振动信号处理方法

合集下载

断路器振动信号处理方法

断路器振动信号处理方法

断路器振动信号处理方法在研究的初期,时域包络法、短时能量、短时谱、人工神经网络法等方法被引入到断路器振动诊断中。

随着断路器振动诊断研究的深入发展,除了在原有的方法上进行改进之外,越来越多的新方法被吸纳采用,如细化频谱分析、小波分析、小波包分析、希尔伯特变换、信息端、分形方法、相空间重构等。

(1)时域法时域分析法可以直接从时域振动信号中获取振动事件的发生时刻、振动幅值及其他表示时域波形变化的指标作为特征参数错误!未找到引用源。

o包括包络分析法、短时能量法等。

利用包络分析(Envelope Analysis)方法,可以获得振动事件发生的时刻,如电磁铁动作、触头接触、缓冲器撞击等信息,而且包络幅值还能反映出不同时段振动事件的剧烈程度。

短时能量法(Short Time Energy, STE)对时域信号序列的平方变换进行窗函数滤波,得到能量函数序列再进行后续分析。

(2)频域法频域法将时域的振动信号变换为频域数据,根据各频率成分的分布和变化来进行故障诊断,例如包络谱分析、细化频谱分析等。

包络谱分析对信号包络进行频谱分析,可得到信号包络的频域表示,即包络谱(Envelope Spectrum)。

从而,可以进一步从频域表达信号特征,对高压断路器的状态进行诊。

细化频谱分析(Zoom Spectrum Analysis)采用选带分析方法增加选定频段的谱线密度,有效地改善了频率分辨率。

将线性调频Z变换(Chirp ZTransform, CZT)引入断路器振动信号分析中,并对快速傅里叶变换(FFT)、细化FFT (ZoomFFT)、线性调频z变换进行了比较分析。

(3)时频法时频法将时域信号变换到时频综合平面上,保持了信号的局部特征,特别适合于对非平稳信号进行分析•。

时频法对时域振动信号的时间和频率信息同时进行提取,是断路器机械故障振动诊断研究的主要方法,包括短时傅里叶变换、小波分析、小波包分析、经验模态分解((Empirical Mode Decomposition, EMD)、希尔伯特变换、振荡子波分解等方法。

振动信号的频谱分析与故障诊断

振动信号的频谱分析与故障诊断

振动信号的频谱分析与故障诊断频谱分析是一种常用的信号处理技术,可以对振动信号进行分析和故障诊断。

本文将介绍频谱分析的原理和应用,并探讨其在故障诊断中的作用。

一、频谱分析的原理频谱分析是将一个信号分解成一系列频率成分的过程。

它基于傅里叶变换原理,将时域上的信号转换为频域上的频谱。

通过频谱分析,可以更直观地了解信号的频率特性和频率成分。

在振动信号处理中,频谱分析可以帮助我们获取振动信号的频率谱。

频率谱可以用图形表示,横轴表示频率,纵轴表示振幅。

通过分析频率谱,可以发现信号中的主要频率成分,从而进行故障诊断和分析。

二、频谱分析的方法1. 傅里叶变换(Fourier Transform)傅里叶变换是将信号从时域转换到频域的重要方法。

它将一个连续时域的信号转换为一个连续频域的频谱。

傅里叶变换可以精确地表示信号的频谱信息,但对计算机实现来说,计算量较大。

2. 快速傅里叶变换(Fast Fourier Transform,FFT)为了克服傅里叶变换的计算复杂度,人们提出了快速傅里叶变换算法。

FFT是一种高效的离散傅里叶变换方法,可以在计算机上快速计算信号的频谱。

FFT广泛应用于振动信号处理中,可以实时获得信号的频谱特征。

三、频谱分析在故障诊断中的应用1. 故障特征提取频谱分析可以帮助我们提取振动信号中的故障特征。

不同的故障在频谱上表现出不同的频率成分和振幅分布。

通过比较正常信号和故障信号的频谱特征,可以判断故障类型和程度。

2. 故障诊断频谱分析可以根据特定故障的频率特征,对故障进行诊断。

例如,对于轴承故障,通常会在频谱上出现与旋转频率相关的峰值,通过检测这些峰值可以判断轴承是否发生故障。

3. 故障监测与预警通过对振动信号进行实时频谱分析,可以实现故障的监测与预警。

当频谱中出现异常的频率成分时,说明设备可能存在故障隐患,及早发现并采取措施进行维修,可以避免设备故障进一步恶化。

四、频谱分析的局限性频谱分析虽然是一种有效的振动信号处理方法,但也存在一定的局限性。

振动信号处理

振动信号处理

3) 通过谐波分量间的相位关系,可检测和表征时间序 列中的非线性,以及辨识非线性系统。
4) 检测和表征信号中的循环平稳性以及分析和处理循环平 稳信号。 高阶循环统计量能自动抑制任何平稳(高斯与非高斯)噪 声的影响。
2。确知信号的矩谱分析
2.1确定性信号的能量与功率 设 {X(k)})(k=0;±1,…为实确知信号,其瞬时功率为 !X(k)!2,总能量为:
➢由于频率与周期成反比,因此反映信号高频成份需要用窄时窗,而 反映信号低频成份需要用宽时窗
6.5时频分布的一般理论
更一般的方法是讨论二维的时频分布方法: 1.几个基本概念 (1)信号的能量
(2)时频分布的基本性质
希望时频分布所具有的性质: ➢时频分布必须是实的(最好是正的)一种能量的表示方式,所以为实的。 ➢时频分布关于时间t和频率f的积分为信号的总能量
第五章时频分析基础及短时傅利叶变换
所谓时变,是指信号的统计特性是随时间变化的。由于平稳信 号只不过是非平稳信号的最简单的例子,所以本章要着重讨论的信 号分析方法对任何信号都是适用的。这类分析方法统称为时频分析 方法,它是在时间—频率域而不是仅在时域或仅在频域上对信号进 行分桥的
6.1非平稳信号的研究领域 傅里叶变换及其反变换建立了时域(信号x(t))和领域(谱x(f))之间的—对一(射)关系。
双谱的性质
(1) 双谱满足以下对称性
(2) 零均值高斯信号的高阶谱(阶数大于2) 等于零。 因此双谱很适宜于分析淹没在高斯噪声中的非高斯信号, 理 论上可以完全抑制噪声, 提取有用信息。 (3) 双谱保留了信号的相位信息, 可以用来描述非线性相位耦合。 使用中常将双谱做归一化处理得到双相干谱
双相干谱的物理意义为: 频率X1 与X2 二次相位耦合产 生的能量在X1+ X2 处总能量中所占的比例。双相干谱 函数的平方, 值在0 与1 之间, 定量描述了二次耦合的程 度。当双相干谱函数的平方值为1时, 表示X1+ X2 处的 能量全部来自X1 与X2 间的相位耦合; 当其值为0 时, 表 示不存在相位耦合。

物理实验技术中的振动信号处理方法与技巧

物理实验技术中的振动信号处理方法与技巧

物理实验技术中的振动信号处理方法与技巧振动信号是物理实验中常见的一种信号,它包含了丰富的物理信息。

在物理实验中,如何正确有效地处理振动信号,对于研究现象、分析数据以及获得准确结果至关重要。

本文将介绍几种常用的振动信号处理方法与技巧,帮助实验人员充分利用振动信号的信息。

一、去噪方法与技巧在实验中,振动信号常常受到各种干扰,如电磁干扰、机械噪声等,这些干扰会降低信号的质量。

为了保证振动信号的准确性,必须对其进行去噪处理。

1.数字滤波器数字滤波器是一种常用的去噪方法。

常见的数字滤波器有低通滤波器、高通滤波器和带通滤波器等。

低通滤波器可以过滤高频噪声,而高通滤波器则可以过滤低频噪声。

根据实验需求选择合适的滤波器,可以有效去除噪声。

2.小波变换小波变换是一种时频分析方法,可以将信号分解为不同频率的小波子信号。

通过选择合适的小波基函数和尺度,可以将噪声与信号有效分离,从而去除噪声。

小波变换在去噪中具有一定的优势,尤其适用于非平稳信号。

二、频域分析方法与技巧频域分析是振动信号处理中的一个重要步骤,它可以将时域信号转换为频域信号,进一步分析信号的频率成分、幅度、相位等信息。

1.傅里叶变换傅里叶变换是频域分析的基础方法之一,它可以将信号在时域和频域之间进行转换。

实验人员可以通过傅里叶变换得到信号的频谱图,进而分析信号的频率成分。

傅里叶变换的优点是简单易懂,但在处理非平稳信号时存在一定局限性。

2.短时傅里叶变换短时傅里叶变换是一种改进的傅里叶变换方法,可以处理非平稳信号。

它将信号分成若干小段,在每一段上进行傅里叶变换,然后通过描绘频率随时间变化的谱图来揭示信号的时频特性。

短时傅里叶变换在振动信号分析中应用广泛。

三、谐波分析方法与技巧谐波分析是对振动信号进行频域分析的一种方法,它可以分析信号中不同频率的谐波成分,揭示信号的特征和规律。

1.快速傅里叶变换快速傅里叶变换是一种高效的频域分析方法,可以快速计算信号的频谱。

通过快速傅里叶变换,可以快速得到信号中各个频率的幅度和相位信息,进而分析信号中的谐波成分。

振动信号处理

振动信号处理

第一部分 频域信号处理
1.1 傅里叶级数 频域分析是采用傅立叶变换将时域信号x(t)变
换为频域信号X(f)。
周期信号的频谱分析
傅立叶级数——周期信号分析的理论基础——任何周 期信号都可以利用傅里叶级数展开成多个乃至无穷多 个不同频率的谐波信号的线性叠加。
Dirichlet条件(在一个周期内满足) ——函数或者为连续的,或者具有有限个第一类间断
x(n)=sinnω0
其图形如图
2. 傅利叶变换的几种可能形式
时间函数
频率函数
连续时间、连续频率—傅里叶变换 连续时间、离散频率—傅里叶级数 离散时间、连续频率—序列的傅里叶变换 离散时间、离散频率—离散傅里叶变换
连续时间、连续频率—傅里叶变换
X ( j) x(t)e jtdt
x(t) 1 X ( j)e jtd
振动信号分类
随机振动是一种非确定性振动,它只服从一定的 统计规律性。可分为平稳随机振动和非平稳随 机振动。平稳随机振动又包括各态历经的平稳 随机振动和非各态历经的平稳随机振动。
一般来说,仪器设备的振动信号中既包含有确定 性的振动,又包含有随机振动,但对于一个线 性振动系统来说,振动信号可用谱分析技术化 作许多谐振动的叠加。因此简谐振动是最基本 也是最简单的振动
点; ——函数的极值点有限; ——函数是绝对可积的;
傅里叶级数的三角函数表达形式:
傅立叶级数的三角函数表达式表明:
——周期信号可以用一个常值分量a0和无限多 个谐波分量之和表示;
——A1cos(ω0t-ϕ1)为一次谐波分量(或称基 波),基波的频率与信号的频率相同,高次谐 波的频率为基频的整倍数。
振动信号处理
2012.3
课程主要内容

振动信号处理技术的分类与应用

振动信号处理技术的分类与应用

振动信号处理技术的分类与应用摘要:作为信息的载体,如果要在振动信号中提取出特征信息,就需要采取合理的振动信号处理方式,在状态监测、质量评价、参数检测、故障诊断上获取到有效的信息,本文主要针对机械故障诊断的研究现状与常见类型进行分析。

关键词:振动信号处理技术;分类;应用随着现阶段科学技术的不断发展,机械自动化的水平也在不断加强,功能越来越完善,因此也就对设备维修技术也提出了更高的要求。

在机械的使用过程中,要做好在线监测和故障分析方面,以保证企业的安全生产。

良好的机械状况也会促进生产,提高企业的经济利益,因此保证优良的机械状况是稳定生产的前提。

在生产过程中发现,大多数的机械故障都是在振动以后发生的,可以看出振动对于机械的损害是很严重的,因此如何在机械发生振动时及时的发现并采取行为是我们应该考虑的问题,现阶段也加强了振动信号处理技术的研究。

一、机械故障诊断的研究现状早在上世纪60年代,关于机械故障的理论知识就已经产生,并开始对机械故障进行研究,到了70年代,国外的一些大型的机械设备厂在机械故障的诊断上取得了一定的成绩,这些方面的努力大大降低了机械的故障率,提高了生产效率。

我国的机械故障诊断技术较之国外发达国家开始的较晚,发展至今大致经历了三个阶段,一是在上世纪80年代以前,机械故障的诊断依靠的是仪表器上的指针,技术人员通过指针上的数据判断机械是否正常运行,是否出现故障。

二是到了90年代我们将国外先进的监控仪器引进国内,通过监控设备来分析机械是否有故障,机械故障的排除进入了半自动化。

三是到了21世纪以后,故障诊断技术在我国引进并推广起来,它采用先进的故障排除手段,大大的提高了机械故障的排查能力,降低了机械出现大型故障的概率。

二、振动信号的处理方法1、时域分析方法时域分析方法是利用的最广泛的一种方法,其操作过程比较简单,就是在机械长期使用的过程中,根据机械本身的信号随时间的变动而产生的变动曲线来反应机械的运行情况,从而得出机械自身的一系列数据信息,是否在良好的运行范围内,如果结果出现偏差,要及时的对机械进行检查,以免出现大的故障。

机械振动学基础知识振动系统的振动信号处理方法

机械振动学基础知识振动系统的振动信号处理方法

机械振动学基础知识振动系统的振动信号处理方法机械振动学是研究物体在受到外力作用时所表现出来的振动现象的学科。

在振动系统中,振动信号处理是非常重要的一环,它可以帮助我们更好地了解振动系统的性能和特性,为系统的设计和维护提供重要依据。

本文将介绍振动信号处理的方法及其在机械振动学中的应用。

1. 时域分析时域分析是最基本的信号处理方法之一,它通过对信号在时间轴上的变化进行观察和分析,来获取有关信号的信息。

在振动系统中,我们通常会采集到振动信号的波形,通过时域分析可以得到信号的幅值、频率、周期等特征参数,从而判断系统的运行状态和存在的问题。

2. 频域分析频域分析是将信号在频率域上进行分析的方法。

在机械振动学中,频域分析是非常重要的一种信号处理方法,因为振动信号往往包含了多种频率成分,通过频域分析可以将这些频率成分清晰地展现出来。

常用的频域分析方法包括傅里叶变换、功率谱密度分析、频谱分析等。

3. 频谱分析频谱分析是频域分析的一种重要形式,它可以将信号在频率轴上的能量分布清晰地表示出来。

在机械振动系统中,频谱分析可以帮助我们识别系统中存在的谐波成分、共振频率等信息,为系统的故障诊断和预防提供有力支持。

4. 转子动平衡技术转子动平衡技术是振动信号处理中的一种重要方法,通过对转子在运转时的振动信号进行处理,可以判断转子系统的不平衡情况,并进行相应的校正。

转子动平衡技术在机械工程中有着广泛的应用,可以有效降低机械设备的振动和噪声。

5. 振动传感器技术振动传感器是用于采集振动信号的一种重要设备,它可以将系统振动转化为电信号,并传输给信号处理系统进行分析。

振动传感器技术在机械振动学中有着重要的应用,可以帮助我们实时监测系统的振动情况,及时发现问题并进行处理。

总结:振动系统的振动信号处理是机械振动学中的重要领域,它可以通过时域分析、频域分析、频谱分析、转子动平衡技术和振动传感器技术等方法,来获取系统运行状态和特性的信息,为系统的设计、监测和维护提供支持。

振动信号处理方法综述

振动信号处理方法综述

振动信号处理方法综述振动信号处理是一个极其重要的研究领域,尤其在机械工程、电子工程和物理学等领域中具有广泛的应用。

随着数码信号处理技术的不断发展,振动信号处理方法也在不断更新和完善。

本文将综述当前常见的振动信号处理方法,包括时域分析方法、频域分析方法、小波分析方法和模态分析方法。

时域分析方法:时域分析方法是指直接对振动信号进行时间域分析的方法。

主要包括以下几种:1、峰值检测法:通过寻找振动信号的波峰和波谷来分析振动信号的性质,它可用于快速检测机器故障并确定故障类型。

2、自相关函数法:通过计算振动信号的自相关函数来获得振动信号的特征值,进而实现故障诊断。

3、包络分析法:分析振动信号的包络线变化,用于判定工况条件或或机器设备运行状况是否正常。

频域分析方法:频域分析是指对振动信号进行频域分析的方法,可以更加深入地了解振动信号的频率分布情况,主要包括以下几种:1、傅里叶分析法:将时域信号分解为若干正弦波的叠加,以分析各分量在振动信号中的占比情况。

2、功率谱密度分析法:通过功率谱密度的分析,可以更准确地了解振动源的特性。

其使用广泛的技术是快速傅里叶变换(FFT)技术,以快速计算振动信号的频谱。

小波分析方法:小波分析是一种新兴的信号处理方法,可以同时在时域和频域中分析信号,主要包括以下几种:1、小波多尺度分析法:通过对振动信号的小波多尺度分析,可以更准确地确定振动信号的频率特性。

2、小波包分析法:对振动信号进行小波包分析,可将信号分解成一系列子信号,每个子信号的带宽和频率能够更加清晰地描述振动信号的特点。

模态分析方法:模态分析是指研究振动系统在不同的振动模态下的振动特点。

主要包括以下几种:1、模态分析法:通过响应分析技术,解出振动系统的振型和振频,在工程实践中常用于分析旋转机械和结构的振动特性。

2、主成分分析法:主要用于多属性振动信号的特征提取和数据降维处理,从而更好地对振动信号进行分析和处理。

综上所述,振动信号处理方法不仅应用广泛,而且种类繁多。

振动测试及其信号处理

振动测试及其信号处理

振动测试及其信号处理伏晓煜倪青吴靖宇王伟摘要:随着试验条件和技术的不断完善,越来越多的领域需要进行振动测试,尤其是土木工程领域。

本文首先介绍了振动测试的基本内容和测试系统的组成,其次对振动测试中的激励方式进行了简单的概括,最后总结了信号数据的处理一般方法,包括数据的预处理方法、时域处理方法和频域处理方法。

关键词:振动测试测试系统信号处理Vibration Test and Signal processingFu Xiaoyu Ni Qing Wu Jingyu Wang WeiAbstract: Vibration test has been applied in more and more fields, especially in civil engineering, as experiment methods and technology elevated. This paper introduced the contents of vibration test and consists of test system firstly, and generalized the exciting mode subsequently. General methods of vibration signal processing were summarized in the end, including preprocessing, time-domain processing and frequency-domain processing methods.Key words: vibration test; test system; signal processing0 引言研究结构的动态变形和内力是个十分复杂的问题,它不仅与动力荷载的性质、数量、大小、作用方式、变化规律以及结构本身的动力特性有关,还与结构的组成形式、材料性质以及细部构造等密切相关。

振动信号处理方法综述_李舜酩

振动信号处理方法综述_李舜酩

第34卷第8期2013年8月仪器仪表学报Chinese Journal of Scientific InstrumentVol.34No.8Aug.2013收稿日期:2012-11Received Date :2012-11*基金项目:航空基础科学基金(2012ZD52054)资助项目振动信号处理方法综述*李舜酩1,郭海东1,李殿荣2(1.南京航空航天大学能源与动力学院南京210016;2.潍坊小型拖拉机有限公司潍坊261000)摘要:振动信号处理方法一直以来是研究的热点,对设备振动监测和故障诊断都至关重要。

近年来,振动信号的处理方法得到了快速发展,但仍需不断改进和完善。

对近年来的文献进行了分类总结,分别对传统方法中的幅值域分析法、傅里叶变换、相关分析和现代方法中的Wigner-Ville 分布、谱分析、小波分析、盲源分离、Hilbert-Huang 变换及高阶统计量分析的发展、特点以及应用进行了概述和对比分析,最后作出了总结与展望。

关键词:振动信号;处理方法;传统方法;现代方法中图分类号:V231.92文献标识码:A国家标准学科分类代码:590.25Review of vibration signal processing methodsLi Shunming 1,Guo Haidong 1,Li Dianrong 2(1.College of Energy and Power Engineering ,Nanjing University of Aeronautics and Astronautics ,Nanjing 210016,China ;2.Weifang Xiaotuo Tractor Co.,Ltd ,Weifang 261000,China )Abstract :Vibration signal processing method has been an active research topic all the time ,and the equipment vibra-tion monitoring and fault diagnosis are crucial.Though the vibration signal processing methods developed fast in re-cent years ,they still need to be improved and optimized.Some typical approaches referring to recent literatures are classified and summarized in this paper.The developments ,features and applications are presented and discussed for amplitude domain analysis ,Fourier transform ,correlation analysis in traditional methods ,and Wigner-Ville distribu-tion ,spectral analysis ,wavelet analysis ,blind source separation ,Hilbert-Huang transform ,higher order statistics anal-ysis in modern methods.Finally ,we make a conclusion for this paper and an overview is made to guide the future de-velopment in this field.Keywords :vibration signal ;processing method ;traditional method ;modern method1引言信号是信息的载体,为了从实际测量的振动信号中提取各种特征信息,必须采取各种有效的振动信号处理方法进行分析,从而进行参数检测、质量评价、状态监测和故障诊断等,因此振动信号的处理方法已成为科学研究的热点之一[1]。

平稳和非平稳振动信号的处理方法综述

平稳和非平稳振动信号的处理方法综述

平稳和非平稳振动信号的处理方法周景成(东华大学机械工程学院,上海 201620)摘要:本文主要综述了当前对于平稳和非平稳振动信号的处理方法及其优缺点,同时列举了目前振动信号处理的研究热点和方向。

关键词:稳态非稳态振动信号处理;方法;优缺点。

1.稳态与非稳态振动信号的界定稳态振动信号是指频率、幅值和相位不变的动态信号,频率、幅值和相位做周期性变化的信号称为准稳态信号,而对于频率、幅值和相位做随机变化的信号则称为非稳态信号。

2. 稳态或准稳态振动信号的主要处理方法及其优势与局限对于稳态振动信号,主要的分析方法有离散频谱分析和校正理论、细化选带频谱分析和高阶谱分析。

对于准稳态信号主要采用的是解调分析。

对于非稳态振动信号主要采用加Hanning窗转速跟踪分析、短时傅里叶变换、Wigner-Ville 分布和小波变换等。

对于任一种信号处理方法都有其优势和劣势,没有完美的,具体在工程实际中采用哪一种分析方法得看具体的工程情况而定,不能一概而论。

2. 1 离散频谱分析与校正离散频谱分析是处理稳态振动信号的常用方法,离散频谱分析实现了信号从时域到频域分析的转变。

FFT成为数字信号分析的基础,广泛应用于工程技术领域。

通过离散傅里叶变换将振动信号从时域变换到频域上将会获得信号更多的信息。

对于这一方法,提高信号处理的速度和精度是当下两个主要的研究方向。

由于计算机只能对有限多个样本进行运算,FFT 和谱分析也只能在有限区间内进行,这就不可避免地存在由于时域截断产生的能量泄漏,离散频谱的幅值、相位和频率都可能产生较大的误差,所以提高精度成为近一段时间主要的研究方向。

上世纪70年代中期,有关学者开始致力于离散频谱校正方法的研究。

目前国内外有四种对幅值谱或功率谱进行校正的方法:(1)比值校正法(内插法);(2)能量重心校正法;(3)FFT+FT谱连续细化分析傅立叶变换法;(4)相位差法。

四种校正方法的原理和特点见表1[1].从理论上分析,在不含噪声的情况下,比值法和相位差法是精确的校正法,而能量重心法和FFT+FT谱连续细化分析傅立叶变换法是精度很高的近似方法。

振动信号的采集与预处理

振动信号的采集与预处理

振动信号的采集与预处理几乎所有的物理现象都可看作是信号,但这里我们特指动态振动信号。

振动信号采集与一般性模拟信号采集虽有共同之处,但存在的差异更多,因此,在采集振动信号时应注意以下几点:1. 振动信号采集形式取决于机组当时的工作状态,如稳态、瞬态等;2. 变转速运行设备的振动信号采集在有条件时应采取同步整周期采集;3. 所有工作状态下振动信号采集均应符合采样定理。

对信号预处理具有特定要求是振动信号本身的特性所致。

信号预处理的功能在一定程度上说是影响后续信号分析的重要因素。

预处理方法的选择也要注意以下条件:1. 在涉及相位计算或显示时尽量不采用抗混滤波;2. 在计算频谱时采用低通抗混滤波;3. 在处理瞬态过程中1X矢量、2X矢量的快速处理时采用矢量滤波。

上述第3条是保障瞬态过程符合采样定理的根本条件。

在瞬态振动信号采集时,机组转速变化率较高,假设依靠采集动态信号〔一般需要假设干周期〕通过后处理获得1X和2X 矢量数据,除了效率低下以外,计算机〔效劳器〕资源利用率也不高,且无法做到高分辨分析数据。

机组瞬态特征〔以波德图、极坐标图和三维频谱图等型式表示〕是固有的,当组成这些图谱的数据间隔过大〔分辨率过低〕时,除许多微小的变化无法表达出来,也会得出误差很大的分析结论,影响故障诊断的准确度。

一般来说,三维频谱图要求数据的组数〔△rpm 分辨率〕较少,太多了反而影响对图形的正确识别;但对前面两种分析图谱,那么要求较高的分辨率。

目前公认的方式是每采集10组静态数据采集1组动态数据,可很好地解决不同图谱对数据分辨率的要求差异。

影响振动信号采集精度的因素包括采集方式、采样频率、量化精度三个因素,采样方式不同,采集信号的精度不同,其中以同步整周期采集为最正确方式;采样频率受制于信号最高频率;量化精度取决于A/D转换的位数,一般采用12位,局部系统采用16位甚至24位。

振动信号的采样过程,严格来说应包含几个方面:1. 信号适调由于目前采用的数据采集系统是一种数字化系统,所采用的A/D芯片对信号输入量程有严格限制,为了保证信号转换具有较高的信噪比,信号进入A/D以前,均需进展信号适调。

机械振动信号处理与特征提取方法探索

机械振动信号处理与特征提取方法探索

机械振动信号处理与特征提取方法探索近年来,随着工业技术的不断进步,机械振动信号处理与特征提取方法引起了广泛的关注。

机械振动信号是指机械设备在运行过程中产生的振动信号,它包含许多有价值的信息,可以用来判断设备的工作状态、故障情况等。

在机械振动信号处理的过程中,首先需要进行信号采集。

信号采集是将机械振动信号转换为电信号的过程,通常使用传感器将机械振动信号转换为电流或电压信号。

采集到的信号可以通过模数转换技术将其转换为数字信号,以便后续处理。

接下来,对机械振动信号进行预处理是非常重要的。

预处理可以去除噪声、滤波和降低采样率等。

通过滤波技术可以将信号中的高频噪声滤除,以提高信号质量。

同时,降低采样率可以减少数据量,方便后续的计算和分析。

在预处理完成后,我们需要对机械振动信号进行特征提取。

特征提取是指从信号中提取出具有代表性的特征参数。

常见的特征参数包括幅值、频率、相位、脉冲个数等。

通过提取这些特征参数,可以更好地描述机械振动信号的特性。

特征提取是机械振动信号处理的关键步骤,它可以为后续的故障诊断和预测提供有效的依据。

特征参数的选择非常重要,需要结合具体的应用场景和设备特点进行选择。

例如,在轴承故障诊断中,常用的特征参数包括能量谱、脉冲指标等。

除了传统的特征提取方法,近年来还涌现出许多基于机器学习的特征提取方法。

机器学习是一种通过训练数据来自动识别和学习规律的技术。

在机械振动信号处理中,可以使用机器学习方法来提取更加复杂和难以描述的特征。

例如,卷积神经网络(CNN)可以自动学习信号中的特征,从而提高故障诊断的准确性。

此外,还有一些先进的信号处理技术可以用于机械振动信号的特征提取。

例如,小波变换可以在时频域同时表示信号的特征,提高了信号处理的效果。

时频分析技术可以通过分析信号在时域和频域上的变化来提取信号的特征。

总结而言,机械振动信号处理与特征提取方法的探索是一个既有挑战又具有广阔应用前景的研究领域。

通过对机械振动信号进行准确、快速的特征提取,可以实现设备故障的早期预警和精准诊断,提高设备的可靠性和安全性。

振动信号处理方法

振动信号处理方法

傅里叶变换( 1822 年傅里叶发表“热传导解析理论”)
优点与不足
• 傅里叶变换是傅里叶级数的推广。它 把时域信号转换到频域信号进行分析, 在信号处理发展中起到了突破性作用。 但该方法不具备任何的时域信号。另 一方面傅里叶变换是对数据段的平均 分析,对非平稳、非线性信号缺乏局 域性信息,不能有效给出某频率成分 发生的具体时间段,不能对信号做局想是:选择一个时频局部化的窗函数,假定分析窗函数g(t)在一个短时间间 隔内是平稳(伪平稳)的,移动窗函数,使f(t)g(t)在不同的有限时间宽度内是平稳 信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换使用一个固定的窗函数, 窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确 定了。如果要改变分辨率,则需要重新选择窗函数。短时傅里叶变换用来分析分段 平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求 窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频 信号,则 要求窗函数有较高的频率分辨率。短时傅里叶变换不能兼顾频率与时间分辨率的需 求。短时傅里叶变换窗函数受到W.Heisenberg不确定准则的限制,时频窗的面积 不小于2。这也就从另一个侧面说明了短时傅里叶变换窗函数的时间与频率分辨率 不能同时达到 最优。
幅值域分析法
信号的幅值域参数: 主要包括均值、均方值、方差等。 优缺点: 在时域上通过幅值参数随时间的变化来反映信号每一瞬时的时域特 征,简单直观,计算方便,但无法得到任何频域特征。要想获取信 号的频域特征,只能通过傅里叶变换得到。
相关分析(1936 年 Hotelling)
• 相关分析是随机信号在时域上的统计分析,是用相关系数和相关函数等统计量来研究和描 述工程中振动信号的相关关系。相关函数分为自相关函数和互相关函数。

振动信号的预处理方法

振动信号的预处理方法

振动信号的预处理方法@ 去趋势项@ 五点三次平滑法1,去趋势项(detrending)在振动测试中采集到的振动信号数据,由于放大器随温度变化产生的零点漂移、传感器频率范围外低频性能的不稳定以及传感器周围的环境干扰等,往往会偏离基线,甚至偏离基线的大小还会随时间变化。

偏离基线随时间变化的整个过程被称为信号的趋势项。

趋势项直接影响信号的正确性,应该将其去除。

常用的消除趋势项的方法是多项式最小二乘法。

在MATLAB中提供detrend()函数进行去趋势项操作,但只能去除均值和线性趋势项,所以如果使用该函数进行操作,即承认传感器所含趋势项是线性的。

如果认为趋势项是非线性的,则需要用polyfit()和ployval()组成的函数进行操作(如:Liu_detrend(t,y,m))。

在实际振动信号数据处理中,通常取1~3次多项式来对采样数据进行多项式趋势项消除的处理。

-------------------------------------------------------------- function y2 = Liu_detrend(t,y,m)temp = polyfit(t,y,m); %t为时间序列,y为信号,m为拟合多项式的次y2 = y - polyval(temp,t);--------------------------------------------------------------2,五点三次平滑法(cubical smoothing algorithm with five-point approximation)五点三次平滑法可以用作时域和频域信号平滑处理。

该处理方法对于时域数据的作用主要是能减少混入振动信号中的高频随机噪声。

而对于频域数据的作用则是能使谱曲线变得光滑,以便在模态参数识别中得到较好的拟合效果。

需要注意的一点是频域数据经过五点三次平滑法会使得谱曲线中的峰值降低,体形变宽,可能造成识别参数的误差增大。

振动信号的处理方法

振动信号的处理方法

振动信号的处理方法
振动信号的处理方法包括以下几种:
1. 时域分析:对振动信号进行时间上的分析,例如计算振动信号的均值、方差、峰峰值等。

2. 频域分析:将振动信号转换为频域上的能量分布,常用的方法有傅里叶变换、小波变换等。

3. 统计分析:通过统计学方法对振动信号进行分析,例如计算振动信号的自相关系数、互相关系数等。

4. 谱分析:根据振动信号的功率谱密度分布,对其频域特性进行分析,常用的方法有功率谱密度函数、自相关函数、自谱和互谱等。

5. 模态分析:通过模态分析方法,对振动信号的主要模态和频率进行识别和分析,可以了解结构的固有特性和振动形态。

6. 故障诊断:通过振动信号的特征参数提取和比较,对机械设备的故障进行诊断,并提出相应的维修措施。

以上方法可根据具体情况和要求进行选择和组合,用于振动信号的处理和分析。

机械设计中的振动信号处理方法论文素材

机械设计中的振动信号处理方法论文素材

机械设计中的振动信号处理方法论文素材振动信号处理在机械设计中起着至关重要的作用,它能够提供关于机械系统状态和性能的有价值信息。

本文将探讨一些在机械设计中常用的振动信号处理方法,以期提供论文写作素材。

一、频谱分析频谱分析是振动信号处理的基本方法之一。

通过将时域信号转换为频域信号,可以对信号的频率成分进行分析。

常见的频谱分析方法包括傅里叶变换、快速傅里叶变换(FFT)和小波变换。

傅里叶变换是一种经典的频谱分析方法,它将时域信号分解为不同频率的正弦波成分。

然而,傅里叶变换对信号长度和采样率有一定的要求,且计算复杂度较高。

为了克服这些问题,出现了快速傅里叶变换算法,它能够高效地计算信号的频谱。

小波变换是一种非平稳信号的频谱分析方法,它可以不同尺度地对信号进行频谱分析。

相较于傅里叶变换,小波变换能够提供更详细的时间-频率信息,更适用于振动信号处理。

二、振动特征提取振动特征提取是振动信号处理的重要环节,它通过从振动信号中提取有用的特征参数来描述机械系统的状态和性能。

常见的振动特征包括幅值、频率、相位、能量等。

幅值是振动信号的振幅大小,可以反映机械系统的振动强度。

频率是振动信号的周期性变化,可以反映机械系统的运动速度。

相位是振动信号的相对相位差,可以反映机械系统的相位关系。

能量是振动信号的功率大小,可以反映机械系统的能量变化。

振动特征提取可以采用时间域方法或频域方法。

时间域方法包括均方根、峭度、偏度等统计特征。

频域方法包括峰值频率、能量谱密度等频谱特征。

三、滤波技术滤波技术在振动信号处理中广泛应用,它可以消除信号中的噪声或干扰,提取出感兴趣的振动信号成分。

常见的滤波方法包括低通滤波、高通滤波、带通滤波等。

低通滤波可用于去除振动信号中的高频成分,保留低频成分。

高通滤波可用于去除振动信号中的低频成分,保留高频成分。

带通滤波可用于选择振动信号中特定频率范围的成分。

滤波技术的选择应根据具体应用场景和信号特点进行,需要考虑滤波器类型、截止频率、滤波器阶数等参数。

振动信号预处理方法-平滑处理及其MATLAB实现

振动信号预处理方法-平滑处理及其MATLAB实现

本科生毕业论文振动信号预处理方法-平滑处理及其MATLAB实现作者姓名学院:机电工程学院专业:班级:学号:指导教师:职称(或学位):2016年5月1原创性声明本人郑重声明:所呈交的论文(设计),是本人在导师的指导下,独立进行研究工作所取得的成果。

除文中已经注明引用的内容外,本论文(设计)不含任何其他个人或集体已经发表或撰写过的作品成果。

对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担。

学生签名:年月日指导声明本人指导的同学的毕业论文(设计)题目大小、难度适当,且符合该同学所学专业的培养目标的要求。

本人在指导过程中,通过网上文献搜索及文献比对等方式,对其毕业论文(设计)内容进行了检查,未发现抄袭现象,特此声明。

指导教师签名:年月日目录1 绪论 (1)2 振动信号预处理算法分析 (1)2.1 算术平均值法 (2)2.2 加权平均值法 (2)2.3 中值法 (3)2.4 滑动平均值法 (3)2.5 五点三次平滑法 (4)2.6 模糊控制算法 (6)3 基于MATLAB的振动信号平滑处理 (6)3.1 MATLAB简介 (6)3.2 算例 (6)3.3 计算代码 (7)3.4 算法机理 (8)4 结果分析 (9)5 总结 (10)致谢: (11)参考文献: (11)振动信号预处理方法-平滑处理及其MATLAB实现作者姓名(宋体四号,居中)(机电工程学院指导教师:XXX)(楷体五号,居中)摘要:进行振动信号测试时往往由于外界干扰的存在,使得测量信号不光滑,质量差,严重时后续分析难以展开,可见振动信号预处理是必要的步骤。

本文对振动信号预处理算法进行详细分析,讨论若干种平滑处理算法,并以五点三次平滑法与滑动平均值法为例,具体讨论了平滑处理的流程。

结果表明结果表明五点滑动平均法与五点三次平滑法两种算法都简单明了,可以以很小的计算量实现良好预处理效果,提高振动信号质量。

振动信号的处理和分析

振动信号的处理和分析

机械故障类型: 轴承故障、齿轮 故障、转子不平 衡等
振动信号处理技 术:信号采集、 信号预处理、特 征提取、模式识 别等
地震信号分析
01
02
03
04
地震信号的特点: 频率范围广、信 号强度低、噪声 干扰大
地震信号处理的 方法:滤波、降 噪、特征提取、 模式识别等
地震信号分析的 应用:地震预警、 地震监测、地震 灾害评估等
连续小波变换(CWT):将信 号分解成一系列小波基的线性 组合,得到信号的时频分布。
离散小波变换(DWT):将信 号分解成一系列离散小波基的 线性组合,得到信号的时频分 布。
希尔伯特-黄变换(HHT):将 信号分解成一系列瞬时频率和 瞬时相位的组合,得到信号的 时频分布。
经验模态分解(EMD):将信 号分解成一系列固有模态函数 (IMF)的线性组合,得到信 号的时频分布。
故障类型识别算法
基于时域特征的识别算法
基于深度学习的识别算法
基于频域特征的识别算法
基于模式识别的识别算法
基于时频域特征的识别算法
基于数据融合的识别算法
0 1
振动信号的采集:使用加速度 计、陀螺仪等传感器进行数据 采集
0 4
模式识别:使用机器学习算法 对振动信号进行分类和识别
实例分析
0 2
信号预处理:对采集到的数据 进行滤波、降噪等处理
数据存储:将采集 到的信号存储到计 算机或存储设备中
采集过程中的影响因素
01
传感器的选择:根据信号类型和频率选择合适的传 感器
02
采样频率:采样频率应满足信号频率的两倍以上
03
采样精度:根据信号精度要求选择合适的采样精度
04
抗干扰能力:采集过程中需要考虑电磁干扰、机械 振动等干扰因素
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谢谢观赏
短时傅里叶变换
• 它的思想是:选择一个时频局部化的窗函数,假定分析窗函数g(t)在一个短时间间 隔内是平稳(伪平稳)的,移动窗函数,使f(t)g(t)在不同的有限时间宽度内是平稳 信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换使用一个固定的窗函数, 窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确 定了。如果要改变分辨率,则需要重新选择窗函数。短时傅里叶变换用来分析分段 平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求 窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频 信号,则 要求窗函数有较高的频率分辨率。短时傅里叶变换不能兼顾频率与时间分辨率的需 求。短时傅里叶变换窗函数受到W.Heisenberg不确定准则的限制,时频窗的面积 不小于2。这也就从另一个侧面说明了短时傅里叶变换窗函数的时间与频率分辨率 不能同时达到 最优。
傅里叶变换( 1822 年傅里叶发表“热传导解析理论”)
优点与不足
• 傅里叶变换是傅里叶级数的推广。它 把时域信号转换到频域信号进行分析, 在信号处理发展中起到了突破性作用。 但该方法不具备任何的时域信号。另 一方面傅里叶变换是对数据段的平均 分析,对非平稳、非线性信号缺乏局 域性信息,不能有效给出某频率成分 发生的具体时间段,不能对信号做局 部分析。
振动信号处理方法
于海杰
Hale Waihona Puke 振动信号振动信号是指由非静止结构体所产生的信号,尽管与一般信号具有很多相同 之处,但也具有其独立特征。结构体受到振动源的激励而产生振动信号,分 为平稳振动信号和非平稳振动信号。结构体的运动是绝对的(静止是相对的), 所以都具有一定的振动特性。任何结构都有其本身的固有振动特性参数,当 振动源的激励与结构的固有特性参数相同或接近时,会产生共振响应。结构 体的振动响应是各个频率特征信息的叠加。振动信号的时域特征主要体现在 振幅、周期、相位等特性上,其频域特征则主要表现在频率、能量信息中。
小波分析
• 从公式可以看出,不同于傅里叶变换,变量只有频率ω,小波变换有两个变量:尺度a(scale)和平 移量 τ (translation)。尺度a控制小波函数的伸缩,平移量 τ 控制小波函数的平移。尺度就对应于频 率(反比),平移量 τ 就对应于时间。
• 小波分析方法是一种窗口大小固定但其形状改变,时间窗和频率窗都可改变的时频局域化分析方法, 这种特性使小波变换具有对信号的自适应性,这也正克服了傅里叶变换不能在时域和频域上局域化的 缺点。小波分析可以成功地进行非平稳信号、带有强噪声的信号的分析与检测。但小波变换是以傅里 叶变换为理论基础,仍然存在窗函数的局限性,无法准确描述频率随时间的变换。为了改进小波分析 的缺陷,1993 年英国 Newland 教授从小波的频谱出发,成功地构造出了具有严格盒型谱特性的小 波———谐波小波其在信号分解过程中数据信息量不变,算法实现简单,且具有明确的表达式。同时, 谐波小波还具有相位定位特性。有关研究在小波包和谐波小波的基础上,进一步提出了一种具有“无 限细分”整个频带,能够将信号分解到感兴趣频段的信号分析方法,即谐波小波包分析,在微弱振动 信号提取等方面已得到广泛应用 。
• 相关分析的不足:
• 当干扰信号是同频成分时,相关分析就有其难以克服的自身缺点,其性能急剧下降,甚至 出现与事实不符的结果,即出现“伪相关”等现象,可能导致时延估计等工程应用的精度 降低甚至出现错误的结果;相关分析可以有效地消除任何一个频段上与信号无关的噪声,但 是也会消除有用但不相关的信息;相关分析一般要求分析原信号中的特征信号为周期信号, 对于非周期信号则无能为力;在强噪声干扰下的特征信号,相关函数无法直接显出特征成分, 需要进行多次相关分析;信号经时延自相关处理后,其幅值和相位都会有所改变,存在幅值 和相位的修正问题等。这些也正是人们今后研究的方向和热点。
幅值域分析法
信号的幅值域参数: 主要包括均值、均方值、方差等。 优缺点: 在时域上通过幅值参数随时间的变化来反映信号每一瞬时的时域特 征,简单直观,计算方便,但无法得到任何频域特征。要想获取信 号的频域特征,只能通过傅里叶变换得到。
相关分析(1936 年 Hotelling)
• 相关分析是随机信号在时域上的统计分析,是用相关系数和相关函数等统计量来研究和描 述工程中振动信号的相关关系。相关函数分为自相关函数和互相关函数。
处理方法
• 一类是传统方法,典型的有幅值域分析法、傅里叶变换和相关分 析等。幅值域分析法是描述幅值随时间变化的时域分析方法,傅 里叶变换和相关分析都是基于时域统计分析,一般处理的信号对 象都为平稳信号。
• 另一类是现代方法,典型的有 Wigner-Ville 分布、谱分析、多 重分形、混沌理论、小波分析、盲源分离、Hilbert-Huang 变换 和高阶统计量分析等。
Hilbert-Huang 变换(希尔伯特、黄锷)
• 固有模态对应的函数称为固有模态函数(intrinsic mode function,IMF)
• EMD (Empirical mode decomposition,经验模 式分解)方法就是对复杂信号进行“筛选”的过程, 将信号逐级分解,得到一系列具有不同特征尺度 的 IMF。然后利用 Hilbert 变换求取每个固有模 态函数(IMF)的瞬时频率,进而得到 Hil-bert 谱 和边际谱。Hilbert 谱精确地描述了信号的幅值 在整个频段上随时间和频率的变化规律,边际谱 表明单位频率内的幅度/能量分布,代表着整个数 据段幅度概率分布的累加。
多重分形/index.php/%E5%A4%9A%E9%87%8D%E5%88%86%E5%BD%A2
• 现实中的复杂系统一般都 具有自相似特征,这种自 相似性不仅仅体现为几何 形体上的自相似,也体现 为某种质量、测度在空间 上的分配。
盲源分离
• 盲源分离是指在输入信号未知时,只由观测到的输出信号来辨识系统,以达 到对多个信号分离的目的,从而来恢复原始信号或信号源。独立分量分析算 法(ICA)是盲源分离的一种有效方法,它是在无正交限制下抽取信号的统 计独立分量,适用于平稳和非平稳信号,尤其对微弱信号的特征提取有较好 的效果,该方法已经得到了较多的应用。到目前为止,国际上已经发展了多 种有效的盲源分离算法,从算法的角度而言,可分为批处理算法和自适应算 法;从代数函数和准则而言,又分为基于神经网络的方法、基于高阶统计量 的方法、基于互信息量的方法、基于非线性函数的方法等。
相关文档
最新文档