k ﹣6=2m+4﹣6=2m ﹣2,∴把k =m+2,n =2m ﹣2代入原方程得:(m+1)x2+2mx+m ﹣1=0, 因式分解得,[(m+1)x+(m ﹣1)](x+1)=0,∴x1=﹣11mm−+=211m−+,x2=﹣1,∵方程②的解为负整数,m为整数,∴m+1=﹣1或﹣2,∴m=﹣2或﹣3;(3)|m|≤2成立,理由如下:由(1)知:k≤2且k≠1,∵k是正整数,∴k=2,∵(k﹣1)x2+2mx+(3﹣k)+n=0有两个实数根x1、x2,∴x1+x2=21mk−−=﹣2m,x1x2=31k nk−+−=1+n,∵(x1+x2)(x1﹣x2)+2m(x1﹣x2+m)=n+5,∴2m2=n+5 ①,△=(2m)2﹣4(k﹣1)[(3﹣k)+n]=4m2﹣4(n+1)≥0 ②,把①代入②得:4m2﹣8m2+16≥0,即m2≤4,∴|m|≤2.【点睛】本题主要考查一元一次方程与一元二次方程,涉及解一元一次方程,一元二次方程以及一元二次方程的根与系数的关系,根的判别式,熟练掌握因式分解法解一元二次方程,一元二次方程的根与系数的关系,根的判别式,是解题的关键.16.(2022秋·江苏·九年级专题练习)关于x的方程2220x ax a−++=有两个不相等的实数根,求分别满足下列条件的取值范围:(1)两根都小于0;(2)两根都大于1;(3)方程一根大于1,一根小于1.【答案】(1)-2<a<-1;(2)2<a<3;(3)a>3【分析】由关于x的方程x2-2ax+a+2=0有两个不相等的实根,得出△=(-2a)2-4(a+2)>0,解得a<-1或a>2.设方程x2-2ax+a+2=0的两根为α,β,利用根与系数的关系得到α+β=2a,αβ=a+2,再分别根据:(1)由两根都小于0,得出α+β=2a<0,αβ=a+2>0,此求出a的取值范围;(2)由两根都大于1,得出(α-1)(β-1)>0,且对称轴212a−−>,依此求出a的取值范围;(3)由一根大于1,一根小于1,得出(α-1)(β-1)<0,依此求出a的取值范围;【详解】解:∵关于x的方程x2-2ax+a+2=0有两个不相等的实根,∴△=(-2a)2-4(a+2)>0,∴a<-1或a>2.设方程x2-2ax+a+2=0的两根为α,β,α+β=2a,αβ=a+2.(1)∵两根都小于0,∴α+β=2a<0,αβ=a+2>0,解得:-2<a<0,又22a−−<,a<0;∵a<-1或a>2,∴-2<a<-1;(2)∵两根都大于1,∴(α-1)(β-1)>0,∴αβ-(α+β)+1>0,∴a+2-2a>-1,∴a<3,又212a−−>,a>1;又a<-1或a>2,∴2<a<3;(3))∵一根大于1,一根小于1,∴(α-1)(β-1)<0,∴αβ-(α+β)+1<0,∴a+2-2a<-1,∴a>3.【点睛】本题考查了根的判别式,根与系数的关系,属于基础题,关键是要熟记x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=ba−,x1x2=ca.17.(2022秋·江苏·九年级专题练习)如果方程x2+px+q=0有两个实数根x1,x2,那么x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问题:【答案】(1)43(2)4(3)存在,当k=﹣2时,1212212x xy yx x−−=【分析】(1)根据a,b是x2+15x+5=0的解,求出a+b和ab的值,即可求出a bb a+的值.(2)根据a+b+c=0,abc=16,得出a+b=-c,ab=16c,a、b是方程x2+cx+16c=0的解,再根据c2-4•16c≥0,即可求出c的最小值.(3)运用根与系数的关系求出x1+x2=1,x1•x2=k+1,再解y1y2-1221x xx x−=2,即可求出k的值.【详解】(1)∵a、b是方程x2+15x+5=0的二根,∴a+b=﹣15,ab=5,∴a bb a+=()22a b abab+−215255−−⨯=43,故答案是:43;(2)∵a+b+c=0,abc=16,∴a+b=﹣c,ab=16 c,∴a、b是方程x2+cx+16c=0的解,∴c2﹣4•16c≥0,c2﹣34c≥0,∵c是正数,∴c3﹣43≥0,c3≥43,c≥4,∴正数c的最小值是4.(3)存在,当k=﹣2时,1212212x xy yx x−−=.由x2﹣y+k=0变形得:y=x2+k ,由x ﹣y=1变形得:y=x ﹣1,把y=x ﹣1代入y=x2+k ,并整理得:x2﹣x+k+1=0, 由题意思可知,x1 , x2是方程x2﹣x+k+1=0的两个不相等的实数根,故有:()()()()()()()212112121221212121212211214101112112k x x x x k y y x x x x x x x x y y x x x x x x =⎧−−+>⎪+⎪⎪=+⎪⎪=−−⎨⎪+−⎪−−=−−−=⎪⎪⎪⎩即:23420k k k ⎧<−⎪⎨⎪+=⎩解得:k=﹣2.【点睛】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.【答案】(1)x1x2=x3x4= (2)454.【分析】(1)利用换元法解方程,设y =x2,则原方程可化为y2﹣5y+6=0,解关于y 的方程得到y1=2,y2=3,则x2=2或x2=3,然后分别解两个元二次方程即可;(2)根据已知条件,把a2、b2看作方程2x2﹣7x+1=0的两不相等的实数根,然后根据根与系数的关系求解.【详解】(1)解:42560x x −+=,设2y x =,则原方程可化为2560y y −+=,解得12y =,23y =,当=2y 时,22x =,解得1x 2=x当=3y 时,23x =,解得3x 4=x −所以原方程的解为1x 2=x 3x 4x =故答案为:1x ,2=x 3x =4x =(2)解:∴实数a ,b 满足:422710a a −+=,422710b b −+=且a b ≠,2a ∴、2b 可看作方程22710x x −+=的两不相等的实数根,2272a b ∴+=,2212a b =g ;∴2424222714522224a b a b a b +=+-=-´=g ()(); 故答案为:454.【点睛】本题主要考查了用“换元法”把高次方程转化为一元二次方程,韦达定理,完全平方公式,其中转化思想是解决问题的关键.。

一元二次方程的根与系数的关系与解决实际问题(解析版)

一元二次方程的根与系数的关系与解决实际问题(解析版)

第3天一元二次方程的根与系数的关系与解决实际问题【知识回顾】1.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:△当△>0时,方程有两个不相等的两个实数根;△当△=0时,方程有两个相等的两个实数根;△当△<0时,方程无实数根.上面的结论反过来也成立.2.根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,12bx xa+=-,12cx xa⋅=.(3)常用根与系数的关系解决以下问题:△不解方程,判断两个数是不是一元二次方程的两个根.△已知方程及方程的一个根,求另1一个根及未知数.△不解方程求关于根的式子的值,如求,x12+x22等等.△判断两根的符号.△求作新方程.△由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.3.由实际问题抽象出一元二次方程在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.一.选择题(共10小题)1.(2020·云南一模)若α、β是一元二次方程x2+2x﹣6=0的两根,则11+αβ的值是()A.13-B.13C.﹣3D.3【答案】B【解析】△α、β是一元二次方程x2+2x﹣6=0的两根,△α+β=﹣2,αβ=﹣6,则11+-21 +===-63αβαβαβ,故选B.2.(2020·四川省射洪县射洪中学外国语实验学校期中)下列一元二次方程两实数根和为-42的是()A.2240x x--=B.2440x x-+= C.24100x x++=D.2450x x-=+【答案】D【解析】A中1222 1x x -+=-=,故错误;B中12-44 1x x+=-=,故错误;C中24164024<0b ac∆=-=-=-,故错误;D中124-4 1x x+=-=,故准确;故答案选D.3.(2020·四川省射洪县射洪中学外国语实验学校月考)方程22310m m-+=和方程224m m-=-所有实数根之和为()A.72B.32C.32-D.92【答案】B【解析】34△方程22310m m -+=根的判别式2=(-3)42110∆-⨯⨯=>△方程22310m m -+=有两个实数根△两根之和为32△方程224m m -=-的根的判别式2=(-2)414-120∆-⨯⨯=<△方程224m m -=-无实数根△方程22310m m -+=和方程224m m -=-所有实数根之和为32故选:B 4.(2020·渠县第四中学期中)已知x 1,x 2是一元二次方程x 2-2x -1=0的两根,则x 1+x 2-x 1·x 2的值是( )A .1B .3C .-1D .-3 【答案】B【解析】由题意知:122x x +=,12-1x x ⋅=,△原式=2-(-1)=3故选B .5.(2020·江苏如东二模)若x 1,x 2是方程x 2﹣3x ﹣2=0的两个根,则x 1+x 2﹣x 1•x 2的值是( ) A .﹣5B .﹣1C .5D .15【答案】C【解析】根据题意得x 1+x 2=3,x 1x 2=﹣2,所以x 1+x 2﹣x 1•x 2=3﹣(﹣2)=5.故选:C .6.(2020·内蒙古海勃湾期末)一元二次方程2310x x -+=的两个根为12,x x ,则2121232x x x x ++-的值是( )A .10B .9C .8D .7【答案】D【解析】 1x 为一元二次方程2310x x -+=的根,21131x x ∴=-,2121232x x x x ∴++-=()12121212313233x x x x x x x x -++-=++-.根据题意得123x x +=,121=x x ,212123233137x x x x ∴++-=⨯+-=.故选:D .7.(2020·银川市第十五中学一模)已知关于x 的方程x 2-4x +c +1=0有两个相等的实数根,则常数c的值为( )A.-1B.3C.1D.0【答案】B【解析】△方程x2−4x+c+1=0有两个相等的实数根,△△=(−4)2−4(c+1)=12−4c=0,解得:c=3.故答案选B.8.(2019·广东郁南月考)某中学要组织一次篮球比赛,赛制为单循环形式(毎两队之间都赛一场),计划安排21场比赛,求参加的球队支数,如果设参加的球队支数为x,则可列方程为()A.12x(x+1)=21B.x(x+1)=21C.12x(x﹣1)=21D.x(x﹣1)=21【答案】C【解析】解:设邀请x个队,每个队都要赛(x-1)场,但两队之间只有一场比赛,由题意得:12x(x-1)=21,故选:C.9.(2020·深圳市宝安区北亭实验学校)若一个三角形的两边长分别为2和6,第三边是方程x2-10x+21=0的一根,则这个三角形的周长为( )67A .7B .3或7C .15D .11或15【答案】C【解析】x 2−10x+21=0,(x−3)(x−7)=0,则x−3=0,x−7=0,解得:x=3或7, 当x=3时,2+3=5<6,不能组成三角形,故x=3不合题意舍去,当x=7时,2+6=8>7,可以组成三角形,则三角形的周长为2+6+7=15,故答案选C.10.(2020·湖南隆回一模)扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯B .()()130********x x --=⨯⨯8C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 【答案】D【解析】 设花带的宽度为xm ,则可列方程为330220203(4())0x x --=⨯⨯, 故选D .二.填空题(共5小题) 11.(2020·江苏高淳期末)一元二次方程x 2+mx+2m=0的两个实根分别为x 1,x 2,若x 1+x 2=1,则x 1x 2=______.【答案】-2.【解析】根据题意得x 1+x 2=-m=1,x 1x 2=2m ,所以m=-1,所以x 1x 2=-2.12.(2020·温州市第二十三中学)已知关于x 的方程260x x a ++=有一个根是-2,则方程的另一个根是___________.【答案】-4【解析】因为已知关于x 的方程260x x a ++=有一个根是-2,9 所以由12b x x a+=-得2226,4x x -+=-∴=-. 故答案为-4. 13.(2020·四川省射洪县射洪中学外国语实验学校期中)若,a b 是方程2220060x x +-=的两根,则23a a b ++= .【答案】2004.【解析】2220060x x +-=的两根△a+b=-2,222006a a +=,△223=2+a =2006-2=2004++++a a b a a b故答案为:200414.(2020·四川省射洪县射洪中学外国语实验学校期中)如果关于x 的一元二次方程()20ax b ab =>的两个根分别是11x m =+与224x m =-,那么b a的值为__________. 【答案】4【解析】方程化为一般式为:ax 2-b=0x 1+x 2=m+1+2m -4=0 △x 1·x 2=(m+1)(2m -4)=-b a △10解方程△,得m=1把m=1代入△,得b a=-2×(-2)=4. 故答案为:4.15.(2019·上海交大附中)设方程( 1) (11)(11)(21)x x x x ++++++(1)(21)0x x ++=的两根为12,x x ,则()()1211x x ++=______. 【答案】2003【解析】(1)(11)(11)(21)1)(20(1)x x x x x x ++++++++=, 221211x x x ∴++++23223122210x x x ++++=, 23662630x x ∴++=.△3a =,66b =,263c =,224664326343563156b ac ∆=-=-⨯⨯=-=12000>, 1212263223x x b a a x c x =-=∴+=-=,. ()()()1212122631112213x x x x x x ++=+++=-+=2003. 故答案为:2003. 三.解析题(共5小题)1116.(2019·广东郁南月考)关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】(1)△Δ=4(k -1)2-4k 2≥0,△-8k +4≥0,△k ≤12; (2)△x 1+x 2=2(k -1),x 1x 2=k 2,△2(k -1)=1-k 2,△k 1=1,k 2=-3.△k ≤12,△k =-3. 17.(2020·甘肃省庆阳市第五中学期末)已知关于x 的一元二次方程()222120x k x k k -+++=有两个实数根12,x x .(1)求实数k 的取值范围.(2)是否存在实数k ,使得()22121216x x x x +-=成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)14k ≤;(2)存在这样的实数k ,k 的值为3-. 【解析】(1)由题意得:方程的根的判别式[]22(21)4(2)0k k k ∆=-+-+≥,12 解得14k ≤; (2)由一元二次方程根与系数的关系得:2121221,2x x k x x k k +=+=+,则()()2222121211221223x x x x x x x x x x +-=++-, ()212123x x x x =+-, ()()222132k k k =+-+, 221k k =-+,当()22121216x x x x +-=时,22116k k -+=, 即22150k k --=,因式分解得:(3)(5)0k k +-=,解得3k =-或154k =>(不符题意,舍去), 故存在这样的实数k ,k 的值为3-.18.(2020·四川南充月考)关于x 的方程2220x mx m m -+-=有两个不相等的实数根12,x x .(1)求m 的取值范围.(2)若221212x x +=,求211214x x x x +-的值.13【答案】(1)0m >;(3)0【解析】(1)△1a =,2b m =-,2c m m =-,△()()2224241b ac m m m =-=--⨯⨯- 40m =>△0m >;(2)由根与系数的关系,得:212122x x m x x m m +==-,,△221212x x +=,△()21212212x x x x +-=,△()224212m m m --=, △2+60m m -=,解得2m =或3m =-(舍去),△原方程为2420x x -+=,△212112420x x x x =-+=,,△211214220x x x x +-=-+=.19.(2020·湖南茶陵期末)已知关于x 的一元二次方程240x x m -+=.14(1)若方程有实数根,求实数m 的取值范围;(2)若方程的两个实根为12,x x ,且满足12326x x +=,求实数m 的值.【答案】(1)4m ≤;(2)12=-m .【解析】(1)△原方程有实数根,△方程的根的判别式1640m ∆=-≥,解得4m ≤;(2)由一元二次方程的根与系数的关系得:12441x x -+=-=, 又121211322()246x x x x x x +=++=⨯+=,12x ∴=-,将12x =-代入原方程得:2(2)4(2)0m --⨯-+=,解得12=-m .20.(2020·渠县第四中学期中)某商场试销一件成本为60元的服装,规定试销期间销售单价不低于成本单价,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y =kx +b ,且x =65时,y =55;x =75时,y =45.(1)求y 与x 的函数关系式;(2)若该商场想获得利润500元,求销售单价.【答案】(1)y =-x +120(60≤x≤120);(2)销售单价为70元或110元.【解析】解:(1)根据题意,得6555 7545k bk b+=⎧⎨+=⎩解得1120 kb=-⎧⎨=⎩△一次函数关系式为y=-x+120(60≤x≤120).(2)(-x+120)(x-60)=500,整理得x2-180x+7700=0.解得x1=70,x2=110,答:当销售单价为70元或110元时,该商场获得500元利润.15。

专题21.10 一元二次方程的根与系数的关系(拓展提高)(解析版)

专题21.10 一元二次方程的根与系数的关系(拓展提高)(解析版)

专题21.10 一元二次方程的根与系数的关系(拓展提高)一、单选题1.已知1x ,2x 是一元二次方程2430x x -+=两个根,则1212x x x x --的值为( )A .1-B .7-.C .1D .7 【答案】A 【分析】根据根与系数的关系12b x x a +=-,12c x x a =,在原方程中找到一元二次方程的系数 a 、b 、c 就可以求出1212x x x x --的值即可.【详解】解:∵1x ,2x 是一元二次方程2430x x -+=两个根,∴由根与系数的关系得,12441b x x a -+=-=-=,12331c a x x ===, ∴()12121212341x x x x x x x x --=-+=-=-,故选:A .【点睛】本题考查的是一元二次方程根与系数的关系,熟悉相关性质是解题的关键.2.已知关于x 的方程x 2+kx +2=0的两个根为x 1,x 2,且1212110x x x x ++=,则k 的值为( ) A .0B .2C .4D .8【答案】C 【分析】根据根与系数关系列出方程求解即可.【详解】解:由题意知,x 1+x 2=﹣k ,x 1•x 2=2. 则由1212110x x x x ++=得, 2112120x x x x x x ++=⋅,即202k -+=. 解得k =4.故选:C .【点睛】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.3.如果m 、n 是一元二次方程x 2+x =4的两个实数根,那么多项式2n 2﹣mn ﹣2m 的值是( ) A .16 B .14 C .10 D .6【答案】B【分析】先根据一元二次方程的解的定义得到24n n +=,即24n n =-,依此可得()()22224282n mn m n mn m m n mn --=---=-+-,然后根据根与系数的关系得到1m n +=-,4mn =-,再利用整体代入的方法计算.【详解】解:∵n 是一元二次方程x 2+x =4的根,∴n 2+n =4,即n 2=﹣n +4,∵m 、n 是一元二次方程x 2+x =4的两个实数根, ∴b m n a+=-,c mn a = ∴1m n +=-,4mn =-∴()()22224282n mn m n mn m m n mn --=---=-+-=2+4+8=14. 故选B .【点睛】本题考查了根与系数的关系:若1x ,2x 是一元二次方程()200++=≠ax bx c a 的两根时,12b x x a +=-,12c x x a=,同时也考查了一元二次方程的解. 4.等腰三角形的一边长为4,另外两边的长是关于x 的方程2100x x k -+=的两个实数根,则该等腰三角形的周长是( )A .14B .14或15C .4或6D .24或25【答案】A【分析】分为腰长为4和底边长为4两种情况讨论,再根据韦达定理即可得解.【详解】解:设底边为a ,分为两种情况:①当腰长是4时,根据韦达定理:a +4=10,解得:a =6,即此时底边为6,②底边为4,根据韦达定理:2a =10,解得a =5,所以该等腰三角形的周长是14.故选:A .【点睛】本题考查了有关等腰三角形的分类讨论,韦达定理;能够正确的分类讨论是本题的关键. 5.关于x 的方程ax 2+(a +2)x +9a =0有两个不等的实数根x 1,x 2,且x 1<1<x 2,那么a 的取值范围是( )A .﹣27<a <25B .a >25C .a <﹣27D .﹣211<a <0 【答案】D 【分析】根据一元二次方程的根的判别式,建立关于a 的不等式,求出a 的取值范围.又存在x 1<1<x 2,即(x 1-1)(x 2-1)<0,x 1x 2-(x 1+x 2)+1<0,利用根与系数的关系,从而最后确定a 的取值范围.【详解】解:∵方程有两个不相等的实数根,则a≠0且△>0,由(a+2)2-4a×9a=-35a 2+4a+4>0, 解得2275a -<<, 又∵x 1<1<x 2,∴x 1-1<0,x 2-1>0,那么(x 1-1)(x 2-1)<0,∴x 1x 2-(x 1+x 2)+1<0,122a x x a ++=-,x 1x 2=9, 即2910a a+++<, 解得2011a -<<, 综上所述,a 的取值范围为:2011a -<<. 故选D .【点睛】本题考查了一元二次方程根的判别式及根与系数的关系.掌握相关知识是关键:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.根与系数的关系为:1212,b c x x x x a a+=-=. 6.如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,其中正确的有( )个.①方程x 2+5x +6=0是倍根方程:②若pq =2,则关于x 的方程px 2+4x +q =0是倍根方程;③若(x ﹣3)(mx +n )=0是倍根方程,则18m 2+15mn +2n 2=0;④若方程ax 2+bx +c =0是倍根方程,且3a +b =0,则方程ax 2+bx +c =0的一个根为1A .1B .2C .3D .4【答案】B【分析】①解得方程后即可利用倍根方程的定义进行判断;②已知条件2pq =,然后解方程240px x q ++=即可得到正确的结论.③根据(3)()0x mx n -+=是倍根方程,且且13x =,2n x m =-,得到32n m =-,或6n m=-,从而得到320m n +=,60m n +=,进而得到2218152(32)(6)0m mn n m n m n ++=++=正确;④利用“倍根方程”的定义进行解答.【详解】解:①解方程2560x x ++=得:12x =-,23x =-,∴方程2560x x ++=不是倍根方程,故①错误;②2pq =,解方程240px x q ++=得:1x ,2x = 122x x ∴≠,故②错误;③(3)()0x mx n -+=是倍根方程,且13x =,2n x m=-, ∴32n m =-,或6n m=-, 320m n ∴+=,60m n +=,2218152(32)(6)0m mn n m n m n ∴++=++=,故③正确; ④方程20ax bx c ++=是倍根方程,∴设122x x =,∵3a+b=0,123x x ∴+=,2223x x ∴+=,21x ∴=,故④正确.【点睛】本题考查了一元二次方程的解,根与系数的关系,根的判别式,反比例函数图形上点的坐标特征,正确的理解“倍根方程”的定义是解题的关键.二、填空题7.若关于x 的一元二次方程2(1)20x m x +++=的一个根是1-,则另一个根是_________.【答案】-2【分析】把-1代入方程求m ,再把m 代回方程,解方程即可;或用根与系数关系可求.【详解】解:方法一,把-1代入方程2(1)20x m x +++=,得,1(1)20m -++=,解得,m=2,代入原方程得,2320x x ++=,解得,121,2x x =-=-,故答案为:-2;方法二,设另一个根是a ,根据根与系数关系,a ×(-1)=2,a =-2,故答案为:-2【点睛】本题考查了一元二次方程的根和一元二次方程根与系数关系,选择不同方法解题,体现思维的灵活性,准确把握知识是解题关键.8.若实数a 、b 满足a 2﹣8a +5=0,b 2﹣8b +5=0,则a +b 的值_____.【答案】8或8±【分析】分类讨论:当a =b ,解方程易得原式=8±;当a ≠b ,可把a 、b 可看作方程x 2﹣8x +5=0的两根,然后根据根与系数的关系求解.【详解】解:当a =b 时,由a 2﹣8a +5=0解得a =∴a +b =8±;a 、b 可看作方程x 2﹣8x +5=0的两根,∴a +b =8.故答案为8或8±. 【点睛】本题主要考查解一元二次方程以及根与系数的关系,能够对a 、b 进行分类讨论是解题关键. 9.若实数m 、n 满足21010m m -+=,21010n n -+=,则代数式33m n mn +的值为______.【答案】98【分析】由题意得:m 、n 是方程21010x x -=+的两个根,利用跟与系数的关系,得出10m n +=,1⋅=m n ,进而即可求解.【详解】解:∵实数m 、n 满足21010m m -+=,21010n n -+=,∴m 、n 是方程21010x x -=+的两个根,∴10m n +=,1⋅=m n ,∴33m n mn +=222()()2mn m n mn m n mn ⎡⎤+=+-⎣⎦=21102198⎡⎤⨯-⨯=⎣⎦,故答案是:98.【点睛】本题主要考查一元二次方程根与系数的关系,完全平方公式,把实数m 、n 看作是方程21010x x -=+的两个根,是解题的关键. 10.已知α、β是方程x 2-2x -1=0的两个根,则α2+2β=_____.【答案】5【分析】先用一元二次方程跟与系数的关系,再利用方程变形即可【详解】解:由题意可得:+=2=-1αβαβ,∴2+24=αβ∴2=42αβ-∵α、β是方程x 2-2x -1=0的两个根∴2210αα--=∴()24210αβ---=故答案是:5【点睛】本题考查一元二次方程跟与系数的关系,换元法是关键11.已知方程2410x x --=的两根为12,x x ,则()()1211x x --=________.【答案】4-【分析】根据根与系数关系,求出两根之和、两根之积,代入求值即可.【详解】解:方程2410x x --=的两根为12,x x ,所以,124x x +=,121x x ⋅=-,()()121212111()x x x x x x --+-+=,把124x x +=,121x x ⋅=-代入得,原式=1414--=-,故答案为:-4.【点睛】本题考查了一元二次方程根与系数关系,解题关键是明确一元二次方程根与系数关系,求出两根之和、两根之积,把所求式子变形,整体代入求值.12.若1x ,2x 是关于x 的方程()22230x k x k --+=的两个实数根,且12:1:4x x =,则k 的值是___________. 【答案】23k =或6k =- 【分析】设方程的两根分别为x 1,x 2,根据根与系数的关系得到1223x x k +=-,212x x k =,根据题意有12:1:4x x =,可得2316120k k +-=,解得23k =或6k =-,而△≥0,即(2k ﹣3)2﹣4k 2≥0,解得34k ≤;最后得到满足条件的k 值; 【详解】解:根据题意1223x x k +=-,212x x k =,∵12:1:4x x =,∴214x x =,∴12215234x k x k =-⎧⎨=⎩,∴222345-⎛⎫⨯= ⎪⎝⎭k k , 整理得2316120k k +-=, 解得23k =或6k =-. ∵方程有两个实数根∴△≥0,即(2k ﹣3)2﹣4k 2≥0, 解得34k ≤, ∴23k =或6k =-. 故答案为:23k =或6k =-. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系:若方程的两根分别为x 1,x 2,则x 1+x 2b a =-,x 1•x 2c a=. 13.已知一元二次方程ax 2+bx +c =0(a ≠0).下列说法:①若a +c =0,则方程一定有两个不相等的实数根;②若a +b +c =0,则1一定是这个方程的实数根;③若b 2﹣6ac >0,则方程一定有两个不相等的实数根;④若ax 2+bx +c =0(a ≠0)的两个根为2和3,则1211,23x x ==是方cx 2+bx +a =0(a ≠0)的根,其中正确的是_____(填序号).【答案】①②④【分析】根据一元二次方程根的判别式、根与系数的关系、解的意义求解.【详解】解:①因为a +c =0,a ≠0,所以a 、c 异号,所以△=b 2﹣4ac >0,所以方程有两个不等的实数根故①正确;②∵x=1时,ax 2+bx +c =a+b+c ,∴a +b +c =0时,一定有一个根是1,故②正确;③根据b 2﹣6ac >0,不能得到b 2﹣4ac >0,从而不能证得方程ax 2+bx +c =0一定有两个不相等的实数根,故③错误;④∵2和3是ax 2+bx +c =0(a ≠0)的两个根, ∴235,236b c a a-=+==⨯=, ∴51,66b a c c -==,而115111,236236b a c c+==-⨯==, ∴121123x x ==,是方和cx 2+bx +a =0(a ≠0)的根,故④正确, ∴正确的结论是①②④,故答案为:①②④,【点睛】本题考查一元二次方程的应用,熟练掌握一元二次方程根判别式的计算与应用、根与系数的关系、解的意义是解题关键.14.已知对于两个不相等的实数a 、b,定义一种新的运算:@a b a b=+,如6@15615217===+,已知m ,n 是一元二次程22170x x -+=的两个不相等的实数根,则[()@m n mn +=_______. 【答案】25【分析】首先根据韦达定理求解两根之和与两根之积,然后代入原式根据定义进行求解.【详解】由m ,n 是22170x x -+=的两个不相等的实数根可得:21m n +=,7mn =故[()@(21@m n mn +=217⎛= +⎝⎭28⎛= ⎝⎭28===2=25= 【点睛】本题考查了一元二次方程的根与系数关系(也叫韦达定理),实数的定义新运算,此类题型一定要严格按照题目中的定义来求解,注意过程的正确性.三、解答题15.若关于x 的方程()21410k x x ---=有两个实数根.(1)求k 的取值范围;(2)若方程的两根1x ,2x ,满足()()12114x x ++=,求k 的值.【答案】(1)k ≥-3且k ≠1;(2)74【分析】(1)根据方程有两个实数根,结合根的判别式,即可得出关于k 的一元一次不等式,解之即可得出结论.(2)根据一元二次方程的根与系数的关系可以得到x 1+x 2=41k -,x 1x 2=11k --,再将它们代入()()12114x x ++=,即可求出k 的值.【详解】(1)∵关于x 的一元二次方程()21410k x x ---=有两个实数根,∴△=42+4(k ﹣1)=4k +12≥0,且k -1≠0,解得:k ≥-3且k ≠1.∴k 的取值范围为:k ≥-3且k ≠1.(2)由根与系数关系得:x 1+x 2=41k - ,x 1x 2=11k --, ∴()()1211x x ++=x 1x 2+(x 1+x 2)+1=41k -+11k --=4. 解得k =74. 经检验,k =74是分式方程的解. 故k 的值是74. 【点睛】本题主要考查了根的判别式及根与系数的关系,熟练运用根的判别式及根与系数的关系是解决问题的关键.16.已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若已知方程的一个根为﹣2,求方程的另一个根以及m 的值.【答案】(1)见解析;(2)方程的另一根为0,m 的值为1-【分析】(1)由△=(m +3)2﹣4×1×(m +1)=(m +1)2+4>0可得答案;(2)设方程的另外一根为a ,根据一元二次方程根与系数的关系得出2321a m a m -=--⎧⎨-=+⎩,解之即可得出答案. 【详解】(1)证明:∵△=(m +3)2﹣4×1×(m +1)=m 2+6m +9﹣4m ﹣4=m 2+2m +1+4=(m +1)2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根;(2)设方程的另外一根为a ,根据题意,得:2321a m a m -=--⎧⎨-=+⎩, 解得:01a m =⎧⎨=-⎩, 所以方程的另一根为0,m 的值为1-.【点睛】本题考查的是一元二次方程根的判别式与一元二次方程根与系数的关系,掌握以上知识解决一元二次方程根的问题是解题的关键.17.非零实数a ,b (a ≠b )满足a 2﹣a ﹣2013=0,b 2﹣b ﹣2013=0,求11a b+的值. 【答案】12013- 【分析】根据题意,可把a 和b 看作方程x x --=220130的两根,根据根与系数的关系得到a +b =1,ab =-2013,再变形11a b+得到a b ab +,然后利用整体代入的方法计算即可. 【详解】解:∵非零实数a ,b (a ≠b )满足220130a a --=,220130b b --=,∴实数a 、b 是方程x x --=220130的两根.由根与系数的关系可知a +b =1,ab =-2013. ∴111120132013a b a b ab ++===--. 【点睛】本题考查一元二次方程根与系数的关系以及代数式求值.若12x x ,是一元二次方程20(a 0)++=≠ax bx c 的两个根,那么12b x x a +=-,12c x x a=. 18.已知m ,n 是方程x 2﹣2x ﹣1=0的两个根,是否存在实数a 使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8?若存在,求出a 的值;若不存在,请说明理由.【答案】存在,a =-6【分析】根据方程的解的定义得出m 2-2m =1,n 2-2n =1,m +n =2,再整体代入即可得出a 的值.【详解】解:存在,理由如下:∵m ,n 是方程x 2﹣2x ﹣1=0的两个根,∴m 2﹣2m =1,n 2﹣2n =1,m +n =2,∴﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)=﹣(m +n )[7(m 2﹣2m )+a ][3(n 2﹣2n )﹣7]=﹣2×(7+a )(3﹣7)=8(7+a ),由8(7+a )=8得a =﹣6,∴存在实数a =﹣6,使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8.【点睛】本题考查了一元二次方程的解、根与系数的关系,解题的关键是得出m 2-2m =1,n 2-2n =1,m +n =2,注意解题中的整体代入思想.19.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.【答案】(1)见解析;(2)经过,理由见解析【分析】(1)根据判别式公式得△=m 2≥0,即可得到答案;(2)根据一元二次方程根与系数的关系,得到x 1+x 2和x 1x 2关于m 的表达式,整理n =x 12+x 22-4,得n =(m +2)2,即可得到答案.【详解】解:(1)证明:∵△=[-(m +4)]2-4(2m +4)=m 2≥0,∴该一元二次方程总有两个实数根;(2)根据题意得:x 1+x 2=m +4,x 1x 2=2m +4,n =x 12+x 22-4=(x 1+x 2)2-2x 1x 2-4,=(m +4)2-2(2m +4)-4=m 2+4m +4=(m +2)2即n =(m +2)2,经过(-5,9).【点睛】本题考查了根与系数的关系,根的判别式,坐标与图形性质,解题的关键:(1)正确掌握根的判别式,(2)正确掌握一元二次方程根与系数的关系,坐标与图形性质.20.已知:α,β(α>β)是一元二次方程210x x --=的两个实数根,设1s αβ=+,222s αβ=+, …,n n n s αβ=+.根据根的定义,有210αα--=,210ββ--=,将两式相加,得22()()20αβαβ+-+-=,于是,得2120s s --=.根据以上信息,解答下列问题: ①利用配方法求α,β的值,并利用一元二次方程根与系数的关系直接写出1s ,2s 的值.②猜想:当n ≥3时,n s ,1n s -,2n s -之间满足的数量关系,并证明你的猜想的正确性.(注:关于x 的一元二次方程20ax bx c ++=若有两根12,x x ,则有1212;b c x x x x a a +=-=)【答案】①12α+=,12β=;11s =,23s =;②12n n n s s s --=+,证明见解析 【分析】①按照配方法的步骤对原方程进行求解即可得出α,β的值,然后结合根与系数的关系求出1s ,2s 的值即可;②根据材料定义得120n n n ααα----=和120n n n βββ----=,然后联立求和即可推出结论.【详解】①移项,得21x x -=,配方,得22211121222x x ⎛⎫⎛⎫-⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭,即21524x ⎛⎫-= ⎪⎝⎭,开平方,得122x -=±,即x =,∴α=,β=. 于是,11s =,23s =.②猜想:12n n n s s s --=+.证明:根据根的定义,210αα--=,两边都乘以2n α-,得120n n n ααα----=,①同理,120n n n βββ----=,②①+②,得1122()()()0n n n n n n αβαβαβ----+-+-+=,∵n n n s αβ=+,111n n n s αβ---=+,222n n n s αβ---=+,∴120n n n s s s ----=,即12n n n s s s --=+.【点睛】本题考查一元二次方程根与系数的关系以及新定义问题,理解材料给出的定义,熟练掌握一元二次方程根与系数的关系是解题关键.。

一元二次方程根与系数的关系的关系(含答案)

一元二次方程根与系数的关系的关系(含答案)

21.2.4 一元二次方程的根与系数的关系A基础知识详解——————————————☆知识点一元二次方程根与系数的关系B重难点解读—————————☆重难点根据方程中两根的关系确定方程中字母的值○随堂例题例1 已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1、x2.(1)求实数k的取值范围;(2)若x1、x2满足x12+x22=16+x1•x2,求实数k的值.(2)∵关于x 的方程x +(2k-1)x+k -1=0有两个实数根x 1,x 2,∴x 1+x 2=1-2k ,x 1•x 2=k 2-1.∵x 12+x 22=(x 1+x 2)2-2x 1•x 2=16+x 1•x 2,∴(1-2k )2-2×(k 2-1)=16+(k 2-1),即k 2-4k-12=0, 解得k=-2或k=6(不符合题意,舍去). ∴实数k 的值为-2.【一中名师点拨】题目中提到两个实数根,即隐含着根的判别式大于等于0;当根据方程中两根的关系确定方程中字母的值,关键是把这种关系式转化为含x 1+x 2及x 1x 2的形式. ○随堂训练1.(2017烟台)若x 1,x 2是方程x 2-2mx+m 2-m-1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为( D )A .-1或2B .1或-2C .-2D .12.已知关于x 的一元二次方程x 2+(m+2)x+m=0, (1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)若x 1,x 2是原方程的两根,且2111x x +=-2,求m 的值.解:(1)△=(m+2)2-4m=m 2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根; (2)∵x 1,x 2是原方程的两根, ∴x 1+x 2=-(m+2),x 1x 2=m . ∵2111x x +=2121x x x x +=-mm 2+=-2,解得m=2,经检验,m=2是分式方程的解,且符合题意,∴m 的值为2.课后达标基础训练1.(2017呼和浩特)关于x 的一元二次方程x 2+(a 2-2a )x+a-1=0的两个实数根互为相反数,则a 的值为( B ) A .2 B .0 C .1 D .2或02.(2017新疆)已知关于x 的方程x 2+x-a=0的一个根为2,则另一个根是( A ) A .-3 B .-2 C .3 D .63.已知m ,n 是一元二次方程x 2-4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( D ) A .-6 B .-2 C .0 D .24.已知实数x 1,x 2满足x 1+x 2=11,x 1x 2=30,则以x 1,x 2为根的一元二次方程是( A )A .x 2-11x+30=0B .x 2+11x+30=0C .x 2+11x-30=0D .x 2-11x-30=05.已知x 1、x 2是方程2x 2+3x-4=0的两根,那么x 1+ x 2= 23- ;x 1·x 2= 2 ;11x +21x = 43- ;x 12+ x 22=47-;21x x -= 423-. 6.已知关于x 的方程x 2+ax+b+1=0的解为x 1=x 2=2,则a+b 的值为 -1 .7.以3+2和3-28.已知方程5x 2+mx-10=0的一根是-5,求方程的另一根及m 的值. 解:设方程的另一个根为k , 则-5k=-2,解得52k =,又k-5=5m -,得m=23.9.已知关于x 的一元二次方程kx 2+x-2=0有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程两个实数根分别为x 1,x 2,且满足x 12+x 22+3x 1•x 2=3,求k 的值.12(1)求实数m 的取值范围;(2)若x 1+x 2=6-x 1x 2,求(x 1-x 2)2+3x 1x 2-5的值. 解:(1)△=(2m-3)2-4m 2=4m 2-12m+9-4m 2=-12m+9,∵△≥0,∴-12m+9≥0,∴m ≤43; (2)由题意可得x 1+x 2=-(2m-3)=3-2m ,x 1x 2=m 2,又∵x 1+x 2=6-x 1x 2,∴3-2m=6-m 2,∴m 2-2m-3=0,∴m 1=3,m 2=-1,又∵m ≤43,∴m=-1,∴x 1+x 2=5,x 1x 2=1,∴(x 1-x 2)2+3x 1x 2-5=(x 1+x 2)2-4x 1x 2+3x 1x 2-5=(x 1+x 2)2-x 1x 2-5=52-1-5=19.能力提升11.(2017仙桃)若α、β为方程2x 2-5x-1=0的两个实数根,则2α2+3αβ+5β的值为( B ) A .-13 B .12 C .14 D .1512.若非零实数a ,b (a ≠0)满足a 2-a-2018=0,b 2-b-2018=0,则ba 11+= 20181-. 13.已知关于x 的方程x 2-(k+1)x+41k 2+1=0的两根是一个矩形两邻边的长,且矩形的对角线长为5,求k= 2 .14.已知关于x 的一元二次方程x 2+(2k+1)x+k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是 -2或-4.15.(2017黄石)已知关于x 的一元二次方程x 2-4x-m 2=0. (1)求证:该方程有两个不等的实根;(2)若该方程的两实根x 1、x 2满足x 1+2x 2=9,求m 的值.。

(完整版)一元二次方程根与系数关系(附答案)

(完整版)一元二次方程根与系数关系(附答案)

一元二次方程根与系数的关系(附答案)评卷人得分一.选择题(共6小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣13.关于x的一元二次方程x2+3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.65.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D.6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3评卷人得分二.填空题(共1小题)7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为.评卷人得分三.解答题(共8小题)8.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.9.已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.11.已知关于x的一元二次方程x2﹣x+a﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x1,x2,求a的取值范围;(3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.12.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;(2)求使+﹣2的值为整数的实数k的整数值;(3)若k=﹣2,λ=,试求λ的值.13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.14.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.15.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x12+x22=6x1x2,求m的值.参考答案与试题解析一.选择题(共6小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定【解答】解:∵△=42﹣4×3×(﹣5)=76>0,∴方程有两个不相等的实数根.故选:B.2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣1【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有实数根,∴△=22﹣4×1×(﹣m)=4+4m≥0,解得:m≥﹣1.故选:A.3.关于x的一元二次方程x2+3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【解答】解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=32﹣4×1×(﹣1)=13>0,∴方程有两个不相等的实数根.故选:A.4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.6【解答】解:∵x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣,∴x12+x22=(x1+x2)2﹣2x1x2=22﹣2×(﹣)=5.故选:C.5.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D.【解答】解:∵α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,∴α+β=5.故选:B.6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3【解答】解:∵关于x的方程x2﹣4x+c+1=0有两个相等的实数根,∴△=(﹣4)2﹣4×1×(c+1)=12﹣4c=0,解得:c=3.故选:D.二.填空题(共1小题)7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为﹣5.【解答】解:∵关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p、q,∴p+q=3,pq=a,∵p2﹣pq+q2=(p+q)2﹣3pq=18,即9﹣3a=18,∴a=﹣3,∴pq=﹣3,∴+====﹣5.故答案为:﹣5.三.解答题(共8小题)8.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.【解答】解:(1)∵方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△=[﹣(2k+1)]2﹣4×1×(k2+1)=4k﹣3>0,∴k>.(2)当k=2时,原方程为x2﹣5x+5=0,设方程的两个为m、n,∴m+n=5,mn=5,∴==.9.已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【解答】(1)解:将x=1代入原方程,得:1+a+a﹣2=0,解得:a=.(2)证明:△=a2﹣4(a﹣2)=(a﹣2)2+4.∵(a﹣2)2≥0,∴(a﹣2)2+4>0,即△>0,∴不论a取何实数,该方程都有两个不相等的实数根.10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.【解答】(1)证明:原方程可化为x2﹣(2m+2)x+m2+2m=0,∵a=1,b=﹣(2m+2),c=m2+2m,∴△=b2﹣4ac=[﹣(2m+2)]2﹣4(m2+2m)=4>0,∴不论m为何值,该方程总有两个不相等的实数根.(2)解:将x=3代入原方程,得:(3﹣m)2﹣2(3﹣m)=0,解得:m1=3,m2=1.∴m的值为3或1.11.已知关于x的一元二次方程x2﹣x+a﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x1,x2,求a的取值范围;(3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.【解答】解:(1)把a=﹣11代入方程,得x2﹣x﹣12=0,(x+3)(x﹣4)=0,x+3=0或x﹣4=0,∴x1=﹣3,x2=4;(2)∵方程有两个实数根,∴△≥0,即(﹣1)2﹣4×1×(a﹣1)≥0,解得;(3)∵是方程的两个实数根,,∴.∵[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,∴,把代入,得:[2+a﹣1][2+a﹣1]=9,即(1+a)2=9,解得a=﹣4,a=2(舍去),所以a的值为﹣412.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;(2)求使+﹣2的值为整数的实数k的整数值;(3)若k=﹣2,λ=,试求λ的值.【解答】解:(1)∵x1、x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根,∴x1+x2=1,x1x2=,∴(2x1﹣x2)(x1﹣2x2)=2x12﹣4x1x2﹣x1x2+2x22=2(x1+x2)2﹣9x1x2=2×12﹣9×=2﹣,若2﹣=﹣成立,解上述方程得,k=,∵△=16k2﹣4×4k(k+1)=﹣16k>0,∴k<0,∵k=,∴矛盾,∴不存在这样k的值;(2)原式=﹣2=﹣2=﹣4=﹣,∴k+1=1或﹣1,或2,或﹣2,或4,或﹣4解得k=0或﹣2,1,﹣3,3,﹣5.∵k<0.∴k=﹣2,﹣3或﹣5;(3)∵k=﹣2,λ=,x1+x2=1,∴λx2+x2=1,x2=,x1=,∵x1x2==,∴=,∴λ=3±3.13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.【解答】解:(1)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根,∴,解得:k≤且k≠﹣1.(2)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.∴x1+x2=,x1x2=.∵x1+x2=x1x2+2,即=+2,解得:k=﹣4,经检验,k=﹣4是原分式方程的解,∴k=﹣4.14.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.【解答】解:(1)△=[﹣2(m+1)]2﹣4(m2﹣3)=8m+16,当方程有两个不相等的实数根时,则有△>0,即8m+16>0,解得m>﹣2;(2)根据一元二次方程根与系数之间的关系,得x1+x2=2(m+1),x1x2=m2﹣3,∵x12+x22=22+x1x2=(x1+x2)2﹣2x1x2,∴[2(m+1)]﹣2(m2﹣3)=6+(m2﹣3),化简,得m2+8m﹣9=0,解得m=1或m=﹣9(不合题意,舍去),∴实数m的值为1.15.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x12+x22=6x1x2,求m的值.【解答】解:(1)∵方程有两个实数根,∴△≥0,即(﹣2)2﹣4(m﹣1)≥0,解得m≤2;(2)由根与系数的关系可得x1+x2=2,x1x2=m﹣1,∵x12+x22=6x1x2,∴(x1+x2)2﹣2x1x2=6x1x2,即(x1+x2)2=8x1x2,∴4=8(m﹣1),解得m=1.5.。

一元二次方程根与系数的关系应用例析及训练(含答案)

一元二次方程根与系数的关系应用例析及训练(含答案)

一元二次方程根与系数的关系应用例析及训练对于一元二次方程,当判别式△=时,其求根公式为:;若两根为,当△≥0时,则两根的关系为:;,根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当,时,那么则是的两根。

一元二次方程的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。

学习中,老师除了要求同学们应用韦达定理解答一些变式题目外,还常常要求同学们熟记一元二次方程根的判别式存在的三种情况,以及应用求根公式求出方程的两个根,进而分解因式,即。

下面就对应用韦达定理可能出现的问题举例做些分析,希望能给同学们带来小小的帮助。

一、根据判别式,讨论一元二次方程的根。

例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。

解:∵方程(1)有两个不相等的实数根,∴解得;∵方程(2)没有实数根,∴解得;于是,同时满足方程(1),(2)条件的的取值范围是其中,的整数值有或当时,方程(1)为,无整数根;当时,方程(1)为,有整数根。

解得:所以,使方程(1)有整数根的的整数值是。

说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出,这也正是解答本题的基本技巧。

二、判别一元二次方程两根的符号。

例1:不解方程,判别方程两根的符号。

分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。

因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。

解:∵,∴△=—4×2×(—7)=65>0∴方程有两个不相等的实数根。

设方程的两个根为,∵<0∴原方程有两个异号的实数根。

解一元二次方程-根与系数的关系 (1)

解一元二次方程-根与系数的关系 (1)

解一元二次方程-根与系数的关系考试范围:xxx;考试时间:100分钟;命题人:kangkang一.填空题(共20小题)1.方程2x2+3x﹣1=0的两个根为x1、x2,则+的值等于.2.已知关于x的方程x2+px+q=0的两根为﹣3和﹣1,则p=,q=.3.已知一元二次方程x2﹣3x﹣4=0的两根是m,n,则m2+n2=.4.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为.5.已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则(x1﹣1)(x2﹣1)的值是.6.已知方程x2+5x+1=0的两个实数根分别为x1、x2,则x12+x22=.7.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.8.若x1,x2是一元二次方程x2+3x﹣5=0的两个根,则x12x2+x1x22的值是.9.设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=.10.已知x1,x2是方程x2﹣3x﹣1=0的两根,则=.11.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为.12.已知:一元二次方程x2﹣6x+c=0有一个根为2,则另一根为.13.若x1,x2是方程x2+2x﹣3=0的两根,则x1+x2=.14.一元二次方程x2+x﹣2=0的两根之积是.15.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=.16.已知3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是.17.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为.18.一元二次方程x2+mx+2m=0的两个实根分别为x1,x2,若x1+x2=1,则x1x2=.19.已知x1、x2是方程x2﹣4x﹣12=0的解,则x1+x2=.20.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是.二.解答题(共30小题)21.已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.22.已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?请说明理由.23.已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且x12+x22﹣x1x2=7,求m的值.24.关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.25.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.26.已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两实根x1、x2满足x1+2x2=9,求m的值.27.已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.28.已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且,求m的值.29.已知关于x的一元二次方程x2+(2k﹣1)x+k2+1=0,如果方程的两根之和等于两根之积,求k的值.30.若关于x的方程x2+6x+m=0的一个根为3﹣,求方程的另一个根及m的值.31.若关于x的一元二次方程x2+4x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两个实数根的积为2,求k的值.32.已知关于x的一元二次方程x2﹣3x+m﹣3=0,若此方程的两根的倒数和为1,求m的值.33.若方程x2﹣4x+m=0的一个根为﹣2,求m和另一个根的值.34.已知关于x的方程x2﹣(k+1)x+k2+1=0有两个实数根.(1)求k的取值范围;(2)若方程的两实数根分别为x1,x2,且x12+x22=6x1x2﹣15,求k的值.35.已知关于x的方程x2﹣(2k﹣1)x+k2﹣3=0有两个实根x1、x2.(1)求k的取值范围;(2)若x1、x2满足x12+x22=5,求k的值.36.设a,b是方程x2+x﹣2016=0的两个不相等的实数根.(1)a+b=;ab=;(2)求代数式a2+2a+b的值.37.关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个整数k值,使方程的两根同号,并求出方程的根.38.已知关于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有两个不相等的实数根.(1)求m的取值范围;(2)若原方程的两个实数根为x1、x2,且满足x12+x22=|x1|+|x2|+2x1x2,求m的值.39.已知关于x的方程x2﹣(2m+1)x+m(m+1)=0(1)求证:方程总有两个不相等的实数根;(2)设方程的两根分别为x1、x2,求x+x的最小值.40.已知关于x的一元二次方程x2﹣2(m+1)x+m2+2=0(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=10,求实数m的值.41.已知关于x的一元二次方程(x﹣3)(x﹣4)=|a|.(1)求证:对于任意实数a,方程总有两个不相等的实数根;(2)若方程的一个根是1,求a的值及方程的另一个根.42.已知关于x的一元二次方程mx2﹣2x﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=﹣6x1x2时,求m的值.43.已知关于x的一元二次方程x2﹣(m+1)x+=0的两根是一个矩形的两邻边的长.(1)m取何值时,方程有两个正实数根;(2)当矩形的对角线长为时,求m的值.44.已知﹣3x2+mx﹣6=0的一个根是1,求m及另一个根.45.(1)计算:()﹣1+|1﹣|﹣(π﹣3)0﹣;(2)化简:•÷;(3)解不等式组:,并写出它的非负整数解.(4)关于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.设x1,x2分别是方程的两个根,且满足x12+x22=x1x2+10,求实数m的值.46.已知关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x1•x2+x1+x2=1,求m的值.47.关于x的方程kx2+(k+3)x+=0有两个不相等的实数根.(1)求k的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于?若存在,求出k 的值;若不存在,说明理由.48.关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.49.已知关于x的方程x2+mx+m﹣2=0.(1)求证:无论m取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足x12+x22=﹣3x1x2,求实数m的值.50.已知关于x的一元二次方程kx2+x﹣2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程两个实数根分别为x1,x2,且满足x12+x22+3x1•x2=3,求k的值.解一元二次方程-根与系数的关系参考答案与试题解析一.填空题(共20小题)1.方程2x2+3x﹣1=0的两个根为x1、x2,则+的值等于3.【分析】先根据根与系数的关系得到x1+x2=﹣,x1x2=﹣,再通分得到+=,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=﹣,x1x2=﹣,所以+===3.故答案为3.2.已知关于x的方程x2+px+q=0的两根为﹣3和﹣1,则p=4,q=3.【分析】由根与系数的关系可得出关于p或q的一元一次方程,解之即可得出结论.【解答】解:∵关于x的方程x2+px+q=0的两根为﹣3和﹣1,∴﹣3+(﹣1)=﹣p,(﹣3)×(﹣1)=q,∴p=4,q=3.故答案为:4;3.3.已知一元二次方程x2﹣3x﹣4=0的两根是m,n,则m2+n2=17.【分析】由m与n为已知方程的解,利用根与系数的关系,求出m+n与mn的值,将所求式子利用完全平方公式变形后,代入计算即可求出值.【解答】解:∵m,n是一元二次方程x2﹣3x﹣4=0的两个根,∴m+n=3,mn=﹣4,则m2+n2=(m+n)2﹣2mn=9+8=17.故答案为:17.4.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为5.【分析】先根据根与系数的关系得到x1+x2=4,x1x2=1,然后把x1(1+x2)+x2展开得到x1+x2+x1x2,然后利用整体代入的方法计算即可.【解答】解:根据题意得x1+x2=4,x1x2=1,所以x1(1+x2)+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.故答案为5.5.已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则(x1﹣1)(x2﹣1)的值是﹣4.【分析】由根与系数的关系可得x1+x2=3、x1•x2=﹣2,将其代入(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1中,即可求出结论.【解答】解:∵一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,∴x1+x2=3,x1•x2=﹣2,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=﹣2﹣3+1=﹣4.故答案为:﹣4.6.已知方程x2+5x+1=0的两个实数根分别为x1、x2,则x12+x22=23.【分析】由根与系数的关系可得x1+x2=﹣5、x1•x2=1,将其代入x12+x22=(x1+x2)2﹣2x1•x2中,即可求出结论.【解答】解:∵方程x2+5x+1=0的两个实数根分别为x1、x2,∴x1+x2=﹣5,x1•x2=1,∴x12+x22=(x1+x2)2﹣2x1•x2=(﹣5)2﹣2×1=23.故答案为:23.7.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由两根关系,得根x1+x2=5,x1•x2=a,解方程得到x1+x2=5,即x1﹣x2=2,即可得到结论.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.8.若x1,x2是一元二次方程x2+3x﹣5=0的两个根,则x12x2+x1x22的值是15.【分析】由根与系数的关系可求得(x1+x2)与x1x2的值,代入计算即可.【解答】解:∵x1,x2是一元二次方程x2+3x﹣5=0的两个根,∴x1+x2=﹣3,x1x2=﹣5,∴x12x2+x1x22=x1x2(x1+x2)=﹣5×(﹣3)=15,故答案为:15.9.设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=47.【分析】根据α、β是方程(x+1)(x﹣4)=﹣5的两实数根,得到α+β=3,αβ=1,根据完全平方公式得到α4+β4=47,于是得到结论.【解答】解:方程(x+1)(x﹣4)=﹣5可化为x2﹣3x+1=0,∵α、β是方程(x+1)(x﹣4)=﹣5的两实数根,∴α+β=3,αβ=1,∴α2+β2=(α+β)2﹣2αβ=7,α4+β4=(α2+β2)2﹣2α2•β2=47,∴==47,故答案为:47.10.已知x1,x2是方程x2﹣3x﹣1=0的两根,则=﹣3.【分析】根据根与系数的关系可得出x1+x2=3、x1•x2=﹣1,将其代入+=中即可求出结论.【解答】解:∵x1,x2是方程x2﹣3x﹣1=0的两根,∴x1+x2=3,x1•x2=﹣1,∴+===﹣3.故答案为:﹣3.11.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为0.【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)﹣3α,然后利用整体代入的方法计算即可.【解答】解:根据题意得α+β=3,αβ=﹣4,所以原式=a(α+β)﹣3α=3α﹣3α=0.故答案为0.12.已知:一元二次方程x2﹣6x+c=0有一个根为2,则另一根为4.【分析】设方程另一根为t,根据根与系数的关系得到2+t=6,然后解一次方程即可.【解答】解:设方程另一根为t,根据题意得2+t=6,解得t=4.故答案为4.13.若x1,x2是方程x2+2x﹣3=0的两根,则x1+x2=﹣2.【分析】根据一元二次方程根与系数的关系x1+x2=﹣直接代入计算即可.【解答】解:∵x1,x2是方程x2+2x﹣3=0的两根,∴x1+x2=﹣2;故答案为:﹣2.14.一元二次方程x2+x﹣2=0的两根之积是﹣2.【分析】根据根与系数的关系,即可求得答案.【解答】解:设一元二次方程x2+x﹣2=0的两根分别为α,β,∴αβ=﹣2.∴一元二次方程x2+x﹣2=0的两根之积是﹣2.故答案为:﹣2.15.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=16.【分析】利用根与系数的关系可得出α+β和αβ,且α2+β2=(α+β)2﹣2αβ,代入计算即可.【解答】解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2,αβ=﹣6,∴α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=4+12=16,故答案为:16.16.已知3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是1.【分析】设另一个根为t,根据根与系数的关系得到3+t=4,然后解一次方程即可.【解答】解:设另一个根为t,根据题意得3+t=4,解得t=1,则方程的另一个根为1.故答案为:1.17.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为﹣2.【分析】设关于x的方程x2+3x+a=0的两根分别为m、n,由根与系数的关系可得出m+n=﹣3,结合m=﹣1,即可得出结论.【解答】解:设关于x的方程x2+3x+a=0的两根分别为m、n,由已知得:,解得:n=﹣2.故答案为:﹣2.18.一元二次方程x2+mx+2m=0的两个实根分别为x1,x2,若x1+x2=1,则x1x2=﹣2.【分析】根据根与系数的关系得到x1+x2=﹣m=1,x1x2=2m,先求出m的值,然后计算x1x2的值.【解答】解:根据题意得x1+x2=﹣m=1,x1x2=2m,所以m=﹣1,所以x1x2=﹣2.故答案为﹣2.19.已知x1、x2是方程x2﹣4x﹣12=0的解,则x1+x2=4.【分析】根据根与系数的关系即可求得x1+x2=4.【解答】解:∵x1、x2是方程x2﹣4x﹣12=0的解,∴x1+x2=4.故答案为4.20.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是﹣3.【分析】由于该方程的一次项系数是未知数,所以求方程的另一解可以根据根与系数的关系进行计算.【解答】解:设方程的另一根为x1,根据根与系数的关系可得:x1•1=﹣3,解得x1=﹣3.故答案为:﹣3.二.解答题(共30小题)21.已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x1+x2=1﹣2k、x1•x2=k2﹣1,将其代入x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2中,解之即可得出k的值.【解答】解:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤,∴实数k的取值范围为k≤.(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,∴x1+x2=1﹣2k,x1•x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1•x2=16+x1•x2,∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.22.已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?请说明理由.【分析】(1)根据方程的系数结合根的判别式,可得出△=(t﹣3)2≥0,由此可证出:对于任意实数t,方程都有实数根;(2)设方程的两根分别为m、n,由方程的两根为相反数结合根与系数的关系,即可得出m+n=t﹣1=0,解之即可得出结论.【解答】(1)证明:在方程x2﹣(t﹣1)x+t﹣2=0中,△=[﹣(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2≥0,∴对于任意实数t,方程都有实数根;(2)解:设方程的两根分别为m、n,∵方程的两个根互为相反数,∴m+n=t﹣1=0,解得:t=1.∴当t=1时,方程的两个根互为相反数.23.已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且x12+x22﹣x1x2=7,求m的值.【分析】(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(2)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值.【解答】(1)证明:∵x2﹣(m﹣3)x﹣m=0,∴△=[﹣(m﹣3)]2﹣4×1×(﹣m)=m2﹣2m+9=(m﹣1)2+8>0,∴方程有两个不相等的实数根;(2)∵x2﹣(m﹣3)x﹣m=0,方程的两实根为x1、x2,且x12+x22﹣x1x2=7,∴,∴(m﹣3)2﹣3×(﹣m)=7,解得,m1=1,m2=2,即m的值是1或2.24.关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k的不等式求解可得;(2)由韦达定理知x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,将原式两边平方后把x1+x2、x1x2代入得到关于k的方程,求解可得.【解答】解:(1)∵方程有两个不相等的实数根,∴△=[﹣(2k﹣1)]2﹣4(k2﹣2k+3)=4k﹣11>0,解得:k>;(2)存在,∵x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,∴将|x1|﹣|x2|=两边平方可得x12﹣2x1x2+x22=5,即(x1+x2)2﹣4x1x2=5,代入得:(2k﹣1)2﹣4(k2﹣2k+3)=5,解得:4k﹣11=5,解得:k=4.25.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.【分析】(1)由方程有两个不相等的实数根知△>0,列不等式求解可得;(2)将k=1代入方程,由韦达定理得出x1+x2=﹣3,x1x2=1,代入到x12+x22=(x1+x2)2﹣2x1x2可得.【解答】解:(1)∵方程有两个不相等的实数根,∴△=(2k+1)2﹣4k2=4k+1>0,解得:k>﹣;(2)当k=1时,方程为x2+3x+1=0,∵x1+x2=﹣3,x1x2=1,∴x12+x22=(x1+x2)2﹣2x1x2=9﹣2=7.26.已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两实根x1、x2满足x1+2x2=9,求m的值.【分析】(1)根据方程的系数结合根的判别式,可得出△=16+4m2>0,由此可证出该方程有两个不等的实根;(2)根据根与系数的关系可得x1+x2=4①、x1•x2=﹣m2②,结合x1+2x2=9③,可求出x1、x2的值,将其代入②中即可求出m的值.【解答】(1)证明:∵在方程x2﹣4x﹣m2=0中,△=(﹣4)2﹣4×1×(﹣m2)=16+4m2>0,∴该方程有两个不等的实根;(2)解:∵该方程的两个实数根分别为x1、x2,∴x1+x2=4①,x1•x2=﹣m2②.∵x1+2x2=9③,∴联立①③解之,得:x1=﹣1,x2=5,∴x1•x2=﹣5=﹣m2,解得:m=±.27.已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m≥0,解之即可得出结论;(2)由根与系数的关系可得x1+x2=6①、x1•x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=﹣x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为4.28.已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且,求m的值.【分析】(1)由关于x的一元二次方程x2+3x﹣m=0有实数根,即可得判别式△≥0,即可得不等式32+4m≥0,继而求得答案;(2)由根与系数的关系,即可得x1+x2=﹣3、x1x2=﹣m,又由x12+x22=(x1+x2)2﹣2x1•x2=11,即可得方程:(﹣3)2+2m=11,解此方程即可求得答案.【解答】解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.29.已知关于x的一元二次方程x2+(2k﹣1)x+k2+1=0,如果方程的两根之和等于两根之积,求k的值.【分析】设方程的两根为x1,x2,根据根的判别式得到△=(2k﹣1)2﹣4(k2+1)≥0,解得k≤﹣,根据根与系数的关系得到x1+x2=﹣(2k﹣1)=1﹣2k,x1x2=k2+1,则1﹣2k=k2+1,可解得k1=0,k2=﹣2,然后根据k的取值范围可确定满足条件的k的值.【解答】解:设方程的两根为x1,x2,根据题意得△=(2k﹣1)2﹣4(k2+1)≥0,解得k≤﹣,x1+x2=﹣(2k﹣1)=1﹣2k,x1x2=k2+1,∵方程的两根之和等于两根之积,∴1﹣2k=k2+1∴k2+2k=0,∴k1=0,k2=﹣2,而k≤﹣,∴k=﹣2.30.若关于x的方程x2+6x+m=0的一个根为3﹣,求方程的另一个根及m的值.(3﹣)【分析】设方程的另一个根为t,根据根与系数的关系得到3﹣+t=﹣6,t=m,先计算出t的值,然后计算m的值.【解答】解:设方程的另一个根为t,根据题意得3﹣+t=﹣6,(3﹣)t=m,所以t=﹣9+,所以m=(3﹣)(﹣9+)=﹣29+12.31.若关于x的一元二次方程x2+4x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两个实数根的积为2,求k的值.【分析】(1)由方程有两个不相等的实数根,结合根的判别式即可得出△=20﹣4k>0,解之即可得出k的取值范围;(2)由根与系数的关系结合该方程的两个实数根的积为2,即可得出k﹣1=2,解之即可求出k值.【解答】解:(1)∵方程x2+4x+k﹣1=0有两个不相等的实数根,∴△=42﹣4(k﹣1)=20﹣4k>0,解得:k<5.(2)设方程的两个根分别为m、n,根据题意得:mn=k﹣1=2,解得:k=3.32.已知关于x的一元二次方程x2﹣3x+m﹣3=0,若此方程的两根的倒数和为1,求m的值.【分析】设方程的两个根分别为α、β,由根与系数的关系可得出α+β=3、αβ=m ﹣3,结合+=1可得出=1,解之即可得出m的值,再根据根的判别式即可得出△=21﹣4m≥0,解之即可得出m的取值范围,由此即可确定m无解.【解答】解:设方程的两个根分别为α、β,∴α+β=3,αβ=m﹣3.∵+===1,∴m=6,经检验,m=6是分式方程=1的解.∵方程x2﹣3x+m﹣3=0有两个实数根,∴△=(﹣3)2﹣4(m﹣3)=21﹣4m≥0,∴m≤,∴m=6舍去.∴m无实数根.33.若方程x2﹣4x+m=0的一个根为﹣2,求m和另一个根的值.【分析】设方程的另外一个根为a,根据根与系数的关系找出a﹣2=4、m=﹣2a,解一元一次方程即可得出结论.【解答】解:设方程的另外一个根为a,则有a﹣2=4,m=﹣2a,解得:a=6,m=﹣12.答:m的值为﹣12,方程的另一个根为6.34.已知关于x的方程x2﹣(k+1)x+k2+1=0有两个实数根.(1)求k的取值范围;(2)若方程的两实数根分别为x1,x2,且x12+x22=6x1x2﹣15,求k的值.【分析】(1)根据方程的系数结合根的判别式即可得出△=2k﹣3≥0,解之即可得出结论;(2)由根与系数的关系可得,x1+x2=k+1、x1•x2=k2+1,结合x12+x22=6x1x2﹣15即可得出关于k的一元二次方程,解之即可得出k值,再由(1)的结论即可确定k值.【解答】解:(1)∵关于x的方程x2﹣(k+1)x+k2+1=0有两个实数根,∴△=[﹣(k+1)]2﹣4(k2+1)=2k﹣3≥0,解得:k≥.(2)∵方程的两实数根分别为x1,x2,∴x1+x2=k+1,x1•x2=k2+1.∵x12+x22=6x1x2﹣15,∴﹣8x1x2+15=0,∴k2﹣2k﹣8=0,解得:k1=4,k2=﹣2.又∵k≥,∴k=4.35.已知关于x的方程x2﹣(2k﹣1)x+k2﹣3=0有两个实根x1、x2.(1)求k的取值范围;(2)若x1、x2满足x12+x22=5,求k的值.【分析】(1)由关于x的方程x2﹣(2k﹣1)x+k2﹣3=0有两个实根x1、x2,可得判别式△≥0,继而求得答案;(2)由根与系数的关系可得x1+x2=2k﹣1,x1•x2=k2﹣3,又由x12+x22=(x1+x2)2﹣2x1•x2,即可求得答案.【解答】解:(1)∵关于x的方程x2﹣(2k﹣1)x+k2﹣3=0有两个实根x1、x2,∴△=[﹣(2k﹣1)]2﹣4(k2﹣3)≥0,解得:k≤;∴k的取值范围为:k≤;(2)∵x1+x2=2k﹣1,x1•x2=k2﹣3,x12+x22=5,∴x12+x22=(x1+x2)2﹣2x1•x2=(2k﹣1)2﹣2(k2﹣3)=5,解得:k=1.36.设a,b是方程x2+x﹣2016=0的两个不相等的实数根.(1)a+b=﹣1;ab=﹣2016;(2)求代数式a2+2a+b的值.【分析】(1)根据x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则x1+x2=﹣,x1x2=,代值计算即可;(2)先根据一元二次方程的解的定义得到a2+a﹣2016=0,即a2=﹣a+2016,则a2+2a+b可化简为a+b+2016,再根据根与系数的关系得a+b=﹣1,然后利用整体代入的方法计算.【解答】解:(1)∵a,b是方程x2+x﹣2016=0的两个不相等的实数根∴a+b=﹣1;ab=﹣2016;故答案为:﹣1.﹣2016;(2)∵a是方程x2+x﹣2016=0的实数根,∴a2+a﹣2016=0,∴a2=﹣a+2016,∴a2+2a+b=﹣a+2016+2a+b=a+b+2016,∵a、b是方程x2+x﹣2016=0的两个实数根,∴a+b=﹣1,∴a2+2a+b=﹣1+2016=2015.37.关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个整数k值,使方程的两根同号,并求出方程的根.【分析】(1)由方程的系数结合根的判别式即可得出△=9+4k>0,解之即可得出结论;(2)由根与系数的关系结合方程两根同号即可得出k=﹣2或﹣1,取k=﹣2,利用分解因式法解一元二次方程即可得出结论.【解答】解:(1)∵方程x2﹣3x﹣k=0有两个不相等的实数根,∴△=(﹣3)2+4k=9+4k>0,解得:k>﹣.(2)∵方程的两根同号,∴﹣k>0,∴k=﹣2或﹣1.当k=﹣2时,原方程为x2﹣3x+2=(x﹣1)(x﹣2)=0,解得:x1=1,x2=2.38.已知关于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有两个不相等的实数根.(1)求m的取值范围;(2)若原方程的两个实数根为x1、x2,且满足x12+x22=|x1|+|x2|+2x1x2,求m的值.【分析】(1)由方程有两个不相等的实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)根据根与系数的关系即可得出x1+x2=2(m+1)、x1•x2=m2+5,结合m的取值范围即可得出x1>0、x2>0,再由x12+x22=|x1|+|x2|+2x1x2即可得出6m﹣18=0,解之即可得出m的值.【解答】解:(1)∵方程x2﹣2(m+1)x+m2+5=0有两个不相等的实数根,∴△=[﹣2(m+1)]2﹣4(m2+5)=8m﹣16>0,解得:m>2.(2)∵原方程的两个实数根为x1、x2,∴x1+x2=2(m+1),x1•x2=m2+5.∵m>2,∴x1+x2=2(m+1)>0,x1•x2=m2+5>0,∴x1>0、x2>0.∵x12+x22=﹣2x1•x2=|x1|+|x2|+2x1•x2,∴4(m+1)2﹣2(m2+5)=2(m+1)+2(m2+5),即6m﹣18=0,解得:m=3.39.已知关于x的方程x2﹣(2m+1)x+m(m+1)=0(1)求证:方程总有两个不相等的实数根;(2)设方程的两根分别为x1、x2,求x+x的最小值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)根据根与系数的关系可得x1+x2=2m+1、x1•x2=m(m+1),利用配方法可将+变形为﹣2x1•x2,代入数据即可得出+=2+,进而即可得出+的最小值.【解答】(1)证明:∵△=[﹣(2m+1)]2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)解:∵方程的两根分别为x1、x2,∴x1+x2=2m+1,x1•x2=m(m+1),∴+=﹣2x1•x2=(2m+1)2﹣2m(m+1)=2m2+2m+1=2+,∴+的最小值为.40.已知关于x的一元二次方程x2﹣2(m+1)x+m2+2=0(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=10,求实数m的值.【分析】(1)根据方程的系数结合根的判别式即可得出关于m的一元一次不等式,解之即可得出结论;(2)根据根与系数的关系即可得出x1+x2=2(m+1)、x1•x2=m2+2,结合x12+x22=10即可得出关于m的一元二次方程,解之即可得出m的值,再结合(1)的结论即可得出结论.【解答】解:(1)∵方程x2﹣2(m+1)x+m2+2=0有实数根,∴△=[﹣2(m+1)]2﹣4(m2+2)=8m﹣4≥0,解得:m≥.(2)∵方程x2﹣2(m+1)x+m2+2=0的两实数根分别为x1、x2,∴x1+x2=2(m+1),x1•x2=m2+2,∴x12+x22=﹣2x1•x2=[2(m+1)]2﹣2(m2+2)=2m2+8m=10,解得:m1=﹣5(舍去),m2=1.∴实数m的值为1.41.已知关于x的一元二次方程(x﹣3)(x﹣4)=|a|.(1)求证:对于任意实数a,方程总有两个不相等的实数根;(2)若方程的一个根是1,求a的值及方程的另一个根.【分析】(1)将原方程整理成一般式,再结合根的判别式即可得出△=4|a|+1>0,由此即可证出结论;(2)将x=1代入一元二次方程中即可求出a值,设方程的另一个根为m,根据根与系数的关系即可得出1+m=7,解之即可得出方程的另一个根.【解答】(1)证明:原方程整理后可得:x2﹣7x+12﹣|a|=0,∴△=(﹣7)2﹣4×(12﹣|a|)=4|a|+1>0,∴对于任意实数a,方程总有两个不相等的实数根;(2)解:将x=1代入x2﹣7x+12﹣|a|=0中,1﹣7+12﹣|a|=0,解得:a=±6.设方程的另一个根为m,则有1+m=7,解得:m=6.∴a的值为±6,方程的另一个根为6.42.已知关于x的一元二次方程mx2﹣2x﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=﹣6x1x2时,求m的值.【分析】(1)由二次项系数非零结合根的判别式△≥0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围;(2)由根与系数的关系可知x1+x2=、x1•x2=﹣,结合x12+x22=﹣6x1x2即可得出关于m的分式方程,解之并检验后即可得出结论.【解答】解:(1)∵关于x的一元二次方程mx2﹣2x﹣1=0有两个实数根,∴,解得:m≥﹣1且m≠0.∴m的取值范围为m≥﹣1且m≠0.(2)∵关于x的一元二次方程mx2﹣2x﹣1=0有两个实数根x1,x2,∴x1+x2=,x1•x2=﹣.∵x12+x22=(x1+x2)2﹣2x1•x2=﹣6x1•x2,∴()2+=,解得:m=1,经检验,m=1是分式方程的解.∵m≥﹣1且m≠0,∴m的值为1.43.已知关于x的一元二次方程x2﹣(m+1)x+=0的两根是一个矩形的两邻边的长.(1)m取何值时,方程有两个正实数根;(2)当矩形的对角线长为时,求m的值.【分析】(1)设矩形的两邻边长为a、b,利用根的判别式的意义和根与系数的关系得到,然后解不等式组即可;(2)利用勾股定理得到a2+b2=()2,再根据完全平方公式和根与系数的关系得到(m+1)2﹣2•=5,然后解m的方程后利用m的取值范围确定m的值.【解答】解:(1)设矩形的两邻边长为a、b,则,解得m≥,所以当m≥时,方程有两个正实数根;(2)根据题意得a2+b2=()2,∴(a+b)2﹣2ab=5,∵a+b=m+1,ab=,∴(m+1)2﹣2•=5整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,又∵m≥,∴m=2.44.已知﹣3x2+mx﹣6=0的一个根是1,求m及另一个根.【分析】利用一元二次方程的根与系数的关系,两根的和是﹣m,两个根的积是2,即可求解.【解答】解:设方程的另一个解是a,则1×a=2,1+a=,解得:a=2,m=9,即m的值是9,方程的另一根是2.45.(1)计算:()﹣1+|1﹣|﹣(π﹣3)0﹣;(2)化简:•÷;(3)解不等式组:,并写出它的非负整数解.(4)关于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.设x1,x2分别是方程的两个根,且满足x12+x22=x1x2+10,求实数m的值.【分析】(1)将()﹣1=2、(π﹣3)0=1、=2代入原式,再根据实数的运算即可得出结论;(2)根据完全平方差、完全平凡公式结合分式的运算,即可得出结论;(3)根据不等式组的解法及步骤,解不等式组即可得出x的取值范围,取其内的非负整数即可;(4)根据方程有两个实数根结合根的判别式即可得出△=﹣4m﹣3≥0,解之即可得出m的取值范围,再根据根与系数的关系结合x12+x22=x1x2+10即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)()﹣1+|1﹣|﹣(π﹣3)0﹣,=2+﹣1﹣1﹣2,=﹣2.(2)原式=•÷,=••(1+a)(1﹣a),=﹣(a﹣2)(1+a),=﹣a2+a+2.(3),解不等式①,得:x≥﹣4;解不等式②,得:x<2.∴不等式组的解为﹣4≤x<2.∴x=0和1.(4)∵方程x2﹣(2m﹣1)x+m2+1=0有两个实数根,∴△=[﹣(2m﹣1)]2﹣4(m2+1)=﹣4m﹣3≥0,∴m≤﹣.∵x1,x2是方程x2﹣(2m﹣1)x+m2+1=0的两个根,∴x1+x2=2m﹣1,x1•x2=m2+1,∴x12+x22=﹣2x1x2=x1x2+10,即(2m﹣1)2﹣2(m2+1)=m2+1+10,解得:m=﹣2或m=6(舍去).∴实数m的值为﹣2.46.已知关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x1•x2+x1+x2=1,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=﹣8m+4≥0,解之即可得出m的取值范围;(2)根据根与系数的关系可得x1+x2=2(m﹣1)、x1•x2=m2,结合x1•x2+x1+x2=1即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根,∴△=[﹣2(m﹣1)]2﹣4×1×m2=﹣8m+4≥0,解得:m≤.(2)∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根x1、x2,∴x1+x2=2(m﹣1),x1•x2=m2,∴x1•x2+x1+x2=m2+2(m﹣1)=1,即m2+2m﹣3=0,解得:m=﹣3或m=1(舍去).47.关于x的方程kx2+(k+3)x+=0有两个不相等的实数根.(1)求k的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于?若存在,求出k 的值;若不存在,说明理由.【分析】(1)根据一元二次方程的定义和根的判别式得到k≠0且(k+3)2﹣4k•>0,然后求出两个不等式的公共部分即可;(2)假设存在实数k使方程的两个实数根的倒数和等于,利用根与系数的关系得出x1+x2=﹣,x1x2=,利用两个实数根的倒数和等于,得出方程的解,结合k的取值范围判定即可.【解答】解:(1)∵关于x的方程kx2+(k+3)x+=0有两个不相等的实数根,∴k≠0且△>0,即(k+3)2﹣4k•>0,∴k>﹣1.5且k≠0.(2)假设存在实数k使方程的两个实数根的倒数和等于,∵x1+x2=﹣,x1x2=,∴+==﹣=,解得:k=﹣,∴存在实数k使方程的两个实数根的倒数和等于.48.关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.【分析】()1)根据方程有两个不相等的实数根可得△=[﹣(2k﹣3)]2﹣4(k2+1)=4k2﹣12k+9﹣4k2﹣4=﹣12k+5>0,求出k的取值范围;(2)首先判断出两根均小于0,然后去掉绝对值,进而得到﹣2k+3=2k2+2﹣3,结合k的取值范围解方程即可.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=[﹣(2k﹣3)]2﹣4(k2+1)=4k2﹣12k+9﹣4k2﹣4=﹣12k+5>0,解得:k<;(2)∵k<,∴x1+x2=2k﹣3<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=﹣2k+3,∵x1x2+|x1|+|x2|=7,∴k2+1﹣2k+3=7,即k2﹣2k﹣3=0,∴k1=﹣1,k2=2,又∵k<,∴k=﹣1.49.已知关于x的方程x2+mx+m﹣2=0.(1)求证:无论m取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足x12+x22=﹣3x1x2,求实数m的值.【分析】(1)先计算△=m2﹣4(m﹣2)=m2﹣4m+8,配方得到△=(m﹣2)2+4,由于(m﹣2)2≥0,则(m﹣2)2+4>0,即△>0,根据△的意义即可得到无论m取何值,该方程总有两个不相等的实数根;(2)利用根与系数的关系,结合等式x12+x22=﹣3x1x2即可求解.【解答】(1)证明:∵△=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根;(2)解:x1+x2=﹣m,x1x2=m﹣2,∵x12+x22=﹣3x1x2,∴﹣2x1 x2=﹣3x1 x2∴=﹣x1 x2∴m2=2﹣m,∴m2+m﹣2=0,∴(m+2)(m﹣1)=0,∴m=﹣2或1.50.已知关于x的一元二次方程kx2+x﹣2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程两个实数根分别为x1,x2,且满足x12+x22+3x1•x2=3,求k的值.【分析】(1)根据一元二次方程的定义和判别式的意义得到k≠0且△=12﹣4k•(﹣2)>0,然后求出两个不等式的公共部分即可;(2)根据根与系数的关系得到x1+x2=﹣,x1x2=﹣,再变形x12+x22+3x1•x2=3得到(x1+x2)2+x1•x2=3,所以(﹣)2﹣=3,然后解方程后利用(1)中的范围确定满足条件的k的值.【解答】解:(1)根据题意得k≠0且△=12﹣4k•(﹣2)>0,解得k>﹣且k≠0;(2)根据题意得x1+x2=﹣,x1x2=﹣,∵x12+x22+3x1•x2=3,∴(x1+x2)2+x1•x2=3,∴(﹣)2﹣=3,整理得3k2+2k﹣1=0,解得k1=,k2=﹣1,∵k >﹣且k≠0,∴k=.第31页(共31页)。

一元二次方程的根与系数的关系【十大题型】(解析版)--九年级数学

一元二次方程的根与系数的关系【十大题型】(解析版)--九年级数学

一元二次方程的根与系数的关系【十大题型】【题型1 利用根与系数的关系直接求代数式的值】 (1)【题型2 利用根与系数的关系求方程的根】 (3)【题型3 利用根与系数的关系和一元二次方程的解求代数式的值】 (4)【题型4 利用根与系数的关系降次求代数式的值】 (6)【题型5 由一元二次方程的两根求值】 (8)【题型6 构造一元二次方程求代数式的值】 (10)【题型7 由一元二次方程的根判断另一个一元二次方程的根】 (12)【题型8 根与系数的关系与三角形、四边形的综合运用】 (15)【题型9 由一元二次方程根的取值范围求字母的取值范围】 (18)【题型10 一元二次方程中的新定义问题】 (20)知识点1:一元二次方程的根与系数的关系若一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的两根为x1,x2,则x1+x2=−b a,x1⋅x2=c a.注意它的使用条件为,a≠0,Δ≥0.【题型1 利用根与系数的关系直接求代数式的值】【例1】(23-24九年级·黑龙江绥化·开学考试)已知一元二次方程xx2+xx=5xx+6的两根分别为m、n,则1mm+1nn=.【答案】−23.【分析】本题主要考查了一元二次方程根与系数的关系,对于一元二次方程aaxx2+bbxx+cc=0(aa≠0),,若xx1,xx2是该方程的两个实数根,则xx1+xx2=−bb aa,xx1xx2=cc aa.直接根据一元二次方程根与系数的关系得到mm+nn=4,mmnn=−6,再根据1mm+1nn=mm+nn mmnn进行求解即可.【详解】解:∵一元二次方程xx2+xx=5xx+6可化为xx2−4xx−6=0,这个方程的两根分别为m,n,∴mm+nn=4,mmnn=−6,故答案为:−23.【变式1-1】(23-24九年级·广西来宾·期中)若a,b是方程xx2−2xx−5=0的两个实数根,则(aa−2)(bb−2)的值为.【答案】−5【分析】本题考查了一元二次方程根于系数的关系,根据一元二次方程根于系数的关系可得aa+bb=2,aabb=−7,代入即可求解,熟练掌握一元二次方程根于系数的关系是解题的关键.【详解】解:∵a,b是方程xx2−2xx−5=0的两个实数根,∴aa+bb=2,aabb=−7,∴(aa−2)(bb−2)=aabb−8(aa+bb)+4=-5−7×2+4=−5.故答案为:−5.【变式1-2】(23-24九年级·四川成都·阶段练习)设方程2xx2+3xx+1=0的根为xx1、xx2,则xx12+xx22=.【答案】54【分析】利用根与系数的关系求出两根之和与两根之积,原式利用完全平方公式变形后代入计算即可求出值.【详解】解:∵方程2xx2+3xx+1=0的根为xx1、xx2,∴xx1+xx2=−32,xx1xx2=12,则xx12+xx22=(xx1+xx2)2−2xx1xx2=(−32)2−2×12=94−1=54.故答案为:54.【点睛】本题考查了根与系数的关系,解一元二次方程−因式分解法,以及完全平方公式,解题的关键是熟练掌握根与系数的关系.(23-24九年级·浙江宁波·期末)已知xx1,xx2是方程2xx2+3xx−7=0的两个根,则xx13xx2+xx1xx23【变式1-3】的值为()A.214B.−2598C.−638D.−1338【答案】B【分析】本题主要考查了根与系数的关系等知识点,根据一元二次方程根与系数的关系得出xx1+xx2和xx1xx2,再利用整体思想即可解决问题,熟知一元二次方程根与系数的关系是解题的关键.【详解】∵xx1,xx2是方程2xx2+3xx−7=0的两个根,∴xx13xx2+xx1xx23=xx1xx2(xx12+xx22)=xx1xx2[(xx1+xx2)2−2xx1xx2]=−72×��−32�2−2×�−72��=−2598,故选:B.【题型2 利用根与系数的关系求方程的根】【例2】(23-24九年级·全国·单元测试)若关于xx的方程3(xx−1)(xx−2mm)=(mm−12)xx的两根之和与两根之积相等,则方程的根为.【答案】xx=9±3√7【分析】将已知方程化简成一般形式,再根据一元二次方程根与系数的关系和已知条件,列出关于m的方程,解出方程,求出m的值,再将m代入原来方程,解出方程.【详解】解:将已知方程化简可得:3x2+(9-7m)x+6m=0,根据一元二次方程根与系数的关系可得x1+x2=-9-7m3,x1x2=2m,根据已知条件可得∶-9-7m3=2m,解出:m=9,将m=9代入化简后的方程可得:x2-18x+18=0,化成完全平方得:(x-9)2=63,解得x=9±3√7.故答案为∶xx=9±3√7.【点睛】本题主要考查了一元二次方程的根与一元二次系数的关系,解此题的关键是掌握一元二次方程的根与一元二次系数的关系.【变式2-1】(23-24·山东济南·二模)若关于xx的一元二次方程xx2+mmxx−6=0有一个根为xx=2,则该方程的另一个根为xx=.【答案】−3【分析】本题考查的是一元二次方程根与系数的关系,直接利用:一元二次方程aaxx2+bbxx+cc=0(aa≠0)两根分别是xx1,xx2,则xx1+xx2=−bb aa,xx1xx2=cc aa,进行解题即可.【详解】解:设关于x的一元二次方程xx2+mmxx−6=0的另一个根为t,则2tt=−6,解得tt=−3,故答案为−3【变式2-2】(23-24九年级·河北保定·阶段练习)若关于xx的一元二次方程aaxx2=bb(aabb>0)的两个根分别是mm 与2mm−6,则mm的值为,方程的根为.【答案】2xx1=2,xx2=−2【分析】若一元二次方程aaxx2+bbxx+cc=0(aa≠0)的两个根为xx1,xx2,则xx1+xx2=−bb aa,xx1·xx2=cc aa.【详解】解:整理方程得:aaxx2−bb=0由题意得:mm+2mm−6=0∴mm=2故两个根为:xx1=mm=2,xx2=2mm−6=−2故答案为:2;xx1=2,xx2=−2【点睛】本题考查一元二次方程根与系数的关系,理解这两个根和为0是解题的关键.【变式2-3】(23-24九年级·浙江台州·阶段练习)若关于x的一元二次方程aaxx2=cc(aa≠0)的一根为2,则另一根为.【答案】−2【分析】本题主要考查了一元二次方程根与系数的关系,根据根与系数的关系得到2+mm=0是解题的关键.【详解】解:设方程的另一个根为mm,则2+mm=0,解得:mm=−2,故答案为:−2.【题型3 利用根与系数的关系和一元二次方程的解求代数式的值】【例3】(23-24九年级·山东枣庄·期中)已知mm、n是关于xx的方程xx2−2xx−2021=0的根,则代数式mm2−4mm−2nn+2023的值为()A.2022 B.2023 C.4039 D.4040【答案】D【分析】根据一元二次方程解的定义及根与系数的关系得出mm2−2mm=2021,mm+nn=−bb aa=2,将原式化简求值即可.【详解】解:∵mm、n是关于xx的方程xx2−2xx−2021=0的根,∴mm2−2mm=2021,mm+nn=−bb aa=2,mm2−4mm−2nn+2023=mm2−2mm−2(mm+nn)+2023=2021−2×2+2023=4040,故选:D.【点睛】题目主要考查一元二次方程的根及根与系数的关系,求代数式的值,熟练掌握一元二次方程根与系数的关系是解题关键.【变式3-1】(23-24·江苏南京·模拟预测)设xx1、xx2是方程xx2−3xx−2020=0的两个根,则xx12−2xx1+ xx2=.【答案】2023【分析】本题主要考查一元二次方程根与系数关系,方程解的定义,掌握一元二次方程根与系数关系,方程解的定义是解题的关键.首先根据根与系数关系得到xx1+xx2=3,之后将xx1代入方程中得到xx12−3xx1−2020=0,变形为xx12−3xx1=2020,两式相加即可得到答案.【详解】解:∵xx1、xx2是方程xx2−3xx−2020=0的两个根,∴xx1+xx2=3,xx12−3xx1−2020=0∴xx12−3xx1=2020∴xx12−2xx1+xx2=(xx12−3xx1)+(xx1+xx2)=2020+3=2023.故答案为:2023.【变式3-2】(23-24九年级·辽宁大连·期中)设αα,ββ是xx2+xx+18=0的两个实数根,则αα2+3αα+2ββ的值是.【答案】−20【分析】本题考查了根与系数的关系:若xx1,xx2是一元二次方程aaxx2+bbxx+cc=0(aa≠0)的两根时,则xx1+xx2=−bb aa,xx1xx2=cc aa.利用整体代入法是本题的关键.【详解】解:∵αα,ββ是xx2+xx+18=0的两个实数根,∴αα2+αα=−18,αα+ββ=−1,∴αα2+3αα+2ββ=(αα2+αα)+2(αα+ββ)=−18+2×(−1)=−20,故答案为:−20.【变式3-3】(23-24九年级·河南新乡·期末)已知aa,bb是方程xx2−5xx+7=0的两个根,则aa2−4aa+bb−3=.【答案】−5【分析】本题考查一元二次方程根与系数的关系,掌握aaxx2+bbxx+cc=0的两根xx1,xx2满足xx1+xx2=−bb aa,xx1xx2=cc aa是解题的关键.【详解】解:∵aa,bb是方程xx2−5xx+7=0的两个根,∴aa2−5aa=−7,aa+bb=5,∴(aa2−5aa)+(aa+bb)−3=−7+5−3=−5,故答案为:−5.【题型4 利用根与系数的关系降次求代数式的值】【例4】(23-24九年级·湖北武汉·阶段练习)已知a、b是一元二次方程xx2−3xx+1=0的根,则代数式1aa2+1+ 1bb2+1的值是()A.3 B.1 C.−3D.−1【答案】B【分析】根据一元二次方程的根与系数的关系可得aa+bb=3,aabb=1,再整体代入求解即可.【详解】解:∵a、b是一元二次方程xx2−3xx+1=0的根,∴aa+bb=3,aabb=1,∴1aa2+1+1bb2+1=1aa2+aabb+1bb2+aabb=1aa(aa+bb)+1bb(aa+bb)=13aa+13bb=aa+bb3aabb=33×1=1,故选:B.【点睛】本题考查一元二次方程的根与系数的关系、分式的化简求值,熟练掌握一元二次方程的根与系数的关系是解题的关键.【变式4-1】(23-24九年级·云南·期末)已知mm,nn是方程xx2+xx−3=0的两个实数根,则mm3−3mm+nn+2024的值是.【答案】2020【分析】本题考查了根与系数的关系、一元二次方程的解,正确理解一元二次方程的解的定义是解题的关键.由一元二次方程根与系数关系得mm+nn=−1,mm2−3=−mm,再代入求值即可.【详解】解:∵mm,nn是方程xx2+xx−3=0的两个实数根,∴mm+nn=−1,将xx=mm代入方程xx2+xx−3=0,得mm2+mm−3=0,即mm2−3=−mm,mm2=3−mm∴mm3−3mm+nn+2024=mm(mm2−3)+nn+2024=−mm2+nn+2024,∵mm2=3−mm,∴−mm2+nn+2024=−3+mm+nn+2024=mm+nn+2021,∵mm+nn=−1,∴mm+nn+2021=−1+2021=2020.故答案为:2020.【变式4-2】(23-24九年级·山东淄博·期中)已知xx1,xx2是方程xx2−xx−2024=0的两个实数根,则代数式xx13−2024xx1+xx22的值为()A.4049 B.4048 C.2024 D.1【答案】A【分析】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,根据一元二次方程的解,以及一元二次方程根与系数的关系即可求解.【详解】解:解:∵xx1,xx2是方程xx2−xx−2024=0的两个实数根,∴xx12−2024=xx1,xx1xx2=−2024,xx1+xx2=1xx13−2024xx1+xx22=xx1(xx12−2024)+xx22=xx12+xx22=(xx1+xx2)2−2xx1xx2=1−2×(−2024)=4049故选A【变式4-3】(23-24九年级·江苏苏州·阶段练习)已知:mm、nn是方程xx2+3xx−1=0的两根,则mm3−5mm+ 5nn=.【答案】−18【分析】先根据一元二次方程的解的定义得到mm2+3mm−1=0,即mm2=−3mm+1,mm3=−3mm2+mm,再把mm3−5mm+5nn化简为用mm和nn的一次式表示得到5(mm+nn)−3,再根据根与系数的关系得到mm+nn=−3,然后利用整体代入的方法计算即可.【详解】解:∵mm、nn是方程xx2+3xx−1=0的两根,∴mm2+3mm−1=0,且mm≠0,mm+nn=−3,∴mm2=−3mm+1,∴mm3=−3mm2+mm,∴mm3−5mm+5nn=−3mm2+mm−5mm+5nn=−3(−3mm+1)−4mm+5nn=5mm+5nn−3=5(mm+nn)−3,∴原式=5×(−3)−3=−18,故答案为:−18.【点睛】本题考查根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则x1+x2=−b a,x1x2=c a.掌握一元二次方程根与系数的关键是解题的关键,也考查一元二次方程的解的定义,运用了整体代入和恒等变换的思想.【题型5 由一元二次方程的两根求值】【例5】(23-24九年级·河北保定·阶段练习)若关于xx的一元二次方程aaxx2=bb(aabb>0)的两个根分别是mm与2mm−6,则mm的值为,方程的根为.【答案】2xx1=2,xx2=−2【分析】若一元二次方程aaxx2+bbxx+cc=0(aa≠0)的两个根为xx1,xx2,则xx1+xx2=−bb aa,xx1·xx2=cc aa.【详解】解:整理方程得:aaxx2−bb=0由题意得:mm+2mm−6=0∴mm=2故两个根为:xx1=mm=2,xx2=2mm−6=−2故答案为:2;xx1=2,xx2=−2【点睛】本题考查一元二次方程根与系数的关系,理解这两个根和为0是解题的关键.【变式5-1】(23-24九年级·四川成都·期末)已知关于x的方程2xx2+bbxx+cc=0的根为xx1=−2,xx2=3,则b+c的值是()A.-10 B.-7 C.-14 D.-2【答案】C【分析】根据一元二次方程根与系数的关系分别求出b,c的值即可得到结论.【详解】解:∵关于x的方程2xx2+bbxx+cc=0的根为xx1=−2,xx2=3,∴xx1+xx2=−bb2,xx1xx2=cc2∴−2+3=−bb2,−2×3=cc2,即b=-2,c=-12∴bb+cc=−2−12=−14.故选:C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-bb aa,x1•x2=cc aa.【变式5-2】(23-24九年级·江苏连云港·阶段练习)在解一元二次方程x2+px+q=0时,小明看错了系数p,解得方程的根为1和﹣3;小红看错了系数q,解得方程的根为4和﹣2,则p=.【答案】﹣2【分析】根据根与系数的关系及两同学得出的结论,即可求出p,q的值.【详解】解:由小明看错了系数p,解得方程的根为1和﹣3;可得q=1×(﹣3)=﹣3,小红看错了系数q,解得方程的根为4和﹣2,可得﹣p=4﹣2,解得p=﹣2,故答案为:﹣2.【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于﹣bb aa,两根之积等于cc aa.”是解题的关键.【变式5-3】(23-24九年级·四川广安·阶段练习)已知关于x的一元二次方程x2﹣2kx+12k2﹣2=0.设x1,x2是方程的根,且x12﹣2kx1+2x1x2=5,则k的值为.【答案】±√14【分析】先计算出一元二次方程判别式,即△=2k2+8,从而得到△>0,于是可判断不论k为何值,方程总有两个不相等实数根;再利用方程的解的定义得到x12-2kx1=-12k2+2,根据根与系数的关系可得x1x2=12k2-2,则-12k2+2+2·(12k2-2)=5,然后解关于k的方程即可.【详解】(1)证明:△=(-2k)2-4(12k2-2)=2k2+8>0,所以不论k为何值,方程总有两个不相等实数根;(2)∵x1是方程的根,∴x12-2kx1+12k2-2=0,∴x12-2kx1=-12k2+2,∵x12-2kx1+2x1x2=5,x1x2=12k2-2,∴-12k2+2+2·(12k2-2)=5,整理得k2-14=0,∴k=±√14.故答案为±√14.【点睛】本题考查一元二次方程的根与系数的关系,一元二次方程根的判别式,关键是熟练掌握一元二次方程根的判别式和根与系数的关系.【题型6 构造一元二次方程求代数式的值】【例6】(23-24九年级·江苏无锡·阶段练习)已知ss满足2ss2−3ss−1=0,tt满足2tt2−3tt−1=0,且ss≠tt,则ss+tt=.【答案】32【分析】本题主要考查了一元二次方程根与系数的关系,正确得到ss+tt=32,sstt=−12是解题的关键.由题意可知实数ss、tt是关于xx的方程2xx2−3xx−1=0的两个不相等的实数根,由此可得答案.【详解】解:∵实数ss、tt满足2ss2−3ss−1=0,2tt2−3tt−1=0,且ss≠tt,∴实数ss、tt是关于xx的方程2xx2−3xx−1=0的两个不相等的实数根,∴ss+tt=32.故答案为:32.【变式6-1】(23-24·湖南常德·一模)若两个不同的实数m、n满足mm2=mm+1,nn2−nn=1,则mm2+nn2=.【答案】3【分析】本题考查了一元二次方程根与系数的关系,完全平方公式的应用,先根据已知条件得到m、n是关于x的一元二次方程的两个不等实数根,然后根据根和系数的关系得到结果,再根据完全平方公式计算即可,理解m、n是关于x的一元二次方程的两个不等实数根是解题的关键.【详解】解:由题可得:mm2−mm−1=0,nn2−nn−1=0,∴m、n是关于x的一元二次方程xx2−xx−1=0的两个不等实数根,∴mm+nn=1,mmnn=−1,∴mm2+nn2=(mm+nn)2−2mmnn=122×(−1)=3,故答案为:3.【变式6-2】(23-24九年级·全国·竞赛)已知实数aa、bb分别满足aa=16aa2+13和12bb2=3bb−1,那么bb aa+aa bb的值是.【答案】2或16【分析】本题考查一元二次方程的根,一元二次方程根与系数的关系等,分情况讨论,当aa=bb时,bb aa+aa bb=2;当aa≠bb时,a和b是方程xx2−6xx+2=0的两个根,再由根与系数的关系求出aa+bb和aabb,再将bb aa+aa bb变形为(aa+bb)2−2aabbaabb,即可求解.【详解】解:分两种情况:当aa=bb时,bb aa+aa bb=1+1=2;当aa≠bb时,∵12bb2=3bb−1,∴bb=16bb2+13,∴bb2−6bb+2=0,又∵aa=16aa2+13,∴aa2−6aa+2=0,∴a和b是方程xx2−6xx+2=0的两个根,∴aa+bb=−−61=6,aabb=2,∴bb aa+aa bb=bb2+aa2aabb=(aa+bb)2−2aabb aabb=62−2×22=16,故答案为:2或16.【变式6-3】(23-24九年级·浙江宁波·期末)若aa4−3aa2=1,bb2−3bb=1,且aa2bb≠1,则bb aa2的值是.【答案】−1【分析】本题考查一元二次方程根与系数的关系,根据题意先化为1aa4−3aa2−1=0,bb2−3bb−1=0,可以得到1aa2和b是方程xx2−3xx−1=0的两根,然后根据两根之积为cc aa解题即可.【详解】解:∵aa4−3aa2=1,∴1aa4−3aa2−1=0,∵aa2bb≠1,又∵bb2−3bb−1=0,∴1aa2和b是方程xx2−3xx−1=0的两根,∴bb aa2=−1,故答案为:−1.【题型7 由一元二次方程的根判断另一个一元二次方程的根】【例7】(23-24九年级·浙江台州·期末)若关于x的一元二次方程aaxx2+2aaxx+cc=0(aa≠0)的一个根为m,则方程aa(xx−1)2+2aa(xx−1)+cc=0的两根分别是().A.mm+1,−mm−1B.mm+1,−mm+1C.mm+1,mm+2 D.mm−1,−mm+1【答案】A【分析】根据一元二次方程的根与系数的关系求出方程aaxx2+2aaxx+cc=0的另一个根,设xx−1=tt,根据方程aaxx2+2aaxx+cc=0的根代入求值即可得到答案;【详解】解:∵一元二次方程aaxx2+2aaxx+cc=0(aa≠0)的一个根为m,设方程另一根为n,∴nn+mm=−2aa aa=−2,解得:nn=−2−mm,设xx−1=tt,方程aa(xx−1)2+2aa(xx−1)+cc=0变形为aatt2+2aatt+cc=0,由一元二次方程aaxx2+2aaxx+cc=0(aa≠0)的根可得,tt1=mm,tt2=−2−mm,∴xx−1=−2−mm,xx−1=mm,∴xx1=−mm−1,xx2=1+mm,故答案为:A.【点睛】本题考查一元二次方程的根与系数的关系及换元法解一元二次方程,解题的关键是用换元法变形方程代入求解.【变式7-1】(23-24九年级·安徽合肥·期中)已知关于x的一元二次方程xx2+ccxx+aa=0的两个整数根恰好比方程xx2+aaxx+bb=0的两个根都大1,则aa+bb+cc的值是.【答案】-3或29【分析】设方程xx2+aaxx+bb=0的两个根为αα,ββ,其中αα,ββ为整数,且αα≤ββ,则方程xx2+ccxx+aa=0的两根为αα+1,ββ+1,根据题意列出式子,再进行变形即可求出.【详解】解:设方程xx2+aaxx+bb=0的两个根为αα,ββ,其中αα,ββ为整数,且αα≤ββ,则方程xx2+ccxx+aa=0的两根为αα+1,ββ+1,由题意得αα+ββ=−aa,(αα+1)(ββ+1)=aa,两式相加得ααββ+2αα+2ββ+1=0,即(αα+2)(ββ+2)=3,所以{αα+2=1,ββ+2=−1.ββ+2=3;或{αα+2=−3,解得{αα=−1,ββ=−3.ββ=1;或{αα=−5,又因为aa=−(αα+ββ),bb=ααββ,cc=−[(αα+1)+(ββ+1)]所以aa=0,bb=−1,cc=−2;或者aa=8,bb=15,cc=6,故aa+bb+cc=−3或29.故答案为-3或29【点睛】主要考查一元二次方程的整数根与有理根,一元二次方程根与系数关系的应用;利用根与系数的关系得到两根之间的关系是解决本题的关键;(23-24九年级·浙江·自主招生)设a、b、c、d是4个两两不同的实数,若a、b是方程xx2−8ccxx−9dd=0【变式7-2】的解,c、d是方程xx2−8aaxx−9bb=0的解,则aa+bb+cc+dd的值为.【答案】648【分析】由根与系数的关系得aa+bb,cc+dd的值,两式相加得的值,根据一元二次方程根的定义可得aa2−8aacc−9dd=0,代入可得aa2−72aa+9cc−8aacc=0,同理可得cc2−72cc+9aa−8aacc=0,两式相减即可得aa+cc的值,进而可得aa+bb+cc+dd的值.【详解】解:由根与系数的关系得aa+bb=8cc,cc+dd=8aa,两式相加得aa+bb+cc+dd=8(aa+cc).因为aa是方程xx2−8ccxx−9dd=0的根,所以aa2−8aacc−9dd=0,又dd=8aa−cc,所以aa2−72aa+9cc−8aacc=0①同理可得cc2−72cc+9aa−8aacc=0②①-②得(aa−cc)(aa+cc−81)=0.因为aa≠cc,所以aa+cc=81+bb+cc+dd=8(aa+cc)=648.故答案为648【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,根据等式的性质变形是解题的关键.【变式7-3】(23-24九年级·安徽合肥·期末)关于x的一元二次方程xx2+ppxx+qq=0有两个同号非零整数根,关于y的一元二次方程yy2+qqyy+pp=0也有两个同号非零整数根,则下列说法正确的是()A.p是正数,q是负数B.(pp−2)2+(qq−2)2<8C.q是正数,p是负数D.(pp−2)2+(qq−2)2>8【答案】D【分析】设方程x2+px+q=0的两根为x1、x2,方程y2+qy+p=0的两根为y1、y2.根据方程解的情况,结合根与系数的关系可得出x1•x2=q>0,y1•y2=p>0,即可判断A与C;②由方程有两个实数根结合根的判别式得出p2﹣4q≥0,q2﹣4p≥0,利用不等式的性质以及完全平方公式得出(p﹣2)2+(q﹣2)2>8,即可判断B【详解】解:设方程x2+px+q=0的两根为x1、x2,方程y2+qy+p=0的两根为y1、y2.∵关于x的一元二次方程x2+px+q=0有两个同号非零整数根,关于y的一元二次方程y2+qy+p=0也有两个同号非零整数根,∴x1•x2=q>0,y1•y2=p>0,故选项A与C说法均错误,不符合题意;∵关于x的一元二次方程x2+px+q=0有两个同号非零整数根,关于y的一元二次方程y2+qy+p=0也有两个同号非零整数根,∴p2﹣4q≥0,q2﹣4p≥0,∴(p﹣2)2+(q﹣2)2=p2﹣4q+4+q2﹣4p+4>8(p、q不能同时为2,否则两个方程均无实数根),故选项B说法错误,不符合题意;选项D说法正确,符合题意;故选:D.【点睛】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项说法的正误是解题的关键.【题型8 根与系数的关系与三角形、四边形的综合运用】【例8】(23-24九年级·山东·课后作业)已知菱形ABCD的边长为5,两条对角线交于O点,且OA、OB 的长分别是关于xx的方程xx2+(2mm−1)xx+mm2+3=0的根,则mm等于()A.−3B.5C.5或−3D.−5或3【答案】A【分析】由题意可知:菱形ABCD的边长是5,则AAOO2+BBOO2=25,则再根据根与系数的关系可得:AAOO+BBOO=−2mm+1,AAOO×BBOO=mm2+3;代入AAOO2+BBOO2中,得到关于m的方程后,求得m的值.【详解】由直角三角形的三边关系可得:AAOO2+BBOO2=25,又有根与系数的关系可得:AAOO+BBOO=−2mm+1,AAOO×BBOO=mm2+3,∴AAOO2+BBOO2=(AAOO+BBOO)2−2AAOO×BBOO=(−2mm+1)2−2(mm2+3)=25,整理得:mm2−2mm−15=0,解得:m=−3或5.又∵Δ>0,∴(2mm−1)2−4(mm2+3)>0,解得mm<−114,∴mm=−3.【点睛】考查一元二次方程根与系数的关系以及菱形的性质,注意掌握勾股定理在解题中的应用. 【变式8-1】(23-24九年级·黑龙江齐齐哈尔·期末)已知三角形的两边长分别是方程xx2−11xx+30=0的两个根,则该三角形第三边mm的取值范围是.【答案】1<mm<11【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积,经过变形得到两根差的值,即可求得第三边的范围.【详解】解:∵三角形两边长是方程x2−11x+30=0的两个根,∴x1+x2=11,x1x2=30,∵(x1−x2)2=(x1+x2)2−4x1x2=121−120=1,∴x1−x2=1,又∵x1−x2<m<x1+x2,∴1<m<11.故答案为:1<m<11.【点睛】本题主要考查了三角形的三边关系和一元二次方程的根与系数的关系,要知道第三边大于两边差,小于两边和.【变式8-2】(23-24九年级·安徽六安·阶段练习)已知正方形AABBAAAA的两邻边AABB,AAAA的长度恰为方程xx2−mmxx+ 1=0的两个实数根,则正方形AABBAAAA的周长为()A.2 B.4 C.6 D.8【答案】B【分析】此题考查了正方形的性质,一元二次方程根与系数的关系.首先根据正方形的性质得到AABB=AAAA,然后根据一元二次方程根与系数的关系得到AABB⋅AAAA=1,进而求出AABB=AAAA=1,即可得到正方形AABBAAAA的周长.【详解】∵四边形AABBAAAA是正方形∴AABB=AAAA∵正方形AABBAAAA的两邻边AABB,AAAA的长度恰为方程xx2−mmxx+1=0的两个实数根,∴AABB⋅AAAA=1,∴AABB=AAAA=1∴正方形AABBAAAA的周长为4.故选:B.【变式8-3】(23-24九年级·浙江杭州·期中)已知关于xx的一元二次方程xx2−3xx+kk=0有两个实根xx1和xx2.(1)求实数kk的取值范围;(2)是否存在矩形,xx1和xx2是这个矩形两邻边的长,且矩形的对角线长为√2?若存在,求kk的值;若不存在,请说明理由.【答案】(1)kk≤94(2)不存在,理由见解析【分析】本题考查了根与系数的关系和根的判别式,勾股定理,能熟记根与系数的关系和根的判别式的内容是解此题的关键.(1)求出Δ的值,根据已知得出不等式,求出即可;(2)根据根与系数的关系得出xx1+xx2=3,xx1xx2=kk,根据已知得出xx12+xx22=�√2�2,变形后代入求出kk的值,进行判断即可.【详解】(1)解:∵关于xx的一元二次方程xx2−3xx+kk=0有两个实根xx1和xx2,∴Δ=(−3)2−4×1×kk≥0,解得:kk≤94;(2)xx1和xx2一元二次方程xx2−3xx+kk=0的两根,∴xx1+xx2=3,xx1xx2=kk,∵xx1和xx2是这个矩形两邻边的长,且矩形的对角线长为√2,∴xx12+xx22=�√2�2,∴(xx1+xx2)2−2xx1xx2=2,∴9−2kk=2,解得:kk=72,∵kk≤94,72>94,∴kk=72不符合题意,∴不存在矩形,xx1和xx2是这个矩形两邻边的长,且矩形的对角线长为√2.【题型9 由一元二次方程根的取值范围求字母的取值范围】【例9】(23-24·浙江宁波·模拟预测)已知关于xx的一元二次方程xx2+aaxx+bb=0有两个根xx1,xx2,且满足1< xx1<xx2<2.记tt=aa+bb,则tt的取值范围是.【答案】−1<tt<0【分析】本题考查了一元二次方程根和系数的关系,不等式的性质,由根和系数的关系可得,xx1+xx2=−aa,xx1xx2=bb,得到tt=(xx1−1)(xx2−1)−1,由1<xx1<xx2<2可得0<(xx1−1)(xx2−1)<1,即得到−1< (xx1−1)(xx2−1)−1<0,即可求解,掌握一元二次方程根和系数的关系是解题的关键.【详解】解:由根和系数的关系可得,xx1+xx2=−aa,xx1xx2=bb,∴aa=−(xx1+xx2),bb=xx1xx2,∴tt=aa+bb=−(xx1+xx2)+xx1xx2=(xx1−1)(xx2−1)−1,∵1<xx1<xx2<2,∴0<xx1−1<1,0<xx2−1<1,∴0<(xx1−1)(xx2−1)<1,∴−1<(xx1−1)(xx2−1)−1<0,即−1<tt<0,故答案为:−1<t<0.【变式9-1】(23-24九年级·浙江金华·阶段练习)若关于x的方程4xx2−5xx−(mm+5)=0的解中,仅有一个正数解,则m的取值范围是.【答案】mm≥−5【分析】根据一元二次方程根的分布,根的判别式以及根与系数的关系列出不等式组,并解答求得mm的取值范围.本题主要考查了一元二次方程根的分布,根的判别式和根与系数的关系等知识点,解此题的关键是得到�Δ=(−5)2−4×4×[−(mm+5)]≥0−mm+54≤0.【详解】解:∵关于xx的方程4xx2−5xx−(mm+5)=0的解中,仅有一个正数解,∴�Δ=(−5)2−4×4×[−(mm+5)]≥0−mm+54≤0,解得mm≥−5.故答案为:m≥−5.【变式9-2】(23-24九年级·山东青岛·阶段练习)若关于xx的方程xx2+ppxx+qq=0的两根同为负数,其中pp2−4qq≥0,则()A.pp>0且qq>0B.pp>0且qq<0C.pp<0且qq>0D.pp<0且qq<0【答案】A【分析】据pp2-4q≥0,得出方程有两个实数根,再根据已知条件得出两根之积>零、两根之和<零时,由此得到关于p,q的不等式,然后确定它们的取值范围即可.【详解】∵pp2-4q≥0,∴方程有两个实数根.设xx1,xx2是该方程的两个负数根,则有xx1+xx2<0,xx1xx2>0,xx1+xx2=-p,xx1xx2=q,∴-p<0,,q>0.∴p>0,,q>0.故选A.【点睛】本题考查一元二次方程根的符号的确定,应利用一元二次方程根与系数的关系与根的判别式. 【变式9-3】(23-24九年级··期中)若关于xx的一元二次方程xx2+2xx+1−2mm=0的两个实数根之积为负数,则实数mm的取值范围是()A.mm>0B.mm>12C.mm<12D.mm<0【答案】B【分析】利用根的判别式Δ>0及两根之积为负数,即可得出关于mm的一元一次不等式组,解之即可得出实数mm的取值范围.【详解】解:∵关于xx的一元二次方程xx2+2xx+1−2mm=0的两个实数根之积为负数,∴�Δ=22−4×1×(1−2mm)>01−2mm<0解得:mm>12,∴实数m的取值范围是mm>12.故选:B.【点睛】本题考查了根与系数的关系以及根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”及“两根之积等于c a”是解题的关键.【题型10 一元二次方程中的新定义问题】【例10】(23-24九年级·黑龙江哈尔滨·期中)定义:若x₁、x₂是方程aaxx²+bbxx+cc=0(aa≠0)的两个实数根,若满足|xx1−xx2|=|xx1⋅xx2|,则称此类方程为“差积方程”.例如:�xx−12�(xx−1)=0是差积方程.(1)判断方程6xx2−5xx+1=0是否为“差积方程”?并验证;(2)若方程xx2−(mm+2)xx+2mm=0是“差积方程”,直接写出m的值;(3)当方程(aaxx²+bbxx+cc=0(aa≠0)为“差积方程”时,求a、b、c满足的数量关系.【答案】(1)是,证明见解析(2)mm=23或−2(3)bb2−4aacc=cc2【分析】本题考查了根与系数的关系,解一元二次方程,理解新定义是解题的关键.(1)分别根据因式分解法解一元二次方程,然后根据定义判断即可;(2)先根据因式分解法解一元二次方程,然后根据定义列出绝对值方程,解方程即可求解;(3)根据求根公式求得xx1,xx2【详解】(1)方程6xx2−5xx+1=0是“差积方程”,证明:6xx2−5xx+1=0,即(2xx−1)(3xx−1)=0,解得xx1=12,xx2=13,∵|12−13|=|12×13|,∴6xx2−5xx+1=0是差积方程;(2)解:xx2−(mm+2)xx+2mm=0,(xx−mm)(xx−2)=0解得方程的解为:xx1=2,xx2=mm,∵xx2−(mm+2)xx+2mm=0是差积方程,∴|2−mm|=|2mm|,即:2−mm=2mm或2−mm=−2mm.解得:mm=23或−2,(3)解:∵aaxx2+bbxx+cc=0(aa≠0),解得xx1=−bb+√bb2−4aacc2aa,xx2=−bb−√bb2−4aacc2aa,∵aaxx2+bbxx+cc=0(aa≠0)是差积方程,∴|xx1−xx2|=|xx1⋅xx2|,即|√bb2−4aacc aa|=|cc aa|,即bb2−4aacc=cc2.(23-24九年级·上海青浦·期中)如果一元二次方程的两根相差1,那么该方程称为“差1方程”.例【变式10-1】如xx2+xx=0是“差1方程”.已知关于xx的方程xx2−(mm−1)xx−mm=0(mm是常数)是“差1方程”,则mm的值为【答案】−2或0/0或−2【分析】本题考查根与系数的关系.设方程的两个根为xx1,xx2(xx1<xx2),由题意,得:xx1+xx2=mm−1,xx1xx2=−mm,xx2−xx1=1,利用完全平方公式的变形式进行计算即可.【详解】解:设方程的两个根为xx1,xx2(xx1<xx2),由题意,得:xx1+xx2=mm−1,xx1xx2=−mm,xx2−xx1=1,∴(xx2−xx1)2=(xx1+xx2)2−4xx1xx2=(mm−1)2+4mm=1,解得:mm=−2或mm=0,故答案为:−2或0.【变式10-2】(23-24九年级·四川·阶段练习)已知对于两个不相等的实数aa、bb,定义一种新的运算:aa@bb=√aabb aa+bb,如6@15=√6×156+15=3√1021=√107,已知mm,nn是一元二次方程xx2−21xx+7=0的两个不相等的实数根,则[(mm+ nn)@mmnn]@√3=.【答案】25【分析】首先根据根与系数的关系求解两根之和与两根之积,然后代入原式根据定义进行求解.【详解】由mm,nn是xx2−21xx+7=0的两个不相等的实数根可得:mm+nn=21,mmnn=7故[(mm+nn)@mmnn]@√3=(21@7)@√3=�√21×721+7�@√3=�√14728�@√3=7√328@√3=√34@√3=�√34×√3√34+√3=√32×45√3=25【点睛】本题考查了一元二次方程的根与系数关系,实数的定义新运算,此类题型一定要严格按照题目中的定义来求解,注意过程的正确性.【变式10-3】(23-24九年级·江苏盐城·阶段练习)定义:已知xx1,xx2是关于x的一元二次方程aaxx2+bbxx+cc= 0(aa≠0)的两个实数根,若xx1<xx2<0,且3<xx1xx2<4,则称这个方程为“限根方程”.如:一元二次方程xx2+ 13xx+30=0的两根为xx1=−10,xx2=−3,因为−10<−3<0,3<−10−3<4,所以一元二次方程xx2+13xx+ 30=0为“限根方程”.请阅读以上材料,回答下列问题:(1)判断一元二次方程xx2+9xx+14=0是否为“限根方程”,并说明理由;(2)若关于x的一元二次方程xx2+(kk+9)xx+kk2+8=0是“限根方程”,且方程的两根xx1、xx2满足11xx1+ 11xx2+xx1xx2=−121,求k的值.【答案】(1)此方程为“限根方程”,理由见解析(2)5【分析】本题考查了因式分解法解一元二次方程,一元二次方程的根与系数的关系.理解题意,熟练掌握因式分解法解一元二次方程,一元二次方程的根与系数的关系是解题的关键.(1)因式分解法解一元二次方程得xx1=−7,xx2=−2,根据定义,求解作答即可;(2)由xx2+(kk+9)xx+kk2+8=0,可得xx1+xx2=−kk−9,xx1xx2=kk2+8,代入11xx1+11xx2+xx1xx2=−121,整理得,kk2−11kk+30=0,解得,kk=5或kk=6,分当kk=5时,当kk=6时,两种情况求解,然后判断作答即可.。

专题21.8 一元二次方程的根与系数关系-重难点题型(举一反三)(人教版)(解析版)

专题21.8 一元二次方程的根与系数关系-重难点题型(举一反三)(人教版)(解析版)

专题21.8 一元二次方程的根与系数的关系-重难点题型【人教版】【题型1 利用根与系数的关系求代数式的值】【例1】(2020秋•普宁市期末)若一元二次方程x 2﹣x ﹣2=0的两根为x 1,x 2,则(1+x 1)+x 2(1﹣x 1)= . 【分析】根据根与系数的关系即可求出答案. 【解答】解:由题意可知:x 1+x 2=1,x 1x 2=﹣2, ∴原式=1+x 1+x 2﹣x 1x 2=1+1﹣(﹣2)=4, 故答案为:4【点评】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型. 【变式1-1】(2021•龙马潭区模拟)设x 1,x 2是方程x 2+3x ﹣3=0的两个实数根,则x 2x 1+x 1x 2的值为 .【分析】欲求x 2x 1+x 1x 2的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.【解答】解:∵x 1,x 2是方程x 2+3x ﹣3=0的两个实数根, ∴x 1+x 2=﹣3,x 1•x 2=﹣3, ∴x 2x 1+x 1x 2=x 12+x 22x 1⋅x 2=(x 1+x 2)2−2x 1⋅x 2x 1⋅x 2=(−3)2−2×(−3)−3=−5.故答案为﹣5.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.【变式1-2】(2020秋•解放区校级月考)一元二次方程x 2+4x +1=0的两个根是x 1,x 2,则x 2x 1−x 1x 2的值为 .(其中x 2>x 1)【分析】利用根与系数的关系得到x 1+x 2=﹣4,x 1x 2=1,再通过通分和完全平方公式变形得到x 2x 1−x 1x 2=(x 1+x 2)√(x 2+x 1)2−4x 1x 2x 1x 2,然后利用整体代入的方法计算.【解答】解:根据题意得x 1+x 2=﹣4,x 1x 2=1, 所以x 2x 1−x 1x 2=x 22−x 12x 1x 2=(x 1+x 2)(x 2−x 1)x 1x 2=(x 1+x 2)√(x 2+x 1)2−4x 1x 2x 1x 2=−4×√(−4)2−4×11=﹣8√3. 故答案为﹣8√3【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−ba,x 1x 2=c a.【变式1-3】(2020秋•淇滨区校级月考)已知a 、b 是方程2x 2+5x +1=0的两实数根,则式子a√a b +b √ba 的值为 .【分析】利用根与系数的关系可得出a +b =−52,a •b =12,进而可得出a <0,b <0,再将a +b =−52,a •b =12代入a√ab +b √b a =2√ab中即可求出结论. 【解答】解:∵a 、b 是方程2x 2+5x +1=0的两实数根, ∴a +b =−52,a •b =12, ∴a <0,b <0,∴a√a b +b √b a =√a⋅a √a⋅b +√b⋅b √a⋅b =22√ab =2√ab =−(−52)2+2×12√12=−21√24.故答案为:−21√2 4.【点评】本题考查了根与系数的关系以及实数的运算,牢记“两根之和等于−ba,两根之积等于ca”是解题的关键.【题型2 利用根与系数的关系求系数字母的值】【例2】(2021•成都模拟)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根为x1,x2,使得x1x2﹣x12﹣x22=﹣16成立,则k的值.【分析】根据判别式的意义得到△=(2k+1)2﹣4(k2+2k)≥0,然后解不等式求得k的取值范围,然后根据根与系数的关系得到x1+x2=2k+1,x1x2=k2+2k,再把x1x2﹣x12﹣x22=﹣16变形为﹣(x1+x2)2+3x1•x2=﹣16,所以﹣(2k+1)2+3(k2+2k)=﹣16,然后解方程后即可确定满足条件的k的值.【解答】解:∵关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根,∴△=(2k+1)2﹣4(k2+2k)≥0,解得k≤1 4,由根与系数的关系得x1+x2=2k+1,x1x2=k2+2k,∵x1x2﹣x12﹣x22=﹣16.∴x1x2﹣[(x1+x2)2﹣2x1x2]=﹣16,即﹣(x1+x2)2+3x1•x2=﹣16,∴﹣(2k+1)2+3(k2+2k)=﹣16,整理得k2﹣2k﹣15=0,解得k1=5(舍去),k2=﹣3.∴k=﹣3,故答案为﹣3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−b a,x1x2=ca.也考查了根的判别式.【变式2-1】(2019秋•萍乡期末)关于x的一元二次方程x2﹣2x+m=0的二根为x1,x2,且x12﹣x1+x2=3x1x2,则m=.【分析】根据根与系数的关系求得x1+x2=2,x1•x2=m,且x12﹣2x1+m=0,然后将其代入已知等式列出关于m的新方程,通过解新方程来求m的值.【解答】解:∵关于x 的一元二次方程x 2﹣2x +m =0的二根为x 1、x 2, ∴x 1+x 2=2,x 1•x 2=m ,且x 12﹣2x 1+m =0, ∴x 12﹣x 1=﹣m +x 1, ∵x 12﹣x 1+x 2=3x 1x 2, ∴﹣m +x 1+x 2=3x 1x 2, 即﹣m +2=3m , 解得:m =12, 故答案为:12.【点评】本题考查了根与系数的关系.解题时,借用了“一元二次方程的解的定义”这一知识点. 【变式2-2】(2020春•文登区期中)已知关于x 的一元二次方程x 2+(2k +1)x +k 2﹣2=0的两根x 1和x 2,且x 12﹣2x 1+2x 2=x 1x 2,则k 的值是 .【分析】先由x 12﹣2x 1+2x 2=x 1x 2,得出x 1﹣2=0或x 1﹣x 2=0,再分两种情况进行讨论:①如果x 1﹣2=0,将x =2代入x 2+(2k +1)x +k 2﹣2=0,得4+2(2k +1)+k 2﹣2=0,解方程求出k =﹣2;②如果x 1﹣x 2=0,那么△=0,解方程即可求解. 【解答】解:∵x 12﹣2x 1+2x 2=x 1x 2, x 12﹣2x 1+2x 2﹣x 1x 2=0, x 1(x 1﹣2)﹣x 2(x 1﹣2)=0, (x 1﹣2)(x 1﹣x 2)=0, ∴x 1﹣2=0或x 1﹣x 2=0. ①如果x 1﹣2=0,那么x 1=2, 将x =2代入x 2+(2k +1)x +k 2﹣2=0, 得4+2(2k +1)+k 2﹣2=0, 整理,得k 2+4k +4=0, 解得k =﹣2; ②如果x 1﹣x 2=0,则△=(2k +1)2﹣4(k 2﹣2)=0. 解得:k =−94.所以k 的值为﹣2或−94.故答案为:﹣2或−9 4.【点评】本题考查了一元二次方程的根与系数的关系,根的判别式,注意在利用根与系数的关系时,需用判别式进行检验.【变式2-3】(2020秋•武侯区校级月考)已知二次方程x2+(2m+1)x+m2﹣2m+32=0的两个实数根为α和β,若|α|+|β|=4,求m的值.【分析】先由根与系数的关系得到2m+1=﹣(α+β),α•β=m2﹣2m+32=(m﹣1)2+12>0,那么α和β同号,再由|α|+|β|=4,分α+β=﹣4或α+β=4进行讨论即可.【解答】解:∵二次方程x2+(2m+1)x+m2﹣2m+32=0的两个实数根为α和β,∴α+β=﹣(2m+1),α•β=m2﹣2m+3 2,∴2m+1=﹣(α+β),α•β=m2﹣2m+32=(m﹣1)2+12>0,∴α•β>0,即α和β同号,∴由|α|+|β|=4得:α+β=﹣4或α+β=4.当α+β=﹣4时,2m+1=4,解得m=3 2;当α+β=4时,2m+1=﹣4,解得m=−5 2.∵△=(2m+1)2﹣4(m2﹣2m+3 2)=4m2+4m+1﹣4m2+8m﹣6=12m﹣5≥0,∴m≥5 12;∴m=−52不合题意,舍去,则m=3 2.【点评】本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.【题型3 利用根与系数的关系及代根法综合求值】【例3】(2021•九龙坡区校级期末)如果方程x2﹣x﹣2=0的两个根为α,β,那么α2+β﹣2αβ的值为()A.7B.6C.﹣2D.0【分析】根据方程x2﹣x﹣2=0的两个根为α,β,得到α+β=1,αβ=﹣2,α2=α+2,将α2+β﹣2αβ变形为α+β+2﹣2αβ后代入即可求值.【解答】解:∵方程x2﹣x﹣2=0的两个根为α,β,∴α+β=1,αβ=﹣2,α2=α+2,∴α2+β﹣2αβ=α+2+β﹣2αβ=1+2﹣2×(﹣2)=7,故选:A.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.【变式3-1】(2020秋•抚州期末)一元二次方程x2﹣3x+1=0的两个根为x1,x2,则x12+3x2+x1x2+1的值为()A.10B.9C.8D.7【分析】根据根与系数的关系找出x1+x2=3、x1•x2=1,将x12+3x2+x1x2+1变形为3(x1+x2)+x1x2,代入数据即可得出结论.【解答】解:∵一元二次方程x2﹣3x+1=0的两个根为x1,x2,∴x12﹣3x1+1=0,x1+x2=3,x1•x2=1,∴x12=3x1﹣1,则x12+3x2+x1x2+1=3x1﹣1+3x2+x1x2+1=3(x1+x2)+x1x2=3×3+1=10,故选:A.【点评】本题考查了根与系数的关系,根据根与系数的关系找出x1+x2=3、x1•x2=1是解题的关键.【变式3-2】(2020秋•宜宾期末)已知α、β是方程x2﹣x﹣1=0的两个实数根,则α4+3β的值是()A.4B.4√2C.5D.5√2【分析】根据方程根的定义得到α2=a+1,即可得到α4=α2+2α+1,然后根据根与系数的关系即可求得α4+3β的值.【解答】解:∵α、β是方程x2﹣x﹣1=0的两个实数根,∴α2﹣α﹣1=0,α+β=1,∴α2=a+1,∴α4=α2+2α+1,则α4+3β=α2+2α+1+3β=α2﹣α﹣1+3α+3β+2=3×1+2=5.故选:C.【点评】本题主要考查了根与系数的关系,解题的关键是利用整体法代值计算,此题难度一般.【变式3-3】(2020秋•雅安期末)设x1、x2是方程x2﹣4x+1=0的两个根,则x13+4x22+x1﹣1的值为.【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:x1+x2=4,x1x2=1,x12=4x1﹣1,∴x13=4x12−x1,∴原式=4x12−x1+4x22+x1﹣1=4(x12+x22)﹣1=4(x1+x2)2﹣8x1x2﹣1=4×16﹣8﹣1=55,故答案为:55【点评】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.【题型4 构造一元二次方程求代数式的值】【例4】(2021春•柯桥区月考)如果m、n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2021=.【分析】由题意可知m,n是x2﹣x﹣3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=1,mn=﹣3,又n2=n+3,利用它们可以化简2n2﹣mn+2m+2021=2(n+3)﹣mn+2m+2021=2n+6﹣mn+2m+2021=2(m+n)﹣mn+2027,然后就可以求出所求的代数式的值.【解答】解:由题意可知:m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,所以m,n是x2﹣x﹣3=0的两个不相等的实数根,则根据根与系数的关系可知:m+n=1,mn=﹣3,又n2=n+3,则2n2﹣mn+2m+2021=2(n+3)﹣mn+2m+2021=2n+6﹣mn+2m+2021=2(m+n)﹣mn+2027=2×1﹣(﹣3)+2027=2+3+2027=2032. 故答案为:2032.【点评】本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值.【变式4-1】(2021春•崇川区月考)实数x ,y 分别满足99x 2+2021x =﹣1.y 2+2021y =﹣99,且xy ≠1.则xy+10x+1y= .【分析】把y 2+2021y =﹣99变形为99(1y)2+2021•1y+1=0,加上99x 2+2021x +1=0,则实数x 、1y可看作方程99t 2+2021t +1=0,利用根与系数的关系得到x +1y =−202199,x •1y =199,再把原式变形为x +10•x y+1y,然后利用整体代入的方法计算.【解答】解:∵y 2+2021y =﹣99, ∴99(1y)2+2021•1y+1=0,∵99x 2+2021x =﹣1, 即99x 2+2021x +1=0,∴实数x 、1y可看作方程99t 2+2021t +1=0的两实数解,∴x +1y =−202199,x •1y =199,∴原式=x +10•x y+1y=−202199+10×199 =−201199. 故答案为−201199. 【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−ba ,x 1x 2=ca .【变式4-2】(2021•郫都区校级模拟)已知a 2﹣2a ﹣1=0,b 2+2b ﹣1=0,且ab ≠1,则ab+b+1b的值为 .【分析】先变形b 2+2b ﹣1=0得到(1b)2﹣2•1b−1=0,则a 和1b可看作方程x 2﹣2x ﹣1=0的两根,然后根据根与系数的关系求解.【解答】解:∵b 2+2b ﹣1=0, ∴b ≠0,方程两边同时除以b 2,再乘﹣1变形为(1b)2﹣2•1b−1=0,∵ab ≠1,∴a 和1b 可看作方程x 2﹣2x ﹣1=0的两根,∴a +1b =2, ∴ab+b+1b=a +1+1b=2+1=3.故答案为:3.【点评】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+x 2=−ba ,x 1•x 2=c a.【变式4-3】(2020秋•蕲春县期中)已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则1α2+3β的值为 . 【分析】原方程变为(1α2)﹣3(1α)﹣1=0,得到1α、β是方程x 2﹣3x ﹣1=0的两根,根据根与系数的关系得到关系式,代入求出即可.【解答】解:∵实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1, ∴1α、β是方程x 2﹣3x ﹣1=0的两根,∴1α+β=3,βα=−1,1α2=1+3α,∴原式=1+3α+3β=1+3(1α+β)=1+3×3=10, 故答案为10.【点评】本题主要考查对根与系数的关系的理解和掌握,能熟练地根据根与系数的关系进行计算是解此题的关键.【题型5 根与系数的关系与三角形综合】【例5】(2020秋•西工区期中)已知关于x 的方程x 2﹣8x ﹣k 2+4k +12=0. (1)求证:无论k 取何值,这个方程总有两个实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.【分析】(1)先计算出△=4(k﹣2)2,然后根据判别式的意义即可得到结论;(2)先利用因式分解法求出方程的解为x1=﹣k+6,x2=k+2,然后分类讨论:当AB=AC或AB=BC或AC=BC时△ABC为等腰三角形,然后求出k的值.【解答】(1)证明:∵△=(﹣8)2﹣4(﹣k2+4k+12)=4(k﹣2)2≥0,∴无论k取何值,这个方程总有两个实数根;(2)解:x2﹣8x﹣k2+4k+12=0,(x+k﹣6)(x﹣k﹣2)=0,解得:x1=﹣k+6,x2=k+2,当AB=AC时,﹣k+6=k+2,则k=2;当AB=BC时,﹣k+6=5,则k=1;当AC=BC时,则k+2=5,解得k=3,综合上述,k的值为2或1或3.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.【变式5-1】(2020秋•吉安期中)关于x的一元二次方程(m﹣1)x2﹣2mx+m+1=0(1)求证:方程总有两个不相等的实数根.(2)m为何整数时,此方程的两个根都是正整数?(3)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求m的值.【分析】(1)先计算出△=1,然后根据判别式的意义即可得到结论;(2)先求出方程的解,根据此方程的两个根都是正整数列出关于m的不等式,解不等式即可求解;(3)根据等腰三角形的性质和三角形三边关系得到关于m的方程,解方程即可求解.【解答】解:(1)∵△=(﹣2m)2﹣4(m﹣1)(m+1)=4>0,∴方程总有两个不相等的实数根;(2)(m﹣1)x2﹣2mx+m+1=0,[(m﹣1)x﹣(m+1)](x﹣1)=0,x 1=m+1m−1,x 2=1, ∵此方程的两个根都是正整数,∴m+1m−1>0,当m +1>0,m ﹣1>0时,解得m >1,当m +1<0,m ﹣1<0时,解得m <﹣1,∴m =2或m =3;(3)∵一元二次方程(m ﹣1)x 2﹣2mx +m +1=0的解为x 1=m+1m−1,x 2=1, ∵△ABC 是等腰三角形,第三边BC 的长为5,∴m+1m−1=5,解得m =1.5,经检验,m =1.5是原方程的解.故m 的值是1.5.【点评】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.【变式5-2】(2021春•西湖区校级期中)已知关于x 的一元二次方程x 2﹣(2m +4)x +m 2+4m =0.(1)求证:无论m 取何值,此方程总有两个不相等的实数根.(2)设方程的两个实数根分别为x 1,x 2;①求代数式x 12+x 22−4x 1x 2的最大值;②若方程的一个根是6,x 1和x 2是一个等腰三角形的两条边,求等腰三角形的周长.【分析】(1)通过判别式△求解.(2)①通过两根之积与两根之和的关系将x 12+x 22−4x 1x 2配方求解.②把x =6代入方程求出m ,再将m 代入原方程求出另外一个解,再根据三角形两边之和大于第三边确定x 的值.【解答】解:(1)△=(2m +4)2﹣4(m 2+4m )=16,16>0,∴此方程总有两个不相等的实数根.(2)①x 12+x 22−4x 1x 2=(x 1+x 2)2﹣6x 1x 2,∵x1+x2=−−(2m+4)1=2m+4,x1x2=m2+4m,∴(x1+x2)2﹣6x1x2=(2m+4)2﹣6(m2+4m)=﹣2m2﹣8m+16=﹣2(m+2)2+24,∴当m=﹣2时x12+x22−4x1x2的最大值为24.②把x=6代入原方程可得m2﹣8m+12=0,解得m=2或m=6,当m=2时,原方程化简为x2﹣8x+12=0,解得x=2或x=6,三角形三边长为6,6,2时三角形周长为14,三角形边长为2,2,6时不存在.当m=6时,原方程化简为x2﹣16x+60,解得x=6或x=10.三角形三边长为6,6,10时三角形周长为22,三角形三边长为10,10,6时,三角形周长为26.∴等腰三角形周长为14或22或26.【点评】本题考查一元二次方程综合应用,解题关键是熟练掌握一元二次方程的判别式与根与系数的关系.【变式5-3】(2021•永州模拟)已知关于x的方程x2−2mx+14n2=0,其中m、n是等腰三角形的腰和底边长.(1)说明这个方程有两个不相等的实数根.(2)若方程的两实数根的差的绝对值是8,且等腰三角形的面积是16,求m,n的值.【分析】(1)根据方程的系数结合根的判别式,可得出△=4m2﹣n2>0,进而可证出方程有两个不相等的实数根;(2)由根与系数的关系求出√m2−14n2=4,根据三角形的面积可求出m,n的值,则可求出答案.【解答】解:(1)∵m、n是等腰三角形的腰和底边长,∴2m>n,又∵△=b2﹣4ac=(﹣2m)2﹣4×1×14n2=4m2−n2,∴4m2>n2,∴△>0,∴方程有两个不相等的实数根.(2)由题意得|x 1﹣x 2|=8,∴(x 1﹣x 2)2=64,∴(x 1+x 2)2﹣4x 1x 2=64,由韦达定理得:x 1+x 2=2m ,x 1x 2=14n 2,∴(2m )2﹣4×14n 2=64,即√m 2−14n 2=4, ∵等腰三角形的面积是16,如图,过点A 作AD ⊥BC 于点D ,∴BD =CD =n 2.∴AD =√AB 2−BD 2=√m 2−14n 2,∴12×n ×√m 2−14n 2=16,∴n =8,代入√m 2−14n 2=4,解得m =4√2,∴m =4√2,n =8.【点评】本题考查了根的判别式、等腰三角形的性质以及根与系数的关系,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)利用根与系数的关系,得出m ,n 的关系式.【题型6 根与系数关系中的新定义问题】【例6】(2020秋•武侯区校级期中)如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根x 1,x 2,且满足数轴上x 1,x 2所表示的点到2所表示的点的距离相等,则称这样的方程为“关于2的等距方程”以下“关于2的等距方程”的说法,正确的有 .(填序号)①方程x 2﹣4x =0是关于2的等距方程;②当5m=﹣n时,关于x的方程(x+1)(mx+n)=0一定是关于2的等距方程;③若方程ax2+bx+c=0是关于2的等距方程,则必有b=﹣4a(a≠0);④当两根满足x1=3x2,关于x的方程px2﹣x+34=0是关于2的等距方程.【分析】①解得方程的解后即可利用关于2的等距方程的定义进行判断;②解得方程的解后即可利用关于2的等距方程的定义进行判断;③根据方程ax2+bx+c=0是关于2的等距方程,且b=﹣4a(a≠0)得到x1=x2或x1+x2=4,当x1=x2时,x1=x2=−b2a,不能判断a与b之间的关系,当x1+x2=4时,即−ba=4,得到b=﹣4a,据此即可判断;④根据韦达定理和x1=3x2,得出3x22=34(3x2+x2)=3x2,解得x2=1或x2=0(舍去),然后利用关于2的等距方程的定义进行判断.【解答】解:①∵x2﹣4x=0,∴x(x﹣4)=0,∴x1=0,x2=4,则|x2﹣2=|x2﹣2|,①正确;②当m≠0,n≠0时,(x+1)(mx+n)=0,则x1=﹣1,x2=n−m,∵5m=﹣n,∴x2=5,∴|x1﹣2|=|x2﹣2|,满足2的等距方程;当m=n=0时,原方程x+1=0不是一元二次方程,故②错误;③对于方程ax2+b+c=0(a≠0),由韦达定理得:x1+x2=−b a,∵方程是2的等距方程,∴|x1﹣2|=|x2﹣2|,则x1﹣2=x2﹣2或x1﹣2=2﹣x2,∴x1=x2或x1+x2=4,当x1=x2时,x1=x2=−b2a,不能判断a与b之间的关系,当x1+x2=4时,即−ba=4,∴b =﹣4a ,故ax 2+bx +c =0(a ≠0)是2的等距方程时,b 不一定等于﹣4a ,故③错误;④对于方程px 2﹣x +34=0有两根满足x 1=3x 2,由韦达定理得:x 1x 2=34p ,x 1+x 2=1p , ∴x 1x 2=34×1p =34(x 1+x 2),∴3x 22=34(3x 2+x 2)=3x 2,∴x 2=1或x 2=0(舍去),∴x 1=3x 2=3,∴|x 1﹣2|=|x 2﹣2|,即px 2﹣x +34=0是关于2的等距方程,故④正确,故正确的有①④,故答案为①④.【点评】本题考查了一元二次方程的解,根与系数的关系,正确的理解“关于2的等距方程”的定义是解题的关键.【变式6-1】(2021春•崇川区校级月考)x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两个实数根,若满足|x 1﹣x 2|=1,则此类方程称为“差根方程”.根据“差根方程”的定义,解决下列问题:(1)通过计算,判断下列方程是否是“差根方程”:①x 2﹣4x ﹣5=0;②2x 2﹣2√3x +1=0;(2)已知关于x 的方程x 2+2ax =0是“差根方程”,求a 的值;(3)若关于x 的方程ax 2+bx +1=0(a ,b 是常数,a >0)是“差根方程”,请探索a 与b 之间的数量关系式.【分析】(1)据“差根方程”定义判断即可;(2)根据x 2+2ax =0是“差根方程”,且x 1=0,x 2=﹣2a 得到2a =±1,从而得到a =±12; (3)设x 1,x 2是一元二次方程ax 2+bx +1=0(a ,b 是常数,a >0)的两个实数根,根据根与系数的关系得到√(−b a )2−4⋅1a =1,整理即可得到b 2=a 2+4a .【解答】解:(1)①设x 1,x 2是一元二次方程x 2﹣4x ﹣5=0的两个实数根,∴x 1+x 2=4,x 1•x 2=﹣5,∴|x 1﹣x 2|=√(x 1+x 2)2−4x 1x 2=√42−4×(−5)=6,∴方程x 2﹣4x ﹣5=0不是差根方程;②设x 1,x 2是一元二次方程2x 2﹣2√3x +1=0的两个实数根,∴x 1+x 2=√3,x 1•x 2=12,∴|x 1﹣x 2|=√(x 1+x 2)2−4x 1x 2=√(√3)2−4×12=1,∴方程2x 2﹣2√3x +1=0是差根方程;(2)x 2+2ax =0,因式分解得:x (x +2a )=0,解得:x 1=0,x 2=﹣2a ,∵关于x 的方程x 2+2ax =0是“差根方程”,∴2a =±1,即a =±12;(3)设x 1,x 2是一元二次方程ax 2+bx +1=0(a ,b 是常数,a >0)的两个实数根,∴x 1+x 2=−b a ,x 1•x 2=1a ,∵关于x 的方程ax 2+bx +1=0(a ,b 是常数,a >0)是“差根方程”,∴|x 1﹣x 2|=1,∴|x 1﹣x 2|=√(x 1+x 2)2−4x 1x 2=1,即√(−b a )2−4⋅1a =1,∴b 2=a 2+4a .【点评】本题考查了一元二次方程的解,根与系数的关系,根的判别式,一次函数图像上点的坐标特征,正确的理解“差根方程”的定义是解题的关键.【变式6-2】(2020秋•石狮市期中)如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论,设其中一根为t ,则另一根为2t ,因此ax 2+bx +c =a (x ﹣t )(x ﹣2t )=ax 2﹣3atx +2t 2a ,所以有b 2−92ac =0;我们记“K =b 2−92ac ”,即K =0时,方程ax 2+bx +c =0为倍根方程:下面我们根据所获信息来解决问题:(1)以下为倍根方程的是 ;(写出序号)①方程x2﹣x﹣2=0;②x2﹣6x+8=0;(2)若关于的x方程mx2+(n﹣2m)x﹣2n=0是倍根方程,求4m2+5mn+n2的值;(3)若A(m,n)在一次函数y=3x﹣8的图象上,且关于x的一元二次方程x2−√mx+23n=0是倍根方程,求此倍根方程.【分析】(1)据倍根方程定义判断即可;(2)根据(x﹣2)(mx+n)=0是倍根方程,且x1=2,x2=−nm得到m=﹣n或m=−14n,从而得到m+n=0,4m+n=0,进而得到4m2+5mn+n2=0;(3)设其中一根为t,则另一个根为2t,据此知ax2+bx+c=a(x﹣t)(x﹣2t)=ax2﹣3atx+2t2a,从而得倍根方程满足b2−92ac=0,据此求解可得.【解答】解:(1)①x2﹣x﹣2=0,(x+1)(x﹣2)=0,x1=﹣1,x2=2,∴方程x2﹣x﹣2=0不是倍根方程;②x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x1=2,x2=4,∴方程x2﹣6x+8=0是倍根方程;故答案为②;(2)mx2+(n﹣2m)x﹣2n=0,因式分解得:(x﹣2)(mx+n)=0,解得:x1=2,x2=−n m,∵方程mx2+(n﹣2m)x﹣2n=0是倍根方程,∴2=−2nm或4=−nm,即m=﹣n或m=−14n,∴m+n=0或4m+n=0;∵4m2+5mn+n2=(4m+n)(m+n)=0;(3)设其中一根为t ,则另一个根为2t ,则ax 2+bx +c =a (x ﹣t )(x ﹣2t )=ax 2﹣3atx +2t 2a ,∴b 2−92ac =0,∵x 2−√mx +23n =0是倍根方程,∴(−√m )2−92×2×23n =0,整理,得:m =3n ,∵A (m ,n )在一次函数y =3x ﹣8的图象上,∴n =3m ﹣8,∴n =1,m =3,∴此倍根方程为x 2−√3x +23=0.【点评】本题考查了一元二次方程的解,根与系数的关系,根的判别式,一次函数图像上点的坐标特征,正确的理解“倍根方程”的定义是解题的关键.【变式6-3】(2020秋•台儿庄区期中)阅读理解:材料一:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实教x ,y ,z 构成“和谐三数组”.材料二:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根分别为x 1,x 2,则有x 1+x 2=−b a ,x 1⋅x 2=c a . 问题解决:(1)请你写出三个能构成“和谐三数组”的实数 ;(2)若x 1,x 2是关于x 的方程ax 2+bx +c =0(a ,b ,c 均不为0)的两根,x 3是关于x 的方程bx +c =0(b ,c 均不为0)的解.求证:x 1,x 2,x 3可以构成“和谐三数组”.【分析】(1)根据“和谐三数组”写成一组即可得出结论;(2)先根据材料2,得出1x 1+1x 2=−b c ,再求出一元一次方程的解,进而得出1x 3=−b c ,即可得出结论.【解答】解:(1)∵12+13=56, ∴65,2,3是“和谐三数组”;故答案为:65,2,3(答案不唯一); (2)证明:∵x 1,x 2是关于x 的方程ax 2+bx +c =0 (a ,b ,c 均不为0)的两根,∴x 1+x 2=−b a ,x 1⋅x 2=c a ,∴1x 1+1x 2=x 1+x 2x 1⋅x 2=−b a c a =−b c , ∵x 3是关于x 的方程bx +c =0(b ,c 均不为0)的解,∴x 3=−c b ,∴1x 3=−b c , ∴1x 1+1x 2=1x 3,∴x 1,x 2,x 3可以构成“和谐三数组”.【点评】此题主要考查了新定义的理解和运用,一元二次方程根与系数的关系,一元一次方程的解,正确掌握一元二次方程根与系数的关系是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程根与系数的关系(附答案)评卷人得分一.选择题(共6小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣13.关于x的一元二次方程x2+3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.65.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D.6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3评卷人得分二.填空题(共1小题)7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为.评卷人得分三.解答题(共8小题)8.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.9.已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.11.已知关于x的一元二次方程x2﹣x+a﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x1,x2,求a的取值范围;(3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.12.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;(2)求使+﹣2的值为整数的实数k的整数值;(3)若k=﹣2,λ=,试求λ的值.13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.14.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.15.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x12+x22=6x1x2,求m的值.参考答案与试题解析一.选择题(共6小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定【解答】解:∵△=42﹣4×3×(﹣5)=76>0,∴方程有两个不相等的实数根.故选:B.2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣1【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有实数根,∴△=22﹣4×1×(﹣m)=4+4m≥0,解得:m≥﹣1.故选:A.3.关于x的一元二次方程x2+3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【解答】解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=32﹣4×1×(﹣1)=13>0,∴方程有两个不相等的实数根.故选:A.4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.6【解答】解:∵x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣,∴x12+x22=(x1+x2)2﹣2x1x2=22﹣2×(﹣)=5.故选:C.5.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D.【解答】解:∵α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,∴α+β=5.故选:B.6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3【解答】解:∵关于x的方程x2﹣4x+c+1=0有两个相等的实数根,∴△=(﹣4)2﹣4×1×(c+1)=12﹣4c=0,解得:c=3.故选:D.二.填空题(共1小题)7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为﹣5.【解答】解:∵关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p、q,∴p+q=3,pq=a,∵p2﹣pq+q2=(p+q)2﹣3pq=18,即9﹣3a=18,∴a=﹣3,∴pq=﹣3,∴+====﹣5.故答案为:﹣5.三.解答题(共8小题)8.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.【解答】解:(1)∵方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△=[﹣(2k+1)]2﹣4×1×(k2+1)=4k﹣3>0,∴k>.(2)当k=2时,原方程为x2﹣5x+5=0,设方程的两个为m、n,∴m+n=5,mn=5,∴==.9.已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【解答】(1)解:将x=1代入原方程,得:1+a+a﹣2=0,解得:a=.(2)证明:△=a2﹣4(a﹣2)=(a﹣2)2+4.∵(a﹣2)2≥0,∴(a﹣2)2+4>0,即△>0,∴不论a取何实数,该方程都有两个不相等的实数根.10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.【解答】(1)证明:原方程可化为x2﹣(2m+2)x+m2+2m=0,∵a=1,b=﹣(2m+2),c=m2+2m,∴△=b2﹣4ac=[﹣(2m+2)]2﹣4(m2+2m)=4>0,∴不论m为何值,该方程总有两个不相等的实数根.(2)解:将x=3代入原方程,得:(3﹣m)2﹣2(3﹣m)=0,解得:m1=3,m2=1.∴m的值为3或1.11.已知关于x的一元二次方程x2﹣x+a﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x1,x2,求a的取值范围;(3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.【解答】解:(1)把a=﹣11代入方程,得x2﹣x﹣12=0,(x+3)(x﹣4)=0,x+3=0或x﹣4=0,∴x1=﹣3,x2=4;(2)∵方程有两个实数根,∴△≥0,即(﹣1)2﹣4×1×(a﹣1)≥0,解得;(3)∵是方程的两个实数根,,∴.∵[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,∴,把代入,得:[2+a﹣1][2+a﹣1]=9,即(1+a)2=9,解得a=﹣4,a=2(舍去),所以a的值为﹣412.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;(2)求使+﹣2的值为整数的实数k的整数值;(3)若k=﹣2,λ=,试求λ的值.【解答】解:(1)∵x1、x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根,∴x1+x2=1,x1x2=,∴(2x1﹣x2)(x1﹣2x2)=2x12﹣4x1x2﹣x1x2+2x22=2(x1+x2)2﹣9x1x2=2×12﹣9×=2﹣,若2﹣=﹣成立,解上述方程得,k=,∵△=16k2﹣4×4k(k+1)=﹣16k>0,∴k<0,∵k=,∴矛盾,∴不存在这样k的值;(2)原式=﹣2=﹣2=﹣4=﹣,∴k+1=1或﹣1,或2,或﹣2,或4,或﹣4解得k=0或﹣2,1,﹣3,3,﹣5.∵k<0.∴k=﹣2,﹣3或﹣5;(3)∵k=﹣2,λ=,x1+x2=1,∴λx2+x2=1,x2=,x1=,∵x1x2==,∴=,∴λ=3±3.13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.【解答】解:(1)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根,∴,解得:k≤且k≠﹣1.(2)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.∴x1+x2=,x1x2=.∵x1+x2=x1x2+2,即=+2,解得:k=﹣4,经检验,k=﹣4是原分式方程的解,∴k=﹣4.14.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.【解答】解:(1)△=[﹣2(m+1)]2﹣4(m2﹣3)=8m+16,当方程有两个不相等的实数根时,则有△>0,即8m+16>0,解得m>﹣2;(2)根据一元二次方程根与系数之间的关系,得x1+x2=2(m+1),x1x2=m2﹣3,∵x12+x22=22+x1x2=(x1+x2)2﹣2x1x2,∴[2(m+1)]﹣2(m2﹣3)=6+(m2﹣3),化简,得m2+8m﹣9=0,解得m=1或m=﹣9(不合题意,舍去),∴实数m的值为1.15.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x12+x22=6x1x2,求m的值.【解答】解:(1)∵方程有两个实数根,∴△≥0,即(﹣2)2﹣4(m﹣1)≥0,解得m≤2;(2)由根与系数的关系可得x1+x2=2,x1x2=m﹣1,∵x12+x22=6x1x2,∴(x1+x2)2﹣2x1x2=6x1x2,即(x1+x2)2=8x1x2,∴4=8(m﹣1),解得m=1.5.。

相关文档
最新文档