(整理)多元函数的极值及其求法

合集下载

多元函数的极值及其求法

多元函数的极值及其求法

求函数f , 例1 求函数 (x,y)= x3-y3+3x2+3y2-9x的极值 的极值
f x (x, y) = 3x2 + 6x − 9 = 0, 解 先解方程组 f y (x, y) = −3y2 + 6y = 0. 求得驻点为( , ),( ),(1, ),( ),(- , ),( ),(- , ). 求得驻点为(1,0),( ,2),(-3,0),(-3,2).
为最小值. f (4,2) = −64为最小值
某厂要用铁板做成一个体积为2m 例3 某厂要用铁板做成一个体积为 3的有盖长 方体水箱。问长、 高各取怎么样的尺寸时, 方体水箱。问长、宽、高各取怎么样的尺寸时,才 能使用料最省。 能使用料最省。 2 m 设水箱的长为xm,宽为ym, 解 设水箱的长为 ,宽为 ,则其高应为 xy 此水箱所用材料的面积 A = 2(xy + y ⋅ 2 + x 2 ), xy xy 2 2 A = 2(xy + + ) (x > 0, y > 0). 即 x y 可见材料面积A是 和 的二元函数 的二元函数, 可见材料面积 是x和y的二元函数,这就是目标函 下面求使函数取得最小值的点(x, 。 数,下面求使函数取得最小值的点 ,y)。
得区域 D 内唯一驻点( 2,1), 且 f ( 2 ,1) = 4 ,
边界上的最值, 再求 f ( x , y ) 在 D 边界上的最值,
在边界 x = 0 和 y = 0 上 f ( x , y ) = 0 ,
y
在边界 x + y = 6 上,即 y = 6 − x
于是 f ( x , y ) = x ( 6 − x )( −2) , x ∈ [0,6] o

多元函数的极值及其求法

多元函数的极值及其求法
不是上面之一, 则称为不定矩阵.
定理 设A是一个n n对称矩阵,
A正定 所有顺序主子式大于0
a11 a12 L a1k
a21 a22 L a2k
MM
M
所有特征值大于0 .
ak1 ak 2 L akk
(即特征方程 | E - A | 0的根大于0)
以 2 2 矩阵为例: A a11 a12 a21 a22
证: 由二元函数的泰勒公式, 并注意
则有
若 H f (P0 )正定, 则由引理知存在m 0使得
(h, k)H f (P0)(h, k)' m2.
故对充分小的U(P0), 只要(x, y) x0 h, y0 k U(P0), 就有
f (x, y)
f ( x0 ,
y0
)
(
m 2
o(1))
设函数z f ( x, y)在点 P0 ( x0 , y0 )的某邻域U(P0 )内 有一阶及二阶连续偏导数,且 P0是 f 的驻点,
则当H f (P0 )是正定矩阵时, f 在 P0取得极小值;
当H f (P0 )是负定矩阵时, f 在 P0取得极大值; 当H f (P0 )是不定矩阵时, f 在 P0不取极值.
极大值和极小值
x
例1. 已知函数
A 则( )
的某个邻域内连续, 且
(D) 根据条件无法判断点(0, 0)是否为f (x,y) 的极值点. 提示: 由题设
(2003 考研)
定理1 (必要条件) 函数
存在
偏导数, 且在该点取得极值 ,
则有
证:
取得极值 ,

取得极值 取得极值
据一元函数极值的必要条件可知定理结论成立.
(h2

多元函数的极值与最值的求法

多元函数的极值与最值的求法
2.4数形结合法………………………………………………………………20
2.5柯西不等式法………………………………………………………………21
2.6向量法………………………………………………………………………22
2.7 利用极值求最值……………………………………………………………23
小结…………………………………………………………………………………25
1.2利用拉格朗日(Lagrange)乘数法求极值………………………………2
1.3利用几何模型法求解极值…………………………………………………3
1.4 通过雅可比(Jacobi)矩阵求条件极值…………………………………5
1.5利用参数方程求解条件极值………………………………………………11
1.6 利用方向导数判别多元函数的极值………………………………………12
1.7 用梯度法求极值……………………………………………………………15
2多元函数最值的求法……………………………………………………………17
2.1消元法………………………………………………………………………18
2.2均值不等式法………………………………………………………………18
2.3换元法………………………………………………………………………19
又方程(1)对x求偏导: ,得 , .
方程(1)对y求偏导: ,得 .
方程(2)对y求偏导: ,得 ,
在点(1,-1,6)有 ,且A<0,所以 是极大值。
在点(1,-1,2)处有 ,且A>0,所以 是极小值。
综上所述,知由方程 在点(1,-1,6)的某邻域内确定的函数, 是极大值;在点(1,-1,2)的某邻域内确定的函数, 是极小值.

06第六节多元函数的极值及其求法.docx

06第六节多元函数的极值及其求法.docx

第六节多元函数的极值及其求法在实际问题中,我们会大量遇到求多元函数的最大值、最小值的问题.与一元两数的情形类似,多元函数的最大值、最小值与极大值、极小值密切的联系.下面我们以二元函数为例来讨论多元函数的极值问题.分布图示★引例★二元函数极值的概念例1・3★极值的必要条件★极值的充分条件★求二元函数极值的一般步骤★例4★例5★求最值的一般步骤★例6★例7★例8★例9★例10★例11★条件极值的概念★拉格郎H乘数法★例12★例13★例14★例15★例16*数学建模举例★线性冋归问题★线性规划问题★内容小结★课堂练习★习题6-6内容提要:一、二元函数极值的概念定义1设函数z = /(兀刃在点(勺,北)的某一邻域内有定义,对于该邻域内异于(兀°,%)的任意一点(兀,刃,如果/(兀,刃 </(兀0,%),则称函数在(兀(),儿)有极大值;如果/(兀,刃>/(兀0,%),则称函数在(心,北)有极小值;极大值、极小值统称为极值.使函数取得极值的点称为极值点.定理1(必要条件)设函数z = /(X, y)在点(兀0,北)具有偏导数,.目.在点(兀0,);0)处有极值,则它在该点的偏导数必然为零,即f x(无),y())= 0, f y(心,y()) = 0. (6.1)与一元函数的情形类似,对于多元函数,凡是能使一阶偏导数同时为零的点称为函数的驻点.定理2 (充分条件)设函数z二f(x,y)在点(兀,儿)的某邻域内有直到二阶的连续偏导数,又人(心儿)"'人(兀0』0)=。

•令f xx(x Q,y Q) = A, 4(x0,j0) = B, /,v(x0,y0) = C.(1)当AC-B2> 0时,函数/(x,y)在(兀°,%)处有极值,且当A >0时有极小值/(x0,y0);A < 0时有极大值/(勺,儿);(2)当AC-B2< 0时,函数f(x,y)在(兀(),儿)处没有极值;(3)当AC-B2= 0时,函数f(x,y)在(兀0,凡)处可能有极值,也可能没有极值.根据定理1与定理2,如果函数/(x,y)具有二阶连续偏导数,则求z = /(兀』)的极值的一般步骤为:第一步解方程组久(兀,〉,)=0,人(兀,刃=0,求出/(x,y)的所有驻点;第二步求出函数/(x,y)的二阶偏导数,依次确定各驻点处A、B、C的值,并根据AC-B2的符号判定驻点是否为极值点.最后求出函数/(x, j)在极值点处的极值.二、二元函数的最大值与最小值求函数/(兀,刃的最大值和最小值的一般步骤为:(1)求函数/(X, y)在D内所有驻点处的函数值;(2)求/(x, y)在£>的边界上的最大值和最小值;(3)将前两步得到的所有函数值进行比较,其屮最大者即为最大值,最小者即为最小值. 在通常遇到的实际问题中,如杲根据问题的性质,可以判断出函数/(x, y)的最大值(最小值)一定在D的内部取得,而函数/(x,y)在D内只有一个驻点,则可以肯定该驻点处的函数值就是函数f (x, y)在D上的最大值(最小值).三、条件极值拉格朗日乘数法前面所讨论的极值问题,对于函数的自变量一般只要求落在定义域内,并无其它限制条件,这类极值我们称为无条件极值.但在实际问题中,常会遇到对函数的自变量还有附加条件的的极值问题.对自变量有附加条件的极值称为条件极值.拉格朗日乘数法设二元函数f(x, y)和0(x,y)在区域D内有一阶连续偏导数,则求z = fg刃在D内满足条件gy) = 0的极值问题,可以转化为求拉格朗H函数L(x, y, 2) = f (x, y) + A(p(x, y)(其中2为某一常数)的无条件极值问题.于是,求函数z = /(兀』)在条件°(九刃=0的极值的拉格朗日乘数法的基本步骤为:(1)构造拉格朗H函数L(x, y, A) = f(x, y) + y)其屮2为某一常数;(2)由方程组L x = f x (兀,y)+九<Px (兀,y) =0, < L y = f y (x, y) + A(p y (兀,y) =0,L 入—0(兀,y) = 0解出x,y,A,其中x』就是所求条件极值的可能的极值点.注:拉格朗tl乘数法只给出函数取极值的必要条件,因此按照这种方法求出来的点是否为极值点,还需要加以讨论.不过在实际问题中,往往可以根据问题本身的性质来判定所求的点是不是极值点.拉格朗日乘数法可推广到自变量多于两个而条件多于一个的情形:四、数学建模举例例题选讲:二元函数极值的概念例1 (E01)函数z = 2x2 +3y2在点(0, 0)处有极小值.从几何上看,z = lx1 + 3y2表示一开口向上的椭圆抛物而,点(0,0,0)是它的顶点.(图7-6-1).例2 (E02)函数z二-+ >,2在点(0,0)处有极大值.从几何上看,z二-+ >,2表示一开口向下的半圆锥面,点(0,0,0)是它的顶点.(图7-6-2).例3 (E03)函数z = /-x2在点(0,0)处无极值.从儿何上看,它表示双曲抛物面(马鞍面)(图7-6-3)例 4 (E04)求函数/(x, y) = ? - y3 + 3x2 + 3y2 - 9x的极值.解先解方程组解得驻点为(1,0), (1, 2), (-3,0), (-3, 2).再求出二阶偏导数(x,y) = 6x + 6, f xy(x,y) = 0, f yy Xx,y) =-6y + 6.亠一 9 [ fXx,y) = 3x 2 +6x-9 = 0在点(1,0)处,AC — B 2=12・6>0,又彳 9, A>0,厶a )2-3),2+6)=0故函数在该点处有极小值/(1,0) = -5; 在点(1,2)处,(-3,0)处,AC-B 2=-12-6<0,故函数在这两点处没有极值;在点(-3, 2)处,AC-B 2=-U-(-6) >0,又A v0,故函数在该点处有极大值/(-3,2) = 31.例5证明函数z = (1 + e y )cosx-ye y 有无穷多个极大值而无一极小值.又 A = z :. =-(l + o' )cos 七 B = z xy =-e y sinx, C = z ;. =e y (cosx-2-y). 在点(2砸,0)g z)处,4 = 一2, B = 0, C = -l, AC-B 2=2>0t又A v 0,所以函数z 取得极大值;在点(⑵2 +1)龙,一2)仇w Z )处,A = 1 + 0-2, B = 0, C = —0-2, AC-B 2 = -e~2-e _4<0,此时函数无 极值.证毕.二元函数的最大值与最小值例6求函数/(兀,刃=兀2-2兀y + 2y 在矩形域D = {(x, y) | 0 < x < 3,0 < y < 2}上的最大值和最小值.解 先求函数f(x,y)在D 内驻点.由f x = 2x-2y = 0, f y =-2x + 2 = 0求得/在D 内部 的唯一驻点(1, 1),且/(1J) = 1.其次求函数/(兀,刃在D 的边界上的最大值和最小值.如图所示.区域D 的边界包含四条直线段厶 —在厶上y = 0, /(x,()) = /,()5x53.这是x 的单调增加函数,故在厶上f 的最大值为 /(3,0) = 9,最小值为 /(0,0) = 0.同样在厶2和厶4上/也是单调的一元函数,易得最大值、最小值分别为/(3, ()) = 9, /(3,2) = 1 (在厶2 上),/(0,2) = 4, /(0,0) = 0(在厶4 上),而在厶上〉,=2, /(x, 2) = X 2-4X + 4, 05兀5 3,易求出/在厶上的最大值/(0,2) = 4,最小值= -(l + e v )sinx = 0= e?v (cosx-l-y) = 0 x = k 兀 尸(_护_1伙wZ )・/(2, 2) = 0.将/在驻点上的值/(1,1)与厶,厶2上3,厶4上的最大值和最小值比较,最后得到/在D上的最大值/(3,0) = 9,最小值/(0,0) = /(2,2) = 0.例7求二元函数z = /(x, y) = x2y(4 -x- y)在直线x + y = 6 , x轴和y轴所围成的闭区域D上的最大值与最小值.解先求函数在D内的驻点,解方程组/;(兀,y) = 2xy(4-x-y)-x2y = 0f;(x, y) = x2 (4-x- y) - x2 y = O'得唯一驻点(2,1),且/(2,1) = 4,再求/(兀,y)在D边界上得最值,在边界兀 + y = 6上,即y = 6 —兀,于是/(x,y) = x2(6-x)(-2),由f; - 4x(x一6) + 2x2 = 0,得x} - 0, x2 - 4 i > y = 6 - x = 2,而/(4,2) = -64,所以/(2,1) = 4为最大值,/(4,2) = -64为最小值.例8求函数/(x,y) = 3x2 + 3y2一/在区域D:x2+y2 <16±的最小值.解先求/(x, y)在D内的极值.由= 6兀一3x2, fy(x,y) = 6y,解方程组]& - 3” = 0得驻点©()),(2, 0).由于6y = 0f: (0,0) = 6, £; (0,0) = 0, f;y (0,0) = 6,龙(2,0) = -6, (2,0) = 0, f;y (2,0) = 6.所以,在点(0, 0) ^bB2-AC = -36<0, A = 6>0,ttffi (0, 0)处有极小值/(0,0) = 0.在点(2,0)处B2-AC = 36>0,故函数在点(2,0)处无极值.再求f (x, y)在边界x2 +y2 = 16上的最小值.由于点(x, y)在圆周x2 +y2 = 16上变化,故可解出y2=16-x2(-4<x<4),代入/'(x,y)中,有z = /(x,y) = 3x2 + 3>,2一兀3 = 48-x3(-4 <x< 4),这时z是兀的一元函数,求得在|~4,4]上的最小值z'=4 =-16.最后比较可得,函数/(x, y) = 3x 2 + 3y2 -?在闭区间D 上的最小值/(4,0) = -16.例9求z=「7 的最大值和最小值.x+b+i (宀于+])_2曲+刃二(兀2 +),2+1)_2)心+刃 —(宀 3)2 -,△ - ―(X 2+^2+1)2因为lim 厂弓 =0,即边界上的值为零.又 口 +y +1例10 (E05)某厂要用铁板做成一个体积为2加3的有盖长方体水箱.问当长、宽、高各 取怎样的尺寸时,才能使用料最省.解 设水箱的长为”,宽为艸,则其高应为2/xym.此水箱所用材料的面积此为目标函数.下面求使这函数取得最小值的点(兀,y). 令人=2 y ——-=0, A v = 2 x ——T =0.解这方程组,得唯-•的驻点x = V2, y = V2.根据题意可断定,该驻点即为所求最小值点.因此当水箱的长为呵”、宽为呵川、高为甘乖=臥时,水箱所用的材料最省.注:体积一定的长方体小,以立方体的表面积为最小.例11 (E06)设s 为商品A 的需求量,§2为商品3的需求量,其需求函数分别为q } = 16-2p )+4/?2,?2 = 20 + 4门 一10/?2,总成本函数为 C =2q 2,其中 M ,% 为商 品A 和B 的价格,试问价格卩,必取何值时可使利润最大?2 2、(2 2) 初+ y ——+ %—=2 与 + _ + _ 1 厂 小 (兀y ) A =2 (x > 0, y >0).=0,解得驻点丄_LJi'近/ 血丿‘1r解按题意,总收益函数为R = P4 + P 2q 2 = 〃|(16-2#|2-+4/?2)+ 卩2(20 + 4/?| -IO%),于是总利润函数为L = R_C = q 、(P\_3) + q2(P2 _2)-3)(16-2刃 + 4”2)+ (卩2一2)(20 + 4p -10卩2)・为使总利润最大,求一阶偏导数,并令其为零:- = 14-4/?! +8血=0,学=4(。

4多元函数的极值

4多元函数的极值

4多元函数的极值及其求法一、无条件极值1、f(x,y)=sin x+cos y+cos(x-y)(0≤x,y≤π/2)P116 8.8.4解:f x= cos x-sin(x-y)f y= -sin y+sin(x-y)⇒cos x=sin y解得驻点:P1(0,π/2)、P2(π/2,0)、P3(π/3,π/6)、P4(π/6,π/3)、P5(π/4,π/4)只有P3上A= f xx= -sin x-cos(x-y)|P3=-√3B= f xyx= cos(x-y)|P3=√3/2C= f yy= -cos y-cos(x-y)|P3=-1AC-B2= (-√3)(-1)-(√3/2)2=√3-3/4>0,P3极大值点极大值f(π/3,π/6)=3√3/22、求由x2+y2+z2-2x+2y-4z-10 = 0 确定的隐函数z=z(x,y)的极值解:P116 8.8.5[一] 2x+2zz x-2-4z x= 0 z x=(1-x)/(z-2)2y+2zz y-2y-4z y= 0 z y=(1+y)/(z-2)⇒驻点(1,-1)对应P(1,-1,6)、Q(1,-1,-2)A= z xx= [-(z-2)-(1-x) z x ]/(z-2)2|P=-1/4B= z xyx=-(1-x) z x/(z-2)2|P=0C= z yy= [-(z-2)-(1+y)z y]/(z-2)2|P=-1/4AC-B2= (-1/4)(-1/4)-02>0,A<0,在P达到极大值6A= z xx= [-(z-2)-(1-x) z x ]/(z-2)2|Q =1/4B= z xyx=-(1-x) z x/(z-2)2|Q =0C= z yy= [-(z-2)-(1+y)z y]/(z-2)2|Q=1/4AC-B2= (1/4)(1/4)-02>0,A>0,在Q达到极小值-2[二] (x-1)2+(y+1)2+(z-2)2=42z极大=2+4=6,z极小=2-4=-2二、条件极值1、求z=x2+y2,在条件x+y=1下的条件极值。

8-8第八节 多元函数的极值及其求法#

8-8第八节 多元函数的极值及其求法#
3. 于该邻域内不同于(x0,y0)的任何点(x,y),都有 f(x,y)<f(x0,y0)(或
4. f(x,y)>f(x0,y0)),则称函数f(x,y)在点(x0,y0)处有极大值(极 小值)
5. 极大值和极小值统称为极值,使函数取得极值的点称为极 值点.
6.
例1 z x2 y2 在点(0,0)处有极小值.因为在任何不 同于(0,0)的点处的函数值都大于函数在(0,0)处的 值.从几何图形上看这是显然的.因为点(0,0)是圆锥 z x2 y2 在(0,0)处的顶点。
0 x ,0 y ,0 x y .
f(x ,y ) sx isn y isnix n y )(
由于在边界上,函数值为0.在闭区域内函数值≥0.所以最大值
一定 在区域内得到.解方程组
f coxssinysinx(y)sinxsinycosx(y)0 x
,
L x2y2zy z0
Ly2x2zx z0,
L z 2 y 2 xy x 0 .
L ( x , y , z , ) 2 ( xy yz zx ) ( xyz 2 ).
Lx2y2zy z0,
Ly2x2zx z0,
L z2y2xy x0.
x2
x y y2
(0 ,0 ) A 8 ,B 2 ,C 2
B2AC 1 20,A80有极大 z=0 值 B2 AC120,不是极. 值点
二 最大值和最小值
由连续函数性质知,函数在有界闭区域D上连续,则函数在D上 一定有最大值和最小值.和一元函数一样,多元函数的最大值和 最小值可能在D内取得,也可能在D的边界上取得.因此,求可微 函数的最值的一般方法是:求出函数f(x,y)在D内所有的驻点处 的函数值及在D的边界上的最大值和最小值,把它们加以比较, 其中最大的就是最大值,最小的就是最小值.有时根据问题的实 际意义或性质,知道函数的最大值(最小值)一定在区域D内取得,

(整理)多元函数求极值(拉格朗日乘数法)

(整理)多元函数求极值(拉格朗日乘数法)

第八节多元函数的极值及其求法教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定方法、求极值方法,并能够解决实际问题。

熟练使用拉格朗日乘数法求条件极值。

教学重点:多元函数极值的求法。

教学难点:利用拉格朗日乘数法求条件极值。

教学内容:一、多元函数的极值及最大值、最小值定义设函数z = f (x,y)在点(x。

, y o)的某个邻域内有定义,对于该邻域内异于(X0,y0)的点,如果都适合不等式f (x, y)< f (X0, y o)则称函数f(X,y)在点(X0,y0)有极大值f(X0,y0) o如果都适合不等式f (X, y)> f (X o, y o)则称函数f(X,y)在点(X0,y。

)有极小值f(X0,y o).极大值、极小值统称为极值。

使函数取得极值的点称为极值点。

-2 , 2例1函数z=3X +4y在点(0, 0)处有极小值。

因为对于点(0, 0)的任一邻域内异于(0, 0)的点,函数值都为正,而在点(0, 0)处的函数值为零。

从2 2 几何上看这是显然的,因为点(0, 0, 0)是开口朝上的椭圆抛物面z = 3X+4y的顶点。

2 2例2函数z=rx +y在点(0, 0)处有极大值。

因为在点(0, 0)处函数值为零,而对于点(0, 0)的任一邻域内异于(0, 0)的点,函数值都为负,点(0, 0, 0)是位于xOy平面下方的锥面z = r x2+y2的顶点。

例3 函数z=x y在点(0, 0)处既不取得极大值也不取得极小值。

因为在点(0, 0)处的函数值为零,而在点(0, 0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。

定理1 (必要条件)设函数z= f(x,y)在点(X0,y0)具有偏导数,且在点y。

)处有极值,则它在该点的偏导数必然为零:(x0,f x(x°, y°) = 0, f y(x0,y0) =0证不妨设z=f(x,y)在点(x0,y0)处有极大值。

8-8第八节 多元函数的极值及其求法

8-8第八节  多元函数的极值及其求法
学 数
三 条 件 极 值
(1) 其中x,y,z须满足约束条件 xyz=2(米3) (2) 依题意,例6成为求(1)式满足条件(2)的最小值.这类附有
解条件极值问题的一个办法是化为无条件极值,即普通极值 问题.
高 等 数 学 电 子 教 案
例如由(2)得到z=2/xy,代入(1),象例6那样去解普通极值问题. 但是对于一般的条件φ(x,y,z)=0,解出其中的某个变量,有时 是复杂的,困难的,甚至是不可能的.例如,不能显化的隐函数 就是这样.下面我们介绍Lagrange乘数法是求解条件极值的 常用方法. 例如要求函数 u=f(x,y,z,t)
3
2
表面积为 6 3 4。
高 等 数 学 电 子 教 案
例7. 在已知的椭球面内一切内接的长方体(各边分别平行坐 标轴)中,求其体积最大的. 椭球面方程为
x2 y2 z2 + 2 + 2 =1 2 a b c
x2 y2 z 2 长方体体积为V = 8 xyz.而( x, y, z )必须满足 2 + 2 + 2 = 1. a b c
高 等 数 学 电 子 教 案
第八节 多元函数的极值及其求法
在实际问题中常常遇到多元函数的最值问题.在一元函 数的微分学中,我们曾经用导数求解极值和最值问题;现 在讨论如何利用偏导数来求多元函数的极值与最值,讨论 时以二元函数为例,其结论可类似地推广到三元及三元以 上的函数.
学 数
多元函数的极值及最大值,最小值 一. 多元函数的极值及最大值 最小值
高 等 数 学 电 子 教 案 二 最大值和最小值
由连续函数性质知,函数在有界闭区域D上连续,则函数在D上 一定有最大值和最小值.和一元函数一样,多元函数的最大值和 最小值可能在D内取得,也可能在D的边界上取得.因此,求可微 函数的最值的一般方法是:求出函数f(x,y)在D内所有的驻点处 的函数值及在D的边界上的最大值和最小值,把它们加以比较,

多元函数的极值及其求法

多元函数的极值及其求法

的梯度平行
引入辅助函数 L( x , y ) f ( x , y ) ( x , y )
则极值点满足:
拉格朗日 乘数法
推广
拉格朗日乘数法可推广到多个自变量和多个 约束条件的情形.
例如, 求函数 u f ( x, y, z ) 在条件 ( x, y, z ) 0 ,
( x, y, z ) 0下的极值.
( x , y ),
取 y y 0,则 f ( x , y ) f ( x , y ), 0 0 0
一元函数
d f ( x , y0 ) dx
x x0
f ( x , y 0 ) 在 x x 0 取得极大值 .
y
( x0 , y0 )

f x ( x0 , y0 ) 0.
2 2
2 2 2
的最大值和最小值.
0, 0,
解: 由 zx
zy
得驻点(
( x y 1) 2 x ( x y ) ( x y 1)
2 2 2 2
( x y 1) 2 y ( x y ) ( x y 1)
2 2 2
1 2
,
1
)和 (
1 2
f x ( x 0 , y 0 ) 0 , f y ( x 0 , y 0 ) 0 .(驻点)
多元函数的极值点如果有偏导数则必是驻点.
证:
不 妨 设 z f ( x , y )在 点 ( x 0 , y0 ) 处 有 极 大 值 ,
则对于 ( x 0 , y 0 )的某个邻域内的所有点 都有 f ( x , y ) f ( x 0 , y 0 ),
A f xx ( x 0 , y 0 ) , B f xy ( x 0 , y 0 ) , C f yy ( x 0 , y 0 ),

多元函数的极值及其求法

多元函数的极值及其求法

多元函数的极值及其求法
一、多元函数的极值
定理1(必要条件) 设函数()y x f z ,=在点()00,y x 具有偏导数且在点()00,y x 处有极值,则有
()()0,,0,0000==y x f y x f y x
定理2(充分条件) 设函数()y x f z ,=在点()00,y x 的某邻域内连续且有一阶及二阶连续偏导,又 ()()0,,0,0000==y x f y x f y x ,令
()()()C y x f B y x f A y x f yy xy xx ===000000,,,,,,
则()y x f ,在()00,y x 处是否取得极值的条件如下:
(1)02>-B AC 时具有极值,且当0<A 时有极大值,当0>A 时有极小值;
(2)02<-B AC 时没有极值(在()00,y x 处不取极值);
(3)02=-B AC 时可能有极值,也可能没有极值,还需另作讨论。

二、条件极值 拉格朗日乘数法
拉格朗日乘数法 要找函数()y x f z ,=在条件()0,=y x ϕ下的可能极值点,可先作拉格朗日函数
()()()y x y x f y x L ,,,λϕ+=,
其中λ为参数。

()()()()()0,0,,0
,,==+=+y x y x y x f y x y x f y y x x ϕλϕλϕ
解出y x ,及λ,这样得到的()y x ,就是函数()y x f z ,=在附加条件()0,=y x ϕ下的可能极值点。

08-多元函数的极值及其求法课件

08-多元函数的极值及其求法课件

多元函数的极值及其求法多元函数的极值多元函数的最大值、最小值条件极值拉格朗日乘数法多元函数的极值定义 设函数()z f x y =,的定义域为D ,()000,P x y 则称函数在点()00,x y 有极大值(或极小值) ()00,f x y为D 的内点,若存在0P 的某个邻域()0U P D ⊂,如果对于该邻域内任何异于0P 的点(),x y , 都有()()00,,f x y f x y < (或()()00,,f x y f x y >),极大值、极小值统称为极值. 使函数取得极值的点称为极值点.例 函数2234z x y =+在点(0,0)处有极小值.()0,00z =, 例 函数22y x z +-=在点(0, 0)处有极大值.当()(),0,0x y ≠时, 0z >.=在点(0,0)处既不取得极大值也不取得极小例函数z xy值.()0,00z=,而在点(0, 0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点.设n 元函数()u f P =在点0P 的某一邻域内有定义,如果对于该邻域内任何异于0P 的点P , 都有则称函数()fP 在点0P 有极大值(或极小值)()0f P .()()0f P f P < (或()()0f P f P >),定理1(必要条件) 设函数()z f x y =,在点()00,x y 具 有偏导数, 且在点()00,x y 处有极值, 则有()00,0x f x y =, ()00,0y f x y =.不妨设()z f x y =,在点()00,x y 处有极大值. 证 依极大值的定义, 对于点()00,x y 的某邻域内异于()00,x y 的点(),x y , 都有不等式特殊地, 在该邻域内取0y y =而0x x ≠的点,也应有()()00,,f x y f x y <()()000,,f x y f x y <这表明一元函数()0,f x y 在0x x =处取得极大值,因而有()00,0x f x y =.类似地可证()00,0y f x y =.从几何上看, 这时如果曲面()z f x y =,在点()000,,x y z 处有切平面, 则切平面()()()()0000000,,x y z z f x y x x f x y y y -=-+-成为平行于xoy 坐标面的平面0z z =.凡是能使()00,0xf x y =, ()00,0y f x y =同时成立的点()00,x y 称为函数()z f x y =,的驻点.具有偏导数的函数的极值点必定是驻点.但函数的驻点不一定是极值点.例如, 函数z xy =在点 (0,0)处的两个偏导数都是零, 但(0,0)不是极值点.定理2(充分条件) 设函数()z f x y =,在点()00,x y 的某邻域内连续且有一阶及二阶连续偏导数,又()00,0x f x y =, ()00,0y f x y =,令()00,xx f x y A =, ()00,xy f x y B =, ()00,yy f x y C =则()f x y ,在()00,x y 处是否取得极值的条件如下:(2)20AC B -<时没有极值;(1) 20AC B ->时具有极值, 且当0A <时有极大值,当0A >时有极小值;(3) 20AC B -=时可能有极值, 也可能没有极值.极值的求法: 第一步 解方程组求得一切实数解, 即可得一切驻点.第二步 对于每一个驻点()00,x y , 求出二阶偏导数的 ()00,0x f x y =, ()00,0y f x y =,值A 、B 和C .第三步 定出2AC B -的符号, 按定理2的结论判定()00,f x y 是否是极值、是极大值 还是极小值.例 求函数()3322,339f x y x y x y x =-++-的极值.解 解方程组⎩⎨⎧=+-==-+=063),(0963),(22y y y x f x x y x f yx 得驻点为()1,0、()1,2、()3,0-、()3,2-.求得1,3x =- ; 0,2y =再求出二阶偏导数(),66xx f x y x =+,(),0xy f x y = ,(),66yy f x y y =-+.在点()1,0处,21260AC B -=⋅>, 又0A >,所以函数在()1,0处有极小值()1,05f =-;在点()1,2处, ()21260AC B -=⋅-<,所以()1,2f 不是极值;所以()3,0f -不是极值;所以函数在()3,2-处有极大值()3,231f -=.在点()3,0-处, 21260AC B -=-⋅<,在点()3,2-处,()21260AC B -=-⋅->, 又0A <,不是驻点也可能是极值点.例如,函数220,0处有极大值,=-+在点()z x y0,0不是函数的驻点.但()多元函数的最大值、最小值如果()f x y ,在有界闭区域D 上连续, 则()f x y ,在 D 上必定能取得最大值和最小值.假定函数在D 上连续、在D 内可微分且只有有限个驻 点, 如果函数在D 的内部取得最大值(最小值), 那么这个 最大值(最小值)也是函数的极大值(极小值).求最大值和最小值的一般方法将函数()f x y ,在D 内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较, 其中最大的就是最大 值, 最小的就是最小值.实际问题中如果根据问题的性质, 知道函数()f x y , 的最大值(最小值)一定在D 的内部取得, 而函数在D 内 只有一个驻点, 那么可以肯定该驻点处的函数值就是函数 ()f x y ,在D 上的最大值(最小值).例 某厂要用铁板做成一个体积为38m 的有盖长方体水箱.问当长、宽、高各取多少时, 才能使用料最省.解 设水箱的长为x , 宽为y , 则其高应为xy8. 此水箱所用材料的面积为)0 ,0( )88(2)88(2>>++=⋅+⋅+=y x yx xy xy x xy y xy A令0)8(22=-=x y A x , 0)8(22=-=yx A y , 得2x =, 2y =.当水箱的长为2m 、宽为2m 、高为82m 22=⋅时, 水箱所用的材料最省.条件极值拉格朗日乘数法例如, 对自变量有附加条件的极值称为条件极值.求表面积为2a 的长方体的最大体积.设长方体的三棱的长为x y z 、、, 则体积V xyz =.x y z 、、还必须满足附加条件22()xy yz xz a ++=.由条件2)(2a xz yz xy =++, 解得)(222y x xy a z +-=, 于是得 V ))(2(22y x xy a xy +-=. 有些条件极值问题可以化为无条件极值问题.例如, 求表面积为2a 的长方体的最大体积.函数()z f x y =,在条件()0x y ϕ=,下取得极值的必要 条件.如果函数()z f x y =,在()00,x y 取得所求的极值, 则()00,0x y ϕ=.假定在()00,x y 的某一邻域内()f x y ,与()x y ϕ,均有连续的一阶偏导数, 将其代入目标函数()z f x y =,, 得的函数()y x ψ=, 定理, 由方程()0x y ϕ=,确定一个连续且具有连续导数而()00,0y x y ϕ≠. 由隐函数存在一元函数()()z f x x ψ=,.0x x =是一元函数()()z f x x ψ=,的极值点,由取得极值的必要条件, 有即()()0000d d ,,0d d x y x x x x z yf x y f x y xx--=+=()()()()00000000,,,0,x x y y x y f x y f x y x y ϕϕ-=设λϕ-=),(),(0000y x y x f y y , 则函数()z f x y =,在条件 ⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(0000000000y x y x y x f y x y x f y y x x ϕλϕλϕ ()0x y ϕ=,下在()00,x y 取得极值的必要条件是拉格朗日乘数法要找函数()z f x y =,在条件()0x y ϕ=,下的可能极值点, 可以先构成辅助函数()()()L x y f x y x y λϕ=+,,,其中λ为某一常数. 然后解方程组(,)(,)(,)0(,)(,)(,)0(,)0L x y f x y x y x x x L x y f x y x y y y y x y λϕλϕϕ⎧=+=⎪=+=⎨⎪=⎩ 由这方程组解出,x y 及λ, 则其中(),x y 就是所要求的可能的极值点.此方法可以推广到自变量多于两个而条件多于一个的情形.例 求表面积为2a 而体积为最大的长方体的体积.解 设长方体的三棱的长为x y z 、、, 构成辅助函数解方程组()()2,222L x y z xyz xy yz xz a λ=+++-,(,,)2()0(,,)2()0(,,)2()02222L x y z yz y z x L x y z xz x z y L x y z xy y x z xy yz xz aλλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪++=⎩ 得a z y x 66===, 这是唯一可能的极值点. 最大值就在这个可能的值点处取得. 此时3366a V =.。

多元函数的极值及其求法

多元函数的极值及其求法

条件极值:对自变量有附加条件的极值.
拉 格 朗 日 乘 数 法
要 找 函 数zf(x,y)在 条 件(x,y)0下 的 可 能
极 值 点 ,
先构造函数 F(x, y) f (x, y) (x, y),其中
为某一常数,可由
fx(x, y) x(x, y) 0,


0,
Ft(x, y,z,t) 0,
(x, y,z,t) 0, ( x , y , z , t ) 0 .
解出 x, y, z, t 即得 可能极值点的坐标.
例6 求表面积为 a2 而体积为最大的长方体的体积.
解 设长方体的长、宽、高为 x , y,z. 体积为 V . 则问题就是条件 2 x y 2 y z2 x z a 2 0 下, 求函数 V x( x y 0 ,y z 0 , z 0 )的最大值.
若满足不等式
f (x, y) f (x0, y0),
则称函数在(x0, y0)有极大值;
若满足不等式
f (x, y) f (x0, y0),
则称函数在(x0, y0)有极小值;
极 大 值 、 极 小 值 统 称 为 极 值 .
使 函 数 取 得 极 值 的 点 称 为 极 值 点 .
例1 函数z 3x2 4y2
例 5求 zx 2x y 2 y 1的 最 大 值 和 最 小 值 .
解令
zx(x2(y x2 2 1y )2 21 x)(2xy)0, zy(x2(y x2 2 1y )2 21 y)(2xy)0,
得 驻 点 (1,1)和 (1,1),
22
22
四、小结
多元函数的极值 (取得极值的必要条件、充分条件) 多元函数的最值 拉格朗日乘数法

7-7多元函数的极值及其求法

7-7多元函数的极值及其求法
小值;
极大值、极小值统称为极值.
使函数取得极值的点称为极值点.
可类似定义 n 元函数
u=f
(x1,
x2,…
,xn)
的极值
1
z
例1 函数 z x2 y2 在 (0, 0) 处有极小值.
旋转抛物面
xo
y
例2函数 z x2 y2
在 (0,0) 处有极大值. 锥面
例3 函数 z xy
z x

3 x2 =0
唯一驻点为(0,0)。

z

3 y2 =0
该点的函数值为z(0,0)=0
y
在D的边界上求z=x3+y3的极值. 条件:x2 y2 =1
用拉格朗日乘数求解,
引入辅助函数 L( x, y) x3 y3 ( x2 y2 1)
19
例3 求z= x3+y3在D:x2+y2≤1上的最大值和最小值。
3
3
3
而依题意知体积最大的内接长方体存在,
故内接长方体最大体积为
83
Vmax
abc. 9
18
例3 求z= x3+y3在D:x2+y2≤1上的最大值和最小值。
解:函数z= x3+y3在有界闭区域 x2+y2≤1上一定可取 得最大值和最小值
区域 {( x, y) : x2 y2 1}内部:求驻点
得:x1 0, y 6 x |x0 6, f (0,6) 0 x2 4 y 6 x |x4 2, f (4,2) 64,
比较后可知 f (2,1) 4为最大值, f (4,2) 64为最小值.
11

8-8 多元函数的极值及其求法

8-8 多元函数的极值及其求法

例2. 函数 z x 2 y 2 2 在点(0,0)处有极大值。
因为在点(0,0)处函数值为 2,而对于点(0,0)的 任一去心邻域内的点函数值都小于 2
多元函数的极值与拉格朗日乘数法
函数的极大值与极小值统称为函数的 极值.
函数的极大值点与极小值点统称为函数的 极值点.
注 多元函数的极值也是局部的, 是与P0的邻域
3 3 Ay 3 x 42 0 y 根据实际问题可知最小值在定义域内应存在, 因此可
断定此唯一驻点就是最小值点. 即当长、宽均为
3
高为
3
1 3 4 4 3 3 2
1
3
9 2
4 3
时, 水箱成本最低.
例7. 证明在半径为R的圆的所有外切三角形中,等边 三角形的面积最小. 证:设ΔABC 为圆的任一外切三角形, 三切点与圆心连线的 交角分别为 , , , 其中 2 ( ), ΔABC的面积为S 2 S R (tan tan tan ) A 2 2 2 2 R (tan tan tan ) 2 2 2 B C 1 2 2 2 S R (se c se c )0 2 2 2 2 令 解得 1 2 2 2 3 S R (se c se c ) 0 2 2 2 为定义域内唯一组解,由几何意义知圆的外切三角形中面积
转 化
从条件 ( x, y ) 0中解出 y ( x)
求一元函数 z f ( x, ( x)) 的无条件极值问题
方法2 拉格朗日乘数法. 例如,
在条件 ( x, y ) 0 下, 求函数 z f ( x, y) 的极值 .
如方法 1 所述 , 设 ( x, y ) 0 可确定隐函数 y ( x) , 则问题等价于一元函数 z f ( x, ( x)) 的极值问题, 故 极值点必满足 dz dy fx f y 0 dx dx x dy x 因 , 故有 f x f y 0 dx y y 记

0808多元函数的极值及其求法

0808多元函数的极值及其求法
f ( x , y ) = x 3 − y 3 − 3 x + 3 y + 1 的极值 . 解 : f x ( x , y ) = 3 x 2 − 3,
f y ( x , y ) = −3 y 2 + 3,
令 f x ( x , y ) = f y ( x , y ) = 0,
得驻点 : (1,1), (1,−1), ( −1,1), ( −1,−1),
. 为 例5 现要用铁皮做一个体积 2m3的有盖长方体水箱
尺寸时 水箱的用料最省 ,水箱的用料最省 . 问当长宽高各取怎样的
解:设水箱的长为 x m,宽为 y m, 高为 z m, 宽为
水箱所用材料的面积为 : A = 2( xy + yz + zx ), ( x > 0, y > 0, z > 0), 其中 : xyz = 2.
令 Ax = A y = 0, 即令 2( y − ) = 0, ) = 2( x − y2 x2
解之得唯一驻点 : ( 3 2 , 3 2 ),
2
2
又由题意 , 最小值一定存在 , 且在开区域内取到 ,
∴ 可断定 当x = y = 3 2时, A最小 , 且此时 z = 3 2 ,
∴ 当长宽高均为 3 2m时, 水箱的用料最省 .
◆无条件极值: 无条件极值: 对自变量除了有定域内的限制,无其它条件. 对自变量除了有定域内的限制,无其它条件
二、条件极值、拉格朗日乘数法 条件极值、 ◆条件极值:对自变量有附加条件的极值. 条件极值:对自变量有附加条件的极值.
. 为 例5 现要用铁皮做一个体积 2m3的有盖长方体水箱
尺寸时 水箱的用料最省 ,水箱的用料最省 . 问当长宽高各取怎样的

8.8 多元函数极值及其求法-文档资料

8.8  多元函数极值及其求法-文档资料
f(P)<f(P0) (f(P)>f(P 0)) 则称函数f(P)在点P0有极大值(极小值)f(P0).
取得极值的必要条件: 定理1 设函数zf (x,y)在点(x0,y0)具有偏导数,且在点
(x0,y0)处有极值,则它在该点的偏导数必然为零: fx(x0,y0)0,fy(x0,y0)0.
类似地可推得,如果三元函数uf (x,y,z)在点(x0,y0,z0) 具有偏导数,则它在点(x0,y0,z0)具有极值的必要条件为
处有极小值f(1,0)5,所以f (1,2)不是极值;
在点(3,0)处,ACB 212·6<0,所以f (3,0)不是极值;
在点(3,2)处,ACB 212·(6)>0,又A<0,所以函数的
(3,2)处有极大值f(3,2)31.
应注意的问题: 不是驻点也可能是极值点. 例 如 函 数 z x 2 y 2 在 点 ( 0 , 0 ) 处 有 极 大 值 , 但 ( 0 , 0 ) 不 是
函数的驻点.因此,在考虑函数的极值问题时,除了考虑函数的 驻点外,如果有偏导数不存在的点,那么对这些点也应当考虑.
z O
y
x
最大值和最小值问题:
解 设 水 箱 的 长 为 x m , 宽 为 y m , 则 其 高 应 为 2 m . xy
此水箱所用材料的面积为
A 2 ( x y y · 2 x · 2 ) , 即 2 ( x y 2 2 ) ( x > 0 , y > 0 ) . x x y y x y
令 A x 2 ( y x 2 2 ) 0 , A y 2 ( x y 2 2) 0 . 得 x 3 2 , y 3 2 . 由题意可知,水箱所用材料面积的最小值一定存在,并在开区域

第八节多元函数的极值及其求法

第八节多元函数的极值及其求法

z a2 2xy 2(x y)
代入V 的表达式,得
V xy a2 2xy 2(x y)
再求它的无条件极值就行了.
这是一种间接求条件极值的方法. 但是,在很多情形,条件极值问题不能或很难化为
无条件极值问题,(比如,从附加条件不能将其中一个 变量由其余变量表示出来),这时, 上述方法就行不 通了. 可是, 实际中又有大量这类问题需要解决, 为此, 下面给大家介绍一种直接求条件极值的方法,
对该邻域内的异于 (x0, y0) 的任意点 (x, y), 都有 f (x, y) f (x0, y0) .
取定 y y0,当0 | x x0 | 时, 点(x, y0) U (P0, ) , 且(x, y0) (x0, y0), 因而应有
f (x, y0) f (x0, y0)
即 当0 | x x0 | 时, 有
第三步 根据极值的充分条件, 对驻点 (x0, y0) 是否为极值点,以及是极大值点还是极小值点
作出判断。
例1 求函数 f (x, y) x3 y3 3x2 3y2 9x 的极值.
解 定义域: 整个平面
fx 3x2 6x 9 0
fy
3y2 6y
0
解得: x 1 x 1 x 3
求 V xyz (x 0, y 0, z 0)
在附加条件 2xy 2yz 2zx a2
下的最大值.
条件极值问题
怎样求条件极值? 有些可以化为无条件极值问题来求。
例如上面的问题:
求 V xyz (x 0, y 0, z 0) 在附加条件 2xy 2yz 2zx a2
下的最大值. 由附加条件解得
f (x, y) f (x0, y0)
( )
则称函数 f (x,y) 在点 (x0 ,y0) 有极大值 f(x0 ,y0), (极小值)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六节 多元函数的极值及其求法在实际问题中,我们会大量遇到求多元函数的最大值、最小值的问题. 与一元函数的情形类似,多元函数的最大值、最小值与极大值、极小值密切的联系. 下面我们以二元函数为例来讨论多元函数的极值问题.内容分布图示★ 引例 ★ 二元函数极值的概念 例1-3★ 极值的必要条件 ★ 极值的充分条件★ 求二元函数极值的一般步骤 ★ 例4 ★ 例5★ 求最值的一般步骤 ★ 例6 ★ 例7★ 例8 ★ 例9 ★ 例10 ★ 例11★ 条件极值的概念 ★ 拉格郎日乘数法 ★ 例12★ 例 13 ★ 例 14 ★ 例 15 ★ 例 16*数学建模举例★ 最小二乘法 ★ 线性规划问题★ 内容小结 ★ 课堂练习★ 习题6-6 ★ 返回内容提要:一、二元函数极值的概念定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 对于该邻域内异于),(00y x 的任意一点),(y x , 如果),,(),(00y x f y x f <则称函数在),(00y x 有极大值;如果),,(),(00y x f y x f >则称函数在),(00y x 有极小值; 极大值、极小值统称为极值. 使函数取得极值的点称为极值点.定理1 (必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数, 且在点),(00y x 处有极值, 则它在该点的偏导数必然为零,即.0),(,0),(0000==y x f y x f y x (6.1)与一元函数的情形类似,对于多元函数,凡是能使一阶偏导数同时为零的点称为函数的驻点.定理2 (充分条件) 设函数),(y x f z =在点),(00y x 的某邻域内有直到二阶的连续偏导数,又,0),(00=y x f x .0),(00=y x f y 令.),(,),(,),(000000C y x f B y x f A y x f yy xy xx === (1) 当02>-B AC 时,函数),(y x f 在),(00y x 处有极值,且当0>A 时有极小值),(00y x f ;0<A 时有极大值),(00y x f ;(2) 当02<-B AC 时,函数),(y x f 在),(00y x 处没有极值;(3) 当02=-B AC 时,函数),(y x f 在),(00y x 处可能有极值,也可能没有极值.根据定理1与定理2,如果函数),(y x f 具有二阶连续偏导数,则求),(y x f z =的极值的一般步骤为:第一步 解方程组,0),(,0),(==y x f y x f y x 求出),(y x f 的所有驻点;第二步 求出函数),(y x f 的二阶偏导数,依次确定各驻点处A 、 B 、 C 的值,并根据2B AC -的符号判定驻点是否为极值点. 最后求出函数),(y x f 在极值点处的极值.二、二元函数的最大值与最小值求函数),(y x f 的最大值和最小值的一般步骤为:(1)求函数),(y x f 在D 内所有驻点处的函数值;(2)求),(y x f 在D 的边界上的最大值和最小值;(3)将前两步得到的所有函数值进行比较,其中最大者即为最大值, 最小者即为最小值. 在通常遇到的实际问题中,如果根据问题的性质,可以判断出函数),(y x f 的最大值(最小值)一定在D 的内部取得,而函数),(y x f 在D 内只有一个驻点,则可以肯定该驻点处的函数值就是函数),(y x f 在D 上的最大值(最小值).三、条件极值 拉格朗日乘数法前面所讨论的极值问题,对于函数的自变量一般只要求落在定义域内,并无其它限制条件,这类极值我们称为无条件极值. 但在实际问题中,常会遇到对函数的自变量还有附加条件的的极值问题. 对自变量有附加条件的极值称为条件极值.拉格朗日乘数法设二元函数),(y x f 和),(y x ϕ在区域D 内有一阶连续偏导数,则求),(y x f z =在D 内满足条件0),(=y x ϕ的极值问题,可以转化为求拉格朗日函数),(),(),,(y x y x f y x L λϕλ+=(其中λ为某一常数)的无条件极值问题.于是,求函数),(y x f z =在条件0),(=y x ϕ的极值的拉格朗日乘数法的基本步骤为:(1) 构造拉格朗日函数),(),(),,(y x y x f y x L λϕλ+=其中λ为某一常数;(2) 由方程组⎪⎩⎪⎨⎧===+==+=0),(,0),(),(,0),(),(y x L y x y x f L y x y x f L y y y x x x ϕλϕλϕλ解出λ,,y x , 其中x , y 就是所求条件极值的可能的极值点.注:拉格朗日乘数法只给出函数取极值的必要条件, 因此按照这种方法求出来的点是否为极值点, 还需要加以讨论. 不过在实际问题中, 往往可以根据问题本身的性质来判定所求的点是不是极值点.拉格朗日乘数法可推广到自变量多于两个而条件多于一个的情形:四、数学建模举例例题选讲:二元函数极值的概念例1(讲义例1) 函数2232y x z +=在点(0, 0)处有极小值. 从几何上看,2232y x z +=表示一开口向上的椭圆抛物面,点)0,0,0(是它的顶点.(图7-6-1).例2(讲义例2)函数22y x z +-=在点(0,0)处有极大值. 从几何上看,22y x z +-=表示一开口向下的半圆锥面,点)0,0,0(是它的顶点.(图7-6-2). 例3(讲义例3)函数22x y z -= 在点(0,0)处无极值. 从几何上看,它表示双曲抛物面(马鞍面)(图7-6-3)例4(讲义例4)求函数x y x y x y x f 933),(2233-++-=的极值.例5 证明函数y y ye x e z -+=cos )1(有无穷多个极大值而无一极小值.二元函数的最大值与最小值例6(讲义例5)求函数y xy x y x f 22),(2+-=在矩形域 |),{(y x D =}20,30≤≤≤≤y x上的最大值和最小值.例7 求二元函数)4(),(2y x y x y x f z --==在直线6=+y x , x 轴和y 轴所围成的闭区域D 上的最大值与最小值.例8 求函数22233),(x y x y x f -+=在区域16:22≤+y x D 上的最小值.例9 求122+++=y x yx z 的最大值和最小值.例10(讲义例6)某厂要用铁板做成一个体积为32m 的有盖长方体水箱. 问当长、宽、高各取怎样的尺寸时, 才能使用料最省.例11(讲义例7)设1q 为商品A 的需求量, 2q 为商品B 的需求量, 其需求函数分别为,10420,4216212211p p q p p q -+=+-=总成本函数为2123q q C +=,其中21,p p 为商品A 和B 的价格, 试问价格21,p p 取何值时可使利润最大?例12 求函数xyz u =在附加条件)0,0,0,0(/1/1/1/1>>>>=++a z y x a z y x (1) 下的极值.条件极值 拉格朗日乘数法例13(讲义例8)求表面积为2a 而体积为最大的长方体的体积.例14(讲义例9)在经济学中有个Cobb-Douglas 生产函数模型,),(1a a y cx y x f -=式中x 代表劳动力的数量, y 为资本数量(确切地说是y 个单位资本), c 与)10(<<a a 是常数, 由各工厂的具体情形而定. 函数值表示生产量.现在已知某制造商的Cobb-Douglas 生产函数是=),(y x f ,1004143y x 每个劳动力与每单位资本的成本分别是150元及250元. 该制造商的总预算是50000元. 问他该如何分配这笔钱用于雇用劳动力与资本,以使生产量最高.例15(讲义例10)设销售收入R (单位:万元)与花费在两种广告宣传的费用y x ,(单位:万元)之间的关系为 yy x x R +++=101005200 利润额相当五分之一的销售收入, 并要扣除广告费用. 已知广告费用总预算金是25万元, 试问如何分配两种广告费用使利润最大?例16 设某电视机厂生产一台电视机的成本为c , 每台电视机的销售价格为p , 销售量为x .假设该厂的生产处于平衡状态, 即电视机的生产量等于销售量. 根据市场预测, 销售量x 与销售价格为p 之间有下面的关系:ap Me x -= )0,0(>>a M (1) 其中M 为市场最大需求量, a 是价格系数. 同时, 生产部门根据对生产环节的分析, 对每台电视机的生产成本c 有如下测算: x k c c ln 0-= (1,0>>x k ), (2) 其中0c 是只生产一台电视机时的成本, k 是规模系数. 根据上述条件, 应如何确定电视机的售价p , 才能使该厂获得最大利润?数学建模举例1.最小二乘法数理统计中常用到回归分析,也就是根据实际测量得到的一组数据来找出变量间的函数关系的近似表达式. 通常把这样得到的函数的近似表达式叫做经验公式. 这是一种广泛采用的数据处理方法. 经验公式建立后,就可以把生产或实践中所积累的某些经验提高到理论上加以分析,并由此作出某些预测. 下面我们通过实例来介绍一种常用的建立经验公式的方法.例17(讲义例11)为测定刀具的磨损速度,按每隔一小时测量一次刀具厚度的方式,得到如下实测数据:8.243.257.251.263.265.268.260.27)(76543210)(76543210毫米刀具厚度小时时间顺序编号i i y t i试根据这组实测数据建立变量y 和t 之间的经验公式).(t f y =注:本例中实测数据的图形近似为一条直线,因而认为所求函数关系可近似看作线性函数关系,这类问题的求解比较简便.有些实际问题中,经验公式的类型虽然不是线性函数,但我们可以设法把它转化成线性函数的类型来讨论.2.线性规划问题求多个自变量的线性函数在一组线性不等式约束条件下的最大值最小值问题,是一类完全不同的问题,这类问题叫做线性规划问题. 下面我们通过实例来说明.例18(讲义例12) 一份简化的食物由粮和肉两种食品做成, 每份粮价值30分, 其中含有4单位醣, 5单位维生素和2单位蛋白质; 每一份肉价值50分, 其中含有1单位醣, 4单位维生素和4单位蛋白质. 对一份食物的最低要求是它至少要由8单位醣, 20单位维生素和10单位蛋白质组成, 问应当选择什么样的食物, 才能使价钱最便宜.下面的例子是用几何方法来解决的.例19(讲义例13) 一个糖果制造商有500g 巧克力, 100g 核桃和50g 果料. 他用这些原料生产三种类型的糖果. A 类每盒用3g 巧克力, 1g 核桃和1g 果料, 售价10元. B 类每盒用4g 巧克力和1g 核桃, 售价6元. C 类每盒是5g 巧克力, 售价4元. 问每类糖果各应做多少盒, 才能使总收入最大?课堂练习1.求函数)(2)(),(22222y x y x y x f --+=的极值.2.求函数)sin(sin sin ),(y x y x y x f z +-+==在由x 轴, y 轴及直线π2=+y x 所围成三角形中的最大值.3.某工厂生产两种产品A 与B, 出售单价分别为10元与9元, 生产x 单位的产品A 与生产y 单位的产品B 的总费用是:)()33(01.03240022元y xy x y x +++++求取得最大利润时, 两种产品的产量各多少?。

相关文档
最新文档