2第二章传感器基本特性

合集下载

传感器原理及工程应用(第三版)郁有文1-5第2章

传感器原理及工程应用(第三版)郁有文1-5第2章

第2章 传 感 器 概 述
图2-2 传感器的灵敏度
第2章 传 感 器 概 述 2. 线性度 传感器的线性度是指传感器的输出与输入之间数量关系的线 性程度。输出与输入关系可分为线性特性和非线性特性。从传 感器的性能看, 希望具有线性关系, 即理想输入输出关系。但
实际遇到的传感器大多为非线性。
在实际使用中,为了标定和数据处理的方便,希望得到线 性关系,因此引入各种非线性补偿环节,如采用非线性补偿电 路或计算机软件进行线性化处理,从而使传感器的输出与输入 关系为线性或接近线性,但如果传感器非线性的方次不高, 输
第2章 传 感 器 概 述
图2-1 传感器组成方框图
第2章 传 感 器 概 述 传感器技术是一门知识密集型技术。传感器的原理有各种 各样,它与许多学科有关,其种类十分繁多,分类方法也很多,
但目前一般采用两种分类方法:一种是按被测参数分类,如温
度、压力、位移、速度等;另一种是按传感器的工作原理分类, 如应变式、电容式、压电式、磁电式等。 本书是按后一种分类 方法来介绍各种传感器的,而传感器的工程应用则是根据工程 参数进行叙述的。对于初学者和应用传感器的工程技术人员来
器的正反行程输出信号大小不相等,这个差值称为迟滞差值。
传感器在全量程范围内最大的迟滞差值ΔHmax与满量程输出值YFS 之比称为迟滞误差,用γH表示,即
H max H 100 % YFS
(2-4)
第2章 传 感 器 概 述 产生这种现象的主要原因是由于传感器敏感元件材料的 物理性质和机械另部件的缺陷所造成的,例如弹性敏感元件 弹性滞后、 运动部件摩擦、 传动机构的间隙、紧固件松动等。 迟滞误差又称为回差或变差。
第2章 传 感 器 概 述
第2章 传 感 器 概 述

第2章 传感器的基本特性

第2章 传感器的基本特性

( x1 x) ( x 2 x) ( x m x) x m -1
2 2
2
可以证明,σ和
x 之间存在关系
x n
【例】对某一重物进行了十次等精度测量,测值为 20.62 20.82 20.78 20.82 20.70 20.78 20.84 20.78 20.85 20.85 (单位:g) 求:(1)测量值的算术平均值 (2)测量值的标准差 (3)测量结果的表达 解:(1)算术平均值为:
(2) 标准差
① 测量列的标准偏差 算术平均值反映了随机误差的分布中心,为更好的表征随 机变量相对于中心位置的离散程度,可引入标准偏差。 标准偏差是指随机误差的方均根值。
若测量列为一组测量值x1,x2,…,xn,其标准差σ为

2 1
( x1 A0 ) 2 ( x2 A0 ) 2 ( xn A0 ) 2 n
x1 x2 x16 x 39.50 16
(2)求标准差:

(3)根据
( x1 x) ( x2 x) ( x16 x)
2 2
2
16 - 1
0.38
Vi | xi x | 3 1.14
结论:无粗差
2.2 传感器的静态特性

传感器的静态特性是指在输入量为静态或缓慢变化时的 输入输出关系
返 回 上一页 下一页
(3)实际值 用精度更高一级的标准器具所测得的值称为实际值, 实际应用中可代替真值。 (4)标称值 一般由制造厂家为元件、器件或设备在特定运行条件 下所规定的量值。 (5)示值
由测量器具读数装置直接读出来的被测量的数值。


上一页
下一页

第2章传感器的基本特性特性详解

第2章传感器的基本特性特性详解

➢ 可将传感器看成一个具有输入、输出的二端网络
输入(X)
传感器系统
输出(Y)
同一个传感器对不同的输入信号输出特性也是不同; ➢ 由于受传感器内部储能元件(电感、电容、质量块、弹簧等)
影响,对快变信号与慢变信号反应大不相同。
➢ 慢变信号—— 输入为静态或变化极缓慢的信号时(环境温度)。 ➢ 快变信号—— 输入量随时间(t) 较快变化时(如振动)。
➢ 动态测温特征说明热电偶的输入输出之间存在动态误差, 产生动态误差的主要原因是:温度传感器的热惯性和传 热热阻所造成的。
☻ 热惯性是温度传感器所固有的,这种影响动态特性的
“固有因素”任何传感器都有,只是表现形式不同。
热电偶
环境温度 T0/℃且 T>源自0水温T/℃影响传感器动态特性除固有因素外,还与输入信号的形式 有关,在对传感器进行动态分析时一般采用标准的正弦信号 和阶跃信号。
例:电子秤
砝码重量(x)
10g —— 50g —— 100g —— 200g
加砝码 时输出(y) 0.5mV 2mV 4mV 10mV
减砝码 时输出(y) 1mV 3mV 6mV 10mV
速度越快这种现象越明显。
迟滞用来描述传感器在正反行程期间特性曲线不重合的程度。 ❖ 迟滞大小计算公式为:
H
H max y
y b0 x kx a0
传递函数为常数,
• 无时间滞后,为一特例。
➢ (n = 1) 一阶系统, 传递函数为
H (s) b0 k
a1s a0 s 1
• 为惯性系统,如RC回路为典型一阶系统
式中: k b0 a0
静态灵敏度;
a1 时间常数
a0
➢ (n = 2) 二阶系统

传感器原理与应用课件 第2章 传感器的特性及标定

传感器原理与应用课件 第2章  传感器的特性及标定
温度测量:用于测量环境温 度、设备温度等
温度补偿:用于补偿温度对 测量结果的影响
温度校准:用于校准其他传 感器的测量结果
温度监测:用于监测食品、 药品等物品的温度变化
流量传感器应用
工业生产:用于测量液体、气体的流量,如石油、天然气、水等 环保监测:用于监测污水、废气排放,确保环保达标 医疗设备:用于监测血液、尿液等液体的流量,辅助诊断和治疗 汽车电子:用于监测燃油、冷却液等液体的流量,确保车辆正常运行
Part Four
传感器应用实例
压力传感器应用
汽车领域:用于监测轮胎压力、发动机油压等 医疗领域:用于监测血压、呼吸压力等 工业领域:用于监测液压系统、气压系统等 航空航天领域:用于监测飞行器气压、发动机压力等
温度传感器应用
温度报警:用于监测高温、 低温等异常情况
温度控制:用于控制加热、 制冷等设备
标定误差处理:选 择合适的标定方法、 优化标定参数、消 除环境干扰等
标定实例
温度传感器:通过测量温度变化,确定传感器的灵敏度和精度 压力传感器:通过测量压力变化,确定传感器的灵敏度和精度 加速度传感器:通过测量加速度变化,确定传感器的灵敏度和精度 湿度传感器:通过测量湿度变化,确定传感器的灵敏度和精度
位移传感器应用
工业自动化:用于控制机械设备的 位置和速度
汽车电子:用于检测汽车的行驶速 度和位置
添加标题
添加标题
添加标题
添加标题
医疗设备:用于测量患者的生理参 数,如血压、体温等
航空航天:用于测量飞行器的位置 和姿态
THANKS
汇报人:
重复性与灵敏度
重复性:传感器在相同条件下多次测量同一物理量的能力 灵敏度:传感器对被测量变化的响应能力 影响因素:温度、湿度、压力等环境因素 提高方法:选择合适的传感器材料和结构,优化信号处理算法

第2章 生物医学传感器基础课件

第2章 生物医学传感器基础课件
第2章 生物医学传感器基础
• E 0 是金属浸在含有该金属离子有效浓度 为lmol/L的溶液中达到平衡时的电极电位, 称为这种金属的标准电极电位(表3.2 )
• 可看出 E 0 值远远大于所有生物电位信号 的大小。
• E 0 与金属以离子形态转入溶液的能力K 以及温度T有关系。
第2章 生物医学传感器基础
第2章 生物医学传感器基础
• 图 电极-溶液界面的平衡电位
锌电极放入含Zn2+的溶液 中,锌电极中Zn2+进入溶 液中,在金属上留下电子
带负电,溶液带正电。
进入水中的正离子和带负 电的金属彼此吸引,使大多 数离子分布在靠近金属片 的液层中,形成的电场,阻 碍Zn2+进一步迁移最终达 到平衡。
此时金属与溶液之间形成电荷 分第2布章 产生物生医学一传感定器的基础电位差。
第2章 生物医学传感器基础
一、电极的基本概念
• 生物电是生物体最基本的生理现象,各种生物 电位的测量都要用电极;给生物组织施加电剌 激也要用电极
• 电极实际上是把生物体电化学活动而产生的离 子电位转换成测量系统的电位
• 电极起换能器作用,是一种传感器
• 电流在生物体内是靠离子传导的,在电极和导
线中是靠电子传导的,在电极和溶液界面上则

-
-
-

-
生物电检测电极示意图 第2章 生物医学传感器基础
生物电测量的等效电路
第2章 生物医学传感器基础
• 医用电极按工作性质可分为检测电极和 刺激电极两大类:
• 检测电极是敏感元件,用来测定生物电位的。 需用电极把这个部位的电位引导到电位测量 仪器上进行测量,这种电极称为检测电极。
• 剌激电极是对生物体施加电流或电压所用的 电极。剌激电极是个执行元件。

传感器:第2章应变式传感器

传感器:第2章应变式传感器

如果电桥各臂都改变,则有
Ug
E
(R1 R1)(R4 R4 ) (R2 R2 )(R3 R3) (R1 R1 R2 R2 )(R3 R3 R4 R4 )
(一)等臂电桥
当 R1 R2 R3 R4 时,称为等臂电桥。此时
Ug
E
R(R1 R2 R3 R4 ) R1R4 R2R3 (2R R1 R2 )(2R R3 R4 )
应变式传感器包括两部份,一是弹性敏感元件,将被 测量转换为应变;二是应变片,将应变转化为电阻 的变化。
被测量
应变量
弹性元件
电阻
应变片
变化
(一)柱式压力传感器 圆柱式压力传感器分为实心和空心两种。
柱式力传感器应变片的粘贴方式
对于柱式压力传感器其轴向应变和圆周方向应变与轴 向受力成正比例关系。
轴向应变
下面分析横向效应产生的原因。设轴向应变为 , 横向应变为 r。
2006.9.11 JC204->
若敏感栅有 n 个纵栅,每根长为 l ,圆弧横栅的半
径为 r ,在轴向应变 作用下,全部纵栅的形
变 L1 nl 。
在半圆弧上取一小微元 dl rd ,上面的应变为
1 2
(
r )
1 2
(
r ) cos 2
一、压阻效应 单晶硅材料在受到应力后,其电阻率发生明显的变化,
这种现象被称为压阻效应。 对于一条形的半导体材料,其电阻变化与应变的关系
d ( r 2 ) r2
2 dr r
2 r
根据泊松效应,有
r 上式中 为泊松系数。
由实验结果有
通常 C 1
d C dV V
由于 V S l
dV V
dS S

第二章 传感器的特性及标定

第二章 传感器的特性及标定

不重复误差是属于随机误差性质的,校准数据的离散程度是与 随机误差的精度相关的,应根据标准偏差来计算重复性指标。重复性 误差eR又可按下式来表示:
式中
——标准偏差。 服从正态分布误差,可以根据贝赛尔公式来计算:

(2 ~ 3) eR 1000 0 yFS

式中
2 ( y y ) i i 1
X

2.1.3
迟滞
迟滞表示传感器在输入值增长的过程中(正行程)和减少的过程
中(反行程),同一输入量输入时,输出值的差别,如图所示,它是
传感器的一个性能指标。该指标反映了传感器的机械部件和结构材料 等存在的问题,如轴承摩擦、灰尘积塞、间隙不适当、螺钉松动、元 件磨损(或碎裂)以及材料的内部摩擦等。迟滞的大小通常由整个检
式中
y f x a0 a1x a2 x2 an xn
x ——输入信号; y ——输出信号; a0——零位输出; a1——传感器线性灵敏度; a2,a3,…,an——非线性系数。对于已知的输出——输
入特性曲线,非线性系数可由待定系数法求得。
X

多项式代数方程的四种情况:
an s nY s an1 s n1Y s a1 sY s a0Y s
m m 1
bm s X s bm1 s X s b1 sX s b0 X s
m m1
Y (s) bm s bm1s b1 s b0 H ( s) n n 1 X (s) an s an1s a1 s a0
初始值均为零时输出的拉氏变换和输入的拉氏变换之比dtdxdtdywwwnuceducn223频率响应函数初始值均为零时输出的傅立叶变换和输入的傅立叶变换之比是在频域中对系统传递信息特性的描述傅立叶变换a表示输出量幅值与输入量幅值之比相对于信号频率的关系称为幅频特性

《传感器与检测技术(胡向东,第2版)》习题解答

《传感器与检测技术(胡向东,第2版)》习题解答

《传感器与检测技术(胡向东,第2版)》习题解答传感器与检测技术习题解答王涛第1章概述什么是传感器?答:传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常敏感元件和转换元件组成。

传感器的共性是什么?答:传感器的共性就是利用物理定律或物质的物理、化学或生物特性,将非电量输入转换成电量输出。

传感器一般哪几部分组成?答:传感器的基本组成分为敏感元件和转换元件两部分,分别完成检测和转换两个基本功能。

另外还需要信号调理与转换电路,辅助电源。

被测量敏感元件传感元件信号调节转换电路辅助电源传感器是如何分类的?答:传感器可按输入量、输出量、工作原理、基本效应、能量变换关系以及所蕴含的技术特征等分类,其中按输入量和工作原理的分类方式应用较为普遍。

①按传感器的输入量进行分类按输入量分类的传感器以被测物理量命名,如位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。

②按传感器的工作原理进行分类根据传感器的工作原理,可以分为电阻式传感器、电感式传感器、电容式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。

③按传感器的基本效应进行分类根据传感器敏感元件所蕴含的基本效应,可以将传感器分为物理传感器、化学传感器和生物传感器。

改善传感器性能的技术途径有哪些?答:①差动技术;②平均技术;③补偿与修正技术;④屏蔽、隔离与干扰抑制;⑤稳定性处理。

第2章传感器的基本特性什么是传感器的静态特性?描述传感器静态特性的主要指标有哪些?答:传感器的静态特性是它在稳态信号作用下的输入、输出关系。

静态特性所描述的传感器的输入-输出关系中不含时间变量。

衡量传感器静态特性的主要指标是线性度、灵敏度、分辨率、迟滞、重复性和漂移。

利用压力传感器所得测试数据如下表所示,计算非线性误差、迟滞和重复性误差。

设压力为0MPa时输出为0mV,压力为时输出最大且为。

压力/MPa 输出值/mV 第一循环第二循环第三循环正行程反行程正行程反行程正行程反行程解:①求非线性误差,首先要求实际特性曲线与拟合直线之间的最大误差,拟合直线在输入量变化不大的条件下,可以用切线或割线拟合、过零旋转拟合、端点平移拟合等来近似地代表实际曲线的一段。

传感器第2章基本特性

传感器第2章基本特性

(2 ~ 3)σ γ =± × 100% y FS
标准偏差的计算用贝赛尔公式计算, 标准偏差的计算用贝赛尔公式计算,即
σ=
∑(y
i =1
n
i
y)
n 1
第 1 章 传感器基础知识
8)分辨力与阈值 定义:指能检测最小输入变化量(增量)的能力. 定义:指能检测最小输入变化量(增量)的能力. 由于分辨力易受噪声影响,所以常用相对于噪声电平N 由于分辨力易受噪声影响,所以常用相对于噪声电平N若干 的被测量为最小检测量. 倍c的被测量为最小检测量. 定义式: 定义式: cN
M=
k
C取1~5 取
阈值:输入量在零点附近的分辨力(最小检测量). 阈值:输入量在零点附近的分辨力(最小检测量).
第 1 章 传感器基础知识
思考 题 1.何为传感器的静态特性? 1.何为传感器的静态特性? 何为传感器的静态特性 2.静态特性的主要技术指标为哪些? 2.静态特性的主要技术指标为哪些? 静态特性的主要技术指标为哪些 3.某位移传感器,在输入量变化5mm时, 3.某位移传感器,在输入量变化5mm时 某位移传感器 5mm 输出电压变化为300mV,求其灵敏度. 300mV,求其灵敏度 输出电压变化为300mV,求其灵敏度. 4.某测量系统由传感器,放大器和记录仪组成, 4.某测量系统由传感器,放大器和记录仪组成,各环节的 某测量系统由传感器 灵敏度为S1 0.2mV/℃ S2=2.0V/mV,S3=5.0mm/V,求系 S1= 灵敏度为S1=0.2mV/℃, S2=2.0V/mV,S3=5.0mm/V,求系 统总的灵敏度. 统总的灵敏度.
y (t ) = B(ω ) sin[ωt + φ (ω )]
第 1 章 传感器基础知识

传感器的基本特性与指标

传感器的基本特性与指标

传感器的基本特性与指标传感器是一种能够将被测量的物理量转化为可观测的电信号的设备。

它具有许多基本特性和指标,这些特性和指标对于理解和选择合适的传感器至关重要。

下面是传感器的基本特性和指标的详细介绍。

1.灵敏度:传感器的灵敏度是衡量传感器对被测量物理量变化的响应能力。

灵敏度通常用一个比例系数来表示,表示传感器输出信号的变化量与被测量物理量变化量之间的关系。

灵敏度越高,传感器对物理量的变化越敏感。

2.测量范围:传感器的测量范围是指传感器能够测量的被测量物理量的最大和最小值。

超出测量范围的物理量值会导致传感器输出信号失真或不准确。

因此,在选择传感器时,需要根据被测量物理量的范围来确定合适的测量范围。

3.精度:传感器的精度是指传感器输出信号与被测量物理量真实值之间的误差。

精度通常使用一个百分比或一个分数来表示,表示误差与被测量物理量真实值的比值。

精度越高,传感器输出信号与真实值之间的误差越小。

4.响应时间:传感器的响应时间是指传感器从感知到被测量物理量变化到输出相应信号的时间间隔。

响应时间是衡量传感器快速响应能力的指标。

在一些应用中,需要选择具有快速响应时间的传感器。

5.温度特性:传感器的温度特性是指传感器输出信号与工作温度之间的关系。

温度变化会影响传感器的性能和精度。

因此,传感器的温度特性至关重要,特别是在高温或低温环境中的应用中。

6.分辨率:传感器的分辨率是指传感器能够检测到的最小物理量变化。

分辨率决定了传感器输出信号对被测量物理量细微变化的灵敏度。

较高的分辨率意味着传感器可以检测到更小的变化。

7.线性度:传感器的线性度是指传感器输出信号与被测量物理量之间的直线关系程度。

在一些应用中,需要选用具有高线性度的传感器,以确保传感器输出信号与被测量物理量之间的一致性。

8.可靠性:传感器的可靠性是指传感器在一定时间内正常工作的能力。

传感器的可靠性取决于它的设计和制造质量。

在一些应用中,需要选择具有高可靠性的传感器,以确保长时间的稳定运行。

第二章 传感器的基本特性

第二章  传感器的基本特性

47
二阶系统的动态响应(振动系统)
二阶系统传递函数
b0 kw Y ( s) H ( s) 2 2 X ( s) a2 s a1s a0 s 2 wm s wn
零漂=
Y0 100% YFS
式中 ΔY0 ——最大零点偏差;
YFS ——满量程输出。
22
温度漂移
传感器在外界温度变化时输出量的变化
温漂=
max 100% YFS T
式中 Δmax —— 输出最大偏差; ΔT —— 温度变化范围; YFS —— 满量程输出。
23
其它特性指标
分辨率—— 传感器能够检测到的最小输入增量;
14
迟滞
重合的现象称迟滞。
输入量增大
传感器在正、反行程期间输入、输出曲线不
输入量减小
15
迟滞误差一般由满量程输出的百分数表示:
H H max / Y
FS
100%
H max Y2 Y1
例:一电子秤
增加砝码 电桥输出 减砝码输出
为正、反 行程输出值间的最大差值
10g —— 50g —— 100g —— 200g 0.5 mv --- 2mv --- 4mv --- 10mv 1 mv --- 5mv --- 8mv --- 10mv
16
重复性
传感器输入量按同一方向作多次测量时,输 出特性不一致的程度。
17
重复性误差用最大重复偏差表示:
Rmax rR 100% YFS
43
反变换后得出输出的振幅和频率变化特性
e 1 ( / ) y (t ) sin(t ) 2 2 2 2 (1/ ) (1/ )

第2章传感器基本特性(精)

第2章传感器基本特性(精)

第二章传感器的基本特性主要内容:2.1 传感器静态特性2.2传感器动态特性要点:静态特性;线形度、迟滞、重复性、灵敏度、稳定性动态特性;数学模型、过度函数、频率特性、幅频特性概述传感器一般要变换各种信息量为电量,描述这种变换的输入与输出关系表达了传感器的基本特性。

对不同的输入信号,输出特性是不同的,对快变信号与慢变信号,由于受传感器内部储能元件(电感、电容、质量块、弹簧等)的影响,反应大不相同。

快变信号要考虑输出的动态特性,即随时间变化的特性;慢变信号要研究静态特性,即不随时间变化的特性。

例:放射性仪器不同性能的探测器测量性能差别传感器的各种性能由传感器输入与输出之间的关系来描述,视传感器为具有输入输出的二端网络。

* 当输入量(X)为静态(常量)或变化缓慢的信号时(如温度、压力),讨论传感器的静态特性,输入输出关系称静态特性。

* 当输入量(X)随时间变化时(如加速度、振动),讨论传感器的动态特性,输入输出关系称动态特性。

2.1传感器静态特性2.1.1线性度传感器输入输出关系可以用多项式表示:其中:X:输入量;Y:输出量;a0:x = 0时的输出(y)值;a1:理想灵敏度;a2, a3,……an:为非线性项系数一个理想的传感器我们希望它们具有线性的输入输出关系,由于实际传感器输入总有非线性(高次项)存在,X-Y总是非线性关系。

在小范围内用割线、切线近似代表实际曲线使输入输出线性化。

近似后的直线与实际曲线之间存在的最大偏差称传感器的非线性误差——线性度,通常用相对误差表示:式中:ΔLmax为最大非线行绝对误差 YFS 为满量程输出γL为线性度提出线性度的非线性误差,必须说明所依据的基准直线,按照依据基准直线不同有不同的线性度:理论线性度,端基线性度,独立线性度。

最小二乘法线性度设拟合直线方程 :………①取n个测点,第i个测点与直线间残差为:……… ②根据最小二乘法原理取所有测点的残差平方和为最小值:求解k、b代入方程①作拟合直线,实际曲线与拟合直线的最大残差Δimax为非线性误差,最小二乘法求取的拟合直线拟合精度最高,也是最常用的方法。

传感器与检测技术胡向东第版习题解答

传感器与检测技术胡向东第版习题解答

传感器与检测技术(胡向东,第2版)习题解答王涛第1章概述什么是传感器答:传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。

传感器的共性是什么答:传感器的共性就是利用物理定律或物质的物理、化学或生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、频率、电荷、电容、电阻等)输出。

传感器一般由哪几部分组成答:传感器的基本组成分为敏感元件和转换元件两部分,分别完成检测和转换两个基本功能。

②按传感器的工作原理进行分类根据传感器的工作原理(物理定律、物理效应、半导体理论、化学原理等),可以分为电阻式传感器、电感式传感器、电容式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。

③按传感器的基本效应进行分类根据传感器敏感元件所蕴含的基本效应,可以将传感器分为物理传感器、化学传感器和生物传感器。

改善传感器性能的技术途径有哪些答:①差动技术;②平均技术;③补偿与修正技术;④屏蔽、隔离与干扰抑制;⑤稳定性处理。

第2章传感器的基本特性什么是传感器的静态特性描述传感器静态特性的主要指标有哪些答:传感器的静态特性是它在稳态信号作用下的输入、输出关系。

静态特性所描述的传感器的输入-输出关系中不含时间变量。

衡量传感器静态特性的主要指标是线性度、灵敏度、分辨率、迟滞、重复性和漂移。

利用压力传感器所得测试数据如下表所示,计算非线性误差、迟滞和重复性误差。

设压力解:①求非线性误差,首先要求实际特性曲线与拟合直线之间的最大误差,拟合直线在输入量变化不大的条件下,可以用切线或割线拟合、过零旋转拟合、端点平移拟合等来近似地代表实际曲线的一段(多数情况下是用最小二乘法来求出拟合直线)。

(1)端点线性度: 设拟合直线为:y=kx+b, 根据两个端点(0,0)和(,),则拟合直线斜率: ∴*+b= ∴b=0(2)最小二乘线性度: 设拟合直线方程为01y a a x =+, 误差方程01()i i i i i y y y a a x v ∧∧-=-+= 令10x a =,21x a =由已知输入输出数据,根据最小二乘法,有:直接测量值矩阵0.644.047.4710.9314.45L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,系数矩阵10.0210.0410.0610.0810.10A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,被测量估计值矩阵01a X a ∧⎡⎤=⎢⎥⎣⎦由最小二乘法:''A A X A L ∧=,有答:非线性误差公式:max 0.106100%100%0.64%16.50L FS L Y γ∆=±⨯=⨯= ② 迟滞误差公式:max100%H FSH Y γ∆=⨯, 又∵最大行程最大偏差max H ∆=,∴max 0.1100%100%0.6%16.50H FS H Y γ∆=⨯=⨯= ③ 重复性误差公式:max100%L FSR Y γ∆=±⨯, 又∵重复性最大偏差为max R ∆=,∴max 0.08100%100%0.48%16.50L FS R Y γ∆=±⨯=±⨯=± 用一阶传感器测量100Hz 的正弦信号,如果要求幅值误差限制在±5%以内,时间常数应取多少如果用该传感器测量50Hz 的正弦信号,其幅值误差和相位误差各为多少 解:一阶传感器频率响应特性:1()()1H j j ωτω=+幅频特性:()A ω=由题意有()15%A ω-≤15%-≤又22200f Tπωππ=== 所以:0<τ<取τ=,ω=2πf=2π×50=100π幅值误差:()100% 1.32%A ω∆==-所以有%≤△A(ω)<0相位误差:△φ(ω)=-arctan(ωτ)= 所以有≤△φ(ω)<0某温度传感器为时间常数τ=3s 的一阶系统,当传感器受突变温度作用后,试求传感器指示出温差的三分之一和二分之一所需的时间。

第二章传感器的特性21传感器的静态特性

第二章传感器的特性21传感器的静态特性
传感器对各种外界干扰的抵抗能力。 是反映传感器在规定时间(t)内是否正常工作的一种综 合性质量指标。
l 可靠度R(t) : 完成规定功能的概率P(T>t)
l 可靠寿命:年,月 l 失效率 (t) 在t时刻后单位时间发生失效的概

返回
上页
下页
2.2 传感器的动态特性
传感器对随时间变化的输入量的响应特性(测量 值大小、变化规律)
返回
上页
下页
标定系统组成
标定系统框图
传感器标定时,所用测量设备的精度至少要比待标 定传感器的精度高一个数量级。
返回
上页
下页
为了保证各种被测量量值的一致性和准确性,很多 国家都建立了一系列计量器具(包括传感器)检定的组织 和规程、管理办法。我国由国家计量局、中国计量科学 研究院和部、省、市计量部门以及一些大企业的计量站 进行制定和实施。国家计量局(1989年后由国家技术监 督局)制定和发布了力值、长度、压力、温度等一系列计 量器具规程,并于1985年9月公布了《中华人民共和国 计量法》,其中规定:计量检定必须按照国家计量检定 系统表进行。计量检定系统表是建立计量标准、制定检 定规程、开展检定工作、组织量值传递的重要依据。
返回
上页
下页
静态标定的目的是确定传感器静态特性指标,如 线性度、灵敏度、滞后和重复性等。传感器的静态 特性是在静态标准条件下标定的。
静态标准条件 所谓静态标准条件主要包括没有加速度、振动、冲 击及环境温度一般为室温 (20℃±5℃) 、相对湿度不 大于85%、大气压力(101±7)kPa 等条件。
返回
上页
下页
传感器的标定有两层含义: § 确定传感器的性能指标 § 明确这些性能指标所适用的工作环境

第2章 传感器的基本特性

第2章 传感器的基本特性

dn y(t)
dn-1 y(t)
dy(t)
an dt n + an -1 dt n-1 + + a1 dt + a0 y(t)
=
bm
dm x(t) dt m
bm-1
d m-1 x(t ) dt m-1
b1
dx(t) dt
b0 x(t )
(2.3.1)
式中,an、an-1、…、a1、a0和bm、bm-1、…、b1、 b0均为与系统结构参数有关但与时间无关的常数。
➢ 除理想状态,多数传感器的输入信号是随时间变 化的,输出信号一定不会与输入信号有相同的时间函 数,这种输入输出之间的差异就是动态误差。
第2章第7传章 感器磁电的式基传本感器特性
1155
2.3.1数学模型
一般用线性时不变系统理论描述传感器的动态 特性,数学上可以用常系数线性微分方程表示系统 的输出量y与输入量x的关系。
第2章第7传章 感器磁电的式基传本感器特性
1122
2.2.2 静态特性参数
6、漂移 作用在传感器上的激励不变时,响应量随时间
的变化趋势。表征传感器的不稳定性。 产生漂移的原因:1、传感器自生结构参数的变化;
2、外界工作环境参数的变化。
7、量程及测量范围 – 测量上限值与下限值的代数差称为量程。 – 测量系统能测量的最小输入量(下限)至最大 输入量(上限)之间的范围称为测量范围。
Y ( jω) = y(t)e -jωtdt
0
0
Y ( jω)
H ( jω) = X ( jω)
H
(
jω)
=
bm an
( (
jω)m jω)n
bm-1( jω)m-1 b1( jω) b0 an-1( jω)n-1 a1( jω) a0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k
返 回
n xi yi xi yi n xi2 ( xi ) 2
上一页
x y x x y b n x ( x )
2 i i 2 i i i 2 i
i
下一页
最小二乘拟合方法
y
y=kx+b
x


上一页
下一页
2、灵敏度

传感器输出的变化量与引起该变化量的输 入变化量之比即为其静态灵敏度
St

其中, s j , 拉氏变换自变量
是收敛因子, 为角频率
dny d n 1 y dy an n an 1 n 1 ......a1 a 0 y dt dt dt d mx d m 1 x dx bm m bm 1 m 1 ......b1 b0 x dt dt dt
X(s)
H(s)
Y(s)
(3)相同的传递函数可以表征不同物理系统
(4)通过实验求传递函数
1. 瞬态响应特性

在时域内研究传感器的动态特性时,常用的激 励信号有阶跃函数、脉冲函数和斜坡函数等。
传感器对所加激励信号的响应称为瞬态响应。

理想情况下,阶跃输入信号的大小对过渡过程 的曲线形状是没有影响的。但在实际做过渡过 程实验时,应保持阶跃输入信号在传感器特性 曲线的线性范围内。


上一页
下一页
对于初始状态为零的传感器,当输入为单位阶跃信号时, X(s)=1/s,传感器输出的拉氏变换为
1 1 Y ( s) H ( s) X ( s) s 1 s
则一阶传感器的单位阶跃响应为
y( t ) L Y ( s ) 1 e
1
t
时间常数τ:一阶传感器输出上升 到稳态值的63.2%所需的时间。表 征传感器响应速度的快慢。 一阶传感器的时间常数τ越小越好
其中b0 0, b1 b2 ... bm 0
dny d n 1 y dy an n an 1 n 1 ......a1 a 0 y b0 x dt dt dt
零阶环节 a 0 y b0 x 零阶传感器 比例环节、 无惯性环节
dy a 0 y b0 x 一阶环节 a1 dt
简写为:
any ( n ) an 1 y ( n 1) ......a1 y (1) a 0 y bmx ( m ) bm 1 x ( m 1) ......b1 x (1) b0 x
两边取拉氏变换:
(ans n an 1s n1 ......a1s a 0)Y ( s) (bms m bm 1s m1 ......b1s b0) X ( s)


上一页
下一页
⑴ 一阶传感器的单位阶跃响应

设x ( t )、y ( t ) 分别为传感器的输入量和输出 量,均是时间的函数,则一阶传感器的传递函 数为
Y ( s) K H ( s) X (s) s 1
式中 τ——时间常数; K——静态灵敏度。 由于在线性传感器中灵敏度 K为常数,在动态特性分析中,K只 起着使输出量增加K倍的作用。讨论时采用 K=1。
时间常数τ越小,频率响应特性越好。 当ωτ<< 1时,A (ω)≈1,Φ (ω)≈ωτ, 表明传感器输出与输入为线性关系,相位差与频率ω成线性关系, 输出 y ( t ) 比较真实地反映输入x ( t ) 的变化规律。 因此,减小τ可以改善传感器的频率特性。
返 回 上一页 下一页
⑶ 二阶传感器的频率特性


上一页
下一页
⑵ 二阶传感器的单位阶跃响应
二阶传感器的传递函数为
2 n Y ( s) H ( s) 2 X (s) s 2 2 n s n
式中 ωn—— 传感器的固有频率; ζ—— 传感器的阻尼比。 在单位阶跃信号作用下,传感器输出的拉氏变换为
2 n Y ( s) H ( s) X ( s) 2 s(s 2 2 n s n )
6. 零点漂移

传感器在长时间工作的情况下,输入量不变而输 出量发生的变化,长时间工作稳定性或零点漂移
零漂=
Y0 100% YFS
式中 ΔY0 ——最大零点偏差;
YFS ——满量程输出。


上一页
下一页
6、温漂

传感器在外界温度发生变化的情况下, 输入量不变输出量发出的变化
温漂=
max 100% YFS T
二阶传感器的频率特性表达式、幅频特性、相频特性分别为
H ( j ) 1 n
返 回 上一页 下一页
⑶ 瞬态响应特性指标

时间常数 τ 是描述一阶传感器动态特性的重要参数, τ 越小,响应速度越快。 二阶传感器阶跃响应的典型性能指标可由下图表示,


上一页
下一页
各指标定义如下: ① 上升时间tr 输出由稳态值的10%变化到稳态值 的90%所用的时间。 ② 响应时间ts 系统从阶跃输入开始到输出值进入 稳态值所规定的范围内所需要的时间。 ③ 峰值时间tp 阶跃响应曲线达到第一个峰值所需 时间。

Y ( s) L( y (t )) y (t )e St dt X ( s) L( x(t )) x(t )e St dt
0 0
输出量拉氏变换 输入量拉氏变换
传递函数:
Y ( s) bms m bm 1s m1 ......b1s b0 H ( s) X ( s) ans n an 1s n1 ......a1s a 0
4、迟滞

正(输入量增大)反(输入量减小)行程中输 出输入曲线不重合称为迟滞 Y
H (Hmax YFS ) 100%
H max —正反行程间输出的最大差值。
ΔHmax
迟滞误差的另一名称叫回程误差,常用绝对误差表示 检测回程误差时,可选择几个测试点,对应于每一输入信号, 传感器正行程及反行程中输出信号差值的最大者即为回程误差。
④ 超调量σ 传感器输出超过稳态值的最大值ΔA, 常用相对于稳态值的百分比σ表示。


上一页
下一页
2. 频率响应特性

传感器对正弦输入信号的响应特性 频率响应法是从传感器的频率特性出发研究传 感器的动态特性。 (1)零阶传感器的频率特性 (2)一阶传感器的频率特性 (3) 二阶传感器的频率特性 (4)频率响应特性指标
2.1 传感器的静态特性

定义:在稳态信号作用下的输入-输出关系。 不含有时间变量。
– 线性度 – 灵敏度 – 分辨率 – 迟滞 – 重复性 – 漂移
1、线性度:输出输入间成线性关系的程度
y a0 a1x a2 x2 a3 x3 an xn
输 出 量 零 点 输 出 理 输 论 灵 入 敏 量 度
一阶传感器
d2y dy a 0 y b0 x 二阶传感器 二阶环节 a 2 2 a1 dt dt
2. 传递函数
定义:初始条件为零时,输出量(响应函数)的拉普 拉斯变换与输入量(激励函数)拉普拉斯变换之比。 拉氏变换: 当t 0时,y (t ) 0
Y ( s) 0 y (t )e dt
y
ΔLmax
x
②过零旋转拟合
曲线过零的传感器。拟合时,使 L1 L2 LMax
y
ΔL1
ΔL2
x
返 回 上一页 下一页
③端点连线拟合

把输出曲线两端点的连线作为拟合直线
y
ΔLmax
x


上一页
下一页
④端点连线平移拟合

在端点连线拟合基础上使直线平移,移动距离 为原先的一半 L2 L1 L3 LMax y
Y ( s) bms bm 1s ......b1s b0 H ( s) X ( s) ans n an 1s n 1 ......a1s a 0
m
m 1
特点:
(1)反映传感器系统本身特性,与 x(t) 无关。 (2)X(s)、Y(s)、H(s) 知二求一


上一页
下一页
对Y(s)进行拉氏反变换,即可得到单位阶跃响应。 图1.4.6为二阶传感器的单位阶跃响应曲线。
传感器的响应在很大程度上取决于阻尼比ζ和固有频率ωn 。 在实际使用中,为了兼顾有短的上升时间和小的超调量, 一般传感器都设计成欠阻尼式的,阻尼比ζ一般取在0.6~0.8之间。 带保护套管的热电偶是一个典型的二阶传感器。
返 回 上一页 下一页
动态模型
1. 微分方程
微分方程 传递函数
条件:线性定常系统
dny d n 1 y dy an n an 1 n 1 ......a1 a 0 y dt dt dt d mx d m 1 x dx bm m bm 1 m 1 ......b1 b0 x dt dt dt
非线性项系数
直线拟合线性化
L (Lmax YFS ) 100%
最大非线性误差 满量程输出
非线性误差或线性度 y
ΔLmax
x
直线拟合线性化

出发点
拟合方法:
获得最小的非线性误差
①理论拟合; ②过零旋转拟合; ③端点连线拟合; ④端点连线平移拟合; ⑤最小二乘拟合;
①理论拟合
拟合直线为传感器的理论特性,与实际测试值无关。 方法十分简单,但一般说 LMax 较大
返 回 上一页 下一页
⑵ 一阶传感器的频率特性
将一阶传感器的传递函数中的s用jω代替, 即可得到频率特性表达式
H ( j ) 1 ( j ) 1
相关文档
最新文档