继电保护技术的历史现状及发展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
继电保护技术的历史现状及发展
电力系统在生产过程中,伴随着各类故障,而在发生故障时往往会造成很严重的后果。例如:电力系统电压大幅度下降,电气设备无法正常工作。或者故障处有很大的短路电流,产生的电弧烧坏了电气设备。还可能破坏发电机的并列运行的稳定性,引起电力系统震荡甚至使整个系统失去稳定而解列瓦解。所以,如何防止故障的发生对整个电力系统就显的尤为重要。因此,通过预防事故或缩小事故范围来提高系统运行的可靠性,最大限度地保证向用户安全连续的供电的继电保护装置就成为了电力系统中的重要一环。
继电保护装置是电力系统的重要组成部分。对保证电力系统的安全经济运行,防止事故发生和扩大起到关键性的决定作用。由于电力系统的特殊性,电气故障的发生是不可避免的。一旦发生局部电网和设备事故,而得不到有效控制,就会造成对电网稳定的破坏和大面积停电事故。现代化大电网对继电保护的依赖性更强,对其动作正确率的要求更高。
一、继电保护技术的发展历史
继电保护技术与当代新兴科学技术相比,继电保护技术已经是相当古老了,然而电力系统继电保护作为一门综合性科学又总是充满青春活力,处于蓬勃发展中。之所以如此,是因为它是一门理论和实践并重的科学技术,又与电力系统的发展息息相关。电力系统在飞速发展的同时,也对继电保护装置不断提出新的要求。电子技术、计算机技术与通信技术的快速发展又为继电保护技术不断地注入了新的活力。继电保护技术以电力系统的需要作为发展的泉源,同时又不断地吸取相关的科学技术中出现的新成就作为发展的手段。电力系统继电保护技术的发展过程充分地说明了这一点。到现在,继电保护技术已经经过了机电式、半导体式、微机式等三个发展阶段。
1、机电式
18世纪末人类已开始利用熔断器防止在发生短路时损坏设备,建立了过电流保护原理。19世纪初,随着电力系统的发展,继电器被广泛应用于电力系统的保护。这个时期被认为是继电器保护技术发展的开端。1905~19O8年研制出电流差动保护,自1910年起开始采用方向性电流保护,于19世纪20年代初生产出距离保护,在30年代初已出现了快速动作的高频保护。由此可见,从继电保护的基本原理上看,到本世纪20年代末现在普遍应用的继电保护原理基本上都已建立。
2、半导体式
20世50年代后,随着晶体管的发展,出现了晶体管保护装置。这种保护装置体积小,动作速度快,无机械转动部分,经过20余年的研究与实践,晶体管
式保护装置的抗干扰问题从理论和实际都得到了满意的解决。
在20世纪70年代,晶体管保护被大量采用。到了20世纪80年代后期,静态继电保护装置由晶体管式向集成电路式过渡,成为静态继电保护的主要形式
3、微机式
20世纪60年代末,科学家提出了小型计算机实现继电保护的设想,但由于价格昂贵,难于实际采用。但随着微处理器技术的快速发展和价格的急剧下降,在20世纪70年代后期,便出现了性能比较完善的微机保护样机并投入运行。20世纪80年代微机保护在硬件和软件技术方面已趋成熟,进入90年代,微机保护已在大量应用,主运算器由8位机,16位机发展到目前的32位机;数据转换与处理器件由A/D转换器,压频转换器(VFC),发展到数字信号处理器(DSP)。这种由计算机技术构成的继电保护称为数字式继电保护,也称微机保护。
二、继电保护技术的发展趋势
电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入新的活力。未来继电保护的发展趋势是向计算机化,网络化及保护、控制、测量、数据通信一体化智能化发展。
1、计算机化
随着计算机硬件技术的迅猛发展,微机保护硬件也在不断发展。从初期的8 位单CPU结构问世,不到5年时间就发展到多CPU 结构,后又发展到总线不出模块的大规模结构。除了具备保护的基本功能外,还具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其他保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这样就使得微机保护装置具有相当于一台PC 的功能。在微机保护发展初期,曾设想过用一台小型计算机做成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这一设想没能实现。现在,同微机保护装置大小相似的工控机的功能、速断、存储容量都大大超过当年的小型机,因此,用成套工控机做成继电保护的时机已经成熟,这将是微机保护的发展方向之一。
2、网络化
计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联差动保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的通信手段。国外早已提出过系统保护的概念,这在当时主要指安全自动装置。因此保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统运行和故障的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置
用计算机网络连接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。
3、保护、控制、测量、数据通信一体化
在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可以从网络上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、测量、数据通信一体化。
目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但需要大量投资,而且使二次回路非常复杂。若将上述的保护、控制、测量、数据通信一体化的计算机装置就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,今后必将在电力系统中得到广泛应用。在采用OTA 和OTV的情况下,保护装置应放在距OTA 和OTV 最近的地方,亦即应放在被保护设备的附近。OTA 和OTV 的光电信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断,另一方面作为测量量,通过网络送主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。
近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各领域的应用,在继电保护领域应用的研究也已开始。神经网络是一种非线性映射的方法,很多难以列出方程或难以求解的复杂的非线性问题,应用神经网络方法后则可迎刃而解。如在输电线路两侧系统电势角度摆开情况下,发生过渡电阻的短路就是一个非线性问题,距离保护很难正确做出故障位置的判断,从而造成误动或拒动。如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判断。其他如遗传算法、进化规划算法等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。
现在,继电保护的作用不只限于切除故障元件和限制事故影响范围,还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据, 各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,实现微机保护装置的网络化。这样,继电保护装置能够得到的系统故障信息愈多, 对故障性质、故障位置的判断和故障距离的检测愈准确, 大大提高保护性能和可靠性。
进入20 世纪90 年代以来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用, 电力系统保护领域内的一些研究工作也转向人工智能的研究。专家系统、人工神经网络(ANN)和模糊控制理论逐步应用于电力系统继电保护中, 为继电保护的发展注入了活力。人工神经网络