大学物理仿真实验报告 牛顿环
大学物理仿真实验报告牛顿环法测曲率半径
大学物理仿真实验报告-牛顿环法测曲率半径————————————————————————————————作者: ————————————————————————————————日期:大学物理仿真实验报告实验名称牛顿环法测曲率半径班级:姓名:学号:日期:牛顿环法测曲率半径实验目的1.学会用牛顿环测定透镜曲率半径。
2.正确使用读书显微镜,学习用逐差法处理数据。
实验原理如下图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍。
此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1)当∆满足条件(2)时,发生相长干涉,出现第K级亮纹,而当(k = 0,1,2…) (3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为,对应的膜厚度为,则(4)在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R>> ek,ek 2相对于2Re是一个小量,可以忽略,所以上式可以简化为k(5)如果rk是第k级暗条纹的半径,由式(1)和(3)可得(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
大学物理仿真实验报告牛顿环分析
大学物理仿真实验报告实验名称:牛顿环法测曲率半径实验日期:专业班级:姓名:学号:教师签字:________________一、实验目的1.学会用牛顿环测定透镜曲率半径。
2.正确使用读书显微镜,学习用逐差法处理数据。
二、实验仪器牛顿环仪,读数显微镜,钠光灯,入射光调节架。
三、实验原理如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍,即此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1)当∆满足条件(2)时,发生相长干涉,出现第K级亮纹,而当(k = 0,1,2…)(3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为,对应的膜厚度为,则(4)在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k,e k2相对于2Re k是一个小量,可以忽略,所以上式可以简化为(5)如果r k是第k级暗条纹的半径,由式(1)和(3)可得(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
同理,如果r k是第k级明纹,则由式(1)和(2)得(9)代入式(5),可以算出(10)由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。
牛顿环法实验报告
一、实验目的1. 理解牛顿环的原理及其形成条件。
2. 通过观察牛顿环的干涉条纹,测量平凸透镜的曲率半径。
3. 熟悉光学仪器和实验操作方法。
二、实验原理牛顿环是由平凸透镜与平板玻璃之间形成的空气薄层引起的等厚干涉现象。
当光线垂直照射到平凸透镜和平板玻璃的接触面时,部分光线在接触面发生反射,部分光线穿过空气薄层后再发生反射。
这两束反射光相互干涉,形成明暗相间的干涉条纹。
根据干涉条件,明纹处的光程差为半个波长,即Δl = (m + 1/2)λ,其中m为干涉级数,λ为光的波长。
对于牛顿环,空气薄层的厚度h与干涉级数m之间的关系为:h = (m + 1/2)λR其中R为平凸透镜的曲率半径。
通过测量干涉条纹的级数,可以计算出平凸透镜的曲率半径。
三、实验仪器与设备1. 平凸透镜2. 平板玻璃3. 平行光源4. 凸透镜支架5. 米尺6. 干涉条纹观察仪7. 记录纸8. 镜子9. 光具座四、实验步骤1. 将平板玻璃放在光具座上,将平凸透镜放在平板玻璃上,调整使其与平板玻璃接触良好。
2. 将平行光源照射到平凸透镜和平板玻璃的接触面,调整光源方向,使光线垂直照射。
3. 将干涉条纹观察仪放置在光具座上,调整使其与平行光源和透镜平行。
4. 观察干涉条纹,记录明纹和暗纹的位置,用米尺测量条纹间距。
5. 根据干涉级数m和条纹间距,计算平凸透镜的曲率半径R。
五、实验结果与分析1. 通过观察干涉条纹,记录了10个明纹和暗纹的位置,计算出干涉级数m。
2. 根据干涉级数m和条纹间距,计算平凸透镜的曲率半径R。
实验数据如下:m = 5d = 0.5 mmR = (m + 1/2)λ/d = (5 + 1/2)×600 nm/0.5 mm = 3.6 m六、实验总结1. 通过牛顿环法实验,成功测量了平凸透镜的曲率半径。
2. 实验过程中,注意了光线的垂直照射和干涉条纹的观察,保证了实验结果的准确性。
3. 通过实验,加深了对牛顿环原理和等厚干涉现象的理解。
牛顿环测量曲率半径实验报告.doc
大学物理仿真实验实验报告牛顿环测量曲率半径实验土木21班2120702008崔天龙实验名称:牛顿环测量曲率半径实验1.实验目的:1 观察等厚干涉现象,理解等厚干涉的原理和特点2 学习用牛顿环测定透镜曲率半径3 正确使用读数显微镜,学习用逐差法处理数据2.实验仪器:读数显微镜,钠光灯,牛顿环,入射光调节架3.实验原理图1如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍,即此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1)当∆满足条件(2)时,发生相长干涉,出现第K级亮纹,而当(3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为,对应的膜厚度为,则(4)在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k,e k 2相对于2Rek是一个小量,可以忽略,所以上式可以简化为(5)如果r k是第k级暗条纹的半径,由式(1)和(3)可得(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
同理,如果r k是第k级明纹,则由式(1)和(2)得(9)代入式(5),可以算出(10)由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。
大学牛顿环实验报告
一、实验目的1. 观察和分析牛顿环等厚干涉现象;2. 学习利用干涉现象测量透镜的曲率半径;3. 学会使用读数显微镜进行测量;4. 理解光的干涉原理及其在光学实验中的应用。
二、实验原理牛顿环实验是研究等厚干涉现象的经典实验。
实验装置主要由一块平面玻璃板和一块平凸透镜组成。
当平凸透镜的凸面与平面玻璃板接触时,在接触点附近形成一层厚度不等的空气膜。
当单色光垂直照射到空气膜上时,反射光束在上表面和下表面相遇发生干涉,形成明暗相间的同心圆环,称为牛顿环。
根据干涉原理,两束相干光的光程差为:Δ = 2d + λ/2 (明环)Δ = 2d - λ/2 (暗环)其中,d为空气膜的厚度,λ为入射光的波长。
根据上述公式,我们可以推导出牛顿环的半径与透镜曲率半径之间的关系:R = (k + 1/2)λr^2 / (kλ)其中,R为透镜的曲率半径,k为环的级数,r为环的半径。
三、实验仪器1. 平面玻璃板;2. 平凸透镜;3. 读数显微镜;4. 钠光灯;5. 三爪式透镜夹和固定滑座。
四、实验步骤1. 将平凸透镜固定在固定滑座上,使其凸面与平面玻璃板接触;2. 将钠光灯放置在实验装置的一侧,调整光源方向,使光线垂直照射到透镜上;3. 使用读数显微镜观察牛顿环,调节显微镜的焦距,使干涉条纹清晰可见;4. 测量第k级暗环的半径rk;5. 根据实验数据,计算透镜的曲率半径R。
五、实验结果与分析1. 通过观察牛顿环,我们可以清晰地看到明暗相间的同心圆环,验证了等厚干涉现象的存在;2. 根据实验数据,计算出透镜的曲率半径R,并与理论值进行比较,分析误差来源;3. 实验结果表明,牛顿环实验可以有效地测量透镜的曲率半径,为光学元件的设计和制造提供参考。
六、实验总结1. 牛顿环实验是研究等厚干涉现象的经典实验,通过观察和分析牛顿环,我们可以加深对光的干涉原理的理解;2. 实验过程中,我们需要注意调节光源方向、显微镜焦距等因素,以确保实验结果的准确性;3. 牛顿环实验可以应用于测量透镜的曲率半径、光学元件的厚度等,具有广泛的应用价值。
大学物理实验牛顿环
⼤学物理实验⽜顿环⽜顿环和劈尖⼲涉实验【实验⽬的】1、观察光的等厚⼲涉现象,熟悉光的等厚⼲涉的特点;2、⽤⽜顿环⼲涉测定平凸透镜的曲率半径;3、⽤劈尖⼲涉法测定细丝直径或微⼩薄⽚厚度。
【实验仪器及装置】⽜顿环仪、读数显微镜、钠光灯、劈尖、数显游标卡尺。
【实验原理】⼀、⽜顿环⼲涉⽜顿环装置是由⼀块曲率半径较⼤的平凸玻璃透镜,以其凸⾯放在⼀块光学玻璃平板(平晶)上构成的,如图1所⽰。
平凸透镜的凸⾯与玻璃平板之间的空⽓层厚度从中⼼到边缘逐渐增加,若以平⾏单⾊光垂直照射到⽜顿环上,则经空⽓层上、下表⾯反射的⼆光束存在光程差,它们在平凸透镜的凸⾯相遇后,将发⽣⼲涉。
从透镜上看到的⼲涉花样是以玻璃接触点为中⼼的⼀系列明暗相间的圆环(如图2所⽰),称为⽜顿环。
由于同⼀⼲涉环上各处的空⽓层厚度是相同的,因此它属于等厚⼲涉。
图1 实验装置简化图图2 ⼲涉光路及⽜顿环图由图2 (a)可见,如设透镜的曲率半径为R ,与接触点O相距为r 处空⽓层的厚度为d ,其⼏何关系式为:()2222222r d Rd R r d R R ++-=+-=由于R>>d ,可以略去d 2得22r d R= (1)光线应是垂直⼊射的,计算光程差时还要考虑光波在平玻璃板上反射会有半波损失,从⽽带来/2λ的附加程差,所以光程差δ为:22λδ+=d (2)产⽣暗环的条件是:(21)2k λδ=+ (3)其中k =0,1,2,3,...为⼲涉暗条纹的级数。
综合(1)、(2)和(3)式可得第k级暗环的半径为:2r kR λ= (4)由(4)式可知,如果单⾊光源的波长λ已知,测出第m 级的暗环半径m r ,即可得出平凸透镜的曲率半径R ;反之,如果R 已知,测出m r 后,就可计算出⼊射单⾊光波的波长λ。
(a)(b )但是⽤此测量关系式往往误差很⼤,原因在于凸⾯和平⾯不可能是理想的点接触;接触压⼒会引起局部形变,使接触处成为⼀个圆形平⾯,⼲涉环中⼼为⼀暗斑。
大学物理仿真实验报告牛顿环(word文档良心出品).docx
西安交通大学大学物理仿真实验报告实验名称:牛顿环法测曲率半径实验日期:专业班级:姓名:学号:教师签字: ________________一、实验目的1.学会用牛定透曲率半径。
2.正确使用微,学用逐差法理数据。
二、实验仪器牛,数微,光灯,入射光架。
三、实验原理如所示,在平板玻璃面 DCF上放一个曲率半径很大的平凸透ACB,C 点接触点,在 ACB和 DCF之,形成一厚度不均匀的空气薄膜,色光从上方垂直入射到透上,透透,近似垂直地入射于空气膜。
分从膜的上下表面反射的两条光来自同一条入射光,它足相干条件并在膜的上表面相遇而生干涉,干涉后的度由相遇的两条光的光程差决定,由可,二者的光程差等于膜厚度 e 的两倍,即此外,当光在空气膜的上表面反射,是从光密媒射向光疏媒,反射光不生相位突,而在下表面反射,会生相位突,即在反射点,反射光的相位与入射光的相位之相差,与之的光程差/2,所以相干的两条光具有/2 的附加光程差,的光程差(1)当足条件(2),生相干涉,出第K 亮,而当(k = 0,1,2⋯)(3),生相消干涉,出第k 暗。
因1同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以 C 点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k 级条纹的半径为,对应的膜厚度为,则(4)在实验中, R 的大小为几米到十几米,而的数量级为毫米,所以 R >> e,e2相对于k k2Re k是一个小量,可以忽略,所以上式可以简化为( 5)如果 r k是第k级暗条纹的半径,由式(1)和( 3)可得( 6)代入式( 5)得透镜曲率半径的计算公式(7)对给定的装置,R 为常数,暗纹半径( 8)和级数 k 的平方根成正比,即随着k 的增大,条纹越来越细。
同理,如果r k是第k级明纹,则由式(1)和( 2)得(9)代入式( 5),可以算出( 10)2由式( 8)和( 10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出 R。
牛顿环实验报告原理(3篇)
第1篇一、实验背景牛顿环实验是光学中的一个经典实验,通过观察和分析牛顿环现象,可以深入了解光的干涉原理,并应用于测量透镜的曲率半径等实际应用中。
牛顿环实验的核心原理是等厚干涉现象,即在薄膜层厚度相同的位置,光波发生干涉,形成明暗相间的条纹。
二、实验原理1. 牛顿环的形成牛顿环实验装置主要由一块曲率半径较大的平凸透镜和一块光学玻璃平板组成。
当平凸透镜的凸面与平板接触时,在接触点附近形成一层空气膜。
当平行单色光垂直照射到牛顿环装置上时,光在空气膜的上、下表面反射,形成两束光波。
这两束光波在空气膜上表面相遇,产生干涉现象。
2. 等厚干涉现象在牛顿环装置中,空气膜的厚度从中心到边缘逐渐增加。
由于空气膜厚度相同的位置对应于同一干涉条纹,因此这种现象称为等厚干涉。
根据等厚干涉原理,厚度相同的位置,光程差也相同,从而形成明暗相间的干涉条纹。
3. 牛顿环的干涉条件在牛顿环装置中,光在空气膜上、下表面反射的两束光波发生干涉,干涉条件为:Δ = mλ其中,Δ为光程差,m为干涉级次,λ为光波长。
4. 牛顿环的半径与透镜曲率半径的关系设牛顿环装置中第m级暗环的半径为rk,透镜的曲率半径为R,空气膜厚度为e,则有:rk^2 = R^2 - e^2由上式可知,通过测量牛顿环的半径rk,可以计算出透镜的曲率半径R。
三、实验步骤1. 准备实验装置,包括牛顿环仪、钠光灯、凸透镜、平板玻璃等。
2. 将牛顿环仪放置在实验台上,调整透镜与平板玻璃之间的距离,使牛顿环清晰可见。
3. 打开钠光灯,调整显微镜的焦距,使牛顿环图像清晰。
4. 测量第m级暗环的半径rk,重复多次测量,求平均值。
5. 根据测量结果,利用上述公式计算透镜的曲率半径R。
四、实验结果与分析通过实验测量,可以得到一系列牛顿环的半径rk。
根据实验原理,可以计算出透镜的曲率半径R。
通过对比实际值与测量值,可以分析实验误差,并探讨提高实验精度的方法。
五、实验结论牛顿环实验是一种经典的干涉实验,通过观察和分析牛顿环现象,可以深入了解光的干涉原理,并应用于测量透镜的曲率半径等实际应用中。
大学物理实验报告之牛顿环实验报告
牛顿环实验报告一. 实验目的1.观察等厚干涉现象,并利用等厚干涉测量凸透镜表面的曲率半径2.了解读书显微镜的使用方法二. 实验原理当曲率半径为R的平凸透镜放置在一平板玻璃上时,在透镜和平板玻璃之间形成一个厚度变化的空气间隙。
当光线垂直照射到其上,从空气间隙的上下表面反射的两束光线1.2将在空气间隙的上边面附近实现干涉叠加,两束光之间的光程差随空气间隙的厚度变化而变化,空气间隙厚度相同处的两束光具有相同的光程差A,所以干涉条纹是以接触点为圆心的一组明暗相间的同心圆环,称为牛顿环。
R为待测透镜凹面的曲率半径,r是第k级干涉环的半径,d是kk第k级干涉环所对应的空气间隙的厚度。
如果入射光的波长为,则第k 级干涉环所对应的光程差为A=2dk+/2(1)——k—其中,/2为光由光疏介质入射到光密介质时,反射光的半波损失。
因此,在接触点出(d0=0)的光程差为A=X/2(2)在k级干涉暗环处的光程差为A=2d+X/2=(k+1/2)k(3)——kk所对应的空气间隙的厚度为d=k X/2(4)―k=第k级干涉暗环的半径为r二価R⑸k'在实验中用给定波长的光进行照明时,只要测得第k级次干涉暗环的半径r,就可以测得曲率半径R。
k但在实际测量中,由于无法准确确定干涉环圆心所在位置,这样就不可能准确的测量干涉环的半径。
因此,直接利用式(5)作为测量公式将对测量结果带来很大的误差。
事实上,在测量过程中可以准确地获得各个级次干涉环的弦长。
假设这个弦到圆心的距离是s,可得以下几何关系L2=4(r2-s2)(6)—k kL2=4k X R-4s2(7)—k利用式(7)作为测量公式时,所遇到的问题是如何确定s或排除它对测量结果的影响。
有如下两种解决方法:(1)在式(7)中弦长的平方与干涉环的级次间是一个线性关系,在测量中,可以测量一组不同级次干涉环在某一直线上的弦长,利用最小二乘法或作图法求得该直线的斜率,再利用已知的波长得到凸透镜的曲率半径。
大学物理实验牛顿环实验报告含数据
大学物理实验牛顿环实验报告含数据一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习用干涉法测量透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理牛顿环是一种等厚干涉现象。
将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面与平面玻璃之间就会形成一个上表面是球面,下表面是平面的空气薄层,其厚度从中心接触点到边缘逐渐增加。
当一束单色平行光垂直照射到牛顿环装置上时,在空气薄层的上、下表面反射的两束光将产生干涉。
在反射光中观察会看到以接触点为中心的一系列明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,形成的第 m 级暗环的半径为 rm,对应的空气薄层厚度为 em。
由于光程差等于半波长的奇数倍时产生暗纹,所以有:\\begin{align}2e_m +\frac{\lambda}{2} &=(2m + 1)\frac{\lambda}{2}\\2e_m &= m\lambda\\e_m &=\frac{m\lambda}{2}\end{align}\又因为在直角三角形中,有\(r_m^2 = R^2 (R e_m)^2 \approx 2Re_m\)(因为 em 远小于 R)所以可得\(r_m^2 = mR\lambda\),则\(R =\frac{r_m^2}{m\lambda}\)通过测量暗环的半径,就可以计算出透镜的曲率半径 R。
三、实验仪器读数显微镜、钠光灯、牛顿环装置。
四、实验步骤1、调节读数显微镜调节目镜,使十字叉丝清晰。
转动调焦手轮,使镜筒自下而上缓慢移动,直至从目镜中看到清晰的牛顿环图像。
移动牛顿环装置,使十字叉丝交点与牛顿环中心大致重合。
2、测量牛顿环直径转动测微鼓轮,使十字叉丝从牛顿环中心向左移动,依次对准第30 到第 15 暗环,记录读数。
继续转动鼓轮,使叉丝越过中心向右移动,依次对准第 15 到第 30 暗环,记录读数。
3、重复测量重复上述步骤,共测量 5 组数据。
大学物理实验牛顿环实验报告(含数据)
大学物理实验牛顿环实验报告(含数据)牛顿环实验报告引言:牛顿环实验是物理实验中经典的干涉实验之一,通过测量光的干涉色条纹来研究光的波动性质。
本实验旨在探究牛顿环的特点及其与透明介质的厚度之间的关系。
通过对实验数据的收集和分析,我们得到了关于牛顿环的一些有趣的结论。
实验装置与方法:1. 实验装置:我们使用了一台平行板构成的牛顿环实验装置。
装置包括一个透明玻璃平板、一束白光源、一台显微镜及光屏等。
2. 实验方法:(1) 首先,我们在实验室中搭建牛顿环实验装置。
(2) 将光源打开,使其照射在透明玻璃平板上。
(3) 调节显微镜位置,使其焦距与透明玻璃平板接近,并将显微镜对准光源的光斑。
(4) 通过调节透明玻璃平板的厚度,观察和记录不同厚度下的牛顿环干涉色条纹。
(5) 使用光屏记录实验数据,包括透明玻璃平板的厚度和对应的干涉色条纹。
实验数据与结果分析:实验中,我们记录了不同透明玻璃平板厚度下的牛顿环干涉色条纹的数据。
根据我们的观察和记录,我们进行了以下主要分析:1. 牛顿环的特点:我们观察到牛顿环是由一系列同心圆环组成的,且颜色从中心向外渐变。
颜色的变化是由于光的干涉效应引起的。
2. 牛顿环与透明介质厚度:通过分析我们记录的实验数据,我们得出了结论:透明介质的厚度与牛顿环的直径成正比关系,即厚度越大,牛顿环的直径越大。
3. 干涉色的原因:牛顿环的干涉色是由于光的干涉效应引起的。
当光线通过透明玻璃平板和空气之间的边界时,光线会发生折射和反射。
不同波长的光在折射和反射过程中会产生不同的相位差,从而导致干涉色的形成。
结论:通过本实验,我们验证了牛顿环实验的重要性,并获得了有关牛顿环的实验数据,并分析了数据的结果。
我们得出的结论是:牛顿环的直径与透明介质的厚度成正比关系。
这一实验结果对于进一步理解光的干涉效应和光的波动性质具有重要意义。
致谢:在此,我们要特别感谢实验中的指导老师及实验室助理们的帮助和支持。
没有他们的指导和帮助,我们无法顺利完成这一实验报告。
大学物理牛顿环干涉实验报告
大学物理牛顿环干涉实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、掌握用牛顿环测量平凸透镜曲率半径的方法。
3、加深对光的波动性的理解。
二、实验原理将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面和平面玻璃之间就形成了一个从中心向四周逐渐增厚的空气薄层,其等厚点的轨迹是以接触点为圆心的一系列同心圆,这些同心圆的干涉条纹就是牛顿环。
当一束平行单色光垂直照射到牛顿环装置上时,在空气薄层的上、下表面反射的两束光会发生干涉。
设入射光的波长为λ,在空气薄层厚度为 d 处,两束反射光的光程差为:\(\Delta = 2d +\frac{\lambda}{2}\)当光程差为波长的整数倍时,两束光相互加强,形成亮条纹;当光程差为半波长的奇数倍时,两束光相互削弱,形成暗条纹。
对于暗条纹,有:\(2d +\frac{\lambda}{2} =(2k + 1)\frac{\lambda}{2}\)(k = 0, 1, 2,)解得:\(d =\frac{k\lambda}{2}\)由于平凸透镜的曲率半径 R 远大于空气薄层的厚度 d,所以可以近似认为:\(d = r^2 /(2R)\)(其中 r 为条纹半径)将上式代入\(d =\frac{k\lambda}{2}\)可得:\(r^2 = k\lambda R\)所以,只要测量出第 k 级暗条纹的半径 r 和波长λ,就可以计算出平凸透镜的曲率半径 R。
三、实验仪器牛顿环装置、钠光灯、读数显微镜、移测显微镜。
四、实验步骤1、调节牛顿环装置将牛顿环装置放置在显微镜的载物台上,调节目镜,使十字叉丝清晰。
调节显微镜的焦距,使清晰地看到牛顿环的图像。
调节牛顿环装置的位置,使十字叉丝与牛顿环的中心大致重合。
2、测量牛顿环的直径转动显微镜的鼓轮,使十字叉丝从牛顿环的中心向一侧移动,依次测量第 10 到 20 级暗条纹的位置。
测量时,要注意十字叉丝要与暗条纹相切,且要在不同的位置测量多次,取平均值。
大学物理实验报告牛顿环
竭诚为您提供优质文档/双击可除大学物理实验报告牛顿环篇一:大学物理仿真实验报告牛顿环大学物理仿真实验报告实验名称:牛顿环法测曲率半径实验日期:专业班级:姓名:学号:教师签字:________________一、实验目的1.学会用牛顿环测定透镜曲率半径。
2.正确使用读书显微镜,学习用逐差法处理数据。
二、实验仪器牛顿环仪,读数显微镜,钠光灯,入射光调节架。
三、实验原理如图所示,在平板玻璃面DcF上放一个曲率半径很大的平凸透镜Acb,c点为接触点,这样在Acb和DcF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍,即此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差?,与之对应的光程差为?/2,所以相干的两条光线还具有?/2的附加光程差,总的光程差为当?满足条件(1)(2)时,发生相长干涉,出现第K级亮纹,而当(k=0,1,2…)(3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以c点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为,对应的膜厚度为,则(4)在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R>>ek,ek相对于22Rek是一个小量,可以忽略,所以上式可以简化为(5)如果rk是第k级暗条纹的半径,由式(1)和(3)可得(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
大学物理实验报告牛顿环
大学物理实验报告牛顿环大学物理实验报告:牛顿环引言:牛顿环是一种经典的物理实验,通过观察光在透明介质中的干涉现象,可以研究光的波动性质和介质的光学特性。
本实验旨在通过测量牛顿环的直径,探究光的干涉现象,并分析其原理和应用。
实验装置:本实验所需的装置包括:一台光源、一块平面玻璃板、一块凸透镜和一块平凸透镜。
将光源放置在透镜的一侧,平面玻璃板放置在光源与透镜之间,然后在平面玻璃板上放置一块平凸透镜,使其与平面玻璃板形成一定的夹角。
实验过程:1. 调整光源位置:将光源放置在透镜的一侧,确保光线能够通过透镜并照射到平面玻璃板上。
2. 观察牛顿环:通过调整平凸透镜的位置,观察在平面玻璃板上形成的牛顿环。
注意观察牛顿环的直径和颜色变化。
3. 测量牛顿环直径:使用显微镜或其他测量仪器,测量牛顿环的直径。
重复多次测量,取平均值。
实验结果:通过实验观察和测量,我们得到了一系列牛顿环的直径数据。
根据这些数据,我们可以绘制出牛顿环直径与透镜与平面玻璃板的夹角之间的关系曲线。
实验结果显示,牛顿环的直径随着夹角的增大而减小,呈现出一种特殊的变化规律。
实验分析:牛顿环的形成是由于光线在透明介质中的反射和折射现象引起的。
当平面玻璃板与凸透镜接触时,光线在两者之间发生反射和折射,形成了干涉现象。
由于光波的波长非常短,当光线从透镜表面反射或折射时,会产生相位差。
这种相位差导致了干涉现象的发生,形成了牛顿环。
牛顿环的直径与透镜与平面玻璃板的夹角之间存在一定的关系。
根据理论分析,当夹角增大时,牛顿环的直径会减小。
这是因为夹角的增大会导致反射和折射的相位差增加,从而引起干涉现象的变化。
通过实验测量,我们验证了这一理论,并得到了实验结果与理论相符的结论。
实验应用:牛顿环实验在光学领域有着广泛的应用。
首先,牛顿环可以用来测量透明介质的折射率。
通过测量牛顿环的直径和透镜与平面玻璃板的夹角,可以计算出介质的折射率。
其次,牛顿环还可以用来研究光的干涉现象和波动性质。
牛顿环实验的实验报告
一、实验目的1. 观察和分析等厚干涉现象;2. 学习利用干涉现象测量透镜的曲率半径;3. 学会使用读数显微镜测距。
二、实验原理牛顿环实验是一种经典的干涉实验,通过观察和分析牛顿环,可以学习等厚干涉现象。
实验原理如下:当一块平面玻璃上放置一个焦距很大的平凸透镜时,其凸面与平面相接触,在接触点附近形成一层空气膜。
当用一束平行单色光垂直照射时,空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样,称为牛顿环。
牛顿环的半径与透镜的曲率半径、光波长以及空气膜厚度有关。
三、实验仪器1. 读数显微镜2. 牛顿环仪3. 钠光灯4. 凸透镜(包括三爪式透镜夹和固定滑座)四、实验内容1. 调整测量装置(1)调节450玻片,使显微镜视场中亮度最大,满足入射光垂直于透镜的要求。
(2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到清晰的干涉图像。
(3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止。
往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。
(4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用肥皂水清洗干净。
2. 观察并记录牛顿环(1)打开钠光灯,将牛顿环仪放置在显微镜载物台上,调整显微镜对准牛顿环。
(2)观察牛顿环,记录下清晰的干涉条纹。
(3)利用读数显微镜测量干涉条纹的直径,并计算空气膜厚度。
3. 测量透镜的曲率半径(1)根据牛顿环的直径和光波长,计算空气膜厚度。
(2)利用公式R = (λ d^2) / (2 Δ),计算透镜的曲率半径,其中λ 为光波长,d 为空气膜厚度,Δ 为干涉条纹的直径差。
五、实验结果与分析1. 通过实验,观察到牛顿环的干涉条纹为明暗相间的同心圆环,符合等厚干涉现象。
2. 利用读数显微镜测量干涉条纹的直径,计算空气膜厚度,并根据公式计算透镜的曲率半径。
3. 实验结果与理论值基本吻合,说明实验方法正确,实验结果可靠。
大物实验牛顿环实验报告
大物实验牛顿环实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、掌握用牛顿环测量平凸透镜曲率半径的方法。
3、加深对光的波动性的认识。
二、实验原理将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面和玻璃的平面之间就会形成一个空气薄层。
当一束单色光垂直照射到这个装置上时,从空气薄层的上下表面反射的两束光将会产生干涉现象。
由于空气薄层的厚度在接触点处为零,而在离接触点较远的地方逐渐增加,所以在反射光中会形成一组以接触点为中心的明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,入射光波长为λ,在牛顿环中第 m 个暗环处对应的空气薄层厚度为 dm,则有:\\begin{align}dm&=\frac{m\lambda}{2}\\\end{align}\又因为在平凸透镜与平面玻璃接触点处,空气薄层的厚度为零,而在离接触点较远的地方,空气薄层的厚度可以近似看作是一个球面的一部分。
设第 m 个暗环处对应的半径为 rm,则有:\\begin{align}r_m^2&=2R\times dm\\r_m^2&=mR\lambda\\\end{align}\因此,通过测量第 m 个暗环的半径 rm 和已知的入射光波长λ,就可以计算出透镜的曲率半径 R。
三、实验仪器1、牛顿环实验装置:包括钠光灯、平凸透镜、平面玻璃、读数显微镜等。
2、钠光灯:提供单色光源。
3、读数显微镜:用于测量牛顿环的直径。
四、实验步骤1、调节牛顿环实验装置将钠光灯放置在合适的位置,使光线能够垂直照射到牛顿环装置上。
调节平凸透镜和平面玻璃,使其接触良好,并且中心尽量重合。
2、观察牛顿环用眼睛直接观察牛顿环,调整装置的角度和位置,使牛顿环清晰可见。
3、测量牛顿环的直径将读数显微镜的目镜调焦,使十字叉丝清晰。
将显微镜对准牛顿环的中心,然后旋转鼓轮,从中心向外移动,依次测量第 10 到 20 个暗环的直径。
4、数据记录记录每个暗环的左右两侧的位置读数,分别计算出每个暗环的直径。
大学物理实验报告牛顿环
大学物理实验报告牛顿环牛顿环实验报告引言牛顿环是一种经典的实验,通过它我们可以观察到薄膜的干涉现象,并且可以利用这一现象来测量薄膜的厚度。
在这个实验中,我们将使用牛顿环来研究光的干涉和反射现象,以及如何利用这些现象来测量薄膜的厚度。
实验目的本实验的目的是通过观察牛顿环的形成过程,探究光的干涉和反射现象,以及利用这些现象来测量薄膜的厚度。
实验原理牛顿环是由于透明介质表面与平行光的干涉所产生的一种干涉现象。
当平行光垂直入射到透明介质表面上时,会发生反射和折射。
在反射和折射过程中,光的波长和相位会发生变化,从而产生干涉现象。
牛顿环的形成主要是由于透明介质表面与反射光之间的干涉所导致的。
实验装置本实验使用的主要装置包括一束钠光灯、一块玻璃片、一块平面玻璃片和一块薄膜样品。
实验中,我们将玻璃片和薄膜样品叠放在一起,然后在钠光灯下观察牛顿环的形成。
实验步骤1. 将玻璃片和薄膜样品叠放在一起,确保它们之间没有空气。
2. 将叠放好的玻璃片和薄膜样品放置在钠光灯下,并调整观察位置。
3. 观察并记录下牛顿环的形成过程,包括环的数量、大小和颜色等。
实验结果通过实验观察,我们可以清晰地看到牛顿环的形成过程。
在实验中,我们观察到了一系列明暗相间的环形条纹,这些条纹的大小和颜色随着厚度的变化而变化。
通过测量不同环的直径和颜色,我们可以计算出薄膜的厚度。
结论通过本实验,我们成功观察到了牛顿环的形成过程,并且利用这一现象成功测量出了薄膜的厚度。
这个实验不仅帮助我们更好地理解光的干涉和反射现象,还为我们提供了一种简单而有效的方法来测量薄膜的厚度。
牛顿环实验不仅在物理学中有着重要的应用,也为我们提供了一种新的方法来研究光学现象。
大学物理实验牛顿环
八、问题讨论
1、本实验是用什么方法处理数据的?此法 有何优点?
答:是用逐差法处理数据的。优点为:可 以充分利用数据,体现出多次测量的优 点,减小了测量误差。
d 2 4mR
问题讨论
2、实验中,如何避免螺纹的空程差?
答:在测量过程中,显微镜的鼓轮应沿同 一方向转动,中途不可倒转,以便消除 螺纹的间隙误差。
2、在测量过程中,鼓轮应沿同一方向转动。 3、对物镜调焦时,应使物镜筒从最低点自下而上缓
慢地调节,以免损坏仪器。 4、调节时,应预先使显微镜筒标尺位置处在可移动
范围的中点,以避免在测量时超出标尺的测量范围。 5、测量过程中,不要碰动牛顿环和震动实验台,以
免影响测量的准确性。
七、实验数据
589.3 0.2nm , m n 30.0
二、实验目的
1、了解等厚干涉原理 2、掌握用牛顿环测量透镜曲率半径的方法 3、学会使用读数显微镜以及钠光灯
三、实验原理
O R
d h
光程差
2h
2
(k
k(亮条纹) 1)(暗条纹)
2
曲率半径
R dm2 dn2
4(m n)
牛顿环干涉条纹的特点
为一系列明暗相间的同心 圆环。 中央为零级暗斑。 越往边缘处,干涉级次越 大,条纹越密。 条纹定域在空气薄膜表面。
答:透射光产生的牛顿环也是明暗相间的 同心圆环,但是中央为零级暗斑,条纹 的明暗正好与反射光产生的牛顿环的明 暗互补,且条纹的明暗对比度差。
问题讨论
5、若牛顿环中心是亮斑而不是暗斑,可能 是什么原因造成的?对测量结果有无影 响?
6、牛顿环的中心一定是目镜视场中所观察 到的零级暗斑的中心吗?为什么?
589 .3 0.2nm , m n 30
牛顿环演示实验报告
一、实验目的1. 观察和分析牛顿环等厚干涉现象;2. 学习利用牛顿环干涉现象测量透镜的曲率半径;3. 理解光程差与干涉条纹之间的关系。
二、实验原理牛顿环是一种等厚干涉现象,当一块平凸透镜的凸面与平板玻璃接触时,在两表面之间形成一层厚度不等的空气膜。
当单色光垂直照射到牛顿环上时,空气膜上、下表面反射的光束发生干涉,形成以接触点为中心的一系列明暗相间的圆环。
根据干涉条件,明环和暗环的位置与空气膜的厚度有关,从而可以计算出透镜的曲率半径。
实验原理公式如下:对于明环:2d = mλ + λ/2对于暗环:2d = mλ - λ/2其中,d为空气膜厚度,m为干涉级数,λ为入射光波长。
三、实验仪器1. 牛顿环装置:由一块平面玻璃和一块平凸透镜组成;2. 钠光灯:提供单色光;3. 读数显微镜:用于测量干涉条纹间距;4. 移动平台:用于调节透镜与平板玻璃之间的距离。
四、实验步骤1. 将牛顿环装置放置在实验台上,调整钠光灯,使其光线垂直照射到牛顿环上;2. 将读数显微镜对准牛顿环,调节显微镜的焦距,使干涉条纹清晰可见;3. 调节移动平台,使透镜与平板玻璃之间的距离逐渐增大,观察干涉条纹的变化;4. 记录明环和暗环的间距,根据实验原理公式计算空气膜厚度;5. 改变透镜的曲率半径,重复实验步骤,比较不同曲率半径下的实验结果。
五、实验结果与分析1. 观察到随着透镜与平板玻璃之间距离的增大,干涉条纹间距逐渐增大,说明空气膜厚度逐渐增加;2. 通过计算,得到不同干涉级数的空气膜厚度,进一步计算出透镜的曲率半径;3. 对比不同曲率半径下的实验结果,发现实验结果与理论值基本一致。
六、实验结论1. 牛顿环是一种典型的等厚干涉现象,通过观察和分析牛顿环,可以加深对等厚干涉的理解;2. 利用牛顿环干涉现象可以测量透镜的曲率半径,实验结果与理论值基本一致,说明实验方法可靠;3. 通过本实验,掌握了读数显微镜的使用方法,提高了实验操作技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理仿真实验报告
实验名称:牛顿环法测曲率半径实验日期:
专业班级:
姓名:学号:
教师签字:________________
一、实验目的
1.学会用牛顿环测定透镜曲率半径。
2.正确使用读书显微镜,学习用逐差法处理数据。
二、实验仪器
牛顿环仪,读数显微镜,钠光灯,入射光调节架。
三、实验原理
如图所示,在平板玻璃面DCF上放一个曲率半径很大的平
凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形
成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到
透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜
的上下表面反射的两条光线来自同一条入射光线,它们满
足相干条件并在膜的上表面相遇而产生干涉,干涉后的强
度由相遇的两条光线的光程差决定,由图可见,二者的光
程差等于膜厚度e的两倍,即
此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1)
当∆满足条件(2)时,发生相长干涉,出现第K级亮纹,而当
(k = 0,1,2…)(3)时,发生相消干涉,出现第k级暗纹。
因为
同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为,对应的膜厚度为,则
(4)
在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k,e k2相对于2Re k是一个小量,可以忽略,所以上式可以简化为
(5)
如果r k是第k级暗条纹的半径,由式(1)和(3)可得
(6)
代入式(5)得透镜曲率半径的计算公式
(7)
对给定的装置,R为常数,暗纹半径
(8)
和级数k的平方根成正比,即随着k的增大,条纹越来越细。
同理,如果r k是第k级明纹,则由式(1)和(2)得
(9)
代入式(5),可以算出(10)
由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。
在实验中,暗纹位置更容易确定,所以我们选用式(8)来进行计算。
在实际问题中,由于玻璃的弹性形变及接触处不干净等因素,透镜和玻璃板之间不可能是一个理想的点接触。
这样一来,干涉环的圆心就很难确定,r k就很难测准,而且在接触处,到底包含了几级条纹也难以知道,这样级数k也无法确定,所以公式(8)不能直接用于实验测量。
在实验中,我们选择两个离中心较远的暗环,假定他们的级数为m和n,测出它们的直径d m = 2r m,d n = 2r n,则由式(8)有
由此得出
(11)
从这个公式可以看出,只要我们准确地测出某两条暗纹的直径,准确地数出级数m和n 之差(m-n)(不必确定圆心也不必确定具体级数m和n),即可求得曲率半径R。
四、实验内容
本实验的主要内容为利用干射法测量平凸透镜
的曲率。
1.观察牛顿环
将牛顿环按图2所示放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。
调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。
2.测牛顿环半径
使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移动方向平行)。
记录标尺读数。
转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第N环相切为止(N根据实验要求决定)。
记录标尺读数。
3.重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R 和R的标准差。
五、数据记录及处理
六、思考题
1.牛顿环产生的干涉属于薄膜干涉,在牛顿环中薄膜在什么位置?
答:透镜和玻璃板之间夹成的空气薄膜。
2.为什么牛顿环产生的干涉条纹是一组同心圆环?
答:也就是说,等厚度的集合是圆,跟着半径方向明暗相间就是环了
3.牛顿环产生的干涉条纹在什么位置上?相干的两束光线是哪两束?
答:在透镜下表面两束光是:1透镜下表面反射光;2透过透镜、空气劈尖在玻璃板反射的光。
4.在牛顿环实验中,如果直接用暗纹公式测平凸透镜凸面的曲率半径,有什么问题?
答:直接用暗纹公式计算曲率半径需要确定某条纹对应的级数。
而在实际情况下,由于玻璃的弹性形变及接触处不干净等因素,透镜和玻璃板之间不可能是一个理想的点接触。
这样一来,干涉环的圆心就很难确定,而且在接触处,到底包含了几级条纹也难以知道,这样级数k也无法确定,所以该公式无法运用。
5.在使用读数显微镜时,怎样判断是否消除了视差?使用时最主要的注意事项是什么?
答:(1)从目镜观测时,前后左右调整眼与目镜的位置,若看到的叉丝与图像之间没有相对移动,则视察消除。
(2)使用时最主要的注意事项是为避免损坏目镜,先让物镜靠近牛顿装置的上表面,然后用眼睛看着显微镜,同时由下向上调节筒身。
6.在光学中有一种利用牛顿环产生的原理来判断被测透镜凹凸的简单方法:用手轻压牛顿环装置中被测透镜的边缘,同时观察干涉条纹中心移动的方向,中心趋向加力点者为凸透镜,中心背离加力点者为凹透镜。
请想一想,这是什么道理
答:根据干涉的原理可知,条纹的位置取决于该位置对应的薄膜厚度,而条纹中心应该是厚度为0的地方。
所以,当在某点挤压凸透镜时,凸透镜产生形变,该点空气薄膜厚度减小,且厚度为0处会向该点方向移动,所以条纹中心会趋向加力点。
凹透镜现象正好与此相反,所以可以根据这一现象来判断凹凸透镜。