等差数列常考题型归纳总结很全面

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列及其前n项和

教学目标:

1、熟练掌握等差数列定义;通项公式;中项;前n项和;性质。

2、能熟练的使用公式求等差数列的基本量,证明数列是等差数列,解决与等差数列有关的简单问题。

知识回顾:

1. 定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的差等丁同一个常数,那么这个数列就叫等差数歹0,这个常数叫做等差数列的公差,公差通常用字母d表示。用递推公式表示为a n a n1 d(n 2)或a n1 a n d (n 1)。(证明数歹0是等差数歹0的关键)

2. 通项公式:

等差数列的通项为:a n a i (n i)d,当d 0时,a n是关丁n的一次式,它的图象是一条直线上自然数的点的集合。推广:a n a m (n m)d

3. 中项:

如果a , A , b成等差数列,那么A叫做a与b的等差中项;其中A J。

2

4. 等差数列的前n项和公式

S n座U na i虹皂d可以整理成&= Sn2+(a i d)n。当d』时是n的一个常数 2 2 2 2

项为0的二次函数。

5. 等差数列项的性质

(1) 在等差数歹0 a n中,若m , n , p , q N且m n p q ,则a m a n a p a q ;特别的,若m , p , q N 且2m p q ,则2a m a p a q。

(2) 已知数列a n , b n为等差数列,S n,T n为其前n项和,则冬

b n T2n 1

(3) 若等差数列的前n项和为Sn,则Sn,S2n Sn,S3n S2n,也成等差数列,公差d' n2d ;

S,(n 1) a n

(4) S n & 1 , (n 2).

(5)若数列{%}是公差为d的等差数列,则数列斜也是等差数列,且公差为

考点分析

考点一:等差数列基本量计算

例1、等差数列{a n}中,a i 3a8血120,贝U 3a’ a,的值为

练习

(1)设S n是等差数列a n的前n项和.已知a2 = 3, a6 = 11,则S7等丁

A . 13

B . 35 C. 49 D . 63

(2)数歹U a n为等差数歹0,且a7 2a4 1 , a3 0 ,则公差d =

1 - 1

A. -2

B. —2

C. 2

D. 2

(3)在等差数列a n中,已知a3 2,贝U该数列的前5项之和为

A. 10

B. 16

C. 20

D. 32

(4)若等差数列{a n}的前5项和& = 25,且a2= 3,则a7等丁()

A . 12

B . 13 C. 14 D. 15

1

(5)记等差数列{a n}的前n项和为&,若a1 = 2, S4= 20,则S等丁()

A. 16

B. 24

C. 36

D. 48

(6) a n的前n项和为S n,若a〔2 ,S3 12,则a6 等丁(

A. 8

B. 10

C. 12

D. 14

知点一:等差数列性质应用

例1、等差数列a n中,3(a3 a5)20 a〔。褊)24 ,贝U该数列前13项的和是()

A. 13

B. 26

C. 52

D. 156

练习

1、在等差数列a n中,a1 a9 10 ,则a5的值为

A. 5

B. 6

C. 8

D. 64

2、在等差数列{a n}中,a〔2,a3 a5 10 ,则a’()

A . 5 B. 8 C. 10 D . 14

3、设数歹0 {an}是等差数歹0,若aa+ a4 + & = 12,则a〔+ &+•…+ a’等丁()

A . 14

B . 21 C. 28 D . 35

例2、设等差数歹0 {a n}的前n项和为若&= 9, &= 36,则a7 + 38 + a g等丁()

A . 63 B. 45 C. 36 D. 27

练习、已知等差数歹0 {an}的前n项和为S,且So= 10, &= 30,则 &=.

S2 014 S2 008

例3、已知S n是等差数歹0 {a n}的前n项和,右a = — 2 014 , 2014一2 008 = 6’则&。16 = .

一... ............. ..... .. 一…S3 S2 ...................................... .........

练习、(1)已知等差数列{a n}的前n项和为&且满足--S= 1,则数列{务}的公差是( )

3 2

1 -

A. 2

B. 1

C. 2

D. 3

例4、设S n,T n分别是等差数列a n、b n的前n项和,岛也圣,则冬。

T n n 3 b5

例5、已知等差数列a n的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之

和为25,则这个数列的项数为o

练习1、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390, 则这个数列有( )

A . 13 项

B . 12 项C. 11 项D. 10 项

2、等差数歹U a n的公差d 2, a〔a4 a?川a97 50,那么a3 a& a g川a99 =

A. —78

B. —82

C. —148

D. —182

考点三:等差数列的证明

例1 :在数歹U (a n)中,a〔1, a n1 1 , b n—2—,其中n N*.

4a n 2a n 1

(1) 求证:数列(b n)是等差数列;

(2) 求证:在数列(a n)中对丁任意的n N*,都有a”为1

练习1、数歹U a n满足a〔1, a2 2, a n 2 2a” 1 a” 2

相关文档
最新文档