2017初中数学总复习模拟试题及答案

合集下载

最新2017年中考数学模拟试卷(含答案)

最新2017年中考数学模拟试卷(含答案)

最新2017年中考数学模拟试卷(含答案)时间120分钟满分150分 2017.2.20 一、选择题(每小题3分,共21分)1.的倒数是()A.﹣2 B.2 C.D.2.下列运算正确的是()A.B. C.D.3.一元一次不等式x+1≥2的解在数轴上表示为()A.B.C.D.4.由4个相同小立方体搭成的几何体如图所示,则它的俯视图是()A.B.C. D.5.某大学生对新一代无人机的续航时间进行7次测试,一次性飞行时间(单位:分钟)分别为20、22、21、26、25、22、25.则这7次测试续航时间的中位数是()A.22或25 B.25 C.22 D.216.顺次连结菱形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形7.反比例函数图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1二、填空题(每小题3分,共30分)8.计算:a2•a4= .9.分解因式:x2﹣9= .10.计算: = .11.经济日报5月8日讯,4月份我国外贸出口延续正增长态势,进出口总值195 000 000万元.请将“195 000 000”这个数据用科学记数法表示:.12.如图,将三角尺的直角顶点放在矩形的一边上,∠1=130°,则∠2= °.13.一个正多边形的每个外角都是36°,这个正多边形的边数是.14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则cos∠A= .15.如图,在⊙O中,点C是AB的中点,AB=4cm,OC=1cm,则OB的长是cm.16.在平面直角坐标系中,将抛物线y=x2先向右平移4个单位,再向上平移3个单位,得到抛物线L,则抛物线L的解析式为.17.如图,在△ABC中,AB=AC,∠BAC=50 .分别以B、C为圆心,BC长为半径画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD.则①∠DAE= 度;②若BC=9,与的长度之和为.三、解答题(共89分)18.计算:.19.先化简,再求值:(x+2)2﹣x(x+3),其中x=﹣2.20.如图,AF与BE相交于点C,AB∥EF,AB=EF.求证:AC=CF.21.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.22.如图,二次函数y=x2﹣4x+3+的图象的对称轴交x轴于A点.(1)请写出OA的长度;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否在该函数的图象上?23.随着科技的发展,电动汽车的性能得到显著提高.某市对市场上电动汽车的性能进行随机抽样调查,抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据,绘制成如下两幅表和图. 组别行驶的里程x (千米) 频数(台) 频率Ax <20018 0.15 B200≤x <210 36 a C210≤x <220 30 D220≤x <230 b E x ≥23012 0.10 合计 c 1.00 根据以上信息回答下列问题:(1)a= ,b= ,c= ;(2)请将条形统计图补充完整;(3)若该市市场上的电动汽车有2000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.24.屈原食品公司接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只5元.为按时完成任务,该企业招收了新工人,设新工人小明第x天生产的粽子数量为n只,n与x满足如下关系式:.(1)小明第几天生产的粽子数量为390只?(2)设第x天每只粽子的成本是y元,y与x之间的关系的函数图象如图所示.若小明第x天的净利润为w元,试求w与x之间的函数表达式,并求出第几天的净利润最大?最大值是多少元?(提示:净利润=出厂价﹣成本)25.阅读理解:如图1,点P ,Q 是双曲线上不同的两点,过点P ,Q 分别作PB ⊥y 轴于B 点、QA ⊥x 轴于A 点,两垂线的交点为E 点,则有=,请利用这一性质解决问题.问题解决:(1)如图1,如果QE=6,AQ=3,BP=4.填空:PE= ;(2)如图2,点A ,B 是双曲线y=上不同的两点,直线AB 与x 轴、y 轴相交于点C ,D :①求证:AC=BD .②已知:直线AB 的关系为y=﹣x+2,CD=4AB .试求出k 的值.26.如图,在平面直角坐标系中,以OC为直径的圆交y轴于点D,∠DOC=30°,OC=2.延长DC至点B,使得CB=4DC,过B点作BA∥OC交x轴于A点.(1)请求出BC的长度;(2)若P点与B点是关于直线AC的对称点,试求出点P的坐标;(3)若点M、N分别为CB、AB上的动点,P点与B点是关于直线MN的对称点,过点P作x轴的平行线,与AC、OC分别交于点E、F.若PE﹕PF=1:3,点P的横坐标为m.请求出点P的纵坐标,并直接写出m的取值范围.参考答案与试题解析一、选择题1.故选:A.2故选:B.3.故选A.4.故选:D.5.故选:C.6.故选B.7.故选C.二、填空题8.a6.9.(x+3)(x﹣3).10. 1 .11. 1.95×108.12.50 °.13.10 .14..15.cm.16.y=(x﹣4)2+3 .17.故答案为:25;故答案为:π.三、解答题(共89分)18.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别进行绝对值的化简、零指数幂、二次根式的除法、负整数指数幂的运算,然后合并求解.【解答】解:原式=2﹣+1+﹣2=1.【点评】本题考查了实数的运算,涉及了绝对值的化简、零指数幂、二次根式的除法、负整数指数幂等知识,解答本题的关键是掌握各知识点的运算法则.19.先化简,再求值:(x+2)2﹣x(x+3),其中x=﹣2.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+4x+4﹣x2﹣3x=x+4,当x=﹣2时,原式=﹣2+4=2.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.如图,AF与BE相交于点C,AB∥EF,AB=EF.求证:AC=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由AB∥EF,得到∠A=∠F,∠B=∠E,通过证明三角形全等得到对应边相等.【解答】证明:∵AB∥EF,∴∠A=∠F,∠B=∠E,在△ABC和△FEC中,,∴△ABC≌△FEC(ASA),∴AC=CF.【点评】本题考查了全等三角形的判定与性质,平行线的性质,找准对应边和对应角是解题的关键.21.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.【解答】解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,二次函数y=x2﹣4x+3+的图象的对称轴交x轴于A点.(1)请写出OA的长度;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否在该函数的图象上?【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)先依据抛物线的对称轴方程求得抛物线的对称轴,从而可得到点A的坐标,从而可求得OA的长;(2)依据旋转的性质和特殊锐角三角函数值可求得点A′的坐标,然后将点A′的坐标代入抛物线的解析式进行判断即可.【解答】解:(1)∵x=﹣=﹣=2,∴A(2,0).∴OA=2.(2)如图所示:过A′作A′B⊥OA,垂足为B.由旋转的性质可知:OA′=OA=2.∵∠A′OA=60°,A′B⊥OA,∴OB=1,A′B=∴A′(1,).∵将x=1时,y=12﹣4+3+=,∴A′在该函数的图象上.【点评】本题主要考查的是二次函数的图象与几何变形,解答本题主要应用了二次函数的对称轴方程、旋转的性质,求得点A′的坐标是解题的关键.23.随着科技的发展,电动汽车的性能得到显著提高.某市对市场上电动汽车的性能进行随机抽样调查,抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据,绘制成如下两幅表和图.组别行驶的里程x(千米)频数(台)频率A x<200 18 0.15B 200≤x<210 36 aC 210≤x<220 30D 220≤x<230 bE x≥230 12 0.10合计 c 1.00根据以上信息回答下列问题:(1)a= 0.3 ,b= 24 ,c= 120 ;(2)请将条形统计图补充完整;(3)若该市市场上的电动汽车有2000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.【考点】条形统计图;用样本估计总体;频数(率)分布表.【分析】(1)由A组的频数、频率可得总数c,再依据频率=可求得a,根据频数之和等于总数可求得b;(2)由(1)知D组数量,补全图形即可;(3)用样本中行驶的里程数在220千米及以上的台数(即D、E两组频数之和)所占比例乘以总数2000可得.【解答】解:(1)本次调查的总台数c=18÷0.15=120,a=36÷120=0.3,b=120﹣18﹣36﹣30﹣12=24,故答案为:0.3,24,120.(2)由(1)知,D组的人数为24人,补全条形图如图:(3)×2000=600(台),答:估计电动汽车一次充电后行驶的里程数在220千米及以上的约有600台.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.屈原食品公司接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只5元.为按时完成任务,该企业招收了新工人,设新工人小明第x天生产的粽子数量为n只,n与x满足如下关系式:.(1)小明第几天生产的粽子数量为390只?(2)设第x天每只粽子的成本是y元,y与x之间的关系的函数图象如图所示.若小明第x天的净利润为w元,试求w与x之间的函数表达式,并求出第几天的净利润最大?最大值是多少元?(提示:净利润=出厂价﹣成本)【考点】二次函数的应用.【分析】(1)把n=390代入n=30x+90,解方程即可求得;(2)根据图象求得成本y与x之间的关系,然后根据:净利润=(出厂价﹣成本价)×销售量,结合x的范围整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答.【解答】解:(1)∵45×5=225<390,∴30x+90=390,解得:x=6,答:小明第6天生产的粽子数量为390只;(2)由图象可知,当0≤x≤9时,y=3.4;当9<x≤15时,设y=kx+b,将(9,3.4)、(15,4)代入,得:,解得:,∴y=0.1x+2.5;①当0≤x≤5时,w=(5﹣3.4)×45x=72x,∵w随x的增大而增大,∴当x=5时,w取得最大值,w最大=360元;②当5<x≤9时,w=(5﹣3.4)(30x+90)=48x+144,∵w随x的增大而增大,∴当x=9时,w取得最大值,w最大=576元;③当9<x≤15时,w=[5﹣(0.1x+2.5)](30x+90)=﹣3x2+66x﹣225=﹣3(x﹣11)2+138,∴当x=11时,w取得最大值,w最大=138元;综上,当x=9时,w取得最大值,w最大=576元,答:第9天的净利润最大,最大值是576元.【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.25.阅读理解:如图1,点P ,Q 是双曲线上不同的两点,过点P ,Q 分别作PB ⊥y 轴于B 点、QA ⊥x 轴于A 点,两垂线的交点为E 点,则有=,请利用这一性质解决问题.问题解决:(1)如图1,如果QE=6,AQ=3,BP=4.填空:PE= 8 ;(2)如图2,点A ,B 是双曲线y=上不同的两点,直线AB 与x 轴、y 轴相交于点C ,D :①求证:AC=BD .②已知:直线AB 的关系为y=﹣x+2,CD=4AB .试求出k 的值.【考点】反比例函数综合题.【分析】(1)根据给定比例=,将QE=6、AQ=3、BP=4代入其中即可求出PE 的值;(2)①过点A 作y 轴的垂线交y 轴于点E ,过点B 作x 轴的垂线交x 轴于点F,延长EA、FB交于点M,由ME⊥y轴、MF⊥x轴,即可得出△CAE∽△BAM∽△BDF,根据相似三角形的性质即可得出、,再结合即可得出,由此即可证出AC=BD;②分别将x=0、y=0代入一次函数解析式中即可求出点C、D的坐标,由AE ⊥y轴可得出△ACE∽△DCO,再根据相似三角形的性质结合CD=4AB,即可求出点A的坐标,利用反比例函数图象上点的坐标特征即可求出k值.【解答】(1)解:∵ =,QE=6,AQ=3,BP=4,∴PE===8.故答案为:8.(2)①证明:过点A作y轴的垂线交y轴于点E,过点B作x轴的垂线交x轴于点F,延长EA、FB交于点M,如图3所示.∵ME⊥y轴,MF⊥x轴,∴△CAE∽△BAM∽△BDF,∴,,∵,∴,∴AC=BD.证毕.②当x=0时,y=2,∴点C(0,2);当y=0时,有﹣x+2=0,解得:x=2,∴点D(2,0).∵CD=4AB,AC=BD,∴==.∵AE⊥y轴,∴AE∥DO,∴△ACE∽△DCO,∴=,∵CO=2,OD=2,∴CE=EA=,∴点A的坐标为(,).∵点A在双曲线y=上,∴×=k=.【点评】本题考查了相似三角形的判定与性质以及反比例函数图象上点的坐标特征,根据相似三角形的性质找出线段与线段之间的关系是解题的关键.26.如图,在平面直角坐标系中,以OC为直径的圆交y轴于点D,∠DOC=30°,OC=2.延长DC至点B,使得CB=4DC,过B点作BA∥OC交x轴于A点.(1)请求出BC的长度;(2)若P点与B点是关于直线AC的对称点,试求出点P的坐标;(3)若点M、N分别为CB、AB上的动点,P点与B点是关于直线MN的对称点,过点P作x轴的平行线,与AC、OC分别交于点E、F.若PE﹕PF=1:3,点P的横坐标为m.请求出点P的纵坐标,并直接写出m的取值范围.【考点】圆的综合题.【分析】(1)根据圆周角定理可知∠ODC是直角,所以可求得CD的长为1,利用CB=4DC可知,CB的长度为4;(2)根据(1)可知OA=4,OC,∠COA=60°,所以易证△OCA∽△CDO,可知∠OCA=90°,又易知四边形AOCB是平行四边形,所以∠CAB=90°,所以点P一定在BA的延长线上;(3)由题意知:P与B关于MN,所以m的范围是2≤m≤5,求出直线AC和OC的解析式后,设P的纵坐标为a,然后将y=a分别代入直线AC和OC解析式中,求出E、F的横坐标,然后利用PF=3PE,列出关于a的方程,然后解出a即可得出M的纵坐标.【解答】(1)由题意知:OC是直径,∴∠ODC=90°,∵∠DOC=30°,∴DC=OC=1,∴BC=4DC=4;(2)连接AC,由(1)可知:∠ODC=90°∴CD∥OA,∵BA∥OC,∴四边形AOCB是平行四边形,∴OA=BC=4,∵∠COD=30°,∴∠COA=∠OCD=60°,∵,∴△OCA∽△CDO,∴∠OCA=90°,在BA的延长线上截取AP=AB,过点P作PG⊥x轴于点G,∴AP=2,∠OAP=60°,∴AG=1,PG=,∴OG=OA﹣AG=3,∴P(3,﹣);(3)由题意知:当M与C重合,N在AB上移动时,m的范围是3≤m≤5,当N与A重合,M在CB上移动时,m的范围是2≤m≤5,∴点P与B关于MN对称时,2≤m≤5,由(1)可知,点C的坐标为(1,),点A的坐标为(4,0),设直线AC的解析式为:y=kx+b,把A(4,0)和C(1,)代入y=kx+b,得:,∴,∴直线AC的解析式为:y=﹣x+,设直线OC的解析式为:y=mx,把C(1,)代入y=mx,∴m=,∴直线OC的解析式为:y=x,设P的纵坐标为a,∴P的坐标为(m,a)∵PF∥x轴,∴E、F的纵坐标为a,令y=a代入y=﹣x+,∴x=4﹣a,∴E(4﹣a,a),令y=a代入y=x,∴x=a,∴F(a,a),如图1,当点P在AC的右侧时,∴PE=m﹣(4﹣a)=m﹣4+a,PF=m﹣a,∵PF=3PE,∴m﹣a=3(m﹣4+a),∴a=,如图2,当点P在EF之间时,此时,PE=4﹣a﹣m,PF=m﹣a,∵PF=3PE,∴m﹣a=3(4﹣a﹣m),∴a=(3﹣m),综上所述,P的纵坐标为或(3﹣m),m的范围是:2≤m≤5.【点评】本题考查圆的综合题目,涉及圆周角定理,轴对称的性质,相似三角形的性质和判定,题目较为综合,需要学生灵活运用所学知识进行解答.。

2017中考数学模拟试题含答案(精选5套)

2017中考数学模拟试题含答案(精选5套)

2017年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B 。

23C 。

2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个 C 。

3个 D. 2个3。

据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A 。

1。

8×10B 。

1.8×108C 。

1.8×109 D. 1。

8×10104. 估计8-1的值在( )A. 0到1之间 B 。

1到2之间 C. 2到3之间 D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A 。

平行四边形B. 矩形C. 正方形D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C 。

400名 D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A 。

(x + 2)2= 9 B 。

(x — 2)2= 9C 。

(x + 2)2 = 1D. (x - 2)2=19。

如图,在△ABC 中,AD,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B 。

1∶4C 。

1∶3D 。

2∶310。

下列各因式分解正确的是( )A 。

x 2+ 2x-1=(x — 1)2B. - x 2+(—2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x — 2)D 。

2017年初中数学模拟卷参考答案

2017年初中数学模拟卷参考答案

2017年初中毕业班质量自测试题数学参考答案一、选择题(每题4分,共40分)二、填空题(每题5分,共30分) 11.)2)(2(-+x x 12.15 13.31 14. 222=+y x 15. 32或62 16.22+三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)解:原式=221121=++ ………………4分 (2) 511=x ………………4分18.解:(1)150 ………………2分(2)图略 ………………2分(3)最喜爱科普类书籍的学生人数1800×=480人………………4分19.(1)2=m ………………4分(2) B 的坐标为(1,3)或(﹣3,﹣1)………………4分20.解:如图作CM ∥AB 交AD 于M ,MN ⊥AB 于N .由题意=,得 CM=1, ………………2分在RT △AMN 中,∵∠ANM=90°,MN=BC=3,∠AMN=60°, ∴AN=33 ………………2分 ∵MN ∥BC ,AB ∥CM , ∴四边形MNBC 是平行四边形, ∴BN=CM=1∴AB=AN+BN=(331+)米. ………………4分NM21.(1)证明:连接OD,如图,∵∠1=∠2,而∠2=∠3,∴∠3=∠1,∵OC⊥AB,∴∠3+∠C=90°,∴∠1+∠C=90°,而OC=OD,∴∠C=∠4,∴∠1+∠4=90°,即∠ODE=90°,∴OD⊥DE,∴GE是⊙O的切线;………………4分(2)解:设OF=x,则OC=3x,∴BF=2x,∵∠1=∠2,∴ED=EF=2x+4,在Rt△ODE中,∵OD2+DE2=OE2,∴(3x)2+(2x+4)2=(4+3x)2,解得x=2,………………4分∴OD=6,DE=8,OE=10又∵△AGE∽△DOE,AE=16,可得AG=12 ………………2分22. (1)假设甲、乙两种商品的进货单价各为x ,y 元 ……………………………1分根据题意可得:33(1)2(21)12x y x y +=⎧⎨++-=⎩………………………………………2分解得:12x y =⎧⎨=⎩…………………………………………………………………………2分 甲、乙零售单价分别为2元和3元;………………………………………………1分 (2)根据题意得出:1000500)1.0100500(-1=+⨯+mm )( ………………………………………3分 即2m 2﹣m=0,解得m =0.5或m =0(舍去), …………………………………………………2分 答:当m 定为0.5元才能使商店每天销售甲、乙两种商品获取的利润共1000元.……1分23.(1)① √ ………………1分 ② √ ………………1分 (2)设P 到AB 的距离为h ,则6321521421=⋅⨯-⋅⨯+⋅⨯h h h 解得h =2 ………………4分(3) ① 70° ………………2分②作AD 边上的高AH ,设AD=AE=5k ,则HE=4k ,AH=3k , DH=2k , tan ∠DEH=21,可得tan ∠DAP= tan ∠DEH=21,∵AP=4,∴DP=EP=2, 可证△DBP ∽△EPC ,∴4=•=•EP DP CE BD ………………4分24.(1)b=2 c=3- 直线AC 的解析式为3--=x y ………………3分 (2)①HE=3t +,EF=3+t ,FP=342---t t ,由题意可得563342=+---t t t , 解得31-=t (舍), 2.22-=t ………………4分 ②当3-<t 时,∠PEC=135°,而∠ACB>45°,所以△PEC 中不存在有一个角等于∠ACB ; ……………1分当3->t 时,∠PEC=45°=∠BAC ,若△PEC 中有一个角等于∠ACB , 则这两个三角形相似 ∴△PEC ∽△CAB 时,23-=t ………………3分 △PEC ∽△BAC 时,35-=t ………………3分。

2017年中考数学模拟题含答案

2017年中考数学模拟题含答案

中考数学模拟题含答案2017年中考数学模拟题含答案为了能帮助广大学生朋友们提高成绩和思维能力,小编特地为大家整理了2017年中考数学模拟题含答案,希望能够切实的帮到大家,同时祝大家学业进步!2017年中考数学模拟题:A级基础题1.已知点P(1,-3)在反比例函数y=kx(k≠0)的图象上,则k的值是( )A.3B.-3C.13D.-132.对于反比例函数y=3x,下列说法正确的是( )A.图象经过点(1,-3)B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x<0时,y随x增大而减小3在同一直角坐标系下,直线y=x+1与双曲线y=1x的交点的个数为( )A.0个B.1个C.2个D.不能确定4.当a≠0时,函数y=ax+1与函数y=ax在同一坐标系中的图象可能是( )A正比例函数 B 反比例函数 C 相交 D垂直5.已知反比例函数y=bx(b为常数),当x>0时,y随x的增大而增大,则一次函数y=x+b的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限6.矩形的长为x,宽为y,面积为9,则y与x之间的函数关系用图象表示大致为( )A正方形 B 长方形 C 圆 D梯形7.已知A(2,y1),B(3,y2)是反比例函数y=-2x图象上的两点,则y1____y2(填“>”或“<”).8.如图3310,已知A点是反比例函数y=kx(k≠0)的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的.值为________.9.已知一个函数的图象与y=6x的图象关于y轴成轴对称,则该函数的解析式为__________.10.已知反比例函数的图象经过点(m,2)和(-2,3),则m的值为______.11.(2013年山东德州)某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?2017年中考数学模拟题:B级中等题12.如图3311,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=kx(x>0)的图象经过顶点B,则k的值为( )A.12B.20C.24D.3213.下列图形中,阴影部分面积最大的是( )A B C D14.如图3312,已知一次函数y1=kx+b与反比例函数y2=mx的图象交于A(2,4),B(-4,n)两点.(1)分别求出y1和y2的解析式;(2)写出当y1=y2时,x的值;(3)写出当y1>y2时,x的取值范围.2017年中考数学模拟题:C级拔尖题15.如图3313,等腰梯形ABCD放置在平面直角坐标系中,已知A(-2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位长度后,使点B恰好落在双曲线上,求m的值.2017年中考数学模拟题答案1.B2.D3.C4.C5.B6.C 解析:由矩形的面积知xy=9,可知它的长x与宽y之间的函数关系式为y=9x(x>0),是反比例函数图象,且其图象在第一象限.故选C.7.< 8.6 9.y=-6x 10.-311.(1)由题意,得y=360x,把y=120代入y=360x,得x=3;把y=180代入y=360x,得x=2,∴自变量的取值范围为2≤x≤3.∴y=360x(2≤x≤3).(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意,得360x-360x+0.5=24,解得x=2.5或x=-3.经检验x=2.5或x=-3均为原方程的根,但x=-3不符合题意,故舍去.x+0.5=2.5+0.5=3(万米3)答:原计划每天运送2.5万米3,实际每天运送3万米3.12.D 13.C14.解:(1)将A(2,4)代入反比例解析式,得m=8,∴反比例函数解析式为y2=8x.将B(-4,n)代入反比例解析式,得n=-2,即B(-4,-2),将点A与点B坐标代入一次函数解析式,得2k+b=4,-4k+b=-2,解得k=1,b=2.则一次函数解析式为y1=x+2.(2)联立两函数解析式,得y=x+2,y=8x,解得x=2,y=4,或x=-4,y=-2.则当y1=y2时,x的值为2或-4.(3)利用图象,得当y1>y2时,x的取值范围为-42.15.解:(1)如图8,过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE.∴△AOD≌△BEC(HL).∴AO=BE=2.∵BO=6,∴DC=OE=4,∴C(4,3).设反比例函数的解析式为y=kx(k≠0),∵反比例函数的图象经过点C,∴3=k4,解得k=12.∴反比例函数的解析式为y=12x.(2)将等腰梯形ABCD向上平移m个单位长度后得到梯形A′B′C′D′,如图9,∴点B′(6,m).∵点B′(6,m)恰好落在双曲线y=12x上,∴当x=6时,m=126=2.即m=2.。

2017中考数学备考模拟试题带答案

2017中考数学备考模拟试题带答案

2017中考数学备考模拟试题带答案A级基础题1.要使分式1x-1有意义,则x的取值范围应满足( )A.x=1B.x≠0C.x≠1D.x=02.(2013年贵州黔西南州)分式x2-1x+1的值为零,则x的值为( )A.-1B.0C.±1D.13.(2013年山东滨州)化简a3a,正确结果为( )A.aB.a2C.a-1D.a-24.约分:56x3yz448x5y2z=________;x2-9x2-2x-3=________.5.已知a-ba+b=15,则ab=__________.6.当x=______时,分式x2-2x-3x-3的值为零.7.(2013年广东汕头模拟)化简:1x-4+1x+4÷2x2-16.8.(2012年浙江衢州)先化简x2x-1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:m2-4m+4m2-1÷m-2m-1+2m-1,其中m=2.2017中考数学备考模拟试题带答案B级中等题10.(2012年山东泰安)化简:2mm+2-mm-2÷mm2-4=________.11.(2013年河北)若x+y=1,且x≠0,则x+2xy+y2x÷x+yx的值为________.12.(2013年贵州遵义)已知实数a满足a2+2a-15=0,求1a+1-a+2a2-1÷a+1a+2a2-2a+1的值.2017中考数学备考模拟试题带答案C级拔尖题13.(2012年四川内江)已知三个数x,y,z满足xyx+y=-2,yzz+y=34,zxz+x=-34,则xyzxy+yz+zx的值为________.14.先化简再求值:ab+ab2-1+b-1b2-2b+1,其中b-2+36a2+b2-12ab=0.2017中考数学备考模拟试题答案1.C2.D3.B4.7z36x2y x+3x+15.326.-17.解:原式=x+4+x-4x+4x-4•x+4x-42=x+4+x-42=x.8.解:原式=x2-1x-1=x+1,当x=2时,原式=3(除x=1外的任何实数都可以).9.解:原式=m-22m+1m-1•m-1m-2+2m-1=m-2m+1+2m-1=m-2m-1+2m+1m+1m-1=m2-m+4m+1m-1,当m=2时,原式=4-2+43=2.10.m-6 11.112.解:原式=1a+1-a+2a+1a-1•a-12a+1a+2=1a+1-a-1a+12=2a+12,∵a2+2a-15=0,∴(a+1)2=16.∴原式=216=18.13.-4 解析:由xyx+y=-2,得x+yxy=-12,裂项得1y+1x=-12.同理1z+1y=43,1x+1z=-43.所以1y+1x+1z+1y+1x+1z=-12+43-43=-12,1z+1y+1x=-14.于是xy+yz+zxxyz=1z+1y+1x=-14,所以xyzxy+yz+zx=-4.14.解:原式=a b+1b+1b-1+b-1b-12=ab-1+1b-1=a+1b-1.由b-2+36a2+b2-12ab=0,得b-2+(6a-b)2=0,∴b=2,6a=b,即a=13,b=2. ∴原式=13+12-1=43.。

中考数学模拟试卷含答案(2017)

中考数学模拟试卷含答案(2017)

中考数学模拟试卷(满分:150分,考试时间:120分钟)一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的.1.在-3,0,10-,4这四个数中,最小的数是( B )A.﹣3 B.10- C.0 D.42.下列计算中,正确的是( D )A.842a a a ÷=B.255=±C.235a b ab +=D.11()22--=-3.下列四个标志中,不是轴对称图形的是( A )4.下列说法中,正确的是( C ) (5题图)A.一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖.B.为了了解全国中学生的心理健康状况,应采用普查的方式.C.一组数据0,1,2,1,1的众数和中位数都是1.D.若甲组数据的方差S 甲2=0.2,乙组数据的方差S 乙2=0.5,则乙组数据比甲组数据稳定. 5.如图,已知AB ∥CD ,DE ⊥AC ,垂足为E ,∠A=130°,则∠D 的度数是( B ) A.20° B.40° C.50° D.70°6.若代数式2425x x -+的值为7,那么代数式221x x -+的值等于( B ) A.-2 B.2 C.3 D.47.函数24x y x +=-中,自变量x 的取值范围是( D ) A.4x > B.4x ≠ C.24x x >-≠且 D.24x x ≥-≠且 (9题图) 8.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3:2,则△ABC 与△DEF 对应边上的高线的比为( C ) A.2:3 B.4:16 C.3:2 D.16:49.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB=30°,CD=23,则阴影部分的面积为( D )A.4πB.2πC.πD.23π10.土家传统建筑的窗户上常有一些精致花纹,小辰对土家传统建筑非常感兴趣,他观察发现窗格的花纹排列呈现有一定规律,如图.其中“○”代表的就是精致的花纹,第1个图有5个花纹,第2个图有8个花纹,第3个图有11个花纹,…,请问第7个精致花纹有( B )A.26个B.23个C.20个D.17个11.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB 的坡度为1:2.4,AB 的长度是13米,MN 是二楼楼顶,MN ∥PQ ,C 是MN 上处在自动扶梯顶端B 点正上方的一点,BC ⊥MN ,在自动扶梯底端A 处测得C 点的仰角为42°,则二楼的层高BC 约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)( D )A.10.8米B.8.9米C.8.0米D.5.8米12.从-2,-1,12-,1,2这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组无解,且使关于的分式方程22123a x -=--的解为正分数,那么这个数中所有满足条件的a 的值之是( A ) A.﹣3 B.52- C.-2 D.72-二、填空题(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在对应的横线上.13.2016年3月30日国务院通过了《成渝城市群发展规划》,成渝城市群包括重庆全城和四川成都、德阳、绵阳、乐山、眉山、资阳、内江、宜宾、泸州、自贡等11个城市及所辖73个县(市)、1636个建制镇,幅员面积183000平方公里,将183000用科学计数法表示为 . 14.计算:012(3)4cos30π+-°= 1 . 51.8310⨯ 15.如图,AB 是⊙O 的直径,点C 、D 在圆上,∠D=65°,则∠ABC= 25° .16.从-4,12-,34,5中任取一个数记为a ,再从余下的三个数中任取一个数记为b ,则二次函数2y ax bx =-的对称轴在y 轴左侧的概率是 . 2317.甲、乙两车分别从A ,B 两地同时相向匀速行驶.当乙车到达A 地后,继续保持原速向远离B 的方向行驶,而甲车到达B 地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y 与x 之间的函数关系如图所示,则B ,C 两地相距 600 千米.18.如图,已知正方形ABCD ,点P 为BC 边上的一点,将△ABP 绕点A 逆时针旋转90°得到 △ADE ,连接PE 交AC 于F ,点G 是AF 上一点,且∠PGE=135°,连接DG 交PE 于点N ,若P B=3,CF=42NG 的长是 . 25三、解答题(本大题共2个小题,每小题8分,共16分)解答应写出必要的文字说明、证明过程或演算步骤.19.如图,点A 、B 、C 、D 在同一直线上,BE ∥DF ,∠A=∠F, AB=FD.求证:AE=FC. 证:∵BE ∥DF ,∴∠ABE=∠D.在△ABE 和△FDC 中A F AB FD ABE D ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABE ≌△FDC(ASA)∴AE=FC.20.某初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息,解答下列问题:① ② (答案图)(1)在这次评价中,一共抽查了 560 名学生;请将图①中的频数分布直方图补充完整;求图②中“主动质疑”所在扇形对应的圆心角是 54 度.(2)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?解:因为抽查的这些人中,“独立思考”的学生占总数的比例为168÷560=30%,所以6000名初三学生 “独立思考”的初三学生约有6000×30%=1800(人)四、解答题(本大题共5个小题,每小题10分,共50分)解答应写出必要的文字说明、证明过程或演算步骤.21.化简下列各式:(1)22(2)()a a b a b b +--+ (2)2344(1)11x x x x x -+-+÷++22.如图,在平面直角坐标系中,一次函数的图象与反比例函数my x=的图象交于第一、三象限内的A ,B 两点,直线AB 与x 轴交于点C ,点B 的坐标是(-6,n),线段OA=5,E 为x 轴正半轴上一点,且tan ∠AOE=43.(1)求反比例函数的解析式;(2)求△AOB 的面积.解:(1)A(3,4),12y x =. (2)B(-6,-2),223y x =+,C(-3,0).OC=3,113432922AOB AOC BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=.23.第31届夏季奥林匹克运动会于2016年8月5日在巴西里约热内卢举行,里约热内卢成为奥运史上首个主办奥运会的南美洲城市,某经销商抓住商机在今年6月底购进了一批奥运吉祥物1160件,预计在7月份进行试销,购进价格为每件10元,若售价为12元/件,则可全部售出.若每涨价0.1元,销售量就减少2件.(1)求该经销商在7月份的销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,8月份该吉祥物进价比6月底的进价每件增加20%,该经销商增加了进货量,并加强了宣传力度,结果8月份的销售量比7月份在(1)的条件下的最低销售量增加了m%,但售价比7月份在(1)的条件下的最高售价减少2%15m ,结果8月份利润达到3388元,求m的值(m>10).解:(1)设售价为x 元,由题意得:121160211000.1x --⨯≥,解得15x ≤.(2)由题意得:21100(1%)[15(1%)12]338815m m +⨯⨯--=,整理得:m 2-50m+400=0,∴(m-10)(m-40)=0,解得:m 1=40,m 2=10,又∵m>10,∴m=40,∴m 的值是40. 24.认真阅读下面的材料,完成有关问题.对于实数x ,y 我们定义一种新运算L (x ,y)=ax+by (其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L (x ,y),其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.已知L (1,-2)=-1,L (13,12)=2.(1)a= 3 ,b= 2 ;(2)若正格线性数L (m ,m -2),求满足50<L (m ,m -2)<100的正格数对有多少个;(3)若正格线性数L (x ,y)=76,满足这样的正格数对有多少个;在这些正格数对中,有满足问题(2)的数对吗,若有,请找出;若没有,请说明理由.解:(2)∵(2)32(2)54L m m m m m -=+-=-,,∴5054100m <-<,∴10.85420.8m <-<,∴有10个.(3)3276x y +=,3382x y =-,7603x <<,且为偶数,∴有12个. 有,∵3x+2y=76,y=x-2,∴x=16,y=14.25.如图,在等腰三角形ABC 中,AB=AC ,D 为线段BC 中点,∠EDF=∠B ,AE=CD . (1)如图1,EF 交AD 于点G ,∠B =60°,求∠ADF 的度数;(2)如图2,EF 交AD 于点G ,G 为AD 中点,2∠FDC=∠B ,求证:AE=2EG.(图1) (图2)(1)等边△BDE ,∠ADE=30°,∠ADF=30°.(2)过点D 作DH ∥BA 交EF 于点H ,△AEG ≌△DHG(AAS), AE=DH ,EG=HG ,∴2EG=EG+HG=EH ,又∵∠ABC=∠HDC=∠HDF+∠FDC=2∠FDC ,∴∠HDF =∠FDC , 又∵AE=CD ,∴DH=DC ,又∵DF=DF ,∴△HDF ≌△CDF(SAS), ∴∠DFH =∠DFC ,又∵2∠FDC=∠B ,∠EDF=∠B , ∴∠EDF=2∠FDC ,∴∠HDF+∠HDE=2∠FDC , 又∵∠HDF =∠FDC ,∴∠HDE=∠FDC ,又∵∠FDC=180°-∠DFC-∠C ,∠HED=180°-∠DFH-∠EDF ,∠DFH =∠DFC , ∠EDF=∠B=∠C ,∴∠FDC=∠HED ,∴∠HDE=∠HED ,∴DH=EH ,∴AE=EH=2EG ,AE=2EG. 五、解答题(本大题共1个小题,12分)解答应写出必要的文字说明、证明过程或演算步骤. 26.如图,已知抛物线y=ax 2+bx+3(a≠0)与x 轴交于点A (-1,0),点B (3,0),与y 轴交于点C ,顶点为D ,连接BC.(1)求抛物线的解析式及顶点D 的坐标;(2)如图1,点E ,F 为线段BC 上的两个动点,且EF =22,过点E ,F 作y 轴的平行线EM ,FN ,分别与抛物线交于点M ,N ,连接MN ,设四边形EFNM 的面积为S ,求S 的最大值和此时点M 的坐标;(3)如图2,连接BD ,点P 为BD 的中点,点Q 是线段BC 上的一个动点,连接DQ ,PQ ,将△DPQ 沿PQ 翻折得到△D ′PQ ,当△D ′PQ 与△BCD 重叠部分的面积是△BDQ 面积的14时,求线段CQ 的长.(1)a-b+3=0,9a+3b+3=0,a=-1,b=2,∴y=-x 2+2x+3,D(1,4).(2)过点F 作FH ⊥ME 交ME 的延长线于点H ,连接EN ,直线BC 的解析式为:y=-x+3, 等腰Rt △EFH 中,∵EF =22,∴HF=HE=22EF=2,∴设E(m ,-m+3),F(m+2,-m+1), ∴M(m ,-m 2+2m+3),N(m+2,-m 2-2m+3),∴ME=-m 2+3m ,NF=-m 2-m+2, ∴S=S △MNE+S △EFN=ME+NF=-m 2+3m-m 2-m+2=-2m 2+2m+2,∴S=2152()22m --+(0<m<1),∴max 52S =,M(12,154).(3)∵BC=32,CD=2,BD=25,∴BC 2+CD 2=BD 2,∴△BCD 为直角三角形,BCD=90°,∵点P 为BD 的中点,∴P(2,2),BP=12BD=5,若QP ⊥DB ,∵PBQ=∠CBD ,∴Rt △BPQ ∽Rt △BCD ,∴BQ:BD=BP:BC ,即BQ:25=5:32,解得BQ=523,此时CQ=53223-=423;当CQ>423时,如图2,QD ′交BD 于点G ,∵△PQG 的面积是△BDQ 面积的14,而△PQB 的面积为△BDQ 面积的12,∴△PQG 的面积为△PBQ 面积的12,∴点G 为PB 的中点,∴G(52,1),PD=2PG ,设Q(t ,-t+3),则DQ=22(1)(34)t t -+-+-,QG=225()(31)2t t -+-+-, ∵△DPQ 沿PQ 翻折得到△D ′PQ ,∴∠DQP=∠GQP ,即PQ 平分∠DQG ,∴QD:QG=PD:PG=2:1,即QD=2QG ,∴22(1)(34)t t -+-+-=2252()(31)2t t -+-+-,整理得2t 2﹣12t+13=0,解得t 1=6102+(舍去),t 2=6102-, 此时CQ=22610(33)223252t t t -+-+-==⨯=-; 当CQ<423时,如图3,PD ′交BC 于点G , ∵△PQG 的面积是△BDQ 面积的14,而△PQB 的面积为△BDQ 面积的12,∴△PQG 的面积为△PBQ 面积的12,∴点G 为QB 的中点,∴PG 为BDQ 的中位线,∴DQ ∥PG ,∴∠DQP=∠GPQ ,∵△DPQ 沿PQ 翻折得到D ′PQ ,∴∠DPQ=∠GPQ ,∴∠DQP=∠DPQ ,∴DQ=DP ,设Q(t ,-t+3),DQ=22(1)(34)t t -+-+-,∴221(1)(34)252t t -+-+-=⨯,整理得2t 2﹣3=0,解得t 1=62-(舍去),t 2=62,此时CQ=226(33)2232t t t +-+-==⨯=,综上所述,CQ 的长为3或325-.。

2017数学中考模拟考试试题及答案

2017数学中考模拟考试试题及答案

2017数学中考模拟考试试题A级基础题1.计算6x3•x2的结果是( )A.6xB.6x5C.6x6D.6x92.(2013年湖南湘西州)下列运算正确的是( )A.a2-a4=a8B.(x-2)(x-3)=x2-6C.(x-2)2=x2-4D.2a+3a=5a3.下列运算正确的是( )A.a+a=a2B.(-a3)2=a5C.3a•a2=a3D.(2a)2=2a24.(2013年山东济宁)如果整式xn-2-5x+2是关于x的三次三项式,那么n=( )A.3B.4C.5D.65.下列计算正确的是( )A.(-p2q)3=-p5q3B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m-1)=m-3m2D.(x2-4x)x-1=x-46.如果单项式-xa+1y3与12ybx2是同类项,那么a,b的值分别为( )A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=27.计算(-5a3)2的结果是( )A.-10a5B.10a6C.-25a5D.25a68.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是( )A.-5x-1B.5x+1C.13x-1D.13x+19.化简:(a+b)2+a(a-2b)2017数学中考模拟考试试题B级中等题10.若一多项式除以2x2-3,得到的商式为7x-4,余式为-5x+2,则此多项式为( )A.14x3-8x2-26x+14B.14x3-8x2-26x-10C.-10x3+4x2-8x-10D.-10x3+4x2+22x-1011.(2011年安徽芜湖)如图1­3­2,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A.(2a2+5a) cm2B.(3a+15) cm2C.(6a+9) cm2D.(6a+15) cm212.若关于x的多项式-5x3-(2m-1)x2+(2-3n)x-1不含二次项和一次项,求m,n的值.13.(2012年山西)先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3.2017数学中考模拟考试试题C级拔尖题14.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问用这三种方案调价的结果是否一样?最后是不是都恢复了原价?2017数学中考模拟考试试题答案1.B2.D3.D4.C5.D6.C7.D8.A9.解:原式=a2+2ab+b2+a2-2ab=2a2+b2.10.A 11.D12.解:2m-1=0,2-3n=0.解得m=12,n=23.13.解:原式=4x2-9-4x2+4x+x2-4x+4=x2-5.当x=-3时,原式=(-3)2-5=3-5=-2.14.解:方案(1)的调价结果为:(1+10%)(1-10%)a=0.99a;方案(2)的调价结果为:(1-10%)(1+10%)a=0.99a;方案(3)的调价结果为:(1+20%)(1-20%)a=0.96a.由此可以得到这三种方案的调价结果是不一样的.最后都没有恢复原价.。

2017年初中数学模拟试卷及答案

2017年初中数学模拟试卷及答案

第9题O1xy2017年初中数学模拟试卷4(考试时间:120分钟,满分:150分)班级 姓名 座号 成绩一、选择题:本大题共10小题,每小题4分,共40分.1.实数a 、b 、c 、d 在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是 A . a B . bC .cD . d2.下列等式一定成立的是( B )A .235a a a +=B .936()()x x x -÷-= C .22(1)1a a -=- D .236(2)8a a -= 3.如图所示,该几何体的俯视图是( C )A .B .C .D .4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为( B ) A .7.6×10﹣9B .7.6×108-C .7.6×109D .7.6×1085.已知11y +-=x k 是关于x 的一次函数,则一元二次方程kx 2+2x+1=0的根的情况为(A )A .没有实数根B .有一个实数根C .有两个不相等的实数根D .有两个相等的实数根6.如图,在△ABC 中,AD 平分∠BAC ,按如下步骤作图:第一步分别以点A 、D 为圆心,以大于AD 的长为半径在AD 两侧作弧,交于点M 、N ;第二步连接MN 分别交AB 、AC 于点E 、F ;第三步连接DE 、DF .若BD=6,AF=4,CD=3,则BE 的长是( D ) A . 2 B . 4 C . 6 D . 87.如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD .若B (1,0),则点C 的坐标为( B )A.(1,2)B .(1,1) C .(,) D . (2,1)8.如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是( A )A .B .2C .3D .29.已知抛物线2y ax bx c =++的图象如图所示,则|||2|a b c a b -+++=( D ) A .a b + B .2a b - C .a b -D .3a10.如图,AC 是矩形ABCD 的对角线,⊙O 是△ABC 的内切圆,现将矩形ABCD 按如图所示的方式折叠,使点D 与点O 重合,折痕为FG ,点F ,G 分别在AD ,BC 上,连结OG ,DG ,若OG ⊥DG ,且⊙O 的半径长为1,则下列结论不成立的是 ( D )A .BC −AB=2B .BC+AB=23+4C .CD −DF=23−3 D .CD+DF=4二、填空题:本大题共6小题,每小题4分,共24分.11.小明五次测验平均成绩是85,中位数为86,众数是89,则最低两次测验的成绩之和为 161 . 12.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于 π .13.新定义:[],a b 为一次函数y ax b =+(0a ≠,,a b 为实数)的“关联数”.若“关联数”[]3,2m +所对应的一次函数是正比例函数,则关于x 的方程1111x m +=-的解为 53x = . 14.如图,将三角板的直角顶点放在⊙O 的圆心上,两条直角边分别交⊙O 于A 、B 两点,点P 在优弧AB 上,且与点A 、B 不重合,连结PA 、PB .则∠APB 的大小为 45 °.15.如图,四边形ABCD 的顶点都在坐标轴上,若AD ∥BC ,△ACD 与△BCD 的面积分别为10和20,若双曲线y =kx恰好经过边AB 的四等分点E (BE <AE ),则k 的值为-5/2.16.如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 2处,称为第1次操作,折痕DE 到BC 的距离记为h 1;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2;按上述方法不断操作下去…,经过第2017次操作后得到的折痕D 2016E 2016到BC 的距离记为h 2017,到BC 的距离记为h 2017.若h 1=1,则h 2017的值为_____2﹣201621第6题第8题第5题第16题 第14题ABC D E xy O (第15题)第13题第10题B AEFDCB AEFDCG三、解答题(86分)17. (8分)计算:201()(7)324sin 602π---+-+︒。

2017中考数学模拟考试题含答案解析[精选5套]

2017中考数学模拟考试题含答案解析[精选5套]

2017年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2= 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2+ 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为()A. 3B. 23C.23D. 1圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x -1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2017年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°,∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2017年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、 数1,5,0,2-中最大的数是( ) A 、1- B 、5 C 、0 D 、22、9的立方根是( )A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=( ) A 、4 B 、3 C 、-4 D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( ) A 、0a b +> B 、0a b -> C 、0ab > D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5B 、2.4C 、2.5D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2017中考数学模拟试卷及答案

2017中考数学模拟试卷及答案

第6题图九年级数学模拟试卷(含答案)(2017年5月5日)一、选择题:(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内)1.-2的相反数是( D )A.21- B.21C. -2D. 22.下列图形中,既是轴对称图形,又是中心对称图形的是(A)A. B. C. D.3. 2015年我国的GDP总量为629180亿元,用科学计数法表示为( C )A、6.2918×105元B、6.2918×1014元C、6.2918×1013元D、6.2918×1012元4. 下列运算正确的是(D)A.abba5=3+2 B.1=2-322yxyx C.()6326=2aa D.xxx5=÷5235. 一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为,则袋子里2号球有(B)A.1个 B.2个 C.3个 D.4个6. 如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为(D)A、50°B、80°C、100°D、130°7.如右图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数有可能..是( D )A.5或6 B.5或7C.4或5或6 D.5或6或78. 如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于( A )A、50°B、57.5°C、60°D、65°9. 若关于x的方程+=2的解为正数,则m的取值范围是(C)A.m<6B.m>6C.m<6且m≠0D.m>6且m≠810. 如图,已知A、B是反比例函数(0,0)ky k xx=>>上的两点,BC x轴,交y轴于C,动点P从坐标原点O 出发,沿O A B C→→→匀速运动,终点为C,过运动路线上任意一点P作PM x⊥轴于M,PN y⊥轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是( A )二、填空题(本题有6个小题,每小题3分,共18分)11. 分解因式:2x2-8x+8=第7题图俯视图左视图12.关于x 的方程m x 2-3x+1=0有两个实数根,则实数m 的取值范围是。

2017年中考数学模拟试题及答案

2017年中考数学模拟试题及答案

本卷共六大题,24小题,共 一、选择题(本大题共 6小题,每小题3分, 1、 比一2013小1的数是( A 、一 2012 2、 如图,直线 A 、70° ---- 品 -------- -- - -2017年中考模拟试题 数学试题卷120分。

考试时间 共18分) 120分钟) B 、2012 C 、一 2014 |1 // |2,/ 1 = 40°,/ 2= 75° B 、65° C 、60 ° ,则/ D 、55 ° l i bD 、 2014 3 =( C 、 A 、 B 、 正面 4、 ’某红外线遥控器发出的红外线波长为 A 、9.4X 10 7m B 、9.4X 107m 5、 下列计算正确的是( ) A 、(2a — 1)2=4a 2— 1 B 、3a 6- 3a 3= a 2 0.000 00094m , C 、9.4X 10—8m D 、 用科学计数法表示这个数是( D 、9.4 X 108m C 、(— ab 2) 4=- a 4b 6 D 、一 2a + (2a — 1) =- 1 4兀。

某天,一一 240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷 10千克。

假设零售商当天购进四星级枇杷 x 千克, 6、 某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低 位零售商分别用去 比五星级枇杷多购进 方程为( ) A 240 , 160 A 、 + 4 = - x x —10 二、填空题(本大题共 240 , 160 —4= _ x x — 10 8小题,每小题3分,共 240 . 160+ 4 = x —10 x 24分)因式分解:xy 2— x= 。

已知x = 1是关于x 的方程x 2+ x + 2k = 0的一个根,则它的另一个根是 已知2y = 3,则分式x —2y 的值为 10、 如图,正五边形 ABCDE , AF // CD 交BD 的延长线 于点F ,则/ DFA = ________ 度。

安徽省2017年初中数学中考模拟试卷及答案

安徽省2017年初中数学中考模拟试卷及答案

2017年安徽省初中毕业学业考试模拟试卷数 学一、选择题(本大题共10小题,每小题4分,满分40分)1.下列各数中,最小的数是 ( ) A.0.5B.0C.12- D.-1 2.下列各式计算正确的是( ) A.235325a a a += B.22(2)4a a -=- C.22(3)9a a =D.33a a a ÷=3.如图,直线c 与直线a ,b 相交,且a ∥b ,有下列结论:(1)12∠=∠;(2)13∠=∠;(3)32∠=∠.其中正确的个数为 ( )A.0B.1C.2D.34.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为 ( ) A.0.83510⨯B.3.7510⨯C.3.6510⨯D.3.9510⨯5.下图是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是 ( )6.一个不等式组的解集在数轴上表示如图,则这个不等式组可能是 ( )A.12x x ≥-⎧⎨<⎩B.12x x ≤-⎧⎨>⎩C.12x x <-⎧⎨≥⎩D.12x x >-⎧⎨≤⎩7.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).随机在大正方形及其内部区域投针,若针扎到小正方形(阴影部分)的概率是19,则大、小两个正方形的边长之比是 ( )∶∶1 ∶1D.22∶18.A ,B 两地相距10千米,甲、乙二人同时从A 地出发去B 地,甲的速度是乙的速度的2倍,结果甲比乙早到13x 千米/时,则可列方程为 ( ) A.1010123x x -= B. 1010123x x -= C. 101123x x += D. 1011032x x+=9.如图,EF 是圆O 的直径,OE =5 cm,弦MN =8 cm,则E ,F 两点到直线MN 的距离之和等于 ( )A.12 cmB.6 cmC.8 cmD.3 cm10.如图,点P 是等边△ABC 的边上的一个做匀速运动的动点,其由点A 开始沿AB 边运动到点B ,再沿BC 边运动到点C 为止,设运动时间为t ,△ACP 的面积为S ,则S 与t 的大致图象是 ( )二、填空题(本大题共4小题,每小题5分,满分20分) 11.分解因式:210m m -= .y =kx +2中,若y 随x 的增大而增大,则它的图象不经过第 象限. OABC 有两边在坐标轴的正半轴上,如图所示,双曲线6y x=与边AB ,BC 分别交于D ,E 两点,OE 交双曲线2y x=于点G ,若DG ∥OA ,OA =3,则CE 的长为 .第13题图 第14题图14.如图,正方形纸片ABCD 的边长为3,点E ,F 分别在边BC ,CD 上,将AB ,AD 分别沿AE ,AF 折叠,点B ,D 恰好都落在点GBE =1,则EF 的长为 .三、(本大题共2小题,每小题8分,满分16分)15.计算:2019(34)2cos 452-⎛⎫-+-- ⎪⎝⎭.16.先化简后求值:当21x =-时,求代数式221121111x x x x x -+-•+-+的值.四、(本大题共2小题,每小题8分,满分16分)17.如图,在97⨯的小正方形网格中,△ABC 的顶点A ,B ,C △ABC 向左平移3个单位、再向上平移3个单位得到△A ′B ′C ′.将△ABC 按一定规律顺次旋转,第1次,将△ABC 绕点B 顺时针旋转90得到△11A BC ;第2次,将△11A BC 绕点1A 顺时针旋转90得到△112A B C ;第3次,将△112A B C 绕点2C 顺时针旋转90得到△222A B C ;第4次,将△222A B C 绕点2B 顺时针旋转90得到△323A B C ,依次旋转下去.(1)在网格中画出△A ′B ′C ′和△222A B C ;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A ′B ′C ′.18.同学们,我们曾经研究过n n ⨯的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+...+n 2.但n 为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道: 011223⨯+⨯+⨯+ (1)(1)(1)(1)3n n n n n +-⨯=+-时,我们可以这样做: (1)观察并猜想:2212(10)1(11)2101212(12)(0112)+=+⨯++⨯=+⨯++⨯=++⨯+⨯; 222123++(10)1(11)2(12)3=+⨯++⨯++⨯=101212323+⨯++⨯++⨯ =(123)(011223)+++⨯+⨯+⨯;22221234+++(10)1(11)2(12)3=+⨯++⨯++⨯+=101212323+⨯++⨯++⨯+ =(1234)++++( ); …(2)归纳结论:222123+++…2n +(10)1(11)2(12)3=+⨯++⨯++⨯+…[1(1)]n n ++-⨯=101212323+⨯++⨯++⨯+…(1)n n n ++-⨯ =( )+[ ] = + =16⨯ .(3)实践应用:通过以上探究过程,我们就可以算出当n 为100时,正方形网格中正方形的总个数是 .五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系xOy 中,一次函数y =kx -2的图象与x ,y 轴分别交于点A ,B ,与反比例函数3(0)2y x x =-<的图象交于点32M n ⎛⎫-, ⎪⎝⎭. (1)求A 、B 两点的坐标;(2)设点P 是一次函数y =kx -2图象上的一点,且满足△APO 的面积是△ABO 的面积的2倍,直接写出点P 的坐标.20.如图,一艘核潜艇在海面下500米的A 点处测得俯角为30正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B 点处测得俯角为60正前方的海底有黑匣子信号发出,求海底黑匣子C 点处距离海面的深度.(保留根号)六、(本题满分12分)21.2013年3月28是第18个全国中小学生安全教育日.某校为增强学生的安全意识,组织全校学生参加安全知识测试,并对测试成绩做了详细统计,将测试成绩(成绩都是整数,试卷满分30分)绘制成了如下“频数分布直方图”.请回答:(1)参加全校安全知识测试的学生有名;(2)中位数落在分数段内;(3)若用各分数段的中间值(如5.5~10.5的中间值为8)来代替本段均分,请你估算本次测试成绩全校平均分约是多少.七、(本题满分12分)22.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?八、(本题满分14分)23.在面积为24的△ABC中,矩形DEFG的边DE在AB上运动,点F,G分别在边BC,AC上.(1)若AB =8,DE =2EF ,求GF 的长;(2)若90ACB ∠=,如图2,线段DM ,EN 分别为△ADG 和△BEF 的角平分线,求证:MG =NF ; (3)求出矩形DEFG 的面积的最大值.2017年安徽省初中毕业学业考试模拟试卷1.D 【解析】本题考查了有理数大小的比较.因为正数都大于0,负数都小于0,所以正数大于一切负数.又因为两个负数比较大小时,绝对值大的其值反而小,所以最小值为-1.2.C 【解析】本题考查合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则.23a 与32a 不是同类项,不能合并,故A 错误;22(2)44a a a -=-+,故B 错误;22(3)9a a =,故C 正确;3a ÷2a a =,故D 错误.12∠=∠;因为a ∥b ,所以3213∠=∠,∠=∠,故正确的个数为3.10n a ⨯,其中1≤|a |<10,n 为整数.故350万=3500000=3.6510⨯.5.B 【解析】本题考查了三视图的知识.俯视图是从物体的上面看得到的,观察选项可知B 项确.6.D 【解析】本题考查了在数轴上表示不等式解集的知识.由数轴上表示的不等式组的解集为-1<x ≤2,观察选项可知D 项正确.7.A 【解析】本题考查了概率的应用,相似多边形面积之比等于相似比的平方.根据针扎到小正方形(阴影部分)的概率是 19,可得19SS =,大小故大、小正方形的边长之比为3∶1.8.A 【解析】本题考查了由实际问题抽象出分式方程.根据时间找出等量关系是解决本题的关键.由题可知,甲的速度是2x 千米/时,根据题意可得1010123x x ,-=.O,E,F 点分别作OK ,EG ,FH 垂直于MN ,垂足为点K ,G ,H ,连接OM .则OK ∥EG ∥FH ,因为O 是EF 的中点,因此OK 是梯形EGHF 的中位线,欲求EG +FH 的值,需求出OK 的长.在Rt △OMK 中,OM =5,MK =4,所以223OK OM MK =-=,故EG +FH =6.P 点在边AB 上运动时,S 随着t 的增大而增大;当P 在BC 运动时,S 随着t 的增大而减小,又由等边三角形的性质可知两者增加和减小的速度相等,故C 项正确.11.m (m -10) 【解析】本题主要考查了提公因式法分解因式.210m m -=m (m -10).12.四 【解析】本题考查了一次函数的图象与系数的关系.∵在一次函数y =kx +2中,y 随x 的增大而增大,∴k >0.又∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.3=3得,直线AB 的解析式为x =3,把x =3代入反比例函数y =6x 可得D 点坐标为(3,2),由DG ∥OA 可得,直线DG 的解析式为y =2,把y =2代入2x y =可得G 点坐标为(1,2).设直线OE 的解析式为y =kx ,因为G 点在OE 上,所以2=k ,故直线OE 的解析式为y =2x .由 62xy x y =,⎧⎪⎨=⎪⎩ 可得,E 点坐标为33),.故3CE =14.52 【解析】本题考查了正方形的性质、翻折变换以及勾股定理.∵正方形纸片ABCD 的边长为3,∴90C ∠=,BC =CD =3,根据折叠的性质得EG =BE =1,GF =DF ,设DF =x ,则EF =EG +GF =1+x ,FC =CD -DF =3-x ,EC =BC -BE =3-1=2.在Rt △EFC 中222EF EC FC ,=+,即222(1)2(3)x x +=+-,解得32x =,∴32DF =,35122EF =+=.15.解:()20129(34)2cos 45--+--224312=-+-⨯6分=1. 8分16.解:原式222(1)111(1)(1)(1)(1)121(1)x x x x x x x x x --+-+++++=-=-=, 6分 当21x =-时,原式=1. 8分17.解:(1)△A ′B′C ′和△222A B C 的图象如图所示:4分(2)通过画图可知,△ABC 至少在第8次旋转后得到△A ′B ′C ′. 8分 18.解:(1)(13)4+⨯ 434+⨯ 01122334⨯+⨯+⨯+⨯ 3分 (2)1+2+3+…+n 011223⨯+⨯+⨯+…(1)n n +-⨯12(1)n n +()13(1)1n n n +- n (n +1)(2n +1)6分 (3)338350 8分19.解:(1)∵点()32M n -,在反比例函数32(0)x y x =-<的图象上. ∴n =1,∴()321M -,. 2分 ∵一次函数y =kx -2的图象经过点()321M -,,∴3212k =--,解得k =-2, ∴一次函数的解析式为y =-2x -2. 5分 ∴A (-1,0),B (0,-2). 6分12(2)(34)(14)P P -,,,-. 10分20.解:如图,过点C 作CE DE ⊥,交A B 的延长线于F ,交DE 于E .∵60FBC ∠=30BAC ,∠=,∴BAC BCA ∠=∠, ∴BC =AB =3000. 3分在Rt △BCF 中,BC =3000,60FBC ∠=, ∴sin 6015003CF BC =⋅=, 7分∴15003500CE =+. 9分答:海底黑匣子C 点处距离海面的深度为(15003500)+米. 10分21.解:(1)由频数分布直方图可知,学生总人数为(0.1+0.7+1.3+2.8+3.1+4.0)1001200⨯=. 3分 (2)由频数分布直方图可知,在分数段0.5 15.5的人数为450,在分数段15.5 20.5的人数为400,6分 故所求中位数落在15.5 20.5分数段内.7分(3)x 112(0=⨯.131⨯+.383⨯+.1134⨯+.0182⨯+.8⨯23+0.728)⨯2071217.25==, 11分 所以本次测试成绩全校平均分约为17.25分. 12分 22.解:(1)设今年三月份甲种电脑每台售价x 元. 由题意可得方程100000800001000x x +=,解得x =4000. 2分 经检验,x =4000是原方程的根,所以甲种电脑今年每台售价4000元. 4分 (2)设购进甲种电脑x 台,则购进乙种电脑(15-x )台.由题意可得不等式4800035003000(15)50000x x ≤+-≤, 解得610x ≤≤. 6分因为x 是正整数,所以x 的可能取值有6,7,8,9,10,所以共有5种进货方案. 8分 (3)设总获利为W 元,W =(4000-3500)x +(3800-3000-a )(15-x ) =(a -300)x +12000-15a , 10分 当a =300时,(2)中所有方案获利相同.所以购买甲种电脑6台、乙种电脑9台时对公司更有利(利润相同,成本最低). 12分WORD 完整版----可编辑----教育资料分享----完整版学习资料分享---- 23.解:(1)∵△ABC 的面积为24,AB =8,∴△ABC 边AB 上的高h =6. 1分设EF =x ,则GF =DE =2x .∵GF ∥A B,∴△CGF ∽△CAB ,∴GF h EF AB h -=,即2686x x -=,解得x =2.4. 3分∴GF =4.8. 4分(2)过点G 作GP ∥BC ,过点D 作DP ∥EN ,GP ,DP 交于点P ,在DM 的延长线上截取DQ =DP ,连接QG . ∵DP ∥EN ,∴PDE NEB ∠=∠,又∵90GDB FEB ∠=∠=,∴GDP FEN ∠=∠.同理可得DGP EFN ∠=∠.又∵GD =FE ,∴△GPD ≌△FNE ,∴45PG NF GDP FEN =,∠=∠=. 6分∵45GDQ GDP ∠=∠=,∴△GQD ≌△GPD ,∴QG PG GQD GPD =,∠=∠. 7分∵90MGP MDP ∠=∠=,∴180GMD GPD ∠+∠=.又∵180GMQ GMD ∠+∠=,∴GMQ GPD GQM ∠=∠=∠. 9分∴MG =QG .∴MG =NF . 10分(3)作CH AB ⊥于点H ,交GF 于点I .设AB =a ,AB 边上的高为h ,DG =y ,GF =x ,则CH =h ,CI =h -y ,ah =48.由(1)知,△CGF ∽△CAB ,∴GF CI AB CH =,即h y x a h -=,则xh 48xh a ah ay y -=-,=,12分则矩形DEFG 的面积248x x h a S xy -==,即()222448576h h h a a a ahS x x x =-+=--+. 由二次函数的有关性质知,当24h x =时,S 取得最大值为5765764812ah==. ∴矩形DEFG 的面积的最大值为12. 14分。

新人教版2017年中考数学模拟试题及答案.docx

新人教版2017年中考数学模拟试题及答案.docx

.2017 年中考数学模拟试题一、选择题(共 12 小题,每小题 3分,共 36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.有理数-3的相反数是A.3.B.-3.11 C. D..332. 函数y x 2 中自变量x的取值围是A.x ≥0.B.x ≥-2.C.x ≥2.D.x ≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是A.x+1>0, x-3>0.B.x+1>0, 3-x>0.C.x+1<0, x-3>0.D.x+1<0, 3-x>0.4.下列事件中,为必然事件的是A.购买一彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有 5 个黑球,从中摸出一个球是黑球.5.2+4x+3=0的两个根,则 x 1 x2的值是若 x1, x 2是一元二次方程 xA.4.B.3.C.-4.D.-3.6.据报道,2011年全国普通高等学校招生计划约675 万人 . 数 6750000用科学计数法表示为A.6754B.67.55C.6.7567×10 .×10 .×10 . D.0.675 ×10 .7.如图,在梯形 ABCD中, AB ∥ DC , AD=DC=CB,若∠ABD=25°,则∠BAD 的大小是A.40 °.B.45°.C.50 °.D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的部不包含边界上的1的正方形部有 1个整点, 2 的正方形部有 1个整点, 3 的正方形部有 9个整点,⋯ 8的正方形部的整点的个数A.64.B.49.C.36.D.25.10.如,路MN和公路PQ在点O交,∠QON=30°.公路PQ上A距离O点 240 米.如果火行,周200 米以会受到噪音的影响.那么火在路 MN上沿 ON方向以72千米/的速度行,A受噪音影响的A.12秒.B.16秒.C.20 秒 .D.24秒.11.广泛开展健身活,2010 年星中学投入修地、安装施、置器材及其它目的金共 38 万元. 1、 2 分反映的是 2010 年投入金分配和 2008 年以来置器材投入金的年增率的具体数据.根据以上信息,下列判断:①在2010年投入中置器材的金最多;②②2009年置器材投入金比2010年置器材投入金多8%;③③若2011年置器材投入金的年增率与2010年置器材投入金的年增率相同,2011年置器材的投入是38×38%×(1+32%)万元.其中正确判断的个数是A.0.B.1.C.2.D.3.12.如,在菱形ABCD中,AB=BD,点E,F 分在AB, AD 上,且 AE=DF.接BF与 DE 相交于点 G,接CG与BD相交于点H.下列:①△ AED≌ △DFB;②S四边形BCDG=3CG2;4③若 AF=2DF,BG=6GF. 其中正确的A.只有①②.B.只有①③.C.只有②③.D.①②③.第Ⅱ卷(非,共84分)二、填空(共4小,每小3分,共 12 分).下列各不需要写出解答程,将果直接填写在答卡指定的位置.13.sin30°的_____.14.某次数学中,五位同学的分数分是:89,91,105,105,110. 数据的中位数是 _____,众数是_____,平均数是 _____.15.一个装有水管和出水管的容器,从某刻起只打开水管水,一段,再打开出水管放水.至 12 分,关停水管.在打开水管到关停水管段,容器的水量 y(单位:升)与时间 x(单位:分钟)之间的函数关系如图所示 . 关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点 A,B的坐标分别是 A(-1 ,0),B(0,-2 ),顶点 C,D在双曲线 y=k上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5 x倍,则 k=_____.三、解答题(共 9小题,共 72 分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分 6 分)解方程: x 2+3x+1=0.18.(本题满分 6x 22x4分)先化简,再求值:( x) ,其中x=3.x x19.(本题满分 6分)如图,D,E,分别是 AB,AC上的点,且 AB=AC,AD=AE.求证∠B=∠C.20.(本题满分 7 分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(本题满分 7 分)在平面直角坐标系中,△ABC 的顶点坐标是 A(-7 ,1),B(1,1),C(1,7).线段 DE 的端点坐标是 D(7,-1),E(-1,-7 ).(1)试说明如何平移线段 AC,使其与线段 ED 重合;(2)将△ABC 绕坐标原点 O 逆时针旋转,使 AC 的对应边为 DE,请直接写出点 B的对应点 F的坐标;(3)画出(2)中的△DEF,并和△ABC 同时绕坐标原点 O逆时针旋转 90°,画出旋转后的图形.22.(本题满分 8 分)如图,PA 为⊙O 的切线,A为切点.过 A作 OP 的垂线 AB,垂足为点 C,交⊙O 于点 B.延长 BO 与⊙O 交于点 D,与 PA 的延长线交于点E.(1)求证:PB为⊙O 的切线;1( 2 )若 tan ∠ ABE=,求sinE的值.223.(本题满分 10 分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30 米的篱笆围成.已知墙长为 18米(如图所示),设这个苗圃园垂直于墙的一边的长为 x 米 .(1 )若平行于墙的一边的长为 y 米,直接写出 y 与 x 之间的函数关系式及其自变量 x 的取值围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于 88 平方米时,试结合函数图像,直接写出 x 的取值围 .24.(本题满分 10 分)(1)如图1,在△ ABC 中,点D,E,Q 分别在 AB,AC,BC 上,且DE∥BC, AQDP PE交 DE于点 P.求证:.BQ QC(2)如图,在△ABC 中,∠BAC=90 °,正方形 DEFG 的四个顶点在△ABC 的边上,连接 AG,AF分别交DE于 M,N两点.①如图 2,若 AB=AC=1,直接写出 MN的长;②如图 32,求证 MN =DM ·EN.25.(本题满分 122经过 A(-3 ,0),B(-1 ,0)两分)如图 1 ,抛物线 y=ax +bx+3点 .(1)求抛物线的解析式;( 2 )设抛物线的顶点为 M ,直线 y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线 OD 上.若平移的抛物线与射线 CD(含端点 C)只有一个公共点,求它的顶点横坐标的值或取值围;(3 )如图 2 ,将抛物线平移,当顶点至原点时,过 Q ( 0 , 3 )作不平行于 x 轴的直线交抛物线于 E, F 两点 .问在 y 轴的负半轴上是否存在点 P,使△ PEF 的心2017 年中考数学模拟试题答案一、选择题1.A2.C3.B4.D5.B6.C7.C8.A9.B 10.B11.C12.D二、填空题13.1/214.105; 105;10015.816.12三、解答题17.( 本题 6 分)解:∵ a=1,b=3,c=1∴ △ =b 2-4ac=9-4× 1 × 1 = 5 > 0 ∴ x=-3±52∴ x 1=-3+55, x2 =-3-2218.( 本题6分 ) 解:原式= x(x-2)/x÷ (x+2)(x-2)/x=x(x-2)/x·x/(x+2)(x-2)= x/(x+2)∴当 x=3时,原式=3/519.( 本题 6 分)解:证明:在△ABE 和△ACD中,AB=AC∠A=∠A AE= AD∴ △ ABE≌ △ ACD∴∠B=∠C20.( 本题7 分)解法 1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有 9 种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有 5 种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=5/9解法 2:根据题意,可以列出如下的表格:以下同解法 1(略)21.( 本题 7 分)(1)将线段 AC 先向右平移 6个单位,再向下平移 8个单位.(其它平移方式也可)(2) F(- 1,-1 )(3)画出如图所示的正确图形22.( 本题 8 分)(1)证明:连接 OA∵PA 为⊙O 的切线,∴∠ PAO=90 °∵OA=OB,OP⊥AB 于 C∴BC= CA , PB= PA∴△PBO≌△PAO∴∠PBO=∠PAO =90°∴PB 为⊙O 的切线(2)解法 1:连接 AD,∵BD 是直径,∠BAD =90°由(1)知∠BCO=90°∴AD∥ OP∴△ADE∽ △POE∴ EA/EP= AD/OP由 AD∥OC得AD = 2OC左直右= t,左(左,左)(左,直)(左,右)直(直,左)(直,直)(直,右)PC右(右,左)(右,直)(右,右)∵tan ∠ ABE=1/2∴OC/BC=1/2 ,设 OC 则BC = 2t,AD=2t由△PBC∽ △ BOC ,得= 2BC = 4t , OP = 5t∴ EA/EP=AD/OP=2/5,可设EA=2m,EP=5m,则PA=3m ∵PA=PB ∴ PB=3m∴sinE=PB/EP=3/5.=2OC∵ tan∠ ABE=1/2,∴ OC/BC=1/2,OC =t ,BC =2t,AB=4t由△PBC ∽ △ BOC ,得 PC = 2BC = 4t ,∴ PA= PB= 2 5 tA 作 AF ⊥ PB 于 F,AF · PB=AB · PC8565∴ AF=t而由勾股定理得 PF=t55∴sinE=sin ∠ FAP=PF/PA=3/523.( 本10 分 )解:( 1 ) y=30-2x(6≤ x<15)(2)矩形苗圃园的面S S=xy=x(30-2x)=-2x 22+30x∴ S=-2(x-7.5)+112.5由( 1 )知, 6 ≤ x<15∴当 x=7.5,S 最大= 112.5即当矩形苗圃园垂直于的7.5 米,个苗圃园的面最大,最大112.5 ( 3 ) 6 ≤ x≤ 1124.(本10 分)(1)明:在△ABQ中,由于 DP∥BQ,∴△ADP∽△ABQ,∴ DP/BQ = AP/AQ.同理在△ ACQ中,EP/CQ=AP/AQ.2∴ DP/BQ = EP/CQ. ( 2 )99.( 3)明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠ BGD= ∠ EFC,∴ △ BGD ∽ △ EFC. ⋯⋯ 3 分∴ DG/CF = BG/EF ,∴ DG · EF= CF· BG 又∵ DG =GF=EF,∴ GF2= CF·BG由( 1 )得 DM/BG=MN/GF=EN/CF∴ (MN/GF)2=(DM/BG)· (EN/CF)∴MN 2= DM ·EN25. ( 1 )抛物y=ax2+bx+3 A ( -3,0 ), B( -1,0)两点∴ 9a-3b+3= 0 且 a-b+3= 0解得 a = 1b = 4 ∴抛物的解析式y=x 2+4x+3 ( 2 )由( 1 )配方得 y=(x+2)2-1 ∴抛物的点 M ( -2 , ,1 )∴直OD 的解析式y=1x 2于是平移的抛物的点坐( h ,1h ),∴平移的抛物解析式221h. ①当抛物点21,y= ( x-h ) +2C ,∵ C( 0 , 9 ),∴ h+h=92解得 h=- 1145. ∴当- 1- 145 ≤h<- 1145444,平移的抛物与射CD 只有一个公共点.②当抛物与直CD 只有一个公共点,由方程y= ( x-h )2+1h,y=-2x+9.211得x2+ ( -2h+2 ) x+h2+h-9=0 ,∴ △ = ( -2h+2)2-4( h2+h-9)=0,22解得 h=4.2此抛物y= ( x-4 ) +2 与射CD 唯一的公共点(3,3),符合意..-1 -围是h=4或(3)方法145 ≤h< - 1145 . 441将抛物线平移,当顶点至原点时,其解析式为y=x 2,设 EF 的解析式为 y=kx+3 ( k≠ 0 ) .假设存在满足题设条件的点 P( 0 , t ),如图,过 P 作 GH ∥ x 轴,分别过 E, F 作 GH 的垂线,垂足为 G,H. ∵ △ PEF 的心在 y 轴上,∴∠ GEP= ∠ EPQ= ∠ QPF= ∠ HFP ,∴ △ GEP ∽ △ HFP , ...............9分∴ GP/PH=GE/HF,∴ -x E/x F=(y E-t)/(y F-t)=(kx E+3-t)/(kx F +3-t)∴2kx E· x F= ( t-3 )( x E+x F)由y=x 2, y=-kx+3. 得 x 2 -kx-3=0.∴ x E+x F =k,x E· x F =-3.∴ 2k(-3)=(t-3)k, ∵ k≠ 0, ∴ t=-3.∴ y轴的负半轴上存在点P(0,-3),使△ PEF 的心在 y 轴上 .方法2设EF的解析式为y=kx+3(k≠ 0),点E,F的坐标分别为( m,m 2)( n,n 2)由方法 1 知: mn=-3.作点 E 关于 y 轴的对称点 R( -m,m 2) ,作直线 FR 交 y 轴于点 P,由对称性知∠EPQ= ∠FPQ,∴点 P就是所求的点.由 F,R 的坐标,可得直线 FR 的解析式为 y=( n-m )x+mn.当 x=0 , y=mn=-3, ∴ P ( 0 , -3 ) .∴ y 轴的负半轴上存在点P( 0,-3 ),使△ PEF 的心在 y 轴上 .。

2017初中数学模拟题一含复习资料

2017初中数学模拟题一含复习资料

2017年中考密押卷(一)数学满分:120分考试时间:120分钟第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.在:0,﹣2,1,这四个数中,最小的数是()A.0B.﹣2 C.1D.2.将如图Rt△ABC绕直角边AC旋转一周,所得几何体的左视图是()A.B.C.D.3.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b24.将一张长方形纸片折叠成如图所示的形状,则∠ABC=()A.73°B.56° C.68°D.146°5.如图,直线l经过第一、二、四象限,l的解析式是y=(m﹣3)x+m+2,则m的取值范围在数轴上表示为()A.B.C.D.6.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF是平行四边形的有()A.0个B.1个C.2个D.3个7.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5B.k<5,且k≠1C.k≤5,且k≠1 D.k>58.不等式>﹣1的正整数解的个数是()A.1个B.2个C.3个D.4个9.如图,是半径为1的圆弧,∠AOC等于45°,D是上的一动点,则四边形AODC的面积S 的取值范围是()A.B.C.D.10.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c >0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题,共90分)二、填空题(共4小题,每小题3分,计12分)11.因式分解:a3﹣ab2=.12.请从下面两个小题中任选一个作答,若多选,则按第一题计分。

新人教版2017年中考数学模拟试题及答案

新人教版2017年中考数学模拟试题及答案

2017年中考数学模拟试题一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.A.3.B.-3.C.31D.31-. 2-=x y 中自变量x 的取值范围是A.x≥0.B.x≥-2.C.x≥2.D.x≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是A.x+1>0,x-3>0.B.x+1>0,3-x>0.C.x+1<0,x-3>0.D.x+1<0,3-x>0.4.下列事件中,为必然事件的是A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是A.4.B.3.C.-4.D.-3.A.675×104.B.67.5×105.C.6.75×106.D.0.675×107.7.如图,在梯形ABCD 中,AB ∥DC ,AD=DC=CB ,若∠ABD =25°,则∠BAD 的大小是A.40°.B.45°.C.50°.D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为A.64.B.49.C.36.D.25.10.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.12秒.B.16秒.C.20秒.D.24秒.11.为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元.图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:① 在2010年总投入中购置器材的资金最多;② ②2009年购置器材投入资金比2010年购置器材投入资金多8%;③ ③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元. 其中正确判断的个数是A.0.B.1.C.2.D.3.12.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF.连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.下列结论:①△AED ≌△DFB ;②S 四边形 B C D G = 43 CG 2; ③A. 只有①②①③②③. D.①②③.第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分).下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.13.sin30°的值为_____.14.某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是_____,众数是_____,平均数是_____.15.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B(0,-2),顶点C ,D 在双曲线y=xk 上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k=_____.三、解答题(共9小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分6分)解方程:x 2+3x+1=0.18.(本题满分6分)先化简,再求值:)4(22xx x x x -÷-,其中x=3. ∠B=∠C.20.(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(本题满分7分)在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1),B (1,1),C (1,7).线段DE 的端点坐标是D (7,-1),E (-1,-7).(1)试说明如何平移线段AC ,使其与线段ED 重合;(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.22.(本题满分8分)如图,PA 为⊙O 的切线,A 为切点.过A 作OP 的垂线AB ,垂足为点C ,交⊙⊙O 交于点D ,与PA 的延长线交于点E.(1)求证:PB 为⊙O 的切线;(2)若tan ∠ABE=21,求sinE 的值.23.(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.24.(本题满分10分)(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P.求证:QCPE BQ DP . (2) 如图,在△ABC 中,∠BAC=90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB=AC=1,直接写出MN 的长;②如图3,求证MN 2=DM·EN.25.(本题满分12分)如图1,抛物线y=ax 2+bx+3经过A (-3,0),B (-1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M ,直线y=-2x+9与y 轴交于点C ,与直线OM 交于点 D.现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q (0,3)作不平行于x 轴的直线交抛物线于E ,F 两点.问在y 轴的负半轴上是否存在点P ,使△PEF 的内心在y 轴上.若存在,求出点P 的坐标;若不存在,请说明理由.2017年中考数学模拟试题答案一、选择题二、填空题/214.105;105;10015.8三、解答题17.(本题6分)解:∵a=1,b=3,c=1∴△=b 2-4ac=9-4×1×1=5>0∴x=-3±25 ∴x 1=-3+ 25,x 2=-3-25 18.(本题6分)解:原式=x(x-2)/x÷(x+2)(x -2)/x=x(x-2)/x· x/(x+2)(x-2)=x/(x+2)∴当x=3时,原式=3/519.(本题6分)解:证明:在△ABE 和△ACD 中,AB =AC ∠A =∠A AE =AD∴△ABE≌△ACD∴∠B=∠C 20.(本题7分)解法1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有9种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P (至少有一辆汽车向左转)=5/9 解法2:根据题意,可以列出如下的表格:左 直 右 左 (左,左) (左,直) (左,右) 直 (直,左) (直,直) (直,右) 右 (右,左) (右,直) (右,右)以下同解法1(略)21.(本题7分)(1)将线段AC先向右平移6个单位,再向下平移8个单位.(其它平移方式也可)(2)F(-1,-1)(3)画出如图所示的正确图形22.(本题8分)(1)证明:连接OA∵PA为⊙O的切线,∴∠PAO=90°∵OA=OB,OP⊥AB于C∴BC=CA,PB=PA∴△PBO≌△PAO∴∠PBO=∠PAO=90°∴PB为⊙O的切线(2)解法1:连接AD,∵BD是直径,∠BAD=90°由(1)知∠BCO=90°∴AD∥OP∴△ADE∽△POE∴EA/EP=AD/OP 由AD∥OC得AD=2OC ∵tan∠ABE=1/2 ∴OC/BC=1/2,设OC=t,则BC=2t,AD=2t由△PBC∽△BOC,得PC=2BC=4t,OP=5t∴EA/EP=AD/OP=2/5,可设EA=2m,EP=5m,则PA=3m∵PA=PB∴PB=3m∴sinE=PB/EP=3/5(2)解法2:连接AD,则∠BAD=90°由(1)知∠BCO=90°∵由AD∥OC,∴AD=2OC ∵tan∠ABE=1/2,∴OC/BC=1/2,设OC=t,BC=2t,AB=4t由△PBC∽△BOC,得PC=2BC =4t,∴PA=PB=25t 过A作AF⊥PB于F,则AF·PB=AB·PC∴AF=558t 进而由勾股定理得PF=556t∴sinE=sin∠FAP=PF/PA=3/523.(本题10分)解:(1)y=30-2x(6≤x<15)(2)设矩形苗圃园的面积为S则S=xy=x(30-2x)=-2x2+30x ∴S=-2(x-7.5)2即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6≤x≤1124.(本题10分)(1)证明:在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ,∴DP/BQ=AP/AQ.同理在△ACQ中,EP/CQ=AP/AQ.∴DP/BQ=EP/CQ.(2)929.(3)证明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC.……3分∴DG /CF =BG/EF ,∴DG·EF=CF·BG又∵DG=GF =EF ,∴G F 2=CF·BG由(1)得DM/BG =MN/GF =EN/CF∴(MN/GF )2=(DM/BG)·(EN/CF)∴MN 2=DM·EN25.(1)抛物线y=ax 2+bx+3经过A (-3,0),B (-1,0)两点∴9a -3b+3=0 且a-b+3=0解得a =1b =4∴抛物线的解析式为y=x 2+4x+3(2)由(1)配方得y=(x+2)2-1∴抛物线的顶点M (-2,,1)∴直线OD 的解析式为y=21x 于是设平移的抛物线的顶点坐标为(h ,21 h ),∴平移的抛物线解析式为y=(x-h )2+21h.①当抛物线经过点C 时,∵C(0,9),∴h 2+21h=9, 解得h=41451-±. ∴ 当 4145-1-≤h<41451-+ 时,平移的抛物线与射线CD 只有一个公共点.②当抛物线与直线CD 只有一个公共点时,由方程组y=(x-h )2+21h,y=-2x+9. 得 x 2+(-2h+2)x+h 2+21h-9=0,∴△=(-2h+2)2-4(h 2+21h-9)=0, 解得h=4.此时抛物线y=(x-4)2+2与射线CD 唯一的公共点为(3,3),符合题意.综上:平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是 h=4或 4145-1-≤h<41451-+. (3)方法1将抛物线平移,当顶点至原点时,其解析式为y=x 2,设EF 的解析式为y=kx+3(k≠0).假设存在满足题设条件的点P (0,t ),如图,过P 作GH∥x 轴,分别过E ,F 作GH 的垂线,垂足为G ,H.∵△PEF的内心在y 轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP ,∴△GEP∽△HFP,...............9分∴GP /PH=GE/HF,∴-x E /x F =(y E -t)/(y F -t)=(kx E +3-t)/(kx F +3-t)∴2kx E ·x F =(t-3)(x E +x F )由y=x 22-kx-3=0.∴x E +x F =k,x E ·x F =-3.∴2k (-3)=(t-3)k,∵k≠0,∴t=-3.∴y 轴的负半轴上存在点P (0,-3),使△PEF 的内心在y 轴上.方法 2 设EF 的解析式为y=kx+3(k≠0),点E ,F的坐标分别为(m,m 2)(n,n 2)由方法1知:mn=-3.作点E 关于y 轴的对称点R (-m,m 2=0,y=mn=-3,∴P (0,-3).∴y轴的负半轴上存在点P(0,-3),使△PEF的内心在y轴上.。

新人教版2017年中考数学模拟试题及答案

新人教版2017年中考数学模拟试题及答案

2017年中考数学模拟试题一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑。

1.有理数-3的相反数是A.3。

B.-3。

C 。

31 D 。

31-。

2。

函数2-=x y 中自变量x 的取值范围是A.x≥0.B.x≥-2。

C.x≥2。

D.x≤—2。

3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是A.x+1〉0,x —3〉0。

B.x+1>0,3—x 〉0.C 。

x+1〈0,x-3>0.D 。

x+1〈0,3—x 〉0.4.下列事件中,为必然事件的是A.购买一张彩票,中奖.B 。

打开电视,正在播放广告.C 。

抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.5。

若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是 A 。

4。

B.3. C.-4。

D 。

—3。

6。

据报道,2011年全国普通高等学校招生计划约675万人.数6750000用科学计数法表示为A.675×104.B.67.5×105.C.6。

75×106. D 。

0。

675×107.7.如图,在梯形ABCD 中,AB ∥DC ,AD=DC=CB,若∠ABD =25°,则∠BAD 的大小是A.40°。

B.45°.C 。

50°.D 。

60°。

8.右图是某物体的直观图,它的俯视图是9。

在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点。

且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为A 。

64.B 。

49.C 。

36。

D.25.10。

初中数学】中考数学模拟试题(10套) 人教版8

初中数学】中考数学模拟试题(10套) 人教版8

初中数学】中考数学模拟试题(10套) 人教版82017年中考模拟数学试题(十)第I卷(选择题部分共30分)一、选择题(每小题3分,共30分。

每小题只有一个正确选项,请把正确选项的字母代号填在下面的表格内)。

1.下列各运算中,正确的是(。

)。

A。

3a+2a=5aB。

-3a=-9aC。

a÷a=1D。

(a+2)2=a2+4a+42.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是(。

)。

A。

B。

C。

D。

3.如图是巴西世界杯吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是(。

)。

A。

27B。

29C。

31D。

304.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=(。

)。

A。

4B。

6C。

8D。

不能确定5.已知⊙O1和⊙O2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O1O2的取值范围在数轴上表示正确的是(。

)。

A。

B。

C。

D。

6.如图,在直角坐标系中,点A的坐标是(2,3),则tanα的值是(。

)。

A。

B。

C。

D。

7.在不透明的盒子中装有3个红球,2个白球,它们除颜色外均相同,则从盒中子任意摸出一个球是白球的概率是(。

)。

A。

B。

C。

D。

8.如图,在直径AB=12的⊙O中,弦CD⊥AB于M,且M是半径OB的中点,则弦CD的长是(。

)。

A。

3B。

3√3C。

6D。

6√39.如图,△XXX的外角∠CBD和∠XXX的平分线相交于点F,则下列结论正确的是(。

)。

A。

点F在BC边的垂直平分线上B。

点F在∠BAC的平分线上C。

△BCF是等腰三角形D。

△BCF是直角三角形10.如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数的图象大致是(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017初中数学总复习模拟试题及答案(满分120分,考试时间120分钟.)一、选择题(每小题3分,共36分)1.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A.012=+x B.012=-+x xC.0322=++x xD.01442=+-x x 2.若两圆的半径分别是4cm 和5cm ,圆心距为7cm ,则这两圆的位置关系是( ) A.切 B.相交 C.外切 D.外离 3.若关于x 的一元二次方程01)1(22=+-++a x x a 有一个根为0,则a 的值等于( )A.-1B.0C.1D.1或者-14.若c b a >>且0=++c b a ,则二次函数c bx ax y ++=2的图象可能是下列图象中的( )5.如图,一个由若干个相同的小正方体堆积成的几何体,它的主视图、左视图和俯视图都是田字形,则小正方体的个数是( )A.6、7或8B.6C.7D.86.如图,以原点为圆心的圆与反比例函数3y x=的图象交于A 、B 、C 、D 四点,ACxyO (第6题)BD ABCO(第7题)· (第5题已知点A 的横坐标为1,则点C 的横坐标( )A.1-B.2-C.3-D.4-7.如图,圆锥的轴截面ABC △是一个以圆锥的底面直径为底边,圆锥的母线为腰的等腰三角形,若圆锥的底面直径BC = 4 cm ,母线AB = 6 cm ,则由点B 出发,经过圆锥的侧面到达母线AC 的最短路程是( )cmB.6cmC.4cm 8.已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是 ( )A.y 3<y 1<y 2B.y 2<y 1<y 3C.y 1<y 2<y 3D.y 3<y 2<y 1 9.如图,四边形ABCD 为⊙O 的接四边形,E 是BC 延长线上的一点,已知100BOD ∠=,则DCE ∠的度数为( )A.40°B.60°C.50°D.80°10.如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA AB BO --的路径运动一周.设OP 为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间关系的是( )11.如图,等腰Rt △ABC 位于第一象限,AB =AC =2,点A 在直线y =x 上,点A 的横坐标为1,边AB 、AC 分别平行于x 轴、y 轴.若双曲线y =kx与△ABC 有交点,则k 的取值围为( )A.1<k <2B.1≤k ≤3C.1≤k ≤4D.1≤k <412.二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误..的是 ( ) A.ab <0 B.ac <0OABCD(第13题) ABC O y XC.当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D.二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是方程ax 2+bx +c =0的根(11) (12)二、填空题(每小题3分,共21分)13.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,记与点A 重合点为A ',则△A 'B G 的面积与该矩形的面积比为 14.若n(n≠0)是关于x 的方程的根,则m n +的值为________.15.抛物线y=2(x -2)2-6的顶点为C, 已知y=-kx+3的图象经过点C,则这个一次函数图象与两坐标轴所围成的三角形面积为 .16.如图,以点P 为圆心的圆弧与X 轴交于A ,B ;两点,点P 的坐标为(4,2)点A 的坐标为(2,0)则点B 的坐标为 .17.如图,A 、B 、C 是⊙0上的三点,以BC 为一边,作∠CBD=∠ABC,过BC 上一点P ,作PE∥AB 交BD 于点E.若∠AOC=60°,BE=3,则点P 到弦AB 的距离为_______.18. 有A ,B 两只不透明口袋,每只口袋里装有两只相同的球,A 袋中的两只球上分别写了“细”、“致”的字样,B 袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是________ 19. 定义[a ,b ,c]为函数2y ax bx c =++的特征数,(第17题图)(第16题图)下面给出特征数为[2m ,1-m ,-1-m ]的函数的一些结论: ①当m =-3时,函数图象的顶点坐标是(13,83); ②当m>0时,函数图象截x 轴所得的线段长度大于32; ③当m<0时,函数在14x >时,y 随x 的增大而减小; ④当m≠0时,函数图象经过x 轴上一个定点. 其中正确的结论有________.(只需填写序号)三、解答题(本大题共6个题, 满分63分)20.(9分) 关于x 的一元二次方程012=-+-p x x 有两个实数根1x 、2x . (1)求p 的取值围;(2)若9)2)(2(222121=----x x x x ,求p 的值.21.(10分)如图,抛物线223y x x =--与x 轴交于A 、B 两点,与y 轴交于点C.(1)点A 的坐标为________,点B 的坐标为________,点C 的坐标为________. (2)设抛物线223y x x =--的顶点为M ,求四边形ABMC 的面积.22.(12分) 某市政府大力扶持大学生创业.彬在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+.(1)设彬每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(2)如果彬想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果彬想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?23.(10 分) 如图,在梯形ABCD 中,90AD BC C E ∠=∥,°,为CD 的中点,EF AB ∥交BC 于点F .(1)求证:BF AD CF =+; (2)当17AD BC ==,,且BE 平分ABC ∠时,求EF 的长.24.(10分)如图,在平面直角坐标系中,直线483y x =-+分别与x 轴交于点A ,与y 轴交于点B ,OAB ∠的平分线交y 轴于点E ,点C 在线段AB 上,以CA 为直径的D 经过点E .⑴ 判断D 与y 轴的位置关系,并说明理由;⑵ 求点C 的坐标.(第22题)O xy BCA·D E参考答案一、选择题:1--12 BBCCA CCACC CB二、填空题:))()(、(;、;、);、(;、;、;、421194118233170,61649152-148113.三、解答题20(1)P 45≤(2)P=-4 21.(1)A (-1,0)、B (3,0)、C (0,-3)(2)9 22. (1)2250)35(101000070010)50010).(20(22+--=-+-=+--=x x x x x w当x=35时利润最大(2) 当w=2000时,x=30或x=40(3)设成本为P,则P=20y=20(-10x+500)=-200x+10000 因为每月获得的利润不低于2000元,所以4030≤≤x , 又因为3230,32≤≤≤x x 所以 所以当x=32时,P 最小3600元 23.(1),,,D DG EF BGC G AB EF AD DG AD BCABDG ADBG DG CE EF DG FE GFFC BFBGGFADFC过点作交于,又四边形是平行四边,是中位线,11(2)1(71)3224,,4BG AD GF FCGC BF ABE CBE ABE BEF EBF BEF EFBF,,24.(1)相切,连ED ,DEA DAE EAO ∠=∠=∠,所以ED OA ∥,所以ED OB ⊥; (2)易得10AB =.设(,)C m n ,ED R =,则解直角三角形得53BD R =.因为5103R R +=,则154R =.cos m R R CAF =-⨯∠15331452⎛⎫=-= ⎪⎝⎭.2sin n R CAF =⨯∠1542645=⨯⨯=.所以3,62C ⎛⎫ ⎪⎝⎭.25.(1)(3,0)B 、(0,3)C .3,930.c b c =⎧⎨-++=⎩得2,3.b c =⎧⎨=⎩,所以223y x x =-++;(2)易得(1,4)M .设MB :y kx d =+,则30,4.k d k d +=⎧⎨+=⎩得2,6.k d =-⎧⎨=⎩所以26y x =-+.所以(,26)P m m -+,21(26)32S m m m m =-+=-+(13m ≤<).(3) 存在.在PCD △中,PDC ∠是锐角,当90DPC ∠=︒时,CDO DCP ∠=∠,得矩形CODP .由263m -+=,解得32m =,所以3,32P ⎛⎫⎪⎝⎭;当90PCD ∠=︒时,COD DCP △∽△,此时2CD CO PD =⋅,即293(26)m m +=-+.2690m m+-=.解得3m =-±,因为13m ≤<,所以1)m =,所以()3,6(2P .。

相关文档
最新文档