大学物理-第1章-电场强度-高斯定理概要
大学物理 第一章静止电荷的电场(必看)
q2d (A) 2 S 0
Байду номын сангаас
)。
q2d (B) S 0 q2d (D) S 0
q2 F Eq 2S 0
q2d (C) 2 S 0
d
d
q E 2 0 2S 0
q 2d A Fd 2S 0
量等于该闭合面内所包围的电荷代数和除以真空的
介电常数,数学表达式为
1 E ds
s
0 ( s面内)
q
典型电荷的电场
(1)点电荷
E
q 4 0 r
2
er
(2)半径为R 、带电量为Q均匀带电球面
E0
E Q 4 0 r
2
rR
er
rR
(3)均匀带电无限长直线
E 2 0 r
2 ES 2 xS
底面
E
x
0
0
d x 时: 2 q DS
2 ES DS
0
D E 2 0
例 题 15 15、如图所示,一无限长的均匀带电圆柱体,
体电荷密度为 ,截面半径为 R 。
求:
(1)柱内( r R )电场强度分布?
(2)柱外(r R)的电场强度分布?
直线中垂线的P点到带电直线中心o的距离
OP L
时,P点的电场强度大小。 解(1)
dE
E
L 2 L 2
y
L r ax 2
o
x
1 1 ( ) L 4 0 ( a x) 2 4 0 a a L 2
dq 4 0 r 2 dx
大学物理 高斯定理
正点电荷与负点电荷的电场线
+
-
第1章 静止电荷的电场 章
10
大学 物理学
1.6 高斯定理
一对等量正点电荷的电场线
+
+
第1章 静止电荷的电场 章
11
大学 物理学1.6 高斯定理源自一对等量异号点电荷的电场线
-
+
第1章 静止电荷的电场 章
12
大学 物理学
1.6 高斯定理
一对不等量异号点电荷的电场线
2q
3.高斯定理源于库仑定律 3.高斯定理源于库仑定律 高于库仑定律 高斯 定理
(2)高斯定理高于库仑定律 (以下将要证明) (2)高斯定理高于库仑定律 以下将要证明) A.
库仑 定律
第1章 静止电荷的电场 章 4.静电场性质的基本方程 4.静电场性质的基本方程
7
大学 物理学
1.6 高斯定理
r r 1 ∫ E ⋅ dS =
q2
q3 q6
∫
S
r r r r r r r r r E ⋅ dS = ? E = E1 + E 2 + E 3 + E 4 + E 5 + E 6
∫
S
r r E ⋅ dS =
∫
S
r r E1 ⋅ d S +
∫
S
r r E 2 ⋅ dS +
∫
S
r r E3 ⋅ dS
+
=
∫
S
r r r r r r E 4 ⋅ dS + ∫ E5 ⋅ dS + ∫ E6 ⋅ dS
2
=∫
q
dS = 2
q
大学物理第一章 静电场
静止电荷的电场
本章是静电部分重点,主要讨 论如何描述电场,即从电荷在电场 中受力的角度建立电场强度的概念。 重点讨论用两种方法求场强分布。
1
一、基本概念
1. 电荷
(1) 种类 只有两种 (2) 电荷是量子化的(charge quantization ) 自然界物体所带电荷:q = ne (3) 电荷遵从守恒定律 (law of conservation of charge) (4) 电量是相对论不变量
dE
dq 4 o r
e 2 r
13
例2 均匀带电直线,带电量为q,长为L,
求空中任意一点P的场强。
解:
(1)取电荷元
q dq dl dl L
y
dq
(2)电荷元产生 元场强大小 1 dq dE 4 0 r 2
L
dl
r
o
x
P
14
dE
x
方向:与dq到场点的矢径 r
q 1 1 Ey 4 0 L x 2 ( L d )2 x2 d 2
式中:
x是场点到带电线的垂直距离
d 是垂足到直线下端点的距离(取绝对值)
17
(5)长直带电线周围任一点电场强度
大小:
E E E E E E
2 x 2 y 2 z 2 x
2. 数学表达式:
q1q2 F k 2 er r
er :
单位矢径
大小:等于1 方向:从施力电荷(场源) 指向受力电荷(场点) 3
1 k 8.988 1012 Nm 2 / c 2 4 o
o 8.8510 12 C 2 / Nm 2
大学物理 高斯定理
引言概述:在大学物理中,高斯定理是一项重要的物理原理,它描述了电场和磁场的性质。
高斯定理由德国物理学家卡尔·弗里德里希·高斯于18世纪中叶提出,是电磁学的基础之一。
本文将介绍高斯定理的概念、原理及其在电场和磁场中的应用。
正文内容:1. 高斯定理的概念1.1 定义高斯定理是描述电场和磁场分布的一种数学工具,它通过计算电场或磁场通过一个闭合曲面(高斯面)的总通量来研究场的分布。
1.2 数学表达高斯定理可以用数学表达式表示为:∮E·dA = q/ε0,其中∮E·dA表示场在闭合曲面上的总通量,q表示闭合曲面内的电荷量,ε0为真空介电常数。
2. 高斯定理的原理2.1 高斯面的选择高斯定理中的高斯面是根据具体问题选择的,一般情况下我们选择对称性较高的闭合曲面,以简化计算。
2.2 电场线的特性高斯定理的基础是电场线的性质,电场线从正电荷流向负电荷,且与介质边界垂直,通过一个封闭曲面的电场线数目与该封闭曲面内的电荷量有关。
2.3 通量与电场强度高斯定理中的总通量与电场强度呈正相关关系,通过计算总通量可以得到闭合曲面内的电场强度大小。
3. 高斯定理在电场中的应用3.1 点电荷的场分布高斯定理可以用来研究点电荷周围的电场分布,通过选择以点电荷为中心的球面作为高斯面,可以计算出球面内外的电场强度大小。
3.2 均匀带电球壳的场分布对于均匀带电球壳,可以通过选择以球壳为中心的闭合曲面来计算球壳内外的电场分布,根据高斯定理可以得到球壳内外的电场强度大小。
4. 高斯定理在磁场中的应用4.1 磁场的总通量类似于电场,磁场也可以使用高斯定理来描述,通过计算磁场通过闭合曲面的总通量可以了解磁场的分布情况。
4.2 磁场的磁感应强度高斯定理在磁场中的应用可以得到磁场的磁感应强度大小,通过选择合适的闭合曲面,可以计算出曲面内外的磁感应强度。
5. 高斯定理的实际应用5.1 高斯定理在电容器中的应用电容器是电子器件中常见的元件,根据高斯定理,可以计算电容器两极板之间的电场强度,进而了解电容器的性能。
《大学物理》课程教学大纲
《大学物理》课程教学大纲一、课程基本信息总学时136学时,讲课102学时,习题讨论课26学时,演示实验8三、课程教学的有关说明1、本课程课内外学时比例:1:2;平均周学时:4。
2、本课程是公共基础课,分连续两个学期完成。
3、在教学中注意把传统教学手段和现代化教学手段相结合,充分利用现代化教学手段进行教学。
四、对于能力培养的基本要求通过大学物理课程教学,应注意培养学生以下能力:1.独立获取知识的能力——逐步掌握科学的学习方法,阅读并理解相当于大学物理水平的物理类教材、参考书和科技文献,不断地扩展知识面,增强独立思考的能力,更新知识结构;能够写出条理清晰的读书笔记、小结或小论文。
2.科学观察和思维的能力——运用物理学的基本理论和基本观点,通过观察、分析、综合、演绎、归纳、科学抽象、类比联想、实验等方法培养学生发现问题和提出问题的能力,并对所涉问题有一定深度的理解,判断研究结果的合理性。
3.分析问题和解决问题的能力——根据物理问题的特征、性质以及实际情况,抓住主要矛盾,进行合理的简化,建立相应的物理模型,并用物理语言和基本数学方法进行描述,运用所学的物理理论和研究方法进行分析、研究。
五、对于素质培养的基本要求通过大学物理课程教学,应注重培养学生以下素质:1.求实精神——通过大学物理课程教学,培养学生追求真理的勇气、严谨求实的科学态度和刻苦钻研的作风。
2.创新意识——通过学习物理学的研究方法、物理学的发展历史以及物理学家的成长经历等,引导学生树立科学的世界观,激发学生的求知热情、探索精神、创新欲望,以及敢于向旧观念挑战的精神。
3.科学美感——引导学生认识物理学所具有的明快简洁、均衡对称、奇异相对、和谐统一等美学特征,培养学生的科学审美观,使学生学会用美学的观点欣赏和发掘科学的内在规律,逐步增强认识和掌握自然科学规律的自主能力。
六、教学内容及基本要求模块1力学:第一单元质点运动学第一讲质点运动的描述,第二讲圆周运动与一般平面曲线运动,第三讲相对运动基本要求:1、质点运动的描述(1)掌握:位矢、位移、速度、加速度等物理量的定义及表达式,能够从已知的运动方程求导得到速度、加速度;同时能够从已知的速度或加速度积分得出运动方程。
大学物理-电场强度通量,高斯定理
2
i
0
q
i
E 4πr 0
E 4 πr
2
q
E 0
0
E
q 4 π 0 r 2
例2 计算均匀带电球体的场强分布,q , R 解: 通量
q 4 πR 3 3
qi 2 Φe E dS E 4πr S 0
r<R r>R 电量
电量
4 3 q π r i 3
S S
n
E
曲面闭合时
Φe E dS E cos dS
S S
S
dS
注: E为dS处的电场强度
n E
例 三棱柱体放置在如图所示的匀强电 场中. 求通过此三棱柱体的电场强度通量. 解
Φe Φei
i 1
5
y
N
S1
P
S2
Φe1 Φe 2
2、高斯 (Gauss) 定理 (1) 证明: 略.书P166-168 (2 )内容(书P168): 真空中 注:
1 Φe E dS
s
0
q
i 1
n
in i
①公式中S:高斯面(闭合曲面)
②穿过S面的电场强度通量e: 只由S面内的电荷决定
(如图中 q1、q2) ③ E : 面元 dS 处的场强 , 由所有电荷(面内、外电荷) 共同产生(如图中 q1、 q2 、 q3)
;
.
q 8 0
(3) 若将此电荷移到正方体的一 个顶点上,则通过整个 正方体表面的电场强度通量为
1 e E dS
s
0
q
大学物理静电场的高斯定理
n
过P点作高斯面
eSE dS
P
侧 E d S 上 E 底 d S 下 E 底 d S
侧 E d S E 侧 d S E 2 r l
根据高斯定理得
r
l n E n
E2rl 1l 0
E 2 0 r
例题2 已知“无限大”均匀带电平面上电荷面密度为
求 电场强度分布
解 电场强度分布具有面对称性
§4.2 静电场的高斯定理
一、电通量
电场线:形象描写电场强度的假想曲线
规定: 起始于正电荷(或无穷远处),终止于负电荷(或无穷远处)
电场线上的任一点的切线方向为该点电场强度的方向;
通点过E电的场大中小某,点即,垂E直于dEN的单位面积的电场线等于该 dS
ds
E
电场线
电场线的特点:
• 起始于正电荷,终止于负电荷(或
(3) 通过闭合曲面的电通量
e de S E d S
穿出、穿入闭合面电力线条数之差
dS2 E
二、静电场的高斯定理
高斯定理的推导
1.点电荷q处在任一球面的球心,则通过此球面的电通量为
eE ds 4 q 0R 2d sq 0
q
则穿过球面的电力线条数为 0
ds
2.由于电力线在空间不能中断,当以
q1 q2 q3
高斯定理
e SE dS10q内
(不连续分布的源电荷)
Φe SE dSV10dV
(连续分布的源电荷)
E
是高斯面内外所有电荷产生的;
e
只与内部电荷有关。
真空中的任何静电场中,穿过任一闭合曲面的电通量,
等于该曲面所包围的电荷电量的代数和乘以
1 0
讨论 静电场的高斯定理适用于一切对称分布的静电场;反映电场 是有源场;
大学物理电磁学总结
大学物理电磁学总结电磁学部分总结静电场部分第一部分:静电场的基本性质和规律电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。
静电场的物质特性的外在表现是:(1)电场对位于其中的任何带电体都有电场力的作用(2)带电体在电场中运动, 电场力要作功——电场具有能量1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。
电场强度 E =q 0∞ W a 电势 U a ==E ⋅d rq 0a2、反映静电场基本性质的两条定理是高斯定理和环路定理Φe =E ⋅d S =ε0∑qL E ⋅d r =0要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。
重点是高斯定理的理解和应用。
3、应用(1)、电场强度的计算1q E =r 02a) 、由点电荷场强公式 4πεr 及场强叠加原理 E = ∑ E 计i 0算场强一、离散分布的点电荷系的场强1q i E =∑E i =∑r 2i 0i i 4πεr 0i二、连续分布带电体的场强 d q E =⎰d E =⎰r 204πε0r其中,重点掌握电荷呈线分布的带电体问题b) 、由静电场中的高斯定理计算场源分布具有高度对称性的带电体的场强分布一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题详见课堂笔记。
还有可能结合电势的计算一起进行。
c) 、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算或电势分布已知的情形),掌握作业及课堂练习的类型即可。
(2)、电通量的计算a) 、均匀电场中S 与电场强度方向垂直b) 、均匀电场,S 法线方向与电场强度方向成θ角E =-gradU =-∇U∂U ∂U ∂U =-(i +j +k )∂x ∂y ∂zc) 、由高斯定理求某些电通量(3)、电势的计算a) 、场强积分法(定义法)——计算U P =⎰E ⋅d rb) 、电势叠加法——q i ⎰电势叠加原理计算⎰∑U i =∑4πεr⎰0iU =⎰dq ⎰dU =⎰⎰⎰4πε0r ⎰第二部分:静电场中的导体和电介质一、导体的静电平衡状态和条件导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状态。
大学物理静电学总结
大学物理静电学总结静电学是物理学中的一个重要分支,主要研究静止电荷之间的相互作用和电荷分布规律。
在大学物理课程中,静电学通常是一个重要的章节,涵盖了基本概念、定理、公式和应用。
本文将简要总结大学物理静电学的主要内容。
一、基本概念1、电荷:电荷是物质的基本属性,可以分为正电荷和负电荷。
电荷的量称为电荷量,用符号Q表示,单位为库仑(C)。
2、电场:电场是电荷周围存在的一种特殊物质,它可以对放入其中的电荷施加作用力。
电场强度E是描述电场性质的一个物理量,单位为牛/库仑(N/C)。
3、电势:电势是描述电场中某一点电场强度大小的物理量,用符号V表示,单位为伏特(V)。
4、电容:电容是描述电容器储存电荷能力的物理量,用符号C表示,单位为法拉(F)。
5、静电荷分布:静电荷分布是指电荷在空间中的分布情况,可以用电荷密度、电荷线密度和电荷面密度来描述。
二、基本定理和公式1、高斯定理:高斯定理表明,穿过一个封闭曲面的电场强度通量等于该曲面内电荷量的代数和除以真空介电常数。
2、静电场基本方程:静电场基本方程表明,电势V和电场强度E之间存在关系▽·E=ρ/ε0和▽×E=0,其中ρ表示电荷密度,ε0表示真空介电常数。
3、静电场中的能量:静电场中的能量可以用电势能EP和电场能量WE来表示。
其中,电势能EP=QV,电场能量WE=1/2ε0E²。
4、电容器的充电和放电:电容器的充电过程是指将电荷加到电容器两极板上,放电过程是指将电荷从电容器两极板上移走。
充电和放电过程中,电流I与电压U之间存在关系I=dQ/dt=U/R和U=dQ/dt=I×R,其中R表示电阻。
5、静电感应:当一个导体置于电场中时,由于静电感应,导体内部会产生相反的电荷分布,使得导体表面出现电荷。
静电感应的原理可以用安培环路定律和法拉第电磁感应定律来解释。
6、静电屏蔽:静电屏蔽是指将一个导体置于电场中时,由于静电感应,导体表面会产生相反的电荷分布,使得外部电场对导体内部的影响减弱。
大学物理高斯定理
大学物理高斯定理简介大学物理中,高斯定理(也称为电通量定理)是电学领域中的一个重要定理,它描述了电场通过一个封闭曲面的总电通量与该曲面内的电荷量之间的关系。
高斯定理的数学表达式是一个面积分,通过对电场和曲面的特性进行积分计算,我们可以计算得到相应的电通量。
定理表述高斯定理可以用数学公式表述如下:其中, - 表示对封闭曲面 S 的面积分; - 表示电场的向量;- 表示面元矢量; - 是真空中的介电常数(气体中也可近似使用该值); - 表示电荷密度在封闭曲面内的体积分。
解读根据高斯定理,电通量与环绕其的电荷量成正比。
如果电场线密集,表示电通量会相应增大,而如果电场线稀疏,表示电通量相应减少。
因此,高斯定理为我们提供了一种计算电场分布和电荷分布之间关系的方法。
高斯定理的背后思想是通过找到一个适当的曲面,使得计算曲面上的电场更加容易,从而求得电场的总电通量。
这个曲面可以是球面、柱面、立方体等等,具体选择曲面要与问题的几何特征和对称性相匹配。
应用举例例子1:均匀带电球考虑一个均匀带电球体,电荷密度为,半径为。
我们想通过高斯定理计算球内外的电场。
在这种情况下,由于球具有球对称性,我们选择一个以球心为中心的球面作为高斯曲面。
根据球对称性,球的电场在球面上处处相等,并且与球面的法线垂直。
因此,和在点积后等于,其中是球面上的电场强度。
曲面的面积元等于球的表面积元。
因此,高斯定理可简化为:等式的右边是整个球的表面积,用!表示。
由于电场是球对称的,且垂直于球面,所以电场与面积元相乘的结果在整个球面上是相等的。
由于曲面上的电场都是相等的,整个球面的面积元乘以电场强度后等于电场强度乘以整个球面的面积,所以可以简化为:解得:其中,为球内的总电荷量。
例子2:无限长均匀带电线考虑一个无限长均匀带电线,线密度为。
我们想通过高斯定理计算线外的电场。
在这种情况下,由于线具有柱对称性,我们选择一个以线为轴的柱面作为高斯曲面。
我们将柱面的两个底面分别设为 A 和 B,其中 A 的面积为,B 的面积为。
大学物理Ⅱ 高斯定理
P
l
e
E dS S
E dS
侧 E dS 上底 E dS 下底 E dS
侧 EdS E 侧 dS E 2r l
根据高斯定理得 E 2r l 1 l 0
E 2 0 r
用高斯定理求场强小结:
1 . 对称性分析
电荷分布对称性→场强分布对称性
点电荷 球对称性 均匀带电球面
均匀带电球壳
球体
轴对称性 柱对称
无限带电直线
无限带电圆柱 无限圆柱面 无限同轴圆柱面
无限大平面 面对称性 无限大平板
若干无限大平面
2. 高斯面的选择
①高斯面必须通过所求的场强的点。
②高斯面上各点场强大小处处相等,方向处处与该 面元线平行;或者使一部分高斯面的法线与场强方 向垂直;或者使一部分场强为零。
+ q+ +
+
0
R
r
高斯定理的应用
例2 均匀带电球体的电场。球半径为R,带电为q。
解:电场分布也应有球对称性,方向沿径向。
作同心且半径为r的高斯面
1)r R时 ,
E ds E ds
E 4r2
s
s
r
q
0
4 r3
3
0
q
4 R3
4 r3330E qr4 0R3
R
高斯面
高斯定理的应用
Φe前 Φe后 Φe下
s
E
dS
0
y
P
N
en
o
zM
en
E
en
Q
Rx
Φe左
s左
E
dS
ES左
cosπ
ES左
Φe右 s右E dS ES右 cos ES左
大学物理之高斯定理
的代数和除以 0,而与闭合曲面(高斯面)外的
电荷无关。
•
其数学表达式为 e
s
E dS
1
0
qi
• 注意: E是高斯面上任一点的电场强度,该E与所 有产生电场的场源有关。
2、高斯定理的验证---以点电荷为例
• 已知 E q ------q为场源点电荷的带电量
S
S/
E
e E S
e ES cos
• 非匀强电场中(曲面)的电通量求法
E
de E dS
S
e
E dS
S
• 电场中的任意闭合曲面S、非均匀电场强度E的通量:
e E cosdS
SE dS
2、有关电通量的注意点
场源电荷为点电荷系或电荷连续分布的带电体qjs?dsie?e??niiee1??????jjiieee???s内s外???ssdee??sdeesjjii????????????????????sjjsiisesedd??????????????ijsjsisese????dd00??iiq0?内q结论?在真空静电场中穿过任一闭合曲面的电场强度通量等于该曲面所包围的所有电荷的代数和除以而与闭合曲面高斯面外的电荷无关
• 2、(静电场中)电场线不是闭合曲线,在静电场中,电场线起 始于正电荷(或无穷远处),终止于负电荷(或无穷远处),不 形成闭合曲线。
• 3、电场线的每一点的切线方向都跟该点的场强方向一致。 • 4、电场线的疏密与电场强弱的关系:电场线的疏密程度与场强
大小有关,电场线密处电场强,电场线疏处电场弱。 • 5、电场线在空间不相交、不相切、不闭合。
电学高斯定理-概述说明以及解释
电学高斯定理-概述说明以及解释1.引言1.1 概述:电学高斯定理,又称高斯电场定理,是电学领域中一个非常重要的定理,它描述了电场在闭合曲面上的总通量与在该曲面内所有点电荷的代数和之间的关系。
通过高斯定理,我们可以更加深入地理解电场的性质和分布。
在本文中,我们将对电学高斯定理进行详细探讨,包括其概念、数学表达以及应用。
通过对电场的分析和计算,我们可以更好地理解高斯定理在电学领域中的重要性和实际应用价值。
同时,我们也将展望未来高斯定理的发展方向,探讨其在电学研究中的潜在应用和意义。
通过本文的学习,读者将能够更加全面地认识和理解电学高斯定理,为其在实际工程和科研中的应用提供帮助和指导。
1.2 文章结构本文将从引言部分开始,首先概述电学高斯定理的重要性和应用价值,然后介绍文章的结构安排。
接着将进入正文部分,详细讨论电学高斯定理的概念、数学表达以及其在现实生活中的应用情况。
最后,结论部分将总结电学高斯定理的重要性和在电学领域的应用,同时展望未来高斯定理的发展趋势。
整篇文章将全面介绍电学高斯定理,帮助读者更好地理解和应用这一重要理论。
1.3 目的电学高斯定理作为电磁学中的重要定律之一,其目的在于帮助我们理解电荷在电场中的行为规律。
通过深入研究高斯定理,我们可以更好地理解电场分布情况,预测电荷的运动轨迹,并解决复杂电学问题。
此外,掌握电学高斯定理还可以为我们提供一种便捷的计算电场强度的方法,简化电场分析的过程。
通过对高斯定理的掌握,我们可以更高效地解决工程中的电学问题,提高电学学科的研究水平和工程应用技术。
因此,本文旨在深入探讨电学高斯定理的概念、数学表达和应用,帮助读者更好地理解电场的特性,拓展电学知识,为电学领域的学习和研究提供有益的参考。
2.正文2.1 电学高斯定理的概念电学高斯定理,也称为高斯通量定理,是电学领域中的一个重要定理。
它描述了电场通过任意闭合曲面的总通量等于该曲面内的电荷总量的1/ε₀倍,其中ε₀为真空介电常数。
大学物理静电场的高斯定理
高斯定理的数学表达形式简洁明了,是解决静电场问题的重要
03
工具。
高斯定理在物理中的重要性
高斯定理在物理学中具有广泛 的应用,不仅限于静电场。
它可用于分析恒定磁场、时 变电磁场以及相对论性电磁
场中的问题。
高斯定理是电磁学理论体系中 的重要基石,对于深入理解电 磁场的本质和规律具有不可替
代的作用。
THANKS FOR WATCHING
高斯定理的重要性
总结词
高斯定理是静电场理论中的基本定理之一,它揭示了电场与电荷之间的内在联 系。
详细描述
高斯定理的重要性在于它提供了一种计算电场分布的方法,特别是对于电荷分 布未知的情况。同时,它也揭示了电场线总是从正电荷出发,终止于负电荷, 或者穿过不带电的区域。
高斯定理的历史背景
总结词
高斯定理的发现和证明经历了漫长而曲折的历史过程。
VS
按空间位置分类
静电场可分为点电荷产生的电场、线电荷 产生的电场、面电荷产生的电场等类型。 这些不同类型的电场具有不同的分布规律 和性质。
05
高斯定理的推导过程
利用高斯定理推导电场强度与电通量的关系
总结词
通过高斯定理,我们可以推导出电场强度与 电通量之间的关系,即电场线穿过任意闭合 曲面的电通量等于该闭合曲面所包围的电荷 量与真空电容率的乘积。
静电场的电场强度与电势具有相对独立性
电场强度与电势之间没有直接关系,改变电场中某点的电势,不会影响该点的电场强度。
静电场的分类
按产生方式分类
静电场可分为感应起电和接触起电两种 方式。感应起电是由于带电体在接近导 体时,导体内部电荷重新分布而产生电 场;接触起电是两个不同物体相互接触 时,由于电子的转移而产生电场。
大学物理电磁学知识点
大学物理电磁学知识点静电场中的知识点:静电场是指电荷分布不变的电场。
其中, XXX是指单位正电荷所受到的力, 其公式为E=F/q。
场强叠加原理指在同一点上受到多个电荷的作用时, 场强等于各个电荷场强的矢量和。
点电荷的场强公式为E=q/(4πεr^2)。
用叠加法求电荷系的电场强度的公式为E=∑Ei, 其中Ei是每个电荷的场强。
高斯定理是指电场线密度与电荷量成正比, 与距离成反比。
公式为E=∫dq/4πεr^2.电势是指单位电荷所具有的势能, 其公式为V=∫E·dl。
对于有限大小的带电体, 取无穷远处为零势点。
电势差的公式为Vb-a=∫E·dl, 电势叠加原理是指电势可以标量叠加。
点电荷的电势公式为V=q/(4πεr), 而电荷连续分布的带电体的电势可以通过电荷密度积分得到。
电荷q在外电场中的电势能的公式为V=q/(4πεr)。
移动电荷时电场力的功公式为w=q(Va-Vb)。
场强与电势的关系为E=-∇V。
导体的静电平衡条件包括内部电场为零和表面法向电场为零。
静电平衡导体上的电荷分布是指电荷只能分布在导体的表面上。
电容的定义为C=q/V, 其中平行板电的电容公式为C=εS/d。
电的并联的公式为C=∑Ci, 而串联的公式为1/C=∑1/Ci。
电的能量公式为We=CV^2/2, 电场能量密度公式为εE^2/2.电动势的定义是指单位电荷通过电源时所获得的能量。
静电场中的电介质知识点包括电介质中的高斯定理、介质中的静电场和电位移矢量。
真空中的稳恒磁场知识点包括毕奥-萨伐定律和磁场叠加原理。
毕奥-萨伐定律是指电流元产生的磁场与电流元、场点的位置和方向有关。
磁场叠加原理是指在同一点上受到多个电流元的作用时, 磁场等于各个电流元磁场的矢量和。
在若干个电流(或电流元)产生的磁场中, 某点的磁感应强度等于每个电流(或电流元)单独存在时在该点所产生的磁感强度的矢量和, 即mathbf{B}=\sum \mathbf{B}_i$$以下是要记住的几种典型电流的磁场分布:1)有限长细直线电流mathbf{B}=\frac{\mu I(\cos \theta_1-\cos \theta_2)}{4\pi a}$$其中, $a$为场点到载流直线的垂直距离, $\theta_1$、$\theta_2$为电流入、出端电流元矢量与它们到场点的矢径间的夹角。
大学物理电场强度高斯定理概要
E
4 0
Q
a
L
a
Q
4 0
a2
近似为点电荷
22
求解步骤
i 1
n i 1
qi
40
ri 3
r ri
r
r
E Ei
场强叠加原理
i
17
电偶极子
由等值异号的点电荷 +q 及- q 组成
P
条件 l << r
r
电偶极子的轴 -q 到 +q 的径矢 l
电偶极矩(电矩)
p
ql
-q - + +q
l
分+
+
子 偶
104 +
极 子
-
H2O
正电中心
18
1.2.4. 连续分布带电体产生的场强
E
方向 正电荷在该点处受力的方向
单位 N C、V m
14
1.2.2. 点电荷的场强
根据库仑定律:
r F
1
Q q0 rr
4π0 r3
由定义, 可得P 点处
r r F 1 Qr
E q0 4π0 r3 r
Q>0
r r
q0 0
r E
Q<0rFr r
P
r q0 E
0
P
r F
大方小向::QE为正4π,1与0 rQrr2 同向; Q 为负,与 rr 反向
y
dq
解: (1) 如图所示, 取电荷 r
dE
x dx
x
元dq, 对整个电场的贡献 P
为
a
L
L
dq=dx
d
E
1
大学物理-高斯定理
电场强度的计算
F
1
4 0
q1q2 r2
r0
电场强度
E
F
q0
(1) 点电荷的场强
E
1 4πε0
q r2
r0
(2) 场强叠加原理
E E1 E2 En
(3) 电荷连续分布的 带电体的电场
电 荷
E dE
dq
r
(q)
(q) 4 0r 3
分 布
dq ρdV (体 分 布) dq σdS (面 分 布) dq λdl (线 分 布)
q2 A P*
s
q2 B
q1
在点电荷 和q 的q静电场中,做如下的三个闭合面
求通过各闭合S面1 ,的S电2 ,通S量3。,
Φe1
E dS
q
S1
0
Φe2 0
Φe3
q
0
q
q
S1
S2
S3
例:一点电荷位于边长为 a 的立方体的顶角上, 求:通过该立方体表面总的电通量。
解: 顶角所在的三个面上的通量为零。 其余三个面上直接计算困难
(3) 天文学和大地测量学中:如小行星轨道的计算,地球大 小和形状的理论研究等。统计 理论和误差理论,发明了最小二乘法,引入高斯误差曲线。
(5) 高斯还创立了电磁量的绝对单位制。
一、电通量 1、电场线 ( Electric Field Line ) (电场的几何描述)
E
n
dS
E
S E cos dS
Φe
E dS
S
为通过 S 面的电通量。
dS 有两个法线方向,dφ 可正可负。
S为封闭曲面
规定:闭合面上各面元的外法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q1 d1
点电荷 q1
r
q2
当线度 d1 和 d2 << r d2
r
点电荷 q2
2. 库仑定律 1785年库仑扭秤实验确定: 真空中两个静止的点
电荷间相互作用力的大小 F12 与它们的电荷量q1、q2 的乘积成正比,与它们之 间的距离r12的平方成反比, 作用力的方向沿两电荷的 连线,同号电荷相斥,异 号电荷相吸。
5. 正确理解高斯定理的物理意义 6. 会用高斯定理求解特殊对称的电场强度
§1.1 电荷 库仑定律
1.1.1. 电荷 电荷的性质
1. 电荷 带电的物体称为带电体,小的带电体称电荷
2. 电荷的分类
玻璃棒
正电荷
胶木棒 负电荷
丝绸
毛皮
3. 电荷量
物体所带电荷的多少称为电荷量
单位 库仑(C )
4. 电荷守恒定律 在一个与外界没有电荷交换的系统内,不
r
r
E Ei
场强叠加原理
i
电偶极子
由等值异号的点电荷 +q 及- q 组成
P
条件 l << r
r
电偶极子的轴 -q 到 +q 的径矢 l
电偶极矩(电矩) pql
-q - + +q
l
分+
+Leabharlann 子104 +偶
极 子
-
H2O
正电中心
1.2.4. 连续分布带电体产生的场强
视为点电荷
dq
r
r
r
Q
P dE
L
dq=dx
dE
1
40
d x
x2
( Q > 0,沿x轴负方向) 如何积分?
因此,电场为
E a L a4 1 0Q L x d 2x4 Q 0L a 1L 1a 4 0a Q L a
讨论: (1)Q > 0,电场方向沿x轴负方向 Q < 0,电场方向沿x轴正方向
(2)若L << a,则
E40aQ La4Q 0a2 近似为点电荷
电磁学分册
第一章 电场强度 高斯定理
目录
§1.1 电荷 库仑定律 §1.2 电场 电场强度 §1.3 电场线 电场强度通量 高斯定理
1.理解电荷的性质,电荷守恒定律及电荷的量 子化, 2.理解电场强度的定义,理解电场叠加原理 3.会用积分法计算简单带电体产生的电场 4.理解电场线的性质,理解静电场是有源场
Ex
d Ex
E y d E y
矢量积分
化为标量积分:
E z d E z
注意分析有无某个分量由于抵消而为零的情况
例 6-1: 长为L的细棒带有电荷q. 求沿棒长方向距棒中 心x 远处P点的电场强度.
y
dq
解: (1) 如图所示, 取电荷 r
dE
x dx
x
元dq, 对整个电场的贡献 P
为
a
L
r
q0
E
方向 正电荷在该点处受力的方向
单位 N C、V m
1.2.2. 点电荷的场强
根据库仑定律:
r F
1
4π0
Qq0 r3
r r
由定义, 可得P 点处
r
r F 1 Qr
E q0
4π0
r3
r
Q>0
r r
q0 0
r E
Q<0
r
r F
r
P
r q0 0 EP
r F
大方小向::QE为正4π,1与0 rQrr2 同向; Q 为负,与
▪同一点,不同电荷,受力与电荷量的比值不变 ,即
r F 确定的矢量 q0
结论
电场中某一确定点处的比值
r F
q 0 (大小和方
向)与试验电荷 q 0无关。
3. 电场强度
▪受电的场力中某r 点的电Fr 场强度等于该点处单位正电荷所
E q0
r
r
r F
q0 0
E
r
▪ E 是矢量
大小 E F
q0 0 F
r r
反向
点电荷的电场分布
q>0 (a)正电荷
q<0 (b)负电荷
1.2.3. 一定数量点电荷产生的电场强度
q0 受到的合力为
r rr r F = F 1 + F 2 + L F n
P 点场强
q1
r
r1
r
p q0
r E1
q2
E
r
2
r2
r E
nr
E ri q 10 F i E r1E r2LE rnin 1E riin 14q0 iri3rri
电荷的周围存在电场,电荷通过电场相互作用
超距作用
电荷 电场
电荷
2. 静电场的最重要表现: ▪ 力 定义电场强度 ▪ 功 保守力、可引入电势能
二. 电场强度
1. 试验电荷 q 0 Q
电荷量足够小r 的点电荷
F1
r r1
q0
2. 实验表明
r r2
r
q0 F 2
大小
▪ q 0置于场中某一确定点,其受力方向确定。
分解
Q
dq
设带电体的电荷体密度为,
则 dqdV dq在 P 点产生的场强为
r
dE
1
4π0
r r r3
dV
叠加
r
r
E dE
P点的场强为
r
E
1
4π0
r
r Vr3
dV
S d S
dqdSSdS
面电荷
l dl
dqdlldl
线电荷
矢量积分一般分解为分量积分如下:
r r r r
d E id E x jd E y k d E z
求解步骤
1、建立坐标系;
2、任意位置取电荷元dq,并写出dq的表达式;
扭秤实验
v F12
1 4π0
q1q 2
r1
2 2
r e r12
vv F21 F12 v
1 4π0
q1q 2
r1
3 2
rv1 2
大小
F12
k
q1q2 r122
1
4π0
q1q2 r122
v F 21 q1
rv1 2
F 12
q2
方向 沿 q1、q2 的连线,同性相斥,异性相吸
k9190 N m 2 C 2
论发生什么样的过程,系统内一切正、负电荷 的代数和总是保持不变。
5. 电荷的量子化 一切带电体的电荷量都是电子电荷量 e 的
整数倍。
q ne (n1,2,3,)
1.1.2. 真空中的库仑定律
1. 点电荷 当每一带电体的线度与它们间的距离相较甚
小时,它们的形状、大小和电荷分布对相互作用 力的影响可忽略不计,这样的带电体称为点电荷。
比例系数
08 .8 5 1 10 C 22(N m 2)
真空中的电容率
注意:
▪ 库仑定律公式仅适用于两个点电荷之间的相互
作用。
▪ 后来的实验表明,不动的点电荷1激发的电场
施加在运动的点电荷2上的电场力仍然遵循库仑 定律,与点电荷2的运动状态无关。
▪ 实验还表明,不动的点电荷1激发的电场施加
在运动的点电荷2上的电场力与电荷所处的环境 无关,存在电介质的情形点电荷2所感受的电场 力与真空情形不一样,是由于电介质上的极化电 荷激发的电场也同时对点电荷2施加了作用。
▪ 实验证明,库仑相互作用力满足力的独立作用
原理和力的叠加原理,具有可加性。
q1
v F2
v F3 q
v
电荷 q 所受合力为
vvv v q 2 FF 1F 2F 3
q3
F1
用矢量合成法计算
当四个电荷为同号电荷时
§1.2 电场 电场强度
1.2.1 电场 电场强度
一. 电场 1. 电场 一种特殊形态的物质