三角函数和解三角形知识点

合集下载

三角函数及解三角形知识点总结

三角函数及解三角形知识点总结

1. 任意角的三角函数的定义: 设〉是任意一个角,p (x,y )是〉的终边上的任意一点(异于原点),它与原点的距离是「“x 2r 2.o ,位置无关。

2. 三角函数在各象限的符号:(一全二正弦,三切四余弦)+L i+ ——L+ _ - + ------ ■——+ -■sin : cos : tan :3. 同角三角函数的基本关系式:4.三角函数的诱导公式 k 二.一诱导公式(把角写成2…形式,利用口诀:奇变偶不变,符(2)商数关系:tan-E屮一、cos 。

(用于切化弦) (1)平方关系: 2 2 2sin 工 cos ■■ -1,1 tan : 1cos 2:※平方关系一般为隐含条件,直接运用。

注意“ 1”的代换si …y,cos 」那么r三角函数值只与角的大小有关,而与终边上点5. 特殊角的三角函数值度 0s30cA45“A60“90 120cA135“150s 180c 270° 360弧31JIJI2n3兀 5兀 JI3兀 2兀度64323462si n 。

01 竝迈1旦1 01222222cosa亦11念力12_112 2222号看象限)sin (2k .亠 x ) = sin x cos (2k ■亠 x ) = cosx [)tan (2k ,亠 x )二 tanxsin ( -x ) - - sin x cos (-x ) =cosx H )tan(-x ) - - tanxm )|sin (,亠 x ) = -sin x cos (m ) = - cosx tan (二 x ) IV ) Sin (兀 _x ) =sin x cos (兀—x ) = —cosx tan (兀一sin (— -〉)= cos ..zsin (㊁:)=cos :V )-?) = sin :6. 三角函数的图像及性质7.函数厂Asi n( X J图象的画法:n 5m —兀-2兀①“五点法” __设X-x…•,令X = 0, 2,,2,求出相应的X 值,计算得出五点的坐标,描点后得出图象;②图象变换法:这是作函数简图常用方法。

高三专题三角函数与解三角形总结归纳

高三专题三角函数与解三角形总结归纳

三角函数一. 任意角的概念与弧度制 (一)角的概念的推广 1.角概念的推广:在平面内,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角就是多少度角.按不同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角.习惯上将平面直角坐标系x 轴正半轴作为角的起始边,叫做角的始边.射线旋转停止时对应的边叫角的终边. 2.特殊命名的角的定义:(1)正角,负角,零角 :见上文.(2)象限角:角的终边落在象限内的角,根据角终边所在的象限把象限角分为:第一象限角、第二象限角、第三象限角、第四象限角. (3)轴线角:角的终边落在坐标轴上的角.终边在x 轴上的角的集合: {}|180,k k Z ββ=⨯︒∈ 终边在y 轴上的角的集合: {}|18090,k k Z ββ=⨯︒+︒∈终边在坐标轴上的角的集合:{}|90,k k Z ββ=⨯︒∈ (4)终边相同的角:与α终边相同的角:2,x k k Z απ=+∈ (5)与α终边反向的角:()21,x k k Z απ=++∈终边在y x =轴上的角的集合:{}|18045,k k Z ββ=⨯︒+︒∈ 终边在y x =-轴上的角的集合:{}|18045,k k Z ββ=⨯︒-︒∈(6)若角α与角β的终边在一条直线上,则角α与角β的关系:180,k k Z αβ=⨯︒+∈ (7)成特殊关系的两角若角α与角β的终边关于x 轴对称,则角α与角β的关系:360,k k Z αβ=⨯︒-∈ 若角α与角β的终边关于y 轴对称,则角α与角β的关系:360180,k k Z αβ=⨯︒+︒-∈ 若角α与角β的终边互相垂直,则角α与角β的关系:36090,k k Z αβ=⨯︒+±︒∈注意: (1)角的集合表示形式不唯一; (2)终边相同的角不一定相等,相等的角终边一定相同.(二)弧度制1.弧度制的定义:lRα=2.角度与弧度的换算公式:180π︒= 3602π︒= 10.01745︒= 157.305718'=︒=︒注意: (1)正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;(2)一个式子中不能角度、弧度混用.二. 任意角三角函数 (一)三角函数的定义 1.任意角的三角函数定义正弦r y =αsin ,余弦r x =αcos ,正切xy=αtan ,余切y x =αcot2.三角函数的定义域(二)单位圆与三角函数线 单位圆的三角函数线定义如图(1)PM 表示α角的正弦值,叫做正弦线;OM 表示α角的余弦值,叫做余弦线. 如图(2)AT 表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.(三)同角三角函数的基本关系式(1)sin csc 1,cos sec 1,tan cot 1αααααα⋅=⋅=⋅= (2)商数关系:ααααααcot sin cos ,tan cos sin == (3)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+=(四)诱导公式(奇变偶不变,符号看象限)()()()()sin sin cos cos tan tan cot cot πααπααπααπαα+=-+=-+=+= ()()()()s i n 2s i n c o s 2c o s t a n 2t a n c o t 2c o t πααπααπααπαα-=--=-=--=-()()()()s i n s i n c o s c o s t a n t a n c o t c o tπααπααπααπαα-=-=--=--=-sin cos 2cos sin 2tan cot 2πααπααπαα⎛⎫+= ⎪⎝⎭⎛⎫+=- ⎪⎝⎭⎛⎫+=- ⎪⎝⎭ s i n c o s 2c o s s i n 2t a n c o t 2πααπααπαα⎛⎫-= ⎪⎝⎭⎛⎫-= ⎪⎝⎭⎛⎫-= ⎪⎝⎭三. 三角函数的图象与性质(一)基本图象1.正弦函数2.余弦函数3.正切函数(二)函数图象的性质正弦、余弦、正切、余切函数的图象的性质四. 和角公式 两角和与差的公式βαβαβαsin sin cos cos )cos(-=+βαβαβαsinsin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+()s i n s i n c o sc o s s i nαβαβαβ-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-五. 倍角公式和半角公式 (一)倍角与半角公式αααcos sin 22sin =2cos 12sin αα-±=ααααα2222sin211cos 2sin cos 2cos -=-=-= 2cos 12cos αα+±= ααα2tan 1tan 22tan -=s i n 1c o s t a n 21c o s s i n αααααα-==+(二)万能公式2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=六. 三角函数的积化和差与和差化积公式()()1s i n c o s s i n s i n 2αβαβαβ=++-⎡⎤⎣⎦ ()()1c o ss i n s i n s i n 2αβαβαβ=+--⎡⎤⎣⎦ ()()1c o s c o s c o s c o s 2αβαβαβ=++-⎡⎤⎣⎦ ()()1s i n s i n c o s c o s 2αβαβαβ=-+--⎡⎤⎣⎦ s i n s i n 2s i n c o s 22αβαβαβ+-+= 2c o s 2c o s 2c o s c o s βαβαβα-+=+s i n s i n 2c o s s i n 22αβαβαβ+--= co s c o s 2s i n s i n 22αβαβαβ+--=-sin15cos 754︒=︒=sin 75cos154︒=︒=tan15cot 752︒=︒=tan 75cot152︒=︒=+七. 辅助角公式(合一变形)()sin cos ,tan ,,22b a x b x x a ππϕϕϕ⎛⎫+=+=∈- ⎪⎝⎭一. 恒等变换 (一)基础题型1.(2015·福建)若5sin 13α=-,且α为第四象限角,则tan α=( ) A.125B.125- C.512D.512-2.已知α是第二象限的角,()4tan 23πα+=-,则tan α=________3.=________4.已知0θπ<<,1tan 47πθ⎛⎫+= ⎪⎝⎭,则sin cos θθ+=________5.方程()233102x ax a a +++=>两根tan ,tan αβ,且,,22ππαβ⎛⎫∈- ⎪⎝⎭,则αβ+=________6.已知()tan 4cos 2,22ππθπθθ⎛⎫-=-< ⎪⎝⎭,则tan2θ=( )A.C.(二)诱导公式1.已知奇函数()f x 在[]1,0-上为单调减函数,若,αβ为锐角三角形内角,则( )A.()()cos cos f f αβ>B.()()sin sin f f αβ>C.()()sin cos f f αβ<D.()()sin cos f f αβ>2.已知,,2παβπ⎛⎫∈ ⎪⎝⎭且cos sin 0αβ+>,则下列各式中成立的是( )A.αβπ+<B.32παβ+>C.32παβ+=D.32παβ+<(三)互余互补sin cos 2πθθ⎛⎫-= ⎪⎝⎭ c o s s i n 2πθθ⎛⎫-= ⎪⎝⎭ sin()sin πθθ-= c o s ()c o sπθθ-=-1.已知4cos 35πθ⎛⎫-= ⎪⎝⎭,则sin 6πθ⎛⎫+= ⎪⎝⎭________;2cos 3πθ⎛⎫+=⎪⎝⎭2.(2016·广州检测)已知1cos 123πθ⎛⎫-= ⎪⎝⎭, 则5sin 12πθ⎛⎫+=⎪⎝⎭( )A.13 B.3C.13-D.3-3.(2017·合肥模拟)已知1cos cos ,,63432ππππααα⎛⎫⎛⎫⎛⎫+⋅-=-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求sin 2α的值; (2)求1tan tan αα-的值.(四)配凑角(已知条件会给θ范围)1.已知0,2πα⎛⎫∈ ⎪⎝⎭,若3cos 65πα⎛⎫+= ⎪⎝⎭,则sin 12πα⎛⎫-= ⎪⎝⎭2.设()21tan ,tan 544παββ⎛⎫+=-= ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( )A.138B.322C.1318D.13223.(2017·成都模拟)若()sin 2,sin 510αβα=-=且3,,,42ππαπβπ⎡⎤⎡⎤∈∈⎢⎥⎢⎥⎣⎦⎣⎦,则αβ+=( ) A.74πB.94πC.54π或74πD.54π或94π4.若()111cos ,cos ,0,,,71422ππααβααβπ⎛⎫⎛⎫=+=-∈+∈ ⎪ ⎪⎝⎭⎝⎭,则β=( )A.3π- B.6πC.3πD.6π-5.若3335,,0,,cos ,sin 44445413πππππαβαβ⎛⎫⎛⎫⎛⎫⎛⎫∈∈-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则()sin αβ+=________6.已知sin sin 3παα⎛⎫++= ⎪⎝⎭cos 3πα⎛⎫-= ⎪⎝⎭( )A.45-B.35-C.45D.35(五)升角(一倍角、二倍角转换) 解题思路:2cos 212sin θθ=- 2c o s 22c o s 1θθ=-一) 升角+诱导公式1.(2016·宿州模拟)若1sin 43πα⎛⎫+= ⎪⎝⎭,则cos 22πα⎛⎫-= ⎪⎝⎭( )A.9B.9-C.79D.79-2.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭=( )A.19-C. D.193.(2016·南昌三模)已知tan 24πα⎛⎫+= ⎪⎝⎭,则tan 2α=( )A.34B .35C.34-D.35-4.已知1sin 43x π⎛⎫+= ⎪⎝⎭,则sin 42cos3sin x x x -=( )A.79B.79-C.9D.9-二)升角+互余、互补1.已知1sin 33x π⎛⎫+= ⎪⎝⎭,则5sin cos 233x x ππ⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭________2.(2017·江西新余三校联考)已知7cos 238x π⎛⎫-=- ⎪⎝⎭,则sin 3x π⎛⎫+= ⎪⎝⎭( )A.14B.78C.14±D.78±三)升角+配凑1.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭的值为( )A.19-B.9C.9-D.192.已知33cos ,4522πππαα⎛⎫+=≤< ⎪⎝⎭,则cos 24πα⎛⎫+= ⎪⎝⎭________3.已知cos 0,4102ππθθ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭,则sin 23πθ⎛⎫-= ⎪⎝⎭________ (六)平方一)sin cos c θθ+=解题思路:2(sin cos )1sin 2θθθ±=± 1.已知4sin cos 3αα-=,则sin 2α=________2.已知,2παπ⎛⎫∈ ⎪⎝⎭,且sin cos 222αα+=,则cos α=________3.已知1sin cos 3αα+=,则2sin 4πα⎛⎫-= ⎪⎝⎭( )A.118B.1718C.89D.94.已知()1sin cos ,,05x x x π+=∈-.(1)求sin cos x x -的值;(2)求2sin 22sin 1tan x xx+-的值.5.已知4sin cos 034πθθθ⎛⎫+=<< ⎪⎝⎭,则sin cos θθ-=________6.若,2παπ⎛⎫∈ ⎪⎝⎭,且3cos 2sin 4παα⎛⎫=- ⎪⎝⎭,则sin 2α=( )A.118B.118-C.1718D.1718-7.若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =+-的最小值为( )A.12-+B.12+ C.18.若,22sin sin =+βα则βαcos cos +的取值范围________二)sin cos a b c θθ+=1.已知2sin cos 2αα+=,则tan 2α=________2.(2016·厦门质检)若2sin 21cos2αα=-,则tan α=________3.(2016·开封模拟)已知12sin 5cos 13αα-=,则tan α=( )A.512- B.125-C.125±D.712±4.已知sin αα+=tan α=( )A.2C.2-D.(七)12tan tan sin 2θθθ+= (2016·青岛模拟)化简:211tan sin 22cos tan 2αααα⎛⎫+⋅-= ⎪⎝⎭________(八)齐次式 1.若tan 2α=,则2sin 3cos 4sin 9cos αααα-=-________;224sin 3sin cos 5cos αααα--=________2.(2015·广东)已知tan 2α=.(1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求2sin 2sin sin cos cos 21ααααα+--的值.3.(2016·天一大联考)已知函数()()log 24a f x x =-+(0a >且1a ≠),其图象过定点P ,角α的始边与x 轴的正半轴重合,顶点与坐标原点重合,终边过点P ,则sin 2cos sin cos αααα+=-________4.(广东省广州2017届高三下学期第一次模拟)已知tan 2θ=,且π0,2θ⎛⎫∈ ⎪⎝⎭,则co s 2θ=( ) A.45B.35C.35-D.45-5.已知3tan 5α=-,则sin 2α=( )A.1517B.1517- C.817-D.8176.若sin 3sin 02παα⎛⎫++= ⎪⎝⎭,则cos2α=( )A.35-B.35C.45-D.45二. 三角函数图象的变换 (一)图象平移和伸缩1.将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移4π个单位,所得函数图象的一条对称轴的方程是( )A.12x π= B.6x π=C.3x π=D.12x π=-2.已知函数()()()sin cos 0,2f x x x πωϕωϕωϕ⎛⎫=+++>< ⎪⎝⎭的最小正周期为π,且()()f x f x -=,则( )A.()f x 在0,2π⎛⎫⎪⎝⎭上单调递减B.()f x 在3,44ππ⎛⎫⎪⎝⎭上单调递减C.()f x 在0,2π⎛⎫⎪⎝⎭上单调递增D.()f x 在3,44ππ⎛⎫⎪⎝⎭上单调递增3.将函数()()cos f x x x x R =∈的图象向左平移()0αα>个单位长度后,所得到的图象关于原点对称,则α的最小值为( )A.12πB.6πC.3πD.56π4.已知函数()()()sin 2cos 0y x x πϕπϕϕπ=+-+<<的图象关于直线1x =对称,则sin 2ϕ=______5.(2014·辽宁卷)将函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,所得图象对应的函数( )A.在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减B.在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增C.在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减D.在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增6.(2017·渭南模拟)由()y f x =的图象向左平移3π个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,得到2sin 36y x π⎛⎫=- ⎪⎝⎭的图象,则()f x 的解析式为( )A.()32sin 26f x x π⎛⎫=+ ⎪⎝⎭B.()2sin 66f x x π⎛⎫=- ⎪⎝⎭C.()32sin 23f x x π⎛⎫=+ ⎪⎝⎭D.()2sin 63f x x π⎛⎫=+ ⎪⎝⎭7.(2014·安徽)若将函数()sin 2cos2f x x x =+的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值为( ) A.8πB.4πC.38πD.5π48.(2016·广东汕头模拟)将函数()sin 6y x x R π⎛⎫=+∈ ⎪⎝⎭的图象上所有点的纵坐标不变,横坐标缩小到原来的12倍,再把图象上各点向左平移4π个单位长度,则所得的图象的解析式为( ) A.5sin 26y x π⎛⎫=+⎪⎝⎭B.1sin 26y x π⎛⎫=+ ⎪⎝⎭C.2sin 23y x π⎛⎫=+ ⎪⎝⎭D.15sin 212y x π⎛⎫=+ ⎪⎝⎭9.当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,则函数34y f x π⎛⎫=-⎪⎝⎭是( ) A.奇函数且图象关于点,02π⎛⎫⎪⎝⎭对称B.偶函数且图象关于点(),0π对称C.奇函数且图象关于直线2x π=对称D.偶函数且图象关于点,02π⎛⎫⎪⎝⎭对称10.(2016·长沙四校联考)将函数()()sin 0,22f x x ωϕωϕ⎛⎫=+>-≤< ⎪⎝⎭图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度得到sin y x =的图象,则函数()f x 的单调递增区间为( ) A.52,2,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B.52,2,66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C.5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D.5,,66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦11.为了得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,可将函数sin 2y x =的图象( )A.向左平移56π个单位长度 B.向右平移56π个单位长度 C.向左平移512π个单位长度D.向右平移512π个单位长度12.(2013·新课标全国卷Ⅱ)函数()()cos 2y x ϕπϕπ=+-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ=________二)图象求解析式1.若函数()f x 具有以下两个性质:①()f x 是偶函数;②对任意实数x ,都有44f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()f x 的解析式可以是( ) A.()cos f x x =B.()cos 22f x x π⎛⎫=+ ⎪⎝⎭C.()sin 42f x x π⎛⎫=+ ⎪⎝⎭D.()cos6f x x =2.已知()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<在同一周期内当12x =时取最大值,当12x =时取最小值,与y 轴的交点为(,则()f x =____________3.已知函数)0,()sin()(πϕϕ<<∈+=R x x x f ,若点1,62π⎛⎫ ⎪⎝⎭在函数26y f x π⎛⎫=+ ⎪⎝⎭的图象上,则ϕ=_________4.已知函数()()2sin f x x ωϕ=+,对于任意x 都有66f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则6f π⎛⎫= ⎪⎝⎭________5.(2017·安徽江南十校联考)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为4π,且对任意x R ∈,都有()3f x f π⎛⎫≤ ⎪⎝⎭成立,则()f x 图象的一个对称中心的坐标是( )A.2,03π⎛⎫- ⎪⎝⎭ B.,03π⎛⎫- ⎪⎝⎭C.2,03π⎛⎫⎪⎝⎭D.5,03π⎛⎫⎪⎝⎭6.已知函数()()3sin 06f x x πωω⎛⎫=-> ⎪⎝⎭和()()3cos 2g x x ϕ=+的图象的对称中心完全相同,若0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的取值范围________7.(2015·湖南)将函数()sin 2f x x =的图象向右平移02πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的12,x x ,有12min 3x x π-=,则ϕ=( ) A.512πB.3πC.4πD.6π8.(2016·安徽芜湖一模)函数()()sin ,0,2f x x x R ωϕωϕ⎛⎫=+∈>< ⎪⎝⎭的部分图象如图所示,若122,,63x x ππ⎛⎫∈ ⎪⎝⎭,且()()12f x f x =,则()12f x x +=( )A.2-B.12-C.12D.29.(2017·石家庄模拟)函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则1124f π⎛⎫= ⎪⎝⎭( )A.2- B.2-C.2-D.1-10.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则ϕ=( )A.6π- B .6πC.3π-D.3π11.已知函数()()sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则6y f x ⎛⎫=+ ⎪⎝⎭取得最小值时x 的集合为________12.已知函数()()cos f x A x ωϕ=+的图象如图所示,223f π⎛⎫=- ⎪⎝⎭,则6f π⎛⎫-= ⎪⎝⎭( ) A.23-B.12-C.23D.1213.(2016·泉州质检)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若tan 3α=,则8f πα⎛⎫+= ⎪⎝⎭( )A.35-B.45-C. D.三.特殊三角函数最值1.当06x π<≤时,函数()22cos cos sin sin xf x x x x=-的最小值为________2.求函数()2cos ,0,sin xy x xπ-=∈的最小值.3.(2016·全国Ⅱ)函数()cos 26cos 2f x x x π⎛⎫=+- ⎪⎝⎭的最大值为( )A.4B.5C.6D.74.函数273sin 2cos ,,66y x x x ππ⎡⎤=--∈⎢⎥⎣⎦的值域为________5.求函数2sin 12sin 1x y x +=-的值域.6.求函数sin 2cos xy x=-的最小值.7.求函数2cos y x=+的值域.8.若0,2πα⎛⎫∈ ⎪⎝⎭,则2214s in c o s αα+的最小值为________9.求函数()()1sin 3sin 2sin x x y x++=+的最值及对应的x 的集合.四.参数相关1.已知0ω>,函数()sin 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上是减函数,则ω的取值范围________2.(2016·全国乙卷)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5,1836ππ⎛⎫⎪⎝⎭上单调,则ω的最大值为( )A.11B.9C.7D.53.已知函数()()2sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭在区间,126ππ⎛⎤- ⎥⎝⎦则ϕ的取值范围( )A.0,3π⎡⎤⎢⎥⎣⎦B.,36ππ⎡⎤-⎢⎥⎣⎦C.,04π⎡⎫-⎪⎢⎣⎭D.,03π⎡⎤-⎢⎥⎣⎦4.若函数()()s i n 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=________5.已知0ω>, ()sin 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上单调递减,则ω的取值范围( )A.15,24⎡⎤⎢⎥⎣⎦B.13,24⎡⎤⎢⎥⎣⎦C.10,2⎛⎫⎪⎝⎭D.(]0,26.若已知0ω>,函数()cos 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上单调递增,则ω的取值范围________7.已知()()sin 0,363f x x f f πππωω⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且()f x 在区间错误!未找到引用源。

高中数学三角函数解三角形知识点

高中数学三角函数解三角形知识点

高中数学三角函数解三角形知识点高中数学中,三角函数和解三角形是重要的知识点。

本文将详细介绍三角函数的定义和性质,以及如何运用三角函数解决各种三角形相关的问题。

一、三角函数的定义和性质1. 正弦函数(sin):在一个直角三角形中,对于一个锐角θ,正弦函数的值定义为所对直角边与斜边之比,即sinθ = 对边/斜边。

2. 余弦函数(cos):在一个直角三角形中,对于一个锐角θ,余弦函数的值定义为所对直角边与斜边之比,即cosθ = 邻边/斜边。

3. 正切函数(tan):在一个直角三角形中,对于一个锐角θ,正切函数的值定义为所对直角边与邻边之比,即tanθ = 对边/邻边。

4. 正弦函数和余弦函数的关系:正弦函数与余弦函数互为倒数,即sinθ = 1/cosθ。

5. 正切函数与正弦函数、余弦函数的关系:正切函数与正弦函数、余弦函数的比值相等,即tanθ = sinθ/cosθ。

6.三角函数的周期性:正弦函数、余弦函数、正切函数都具有周期性,周期为2π或360°。

7.三角函数的图像:正弦函数图像为一条波浪线,余弦函数图像为正弦函数图像向右平移π/2或90°,正切函数图像则为一系列渐进线(纵坐标趋近于正负无穷)。

二、解三角形的基本方法解三角形是指已知一个或多个角度和边长,求解出三角形的未知边长和角度的过程。

1.已知两边算第三边:利用三角形的两边之和大于第三边的性质,可以根据给定的两边长度求解第三边的取值范围。

2.已知一边和与之相对的角度算另外两个角度:根据三角形的内角和等于180°,可以利用给定的一边和一个角求解另外两个角度。

3.已知两边和一个角度算第三边:先根据已知的两边和一个角度求解第三个角度,然后根据三角形的角度和边长之间的关系求解第三边。

三、解三角形的具体例题1.已知三边,求三个角的大小:根据余弦定理或正弦定理计算出三个角的大小。

2.已知三个角,求三个边长:根据正弦定理或余弦定理计算出三个边长的取值范围。

第5章 三角函数与解三角形公式

第5章 三角函数与解三角形公式

三角函数与解三角形公式总结【预备知识点】一、任意角与弧度制(一)任意角1.任意角的概念:规定一条射线绕其端点任意方向旋转所形成的角。

2.任意角的分类:(1)正角:规定一条射线绕其端点逆时针方向旋转所形成的角。

(2)负角:规定一条射线绕其端点顺时针方向旋转所形成的角。

(3)零角:规定一条射线绕其端点无任意方向旋转所形成的角,始边与终边重合的角。

口诀:正逆负顺零重合3.相等角、相反角与角的运算(1)相等角:旋转方向相同且旋转量相等。

(2)相反角:旋转方向相反且旋转量相等。

(3)角的运算:线性加减运算与数乘运算。

4.常见误区:(1)锐角是第一象限角,但是第一象限角不一定是锐角,因为有周期。

例如420°。

(2)钝角是第二象限角,但是第二象限角不一定是钝角,因为有周期。

例如495°。

(3)直角不是任意象限角,属于y轴的特殊角。

(4)平角、周角属于轴线角,它不属于任何一个象限角。

(二)弧度制1.弧长公式及其意义(1)弧长公式:l=nπr180⟺lr=n∗π180=|α|⟺l=|α|r(2)弧长公式的意义:(i)圆心角α所对的弧长与半径r的比值,只与α大小有关。

(ii)弧长长度等于半径长的圆弧所对的圆心角叫做1弧度的角,用rad表示,读作弧度。

其中rad可省略。

(3)一般地,正角的弧度数是正数,零角的弧度数是0,负角的弧度数是一个负数。

2.角度制与弧度制的互换依据:180°=π rad{1°=π180rad≈0.01745 rad 1 rad=(180π)°≈57.30°=57°18′(三)常见的角度制与弧度制互换表示二、三角函数常用特殊值【大重点,熟练背诵】【必考知识点】一、三角函数概念(1)定义式【熟记理解】(2)同角三角函数的基本关系【大重点题型:化弦为切经常用到,结合诱导公式与恒等变换】(i)平方关系【重点记第一个】sin2x+cos2x=11+cot2x=csc2x1+tan2x=sec2x(ii)商数关系【重点记第一个】tanx=sinx cosxcotx=cosx sinx(iii)倒数关系tanx∗cotx=1sinx∗cscx=1cosx∗secx=1(3)三角函数在各象限的符号【大重点并背诵】二、诱导公式【大重点,以下表格全背】诱导公式的基本思路【以第1组~第4组为例】:(1)首先,任意负角的三角函数转化成任意正角的三角函数【用公式3或1】(2)其次,任意正角的三角函数转化成0∼2π的三角函数【用公式1】(3)最后,0∼2π的三角函数转化成锐角三角函数【用公式2或4】三、三角恒等变换【大重点,所有公式都要背】1.两角和与差的正弦、余弦、正切Cα−β:cos(α−β)=cosα∗cosβ+sinα∗sinβCα+β:cos(α+β)=cosα∗cosβ−sinα∗sinβSα−β:sin(α−β)=sinα∗cosβ−cosα∗sinβSα+β:sin(α+β)=sinα∗cosβ+cosα∗sinβTα−β:tan(α−β)=tanα−tanβ1+tanα∗tanβTα+β:tan(α+β)=tanα+tanβ1−tanα∗tanβ扩展:三角和公式Cα+β+γ:cos(α+β+γ)=cosα∗cosβ∗cosγ−cosα∗sinβ∗sinγ−sinα∗cosβ∗sinγ−sinα∗sinβ∗cosγSα+β+γ:sin(α+β+γ)=sinα∗cosβ∗cosγ+cosα∗sinβ∗cosγ+cosα∗cosβ∗sinγ−sinα∗sinβ∗sinγTα+β+γ:tan(α+β+γ)=tanα+tanβ+tanγ−tanα∗tanβ∗tanγ1−tanα∗tanβ−tanα∗tanγ−tanβ∗tanγ2.二倍角的正弦、余弦、正切C2α: cos2α=cos2α−sin2α=1−2sin2α=2cos2α−1; cos2α=1+cos2α2,sin2α=1−cos2α2S2α: sin2α=2sinα∗cosαT2α: tan2α=2tanα1−tan2α扩展1:半角公式Cα2: cosα2=±√1+cosα2Sα2: sinα2=±√1−cosα2Tα2: tanα2=sinα1+cosα=1−cosαsinα=±√1−cosα1+cosα注意:正负由α2所在的象限决定!其中Cα: cosα=cos2α2−sin2α2=1−2sin2α2=2cos2α2−1=1−tan2α21+tan2α2Sα: sinα=2sin α2∗cosα2=2∗tanα21+tan2α2Tα:tanα=2∗tanα2 1−tan2α2扩展2:三倍角公式S3α: sin3α=3sinα−4sin3α=4sinα∗sin(π3−α)∗sin(π3+α)C3α: cos3α=4cos3α−3cosα=4cosα∗cos(π3−α)∗cos(π3+α)T3α: tan3α=3tanα−tan3α1−3tan3α=tanα∗tan(π3−α)∗tan(π3+α)扩展3:四倍角公式S4α: sin4α=−4∗[cosα∗sinα∗(2sin2α−1)]C4α: cos4α=1−8∗cos2α∗sin2αT4α: tan4α=4tanα−4tan3α1−6tan2α+tan4α扩展4:五倍角公式S5α: sin5α=16sin5α−20sin3α+5sinαC5α: cos5α=16cos5α−20cos3α+5cosαT5α: tan5α=5−10tan2α+tan4α1−10tan2α+5tan4α3.和差化积公式sin α+sin β=2sin α+β2∗cosα−β2sin α−sin β=2cos α+β2∗sinα−β2cos α+cos β=2cos α+β2∗cosα−β2cos α−cos β=−2sin α+β2∗sinα−β2tan α+tan β=sin(α+β) cosα∗cosβtan α−tan β=sin(α−β) cosα∗cosβcot α+cot β=sin(α+β) sinα∗sinβcot α−cot β=−sin(α−β) sinα∗sinβtan α+cot β=cos(α−β) cosα∗sinβtan α−cot β=−cos(α+β) cosα∗sinβsin2α−sin2β=sin(α+β)∗sin(α−β)cos2α−cos2β=−sin(α+β)∗sin(α−β)sin2α−cos2β=−cos(α+β)∗cos(α−β)cos2α−sin2β=cos(α+β)∗cos(α−β)记忆口诀:同名和差三角积,(sin α±sin β或cos α±cos β:等式左边只有同是正弦或同是余弦才可以相加减。

高中三角函数及解三角形知识点总结(高考复习)

高中三角函数及解三角形知识点总结(高考复习)
3、三角形面积公式:
= 2 cos 2 α − 1 = 1 − 2 sin 2 α .
变形如下:
1 + cos 2α = 2 cos 2 α 升幂公式: 2 1 − cos 2α = 2sin α cos 2 α = 1 (1 + cos 2α ) 2 降幂公式: sin 2 α = 1 (1 − cos 2α ) 2
y = sin x 在 x ∈ [0, 2π ] 上的五个关键点为:
π 3π (0, 0) ( , , 1 ) ( , π, 0) ( , ,) -1( , 2π , 0) . 2 2
-1-
§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:
y
2、记住余切函数的图象:
y
y=tanx
y=cotx
y = A sin ω x
横坐标变为原来的 | 平 移
ϕ ω
2− 3
§ 3.1.2 、两角和与差的正弦、余弦、正切公式
1 ω
|倍
个 单 位
1、 sin (α + β ) = sin α cos β + cos α sin β 2、 sin (α − β ) = sin α cos β − cos α sin β
r = x2 + y 2 ) sin α = x y x y , cos α = , tan α = , cot α = y r r x
π sin + α = cos α , 2 π cos + α = − sin α . 2
§1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:
ymax + ymin . 2
ymax − ymin , 2

(完整版)三角函数及解三角形知识点总结

(完整版)三角函数及解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y xr rαα==,()tan ,0yx xα=≠三角函数值只与角的大小有关,而与终边上点P 的位置无关。

2.三角函数在各象限的符号:(一全二正弦,三切四余弦)+ + - + - + - - - + + -sin α cos α tan α3. 同角三角函数的基本关系式:(1)平方关系:22221sincos 1,1tan cos αααα+=+=(2)商数关系:sin tan cos ααα=(用于切化弦) ※平方关系一般为隐含条件,直接运用。

注意“1”的代换4.三角函数的诱导公式诱导公式(把角写成απ±2k 形式,利用口诀:奇变偶不变,符号看象限)Ⅰ)⎪⎩⎪⎨⎧=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)⎪⎩⎪⎨⎧-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ⎪⎩⎪⎨⎧=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)⎪⎩⎪⎨⎧-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)⎪⎪⎩⎪⎪⎨⎧=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)⎪⎪⎩⎪⎪⎨⎧-=+=+ααπααπsin )2cos(cos )2sin(5.特殊角的三角函数值6.三角函数的图像及性质 sin y x =cos y x = tan y x =图像定义域 R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k Z ∈时,max 1y =;当22x k ππ=-()k Z ∈时,当()2x k k Z π=∈时,max 1y =;当2x k ππ=+()k Z ∈时,min 1y =-.既无最大值也无最小值度0 30 45 60 90 120 135 150 180︒270360弧度6π 4π 3π 2π 23π 34π 56π π32π 2πsin α122232132 22121cos α132 2212 012- 22- 32- 1- 0 1tan α 0 3313无3-1-33-无函数 性 质7.函数sin()y A x ωϕ=+图象的画法: ①“五点法”――设X x ωϕ=+,令X =0,3,,,222ππππ求出相应的x 值,计算得出五点的坐标,描点后得出图象; ②图象变换法:这是作函数简图常用方法。

三角函数和解三角形知识点汇总

三角函数和解三角形知识点汇总

三角函数和解三角形知识点汇总知识点一三角函数(一)、角的概念的推广1.定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.分类:按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.3.终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.(二)、弧度制的定义和公式1.定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 2.公式(三)、任意角的三角函数(四)、同角三角函数的基本关系 1.平方关系:sin 2α+cos 2α=1. 2.商数关系:sin αcos α=tan α.(五)、三角函数的诱导公式知识点二 三角函数的图像与性质(一)、用五点法作正弦函数和余弦函数的简图1.正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).2.余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).(二)、正弦、余弦、正切函数的图象与性质(下表中k ∈Z )知识点三函数y=A sin(ωx+φ)的图像及应用(一)、“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:1.定点:如下表所示.2.作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=A sin(ωx+φ)在一个周期内的图象.3.扩展:将所得图象,按周期向两侧扩展可得y=A sin(ωx+φ)在R上的图象.(二)、函数y=A sin(ωx+φ)中各量的物理意义当函数y=A sin(ωx+φ)(A>0,ω>0),x∈[0,+∞) 表示一个振动量时,几个相关的概念如下表:(三)、函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径知识点四 三角恒等变换(一)、两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β. cos(α∓β)=cos αcos β±sin αsin β. tan(α±β)=tan α±tan β1∓tan αtan β.(二)、二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α.(三)、有关公式的逆用、变形等 1.tan α±tan β=tan(α±β)(1∓tan αtan β). 2.cos 2α=1+cos 2α2, sin 2α=1-cos 2α2. 3.1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.(四)、函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a 或f (α)=a 2+b 2cos(α-φ)⎝ ⎛⎭⎪⎫其中tan φ=a b .知识点五 解三角形(一)、正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则(二)、S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R,r.(三)、实际问题中的常用角1.仰角和俯角:在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).2.方位角:从某点的指北方向线起按顺时针转到目标方向线之间的水平夹角叫作方位角.如B点的方位角为α(如图2).3.方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.4.坡度:坡面与水平面所成的二面角的正切值.。

解三角形与三角函数最全知识总结

解三角形与三角函数最全知识总结

解三角形与三角函数最全知识总结三角形与三角函数是数学中非常重要的内容,广泛应用于几何学、物理学、工程学等多个领域。

以下是对三角形与三角函数的最全知识总结。

一、基本概念1.三角形:由三条边和三个内角组成的图形。

根据边的长度和角的大小关系,可以分为等边三角形、等腰三角形、直角三角形等等。

2.内角和:三角形的三个内角的和为180度,或者π弧度。

3.值得注意的几何关系:三角形的内角对应的边对边长相等,相等的两个角对应的边对边长也相等。

4.三角形的面积:可以通过底边和高的乘积的一半来计算,也可以通过三边的长度来计算。

二、三角函数的定义与性质1. 正弦函数(sin):在直角三角形中,对于一个锐角A,正弦函数的值等于对边与斜边的比值。

即sin(A) = 对边/斜边。

2. 余弦函数(cos):在直角三角形中,对于一个锐角A,余弦函数的值等于邻边与斜边的比值。

即cos(A) = 邻边/斜边。

3. 正切函数(tan):在直角三角形中,对于一个锐角A,正切函数的值等于对边与邻边的比值。

即tan(A) = 对边/邻边。

4.三角恒等式:包括平方恒等式、和差恒等式、倍角恒等式等等,可以通过这些恒等式将一个三角函数的式子转化为另外一个三角函数的式子。

5.周期性:三角函数是周期函数,即在每个周期内的函数值是相同的。

三、三角函数的图像与性质1.正弦函数图像:正弦函数的图像是一个连续、周期为2π的曲线,以原点为对称中心。

2.余弦函数图像:余弦函数的图像也是一个连续、周期为2π的曲线,但它的图像是以横坐标π/2为对称轴。

3.正切函数图像:正切函数的图像是一个连续、以π为周期的曲线,有无穷多个渐近线。

四、三角函数的应用1.解三角形:通过已知的边长和角度,可以利用三角函数解出未知的边长和角度。

2.测高度:利用三角形的性质,可以通过测量两个视角和距离,计算出高度的长度。

3.平衡力问题:在物理学中,利用三角函数可以计算出干涉力、斜面上的力等问题。

(完整版)三角函数解三角形知识点总结

(完整版)三角函数解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y xr rαα==,()tan ,0yx xα=≠三角函数值只与角的大小有关,而与终边上点P 的位置无关。

2.三角函数在各象限的符号:(一全二正弦,三切四余弦)+ + - + - + - - - + + -sin α cos α tan α3. 同角三角函数的基本关系式:(1)平方关系:22221sin cos 1,1tan cos αααα+=+= (2)商数关系:sin tan cos ααα=(用于切化弦) ※平方关系一般为隐含条件,直接运用。

注意“1”的代换4.三角函数的诱导公式诱导公式(把角写成απ±2k 形式,利用口诀:奇变偶不变,符号看象限)Ⅰ)⎪⎩⎪⎨⎧=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)⎪⎩⎪⎨⎧-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ⎪⎩⎪⎨⎧=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)⎪⎩⎪⎨⎧-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)⎪⎪⎩⎪⎪⎨⎧=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)⎪⎪⎩⎪⎪⎨⎧-=+=+ααπααπsin )2cos(cos )2sin(5.特殊角的三角函数值6.三角函数的图像及性质sin y x =cos y x = tan y x =图像定义域 R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k Z ∈时,max 1y =;当22x k ππ=-()k Z ∈时,当()2x k k Z π=∈时,max 1y =;当2x k ππ=+()k Z ∈时,min 1y =-.既无最大值也无最小值度0 30 45 6090 120 135 150 180︒270360弧度0 6π 4π 3π 2π 23π 34π 56π π32π 2π sin α1222 32132 22121cos α132 221212- 22-32-1- 0 1tan α 0 331 3无3- 1-33-无7.函数sin()y A x ωϕ=+图象的画法: ①“五点法”――设X x ωϕ=+,令X =0,3,,,222ππππ求出相应的x 值,计算得出五点的坐标,描点后得出图象; ②图象变换法:这是作函数简图常用方法。

三角函数-三角恒等变换及其解三角形知识点总结理科

三角函数-三角恒等变换及其解三角形知识点总结理科

三角函数三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在轴的正半轴上,角的终边在第几象限,就说过角是第几象x 限的角。

若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与角终边相同的角的集合:},2|{},360|{0Z k k Z k k或与角终边在同一条直线上的角的集合:;与角终边关于轴对称的角的集合:;x 与角终边关于轴对称的角的集合:;y 与角终边关于轴对称的角的集合:;x y②一些特殊角集合的表示:终边在坐标轴上角的集合:;终边在一、三象限的平分线上角的集合:;终边在二、四象限的平分线上角的集合:;终边在四个象限的平分线上角的集合:;(3)区间角的表示:①象限角:第一象限角:;第三象限角:;第一、三象限角:;②写出图中所表示的区间角:(4)正确理解角:要正确理解“间的角”=;oo90~0“第一象限的角”= ;“锐角”= ;“小于的角”= ;o90(5)由的终边所在的象限,通过来判断所在的象限,通过2来判断所在的象限3(6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角的弧度数的绝对值,其中为以角作为圆心角时所对圆rl ||l 弧的长,为圆的半径。

注意钟表指针所转过的角是负角。

r (7)弧长公式:;半径公式:;xyOxyO扇形面积公式:;二、任意角的三角函数:(1)任意角的三角函数定义:以角的顶点为坐标原点,始边为轴正半轴建立直角坐标系,在角的终边上任取x 一个异于原点的点,点到原点的距离记为,则;),(y x P P r sincos;;tan 如:角的终边上一点,则。

注意r>0)3,(a a sin2cos (2)在图中画出角的正弦线、余弦线、正切线;x yOa x y Oa xy Oa yOa比较,,,的大小关系:。

)2,0(xx sin x tan x (3)特殊角的三角函数值:643223sin costan三、同角三角函数的关系与诱导公式:(1)同角三角函数的关系作用:已知某角的一个三角函数值,求它的其余各三角函数值。

三角函数与解三角形

三角函数与解三角形

三角函数与解三角形在数学中,三角函数是研究角度和三角形之间关系的重要工具。

通过三角函数的使用,我们可以解决很多与角度和三角形相关的问题。

本文将介绍三角函数的基本概念以及如何应用三角函数解决三角形的各类问题。

一、三角函数的基本概念1. 正弦函数(sine function)正弦函数常用符号为sin,对于任意角θ,其正弦值sinθ等于对边与斜边的比值:sinθ = 对边/斜边。

2. 余弦函数(cosine function)余弦函数常用符号为cos,对于任意角θ,其余弦值cosθ等于邻边与斜边的比值:cosθ = 邻边/斜边。

3. 正切函数(tangent function)正切函数常用符号为tan,对于任意角θ,其正切值tanθ等于对边与邻边的比值:tanθ = 对边/邻边。

4. 余切函数(cotangent function)余切函数常用符号为cot,对于任意角θ,其余切值cotθ等于邻边与对边的比值:cotθ = 邻边/对边。

5. 正割函数(secant function)正割函数常用符号为sec,对于任意角θ,其正割值secθ等于斜边与邻边的比值:secθ = 斜边/邻边。

6. 余割函数(cosecant function)余割函数常用符号为csc,对于任意角θ,其余割值cscθ等于斜边与对边的比值:cscθ = 斜边/对边。

二、解三角形的常用方法1. 已知边长求角度假设我们已知一个三角形的两条边长a和b,以及它们之间的夹角θ。

我们可以利用正弦、余弦或正切函数求解这个角度。

- 已知边长a和b,以及夹角θ,可以使用正弦函数来求解:sinθ = a/b,从而可以解得角度θ。

- 已知边长a和b,以及夹角θ,可以使用余弦函数来求解:cosθ = a/b,从而可以解得角度θ。

- 已知边长a和b,以及夹角θ,可以使用正切函数来求解:tanθ = a/b,从而可以解得角度θ。

2. 已知角度求边长假设我们已知一个三角形的一条边长a,以及与这条边相连的两个角度θ和φ。

三角函数和解三角形知识点汇总

三角函数和解三角形知识点汇总

三角函数和解三角形知识点汇总三角函数和解三角形是高中数学中的重要内容,这两个知识点在解决几何问题和求解三角方程等方面具有广泛的应用。

本文将对三角函数和解三角形的相关概念和性质进行汇总和总结。

一、三角函数的基本概念和性质1. 正弦函数(sin):在直角三角形中,正弦函数定义为对边与斜边之比。

在单位圆中,正弦函数定义为点在单位圆上的纵坐标。

2. 余弦函数(cos):在直角三角形中,余弦函数定义为邻边与斜边之比。

在单位圆中,余弦函数定义为点在单位圆上的横坐标。

3. 正切函数(tan):在直角三角形中,正切函数定义为对边与邻边之比。

在单位圆中,正切函数定义为点在单位圆上的纵坐标与横坐标之比。

4. 三角函数的周期性:正弦函数、余弦函数和正切函数都具有周期性,周期为360度或2π弧度。

5. 三角函数的基本关系:正弦函数、余弦函数和正切函数之间存在一定的关系,如正弦函数与余弦函数的平方和等于1,正切函数与正弦函数的比值等于余弦函数。

二、解三角形的基本方法1. 解直角三角形:直角三角形是最简单的三角形,可以通过已知两个角或两个边长度,求解出三个角和三个边的长度。

解直角三角形常用的方法包括正弦定理、余弦定理和勾股定理。

2. 解一般三角形:一般三角形包括三个不等边和三个不等角。

解一般三角形的关键是要找到足够的已知条件,一般包括已知两个角和一个边的长度,或已知两个边和一个角的大小。

解一般三角形常用的方法有正弦定理和余弦定理。

三、三角函数和解三角形的应用1. 几何问题的求解:三角函数和解三角形广泛应用于几何问题的求解,如求解三角形的面积、角度、边长等。

2. 物理问题的求解:三角函数和解三角形也在物理问题的求解中发挥着重要作用,如求解力的合成与分解、两个物体之间的角度等。

3. 工程问题的求解:在工程问题中,三角函数和解三角形用于求解斜面的倾斜角度、测量高楼大厦的高度等。

四、总结本文对三角函数和解三角形的相关知识进行了汇总和总结。

高中数学知识点总结(第四章-三角函数、解三角形-第一节-任意角和弧度制及任意角的三角函数)

高中数学知识点总结(第四章-三角函数、解三角形-第一节-任意角和弧度制及任意角的三角函数)

第四章 三角函数、解三角形第一节 任意角和弧度制及任意角的三角函数一、基础知识1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角. (3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z}.终边相同的角不一定相等,但相等的角其终边一定相同.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用.(2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=y x (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总——规律多一点(1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.(2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=x r,tan α=y x(x ≠0). (3)象限角(4)轴线角[解题技法]用定义法求三角函数值的2种类型及解题方法(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.[解题技法]三角函数值符号及角所在象限的判断三角函数在各个象限的符号与角的终边上的点的坐标密切相关.sin θ在一、二象限为正,cos θ在一、四象限为正,tan θ在一、三象限为正.学习时首先把取正值的象限记清楚,其余的象限就是负的,如sin θ在一、二象限为正,那么在三、四象限就是负的.值得一提的是:三角函数的正负有时还要考虑坐标轴上的角,如sin π2=1>0,cos π=-1<0.。

三角函数及解三角形知识点总结

三角函数及解三角形知识点总结

三角函数及解三角形知识点总结三角函数是数学中一个重要的分支,它研究了三角形中角度和边长之间的关系。

解三角形则是利用已知的一些条件,计算出三角形中的未知量。

本文将总结三角函数和解三角形的相关知识点,以帮助读者更好地理解和应用这些概念。

一、三角函数的基本概念1. 正弦函数(sine function)正弦函数是三角函数中最基本的一种,用sin表示。

它表示一个角的对边与斜边之比,即sinθ = 对边 / 斜边。

2. 余弦函数(cosine function)余弦函数是与正弦函数相似的三角函数,用cos表示。

它表示一个角的邻边与斜边之比,即cosθ = 邻边 / 斜边。

3. 正切函数(tangent function)正切函数也是常见的三角函数,用tan表示。

它表示一个角的对边与邻边之比,即tanθ = 对边 / 邻边。

二、三角函数的性质1. 周期性三角函数具有周期性,即在一定范围内,函数值会重复出现。

例如正弦函数和余弦函数的周期是2π,而正切函数的周期是π。

2. 定义域和值域不同的三角函数具有不同的定义域和值域。

正弦函数和余弦函数的定义域是整个实数集,值域是[-1, 1];而正切函数的定义域是除去其奇点的整个实数集,值域是整个实数集。

三、解三角形的基本方法解三角形是根据已知条件来计算未知量和角度的过程。

下面介绍几种常用的解三角形方法。

1. 余弦定理(Law of Cosines)余弦定理可以用来计算三角形中的边长。

对于一个三角形ABC,已知边长a、b和夹角C,余弦定理可以表示为c^2 = a^2 + b^2 - 2ab cosC。

通过此公式,我们可以计算出任意一条边的长度。

2. 正弦定理(Law of Sines)正弦定理可以用来计算三角形中的角度和边长。

对于一个三角形ABC,已知边长a,b和夹角C,正弦定理可以表示为a/sinA = b/sinB = c/sinC。

通过此公式,我们可以计算出未知的角度和边长。

三角函数与解三角形知识点总结

三角函数与解三角形知识点总结

三角函数与解三角形知识点总结三角函数是数学中的一种重要的函数,在几何学、物理学、工程学等多个学科中都有广泛的应用。

解三角形则是利用三角函数求解三角形的各个边长和角度的过程。

下面将对三角函数和解三角形的相关知识进行总结。

一、三角函数的概念及性质1. 正弦函数:在一个直角三角形中,对于一些锐角,其对边与斜边的比值被定义为正弦,用sin表示。

正弦函数的定义域是实数集,值域是[-1,1]。

2. 余弦函数:在一个直角三角形中,对于一些锐角,其邻边与斜边的比值被定义为余弦,用cos表示。

余弦函数的定义域是实数集,值域是[-1,1]。

3. 正切函数:在一个直角三角形中,对于一些锐角,其对边与邻边的比值被定义为正切,用tan表示。

正切函数的定义域是实数集,值域是(-∞,∞)。

4. 余切函数:在一个直角三角形中,对于一些锐角,其邻边与对边的比值被定义为余切,用cot表示。

余切函数的定义域是实数集,值域是(-∞,∞)。

5. 正割函数:在一个直角三角形中,对于一些锐角,其斜边与邻边的比值被定义为正割,用sec表示。

正割函数的定义域是实数集,值域是(-∞,-1]∪[1,∞)。

6. 余割函数:在一个直角三角形中,对于一些锐角,其斜边与对边的比值被定义为余割,用csc表示。

余割函数的定义域是实数集,值域是(-∞,-1]∪[1,∞)。

二、解三角形的基本原理解三角形的基本原理是利用三角函数的定义和性质来求得三角形的各个边长和角度。

1.利用已知边长和角度求解三角形:如果已知一个三角形的两个角度和一个边长,可以利用三角函数的定义和性质来求解三角形的其他边长和角度。

例如,已知一个三角形的两边长分别为a和b,以及夹角C,可以利用余弦定理和正弦定理来求解三角形的第三边长和其他两个角度。

2.利用已知边长求解三角形的角度:如果已知一个三角形的三个边长,可以利用余弦定理和正弦定理来求解三角形的三个角度。

例如,已知一个三角形的三个边长分别为a、b、c,可以利用余弦定理求解三个角度。

三角函数及解三角形知识点

三角函数及解三角形知识点

三角函数及解三角形知识点三角函数知识点⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+>,则sin y r α=,cos x r α=,()tan 0yx xα=≠.P xy A O M T 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα= sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:奇变偶不变,符号看象限.14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<. 15、正弦函数、余弦函数和正切函数的图象与性质: sin y x =cos y x = tan y x = 图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数函 数 性 质单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在 32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性 对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 辅助角公式()22sin cos αααϕA +B =A +B +,其中tan ϕB=A .降幂公式(sin^2)x=1-cos2x/2 (cos^2)x=i=cos2x/2 万能公式令tan(a/2)=tsina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2) 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)=sinα cos (2kπ+α)=cosα tan (2kπ+α)=tanα cot (2kπ+α)=cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sinα cos (π+α)=-cosαtan(π+α)=tanα cot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanα cot(-α)=-co tα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosαtan(π-α)=-tanα cot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosαtan(2π-α)=-tanα cot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosα cos(π/2+α)=-sinαtan(π/2+α)=-cotα cot(π/2+α)=-tanαsin(π/2-α)=cosα cos(π/2-α)=sinαtan(π/2-α)=cotα cot(π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

(完整版)三角函数及解三角形知识点总结

(完整版)三角函数及解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y xr rαα==,()tan ,0yx xα=≠三角函数值只与角的大小有关,而与终边上点P 的位置无关。

2.三角函数在各象限的符号:(一全二正弦,三切四余弦)+ + - + - + - - - + + -sin α cos α tan α3. 同角三角函数的基本关系式:(1)平方关系:22221sincos 1,1tan cos αααα+=+=(2)商数关系:sin tan cos ααα=(用于切化弦) ※平方关系一般为隐含条件,直接运用。

注意“1”的代换4.三角函数的诱导公式诱导公式(把角写成απ±2k 形式,利用口诀:奇变偶不变,符号看象限)Ⅰ)⎪⎩⎪⎨⎧=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)⎪⎩⎪⎨⎧-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ⎪⎩⎪⎨⎧=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)⎪⎩⎪⎨⎧-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)⎪⎪⎩⎪⎪⎨⎧=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)⎪⎪⎩⎪⎪⎨⎧-=+=+ααπααπsin )2cos(cos )2sin(5.特殊角的三角函数值6.三角函数的图像及性质 sin y x =cos y x = tan y x =图像定义域 R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k Z ∈时,max 1y =;当22x k ππ=-()k Z ∈时,min 1y =-.当()2x k k Z π=∈时,max 1y =;当2x k ππ=+()k Z ∈时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶奇函数偶函数奇函数度0 30 45 60 90 120 135 150 180︒270360弧度6π 4π 3π 2π 23π 34π 56π π32π 2πsin α122232132 22121cos α132 2212 012- 22- 32- 1- 0 1tan α 0 3313无3-1-33-无函数 性 质7.函数sin()y A xωϕ=+图象的画法:①“五点法”――设X xωϕ=+,令X=0,3,,,222ππππ求出相应的x值,计算得出五点的坐标,描点后得出图象;②图象变换法:这是作函数简图常用方法.8.图像的平移变换:函数sin()y A x kωϕ=++的图象与siny x=图象间的关系:要特别注意,若由()sin y x ω=得到()sin y x ωϕ=+的图象,则向左或向右平移应平移||ϕω个单位 例:以sin y x =变换到4sin(3)3y x π=+为例sin y x =向左平移3π个单位 (左加右减) sin 3y x π⎛⎫=+ ⎪⎝⎭横坐标变为原来的13倍(纵坐标不变) sin 33y x π⎛⎫=+ ⎪⎝⎭纵坐标变为原来的4倍(横坐标不变) 4sin 33y x π⎛⎫=+ ⎪⎝⎭sin y x =横坐标变为原来的13倍(纵坐标不变)()sin 3y x =向左平移9π个单位 (左加右减) sin 39y x π⎛⎫=+ ⎪⎝⎭sin 33x π⎛⎫=+ ⎪⎝⎭纵坐标变为原来的4倍(横坐标不变)4sin 33y x π⎛⎫=+ ⎪⎝⎭注意:在变换中改变的始终是x 。

高中数学 三角函数与解三角形知识点总结

高中数学 三角函数与解三角形知识点总结

三角函数与解三角形一、三角函数的图象与性质 1.三角函数图象变换由函数sin y x =的图象通过变换得到sin()y A x ωϕ=+(A >0,ω>0)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.如下图.2.三角函数的性质(1)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的定义域均为R ; 函数tan()y A x ωϕ=+的定义域均为ππ{|,}2k x x k ϕωωω≠-+∈Z . (2)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的最大值为||A ,最小值为||A -; 函数tan()y A x ωϕ=+的值域为R .(3)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的最小正周期为2πω; 函数tan()y A x ωϕ=+的最小正周期为πω.(4)对于()sin y A x ωϕ=+,当且仅当()πk k ϕ=∈Z 时为奇函数,当且仅当()ππ2k k ϕ=+∈Z 时为偶函数; 对于()c o s y A xωϕ=+,当且仅当()ππ2k k ϕ=+∈Z 时为奇函数,当且仅当()πk k ϕ=∈Z 时为偶函数;对于()tan y A x ωϕ=+,当且仅当()π2k k ϕ=⋅∈Z 时为奇函数. (5)函数()()s i n 0,0y A x A ωϕω=+>>的单调递增区间由不等式ππ2π2π(22k x k k ωϕ-≤+≤+ )∈Z 来确定,单调递减区间由不等式()π3π2π2π22k x k k ωϕ+≤+≤+∈Z 来确定; 函数()()c o s 0,0y A x A ωϕω=+>>的单调递增区间由不等式()2ππ2πk x k k ωϕ-≤+≤∈Z 来确定,单调递减区间由不等式()2π2ππk x k k ωϕ≤+≤+∈Z 来确定;函数()()t a n 0,0y A x A ωϕω=+>>的单调递增区间由不等式()ππππ22k x k k ωϕ-<+<+∈Z 来确定. 【注】函数sin()y A x ωϕ=+,cos()y A x ωϕ=+,tan()y A x ωϕ=+(ω有可能为负数)的单调区间:先利用诱导公式把ω化为正数后求解. (6)函数sin()y A x ωϕ=+图象的对称轴为ππ()2k x k ϕωωω=-+∈Z ,对称中心为π(,0)()k k ϕωω-∈Z ; 函数c o s (y Ax ωϕ=+图象的对称轴为π()k x k ϕωω=-∈Z ,对称中心为ππ(,0)()2k k ϕωωω-+∈Z ; 函数tan()y A x ωϕ=+图象的对称中心为π(,0)()2k k ϕωω-∈Z . 【注】函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的图象与x 轴的交点都为对称中心,过最高点或最低点且垂直于x 轴的直线都为对称轴. 函数tan()y A x ωϕ=+的图象与x 轴的交点和渐近线与x 轴的交点都为对称中心,无对称轴.1.同角三角函数的基本关系式 (1)平方关系:22sin cos 1αα+=. (2)商的关系:sin cos tan ααα=. (3)常见变形:2222sin 1cos ,cos 1sin αααα=-=-,sin sin tan cos ,cos tan αααααα=⋅=. 2.诱导公式3.两角和与差的正弦、余弦、正切公式 (1)()C αβ-:cos()αβ-=cos cos sin sin αβαβ+ (2)()C αβ+:cos()cos cos sin sin αβαβαβ+=- (3)()S αβ+:sin()αβ+=sin cos cos sin αβαβ+ (4)()S αβ-:sin()αβ-=sin cos cos sin αβαβ- (5)()T αβ+:tan()αβ+=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ++≠+∈-Z(6)()T αβ-:tan()αβ-=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ--≠+∈+Z(1)2S α:sin 2α=2sin cos αα(2)2C α:cos 2α=2222cos sin 12sin 2cos 1αααα-=-=- (3)2T α:tan 2α=22tan πππ(π,)1tan 224k k k αααα≠+≠+∈-Z 且5.公式的常用变形(1)tan tan tan()(1tan tan )αβαβαβ±=±;tan tan tan tan tan tan 11tan()tan()αβαβαβαβαβ+-=-=-+-(2)降幂公式:21cos 2sin 2αα-=;21cos 2cos 2αα+=;1sin cos sin 22ααα= (3)升幂公式:21cos 22cos αα+=;21cos 22sin αα-=;21sin 2(sin cos )ααα+=+;21sin 2(sin cos )ααα-=-(4)辅助角公式:sin cos a x b x +)x ϕ=+,其中cos ϕϕ==,tan baϕ=三、解三角形 1.正弦定理 (1)内容在ABC △中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则各边和它所对角的正弦的比相等,即sin sin sin a b c ==A B C.正弦定理对任意三角形都成立. (2)常见变形①sin sin sin ,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c ====== ②;sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++ ③::sin :sin :sin ;a b c A B C =④正弦定理的推广:===2sin sin sin a b c R A B C,其中R 为ABC △的外接圆的半径. (3)应用①已知两角和任意一边,求其他的边和角; ②已知两边和其中一边的对角,求其他的边和角. 2.余弦定理 (1)内容三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,(2)余弦定理的推论从余弦定理,可以得到它的推论:222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===.(3)应用①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两角. 3.解三角形的实际应用 (1)三角形的面积公式设ABC △的三边为a ,b ,c ,对应的三个角分别为A ,B ,C ,其面积为S .①12S ah = (h 为BC 边上的高);②111sin sin sin 222S bc A ac B ab C ===;③1()2S r a b c =++(r 为三角形的内切圆半径).(2)解三角形实际应用题的步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数和解三角形知识点
⎧⎪
⎨⎪⎩
正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角
2、角α的顶点及原点重合,角的始边及x 轴的非负半轴重合,终边落在第几象限,则称α
为第几象限
角.第一象限角的集合为
{}360
36090,k k k αα⋅<<⋅+∈Z
第二象限角的集合为
{}36090360180,k k k α⋅+<⋅+∈Z
第三象限角的集合为
{}360180360270,k k k αα⋅+<<⋅+∈Z
第四象限角的集合为
{}360270
360360,k k k αα⋅+<<⋅+∈Z
终边在x 轴上的角的集合为
{}180,k k αα=⋅∈Z
终边在
y 轴上的角的集合为{
}18090,k k αα=⋅+∈Z
终边在坐标轴上的角的集合为
{}90,k k αα=⋅∈Z
3、及角α终边相同的角的集合为
{}360,k k ββα=⋅+∈Z
4、长度等于半径长的弧所对的圆心角叫做1弧度.
5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是.
6、弧度制及角度制的换算公式:2360
π=,,.
7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,
2C r l =+,
. 8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是
(),x y (
)
r r =>,则,,.
9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正. 11






的基本关系:()221sin cos 1
αα+=()
2
222sin 1cos ,cos 1sin αααα=-=-;
sin sin tan cos ,cos tan αααααα⎛
⎫== ⎪⎝
⎭.
12、函数的诱导公式:
()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.
口诀:函数名称不变,符号看象限. ,.
()6sin cos 2π
αα⎛⎫
+=
⎪⎝⎭
,.
口诀:正弦及余弦互换,符号看象限. 13、①的图象上所有点向左(右)平移
ϕ
个单位长度,得到函数
()sin y x ϕ=+的图象;再将函数
()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的
1
ω
倍(纵坐标不变),得到函数
()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来
的A 倍(横坐标不变),得到函数
()sin y x ωϕ=A +的图象.
②数
sin y x =的图象上所有点的横坐标伸长(缩短)到原来的

倍(纵坐标不变),得到函数
sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移
ϕ
ω
个单位长度,得到函数
()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来
的A 倍(横坐标不变),得到函数
()sin y x ωϕ=A +的图象.
14、函数
()()sin 0,0y x ωϕω=A +A >>的性质:
①振幅:A ;②周期:; 函数
()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min
y ;当
2x x =时,取得最大值为
max y ,则,,.
15、正弦函数、余弦函数和正切函数的图象及性质:
sin y x =
cos y x = tan y x =
图象
定义域 R R
值域
[]1,1- []1,1-
R
最值

()k ∈Z 时,max 1y =;当 ()k ∈Z 时,min 1y =-.
当()2x k k π
=∈Z 时,
max 1y =;当2x k ππ=+
()k ∈Z 时,min 1y =-.
既无最大值也无最小值
周期性 2π

π
奇偶性
奇函数
偶函数
奇函数
单调性

()k ∈Z 上是增函数;在
()k ∈Z 上是减函数. 在
[]()2,2k k k πππ-∈Z 上是
增函数;在[]2,2k k πππ+
()k ∈Z 上是减函数.

()k ∈Z 上是增函数.
对称性
对称中心()(),0k k π∈Z
对称轴
对称中心 对称轴()x k k π
=∈Z
对称中心 无对称轴
三角恒等变换
24、两角和及差的正弦、余弦和正切公式: ⑴()cos
cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;
⑶()sin
sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;
⑸()tan tan tan
1tan tan αβαβαβ
--=
+⑹()tan tan tan
1tan tan αβαβαβ
++=
-
25、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=.
⑵2222cos2cos sin 2cos 112sin α
αααα=-=-=-
28、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的
B x A y ++=)sin(ϕϖ形式。

()22sin cos αααϕA +B =A +B +,其中.
29、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:
(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角及角之间的和
差,倍半,互补,互余的关系,运用角的变换,沟通条件及结论中角的差异,使问题获解,对角的变形如:


性 质
①α2是α的二倍;α4是α2的二倍;α是
2
α的二倍;
2
α是
4
α的二倍;
②2
304560304515o
o
o
o
o
o
=
-=-=;问:;;
③ββαα-+=)(;④;
⑤)4
(
)4
(
)()(2απ
απ
βαβαα--+=-++=;等等
(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。

如在三角函数中正余弦是基础,通
常化切为弦,变异名为同名。

(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,例如常数“1”的
代换变形有:
o o 45tan 90sin cot tan cos sin 122===+=αααα
(一)解三角形:
1、正弦定理:在
C
∆AB 中,
a

b

c
分别为角
A

B

C
的对边,,则有
2sin sin sin a b c
R C
===A B (R 为C ∆AB 的外接圆的半径)
2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;
②,,;③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111
sin sin sin 222
C
S
bc ab C ac ∆AB =
A ==
B . 4、余弦定理:在
C ∆AB 中,有2
222cos a
b c bc =+-A ,推论:。

相关文档
最新文档