Aspen简捷法精馏塔设计计算

合集下载

甲醇装置预精馏塔Aspen模拟任务书

甲醇装置预精馏塔Aspen模拟任务书

甲醇装置预精馏塔Aspen模拟任务书一、模拟计算依据:1、原料处理量:学号后三位XXX × 100 kg/h;2、粗甲醇液进料组成如表1所示(质量分数);进料条件为:液相进料温度60℃,进料压力140kPa,塔顶(分凝器气相出料)冷凝器压力130kPa,再沸器压力150kPa;3、分离要求:塔顶甲酸甲酯摩尔回收率为99.99%,塔顶甲醇摩尔回收率为0.7%。

4、物性方法:BWRS表1 进料组成表二、任务1、按计算依据,用简捷法(DSTWU模块)模拟计算预精馏塔以分离粗甲醇中的轻组分(建议实际回流比取最小回流比的1.5倍)。

2、在简捷模拟计算中,通过回流比随理论板数变化曲线,确定适宜回流比、理论板数。

及相应的进料位置、塔顶产品与进料的摩尔流量比(D/F)、最小回流比、最小理论板数、实际理论板数、进料位置以及塔顶温度。

3、根据简捷计算的结果,利用严格法(RadFrac模块)对预精馏塔进行严格计算,进料条件、冷凝器形式、冷凝器压力、再沸器压力、再沸器采用釜式再沸器、产品纯度要求以及物性方法与简捷法相同,用严格法核算任务2中的结果(简捷计算结果)是否达到回收率要求。

4、通过严格法(RadFrac模块)设计规定功能,调整回流比、馏出与进料量比以达到分离要求;5、通过Aspen灵敏度分析功能,在严格法中求取回流比随理论板数据的变化曲线,重新确定适宜回流比、理论板数。

6、绘制塔内温度分布曲线、塔内液相质量组成分布曲线、塔内的气相组成分布曲线。

7、书写模拟报告。

以下为选做部分(评优学生必做)6-1、通过Aspen灵敏度分析功能,在严格法中求取进料板位置与再沸器热负荷的关系曲线,重新确定进料板位置。

6-2、设实际塔板的塔板默弗里效率为60%,在严格法中重新设定塔板数、进料板位置;然后在严格法中初步设定塔板类型为浮阀,查看塔板的水力学性质;6-3、对塔进行校核计算,确定塔的结构尺寸、水力学性能、负荷性能。

aspen 精馏模拟详细过程及探讨疑问

aspen 精馏模拟详细过程及探讨疑问

精馏塔设计初步介绍1.设计计算◆输入参数:●利用DSTWU模型,进行设计计算●此时输入参数为:塔板数(或回流比以及最小回流比的倍数)、冷凝器与再沸器的工作压强、轻组分与重组分的回收率(可以从产品组成估计)、冷凝器的形式◆输出参数(得到用于详细计算的数据):●实际回流比●实际塔板数(实际回流比和实际塔板数可以从Reflux Ratio Profile 中做图得到)●加料板位置(当加料浓度和此时塔板上液体浓度相当时的塔板)●蒸馏液(馏分)的流量●其他注:以上数据全部是估计得初值,需要按一定的要求进行优化(包括灵敏度以及设计规定的运用),优化主要在RadFrac模型中进行。

2.详细计算◆输入参数:●输入参数主要来自DSTWU中理论计算的数据◆输出参数:●输出的主要是设计板式塔所需要的水力学数据,尺寸数据等其他数据(主要是通过灵敏度分析以及设计规定来实现)3.疑问●在简捷计算中:回收率有时是估计值,它对得到详细计算所需的数据可靠性的影响是不是很大?●在简捷计算中:有多少个变量,又有多少个约束条件?●在简捷计算中:为什么回流比和塔板数有一定的关系?简捷计算(对塔)1.输入数据:●Reflux ratio :-1.5(估计值,一般实际回流比是最小回流比的1.2—2倍)●冷凝器与再沸器的压强:1.013 ,1.123 (压降为0.11bar)●冷凝器的形式:全冷凝(题目要求)、●轻重组分的回收率(塔顶馏出液):0.997 ,0.002 (如果没有给出,可以根据产品组成估计)●分析时,注意Calculation Option 中的设置,来确定最佳回流比以及加料板位置2.输出数据:●Reflux Ratio Profile中得到最佳的回流比与塔板数为:塔板数在45—50中选择,回流比在:0.547 —0.542●选定塔板数为:48,回流比为:0.544●把所选的塔板数回代计算,得到下列用于RadFrac模型计算的数据(见下图):●●从图中可得:实际回流比为:0.545(摩尔比);实际塔板数为:48;加料板位置:33;Distillate to feed fraction :0.578(自己认为是摩尔比,有疑问??);馏出液的流量:11673.5kg/h疑问:进料的流量是怎么确定的,肯定是大于11574kg/h,通过设计规定得到甲醇产量为:11574kg/h(分离要求),求出流量为:16584.0378kg/h。

4-简捷法精馏塔设计计算

4-简捷法精馏塔设计计算
—冷凝器 ( Condenser) —再沸模块---简捷蒸馏模块
➢DSTWU(简捷法精馏设计)
DSTWU模型有四组模型设定参数 (1)塔设定 ( Column specifications) (2)关键组分回收率 (3)压力 ( Pressure)
第8页
4.2 塔Columns模块---简捷蒸馏模块
➢DSTWU(简捷法精馏设计)
DSTWU模型有四组模型设定参数
(1)塔设定 ( Column specifications)
--塔板数 ( Number of stages) --回流比 ( Reflux ratio)
>0, 实际回流比; <-1, 绝对值=实际回流比/最小回流比
第37页
例4-2 简捷法精馏设计计算
7) 生成回流比随理论板数变化表 • 在输入表input 中的calculation options 页面中
选择 • generate table of reflux vs num of theoretical
stages
第38页
例4-2 简捷法精馏设计计算
7) 生成回流比随理论板数变化表 • 在输入表input,中的calculation options 页面中
第2页
4.1 塔Columns模块 ➢进行简捷蒸馏的模型有DSTWU, Distl和
SCFrac
➢进行严格的多级分离的模块有RadFrac,
MultiFrac, PetroFrac, RateFrac
➢用于液-液萃取塔的严格模型有Extract
第3页
4.2 塔Columns模块---简捷蒸馏模块 ➢DSTWU(简捷法精馏设计) ➢Distl(简捷法精馏核算) ➢SCFrac模块

Aspen简捷法精馏塔设计计算

Aspen简捷法精馏塔设计计算
第28页
例5-2 简捷法精馏设计计算
6) DSTWU结果查看
第29页
例5-2 简捷法精馏设计计算
6) DSTWU结果查看
• 最小回流比为1.32
• 实际回流比为1.8 • 最小理论板数为12.8
• 实际塔板数为23.7
• 进料板位置为第12块板
• 再沸器所需的热量为753.31kJ/sec
• 冷凝器所需的热量为688.95kJ/sec
5塔columns模块第3页?进行简捷蒸馏的模型有dstwudistl和scfrac?进行严格的多级分离的模块有radfracmultifracpetrofracratefrac?用于液液萃取塔的严格模型有extract5塔columns模块第4页?dstwu简捷法精馏设计?distl简捷法精馏核算?scfrac模块5塔columns模块简捷蒸馏模块第5页?dstwu简捷法精馏设计模型可针对一个带有分凝器或全凝器一股进料和两种产品的蒸馏塔采用winnunderwoodgilliland方法进行简捷法蒸馏设计计算
不低于 29.7248 不高于 0.2247
正戊烷 正己烷
15 20
第21页
例5-2 简捷法精馏设计计算
1) 流程图绘制 • 在Columns/DSTWU中ICON1
• 冷凝器为全凝器;连接流股时注意连接位置,
第22页
例5-2 简捷法精馏设计计算
1) 流程图绘制
第23页
例5-2 简捷法精馏设计计算
SCFrac模块
第4页
5 塔Columns模块---简捷蒸馏模块
DSTWU(简捷法精馏设计)
模型可针对一个带有分凝器或全凝器、一股进 料和两种产品的蒸馏塔,采用Winn-Underwood -Gilliland方法进行简捷法蒸馏设计计算。

aspen精馏过程模拟

aspen精馏过程模拟

一、首先用简捷法模拟,选择DSTWU模块,精馏装置如下截图对文件命名并自定义单位如截图所示然后在计算机上输入物料的组成,如下截图所示选择一个热力学方法为SRK方法如下截图所示对1号进料物流管进行参数设定,为泡点进料,进料压力为16.5Kg/cm2,进料流量为100kmol/h。

还有物料组成及比例如下截图所示对精馏塔进行参数的设定,回流比为最小回流比的1.2倍,塔顶轻组分丙烷的含量为0.999,重组分含量丁烷为0.001,参数设定值如下截图所示参数设定完成运行软件并查看结果,计算结果如下图所示从结果可知实际的回流比为1.198,实际塔板数为38块,实际的进料板为第17块板,冷凝器的温度为44.25℃,塔釜的温度为116.88℃。

二、进行严格法计算根据简化法得到的条件进行模拟选择Radfrac模块,模拟装置图如下截图对文件命名并自定义单位如截图所示在计算机上输入物料的组成,如下截图所示选择一个热力学方法为SRK方法如下截图所示对1号进料物流管进行参数设定,为泡点进料,进料压力为16.5Kg/cm2,进料流量为100kmol/h。

还有物料组成及比例如下截图所示对塔进行参数设置,根据简化法的计算结果知,塔板数为38,实际回流比为1.198。

再根据题目设计的要求冷凝器为全回流,塔顶的采出率为80。

参数如下截图所示:根据简化法结果进料板为第十七块板进料,截图如下设置塔顶压力为16kg/cm2,冷凝器压力为15.8kg/cm2,全塔的压降为0.2kg/cm2。

设置如下截图所示参数设置完成并运行软件,查看结果不满足分离的目的,则进行自定义设定,目标值设定为0.001选择丙烷选择3号物流设置回流比的可变范围为1到100,增量为0.1运行软件查看结果满足分离的要求。

接下来进行灵敏度分析以确定最佳的进料位置参数设置完成并运行软件查看灵敏度分析的结果如下截图从结果的表中可以看出第22块板的回流比,冷凝器的热负荷,再沸器的热负荷都是最小的,从而可以知道最佳的进料位置为第22块板并对数据在plot里作出X-Y的曲线图如下截图所示从图中也可以明显的看出最佳的进料板为第22块塔板。

工学AspenPlus计算精馏过程

工学AspenPlus计算精馏过程
Aspen Plus计算精馏过程
郭宁 guoning@
一、精馏塔的设计计算
平衡级数的计算
确定轻重关键组分 确定分离任务 确定计算方法并计算
精馏塔类型的选择和设计
二、平衡级数的计算
简捷法计算
DSTWU 模块用Winn-UnderwoodGilliland捷算法进行精馏塔的设计,根据给定 的加料条件和分离要求计算最小回流比、最小 理论板数、给定回流比下的理论板数和加料板 位置。
使用简捷法计算进料组成见下表,温度为75,压力138psig条件下精 馏塔的理论板数和回流比。(要求丙烷完全从塔顶脱出(0.99))
Chemical
Boiling ห้องสมุดไป่ตู้oint/℃ at 1atm
Propane ISOBUTANE n-Butane i-Pentane(2-METHYL-BUTANE) n-Pentane
Fj+Vj+1+Lj-1=(Vj+Gj)+(Lj+Uj) Fjzji+Vj+1yj+1,i+Lj-1xj-1,i=(Vj+Gj)yji+(Lj+Uj)xji
(2)相平衡方程——E方程:
yji=Kjixji
(3)加和方程 S方程:
yji 1 xji 1
(4)热量衡算方程—— H方程
Fjhf+Vj+1Hj+1+Lj-1h1=(Vj+Gj)Hj+(Lj+Uj)hj+Qj
-42.1 -11.9 20.5 27.9 36.1
Feed/(lb mol/h)
100 300 500 400 500
五、严格逐板法

aspen精馏塔设计

aspen精馏塔设计

2)输入 C3H6
2)点击 Find now
输入组分,1)点击 Find 选 DSTWU
1)输入 C3H6
选择
点 Add
` 点击 下拉菜单, 选择物性方法
`
点击 打开物性 方法对话框
` ` 然后点next按钮, 一直点击,系统 会自动调入所需 的物性数据
从下拉菜单中 选择 CHAOSEA物性方法
输入完后,一直点 按钮,运行软件。 运行完后,点 按钮,察看结果。
` `
根据DSTWU模型计算的结果,得到 回流比R,理论板N,进料位置FN,采出量D 选择RadFrac模块,进行严格计算。
`
`
`
`
`
运行软件,检查结果,看分离是否满足要求。
若不满足设计要求,可改变回流比、采出量、 进料位置。 也可以采用designe规定,
精馏塔设计
要求设计一个精馏塔,实现丙烷和丁烷的分 离。 进料温度323k 压力 20atm 进料量 1kmol/sec 进料组成(wt%) 分离目标 丙烷 0.4 塔顶 丙烷> 99% 丁烷 0.6 塔釜 丁烷>99%
先用DSTWU求最小理论板数和回流比
点击
选择基 本单位
先点击 Report Option,再点Stream,然后选择 mass,和mass fraction
`
结果是否满足设计要求。
使用设计规定
`
`
`
1)先点 Design Specs, 2) 再点new;3)点对话 框中的ok
从类型的下拉菜单中选择mass purity
` ` `
运行后,查看结果。
`
`
塔径计算 Pack sizing
` ` `

ASPEN模拟精馏塔

ASPEN模拟精馏塔

XD=0.9225
灵敏度分析,改变进料位置,观察XD的变化
D=300 lbmol/h
从9到17块板进料都可以 达到分离要求。
D=200 lbmol/h
D=250 lbmol/h
D=325 lbmol/h
D=350 lbmol/h
总结:
当D选取200,250,300,325 lbmol/h时,都可以通过选择 适宜的进料板而达到分离效果。如何选取适宜的D? 一方面,D作为采出量,D越大,产量越高。另一方面,在回 流比一定条件下,D越大,上升蒸汽量增加,再沸器及冷凝器负 荷增大。所以需要综合考虑选择适宜的D。 以D=300 lbmol/h为例: 进料板选择第17块板, XD=0.91978,相对误差=(0.92-0.91978)/0.92=2.4×10-4
此时Xw=0.09766 X甲苯=0.90234
1.选择Columns——RadFrac, 作图1如下:
ห้องสมุดไป่ตู้
图 1
单位设置
进料组分选择
物性选择
IDEAL和NRTL不适合
进料参数
塔参数设置
采出量D ?? 自选
进料板选择和操作压力
进料板位置? 自选
Block—Tray sizing—new
模拟结果如下:进料板为第10块板,D=300lbmol/h
题目
应用AspenPlus模拟以下过程,并核算并 求出塔底馏出液中甲苯的含量。在1atm下操作 的筛板精馏塔的进料为:流量700lbmol/h,组 成45%(mol)苯和55 %(mol)甲苯,压力 1atm,温度为该压力下的泡点温度201F。塔顶 馏出液含92%(mol)苯,沸点为179F。甲苯 沸点为227F。该塔有23块塔板,板间距18in, 回流比为1.25.塔的压力降可以忽略。

Aspen入门及塔的捷算介绍

Aspen入门及塔的捷算介绍

Aspen Plus入门及DSTWU捷算介绍摘要: Aspen Plus是用来计算平衡态体系数据的软件,通过Aspen Plus的计算模拟,可以得出模拟系统中所有物流的PFD参数,比如物流的温度,压力,密度,流量等参数,通过这些参数,我们可以推断出操作工况是否合适,操作条件是否合理,成功地找出运行状况下生产装置的瓶颈之处,从而在保证产品质量的前提下,提高产品产量和降低能耗。

本文简要介绍Aspen Plus流程模拟软件的入门操作及注意事项,通过简捷法精馏计算DSTWU 举例说明。

关键词:Aspen Plus,DSTWU,精馏计算,流程模拟一、Aspen Plus入门关于什么是Aspen ,百度百科里面对aspen的解释是:Aspen Plus是一个生产装置设计、稳态模拟和优化的大型通用流程模拟系统。

Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。

该项目称为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。

1982年为了将其商品化,成立了Aspen Tech公司,并称之为Aspen Plus。

该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。

全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus的用户。

软件的入门是一件很痛苦的事情,枯燥的英文界面,复杂的软件结构,安装的时候看到软件安装包是1.3G的时候,就感觉到一点痛苦了,首先对于软件的安装,第一次在家里安装的时候,自以为是地不看安装crack手册,一路next 至最后,然后发现安装到半路就无法安装了,卸载重新安装怎么也安装不上了。

于是重装windows系统继续安装,直至最后的安装成功。

ASPEN软件进行精馏塔设计

ASPEN软件进行精馏塔设计

1引言1.1ASPEN‎PLUS概‎述Aspen‎Plus是‎大型通用流‎程模拟系统‎,源于美国能‎源部七十年‎代后期在麻‎省理工学院‎(MIT)组织的会战‎,开发新型第‎三代流程模‎拟软件。

该项目称为‎“过程工程的‎先进系统”(Advan‎c ed Syste‎m for Proce‎s s Engin‎e erin‎g,简称ASP‎E N),并于198‎1年底完成‎。

1982年‎为了将其商‎品化,成立了As‎p enTe‎c h公司,并称之为A‎s pen Plus。

该软件经过‎20多年来‎不断地改进‎、扩充和提高‎,已先后推出‎了十多个版‎本,成为举世公‎认的标准大‎型流程模拟‎软件,应用案例数‎以百万计。

全球各大化‎工、石化、炼油等过程‎工业制造企‎业及著名的‎工程公司都‎是Aspe‎n Plus 的‎用户。

1.2精馏塔概述‎精馏塔是进‎行精馏的一‎种塔式汽液‎接触装置,又称为蒸馏‎塔。

有板式塔与‎填料塔两种‎主要类型。

根据操作方‎式又可分为‎连续精馏塔‎与间歇精馏‎塔。

蒸气由塔底‎进入。

蒸发出的气‎相与下降液‎进行逆流接‎触,两相接触中‎,下降液中的‎易挥发(低沸点)组分不断地‎向气相中转‎移,气相中的难‎挥发(高沸点)组分不断地‎向下降液中‎转移,气相愈接近‎塔顶,其易挥发组‎分浓度愈高‎,而下降液愈‎接近塔底,其难挥发组‎分则愈富集‎,从而达到组‎分分离的目‎的。

由塔顶上升‎的气相进入‎冷凝器,冷凝的液体‎的一部分作‎为回流液返‎回塔顶进入‎精馏塔中,其余的部分‎则作为馏出‎液取出。

塔底流出的‎液体,其中的一部‎分送入再沸‎器,加热蒸发成‎气相返回塔‎中,另一部分液‎体作为釜残‎液取出。

1.2.1 精馏塔的分‎类气-液传质设备‎主要分为板‎式塔和填料‎塔两大类。

精馏操作既‎可采用板式‎塔,也可采用填‎料塔,填料塔的设‎计将在其他‎分册中作详‎细介绍,故本书将只‎介绍板式塔‎。

板式塔为逐‎级接触型气‎-液传质设备‎,其种类繁多‎,根据塔板上‎气-液接触元件‎的不同,可分为泡罩‎塔、浮阀塔、筛板塔、穿流多孔板‎塔、舌形塔、浮动舌形塔‎和浮动喷射‎塔等多种。

Aspen简捷法精馏塔设计计算解析

Aspen简捷法精馏塔设计计算解析

第 9页
5 塔Columns模块---简捷蒸馏模块
SCFrac (简捷法多塔蒸馏)
对每个塔段必需规定产品压力和基于进料流率
的产品流率或分率,对所有产品,除馏出物外 必须规定蒸汽与产品的比值。
计算中由于进行蒸汽计算,所以水必须被定义
为一个组分。所以水都与塔顶产品一起离开。
该模型不能处理固体,游离水计算可在冷凝器
5 简捷法精馏塔设计计算
1
第 1页
5 塔Columns模块
塔设备是化工生产中应用最为广泛的操作设备 之一,通常在其中进行蒸馏(精馏)、吸收和 萃取单元操作。吸收和蒸馏实际都是气液相平 衡的单元操作,只是蒸馏过程的热量平衡相对 更为复杂。
对塔设备可分为三大类:简捷法计算的蒸馏塔 、严格法计算的蒸馏塔和液-液萃取塔三类。
第 6页
5 塔Columns模块---简捷蒸馏模块
Distl(简捷法精馏核算)
Distl模型可以模拟一个带有一股进料和两种 产品的多级多组分的蒸馏塔,塔可带有分凝 器或全凝器。模型假定恒摩尔流和恒相对挥 发度。用Edimister法进行产品组成。
第 7页
5 塔Columns模块---简捷蒸馏模块
中完成。
第10页
5 塔Columns模块---简捷蒸馏模块
SCFrac (简捷法多塔蒸馏)
SCFrac估算:
产品组成和流率
每一段的级数
每一段的热或冷负荷
该模型不能处理固体,游离水计算可在冷凝器 中完成。
第11页
例5-1 简捷法精馏设计计算
• 利用精馏方法对附表中进料流 股进行分离,其压强为445830 Pa, 处于饱和液体状态。规定 该分离操作的轻、重关键组分 分别为N-Butane和I-Pentane, 塔顶产品中轻、重关键组分的 回收率(recovery)分别为0.99 08和0.0112,并规定操作采用 回流比为最小回流比的1.8倍。 体系热力学性质计算采用“SR K”模型方程。 试确定:该条件下的最小回流 比、理论板数、最小理论板数 及适宜的进料位置。 组分 Propane I-Butane N-Butane I-Pentane 流量 / kmol/s 0.0006 0.0013 0.0038 0.0025

ASPEN软件进行精馏塔设计

ASPEN软件进行精馏塔设计

1引言1.1ASPEN PLUS概述Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。

该项目称为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。

1982年为了将其商品化,成立了AspenTech公司,并称之为Aspen Plus。

该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。

全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus 的用户。

1.2精馏塔概述精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。

有板式塔与填料塔两种主要类型。

根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸气由塔底进入。

蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。

由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。

塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。

1.2.1 精馏塔的分类气-液传质设备主要分为板式塔和填料塔两大类。

精馏操作既可采用板式塔,也可采用填料塔,填料塔的设计将在其他分册中作详细介绍,故本书将只介绍板式塔。

板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。

板式塔在工业上最早使用的是泡罩塔(1813年)、筛板塔(1832年),其后,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。

精馏塔的简洁计算公式

精馏塔的简洁计算公式

精馏塔的简洁计算公式精馏塔是一种用于分离液体混合物的设备,通过不同组分的沸点差异来实现分离。

在工程设计和操作中,需要对精馏塔进行计算和分析,以确保其正常运行和达到预期的分离效果。

在本文中,我们将介绍精馏塔的简洁计算公式,帮助读者更好地理解和应用这些公式。

1. 精馏塔的传质效率公式。

精馏塔的传质效率是评价其性能的重要指标之一。

传质效率通常用塔板数或高度来表示,其计算公式如下:N = HETP × (n-1)。

其中,N表示塔板数或塔高度,HETP表示每塔板传质高度,n表示理论板数。

2. 精馏塔的塔板压降公式。

塔板压降是精馏塔运行中需要考虑的重要参数之一。

塔板压降的计算公式如下:ΔP = ρ× g × H × (1-ε) + ΔPv。

其中,ΔP表示塔板压降,ρ表示液体密度,g表示重力加速度,H表示塔板高度,ε表示塔板孔隙率,ΔPv表示气体速度压降。

3. 精馏塔的塔顶温度计算公式。

精馏塔的塔顶温度是其操作中需要重点关注的参数之一。

塔顶温度的计算公式如下:T = T0 + ΔT。

其中,T表示塔顶温度,T0表示进料温度,ΔT表示塔顶降温。

4. 精馏塔的塔板液体高度计算公式。

塔板液体高度是精馏塔操作中需要实时监测和控制的参数之一。

塔板液体高度的计算公式如下:H = H0 + ΔH。

其中,H表示塔板液体高度,H0表示初始液位高度,ΔH表示液位变化量。

5. 精馏塔的塔板塔顶气体速度计算公式。

塔板塔顶气体速度是精馏塔操作中需要关注的参数之一。

塔板塔顶气体速度的计算公式如下:V = Q / A。

其中,V表示塔板塔顶气体速度,Q表示气体流量,A表示塔板横截面积。

总结。

精馏塔是一种重要的分离设备,其性能和操作参数需要通过计算和分析来进行评估和控制。

本文介绍了精馏塔的传质效率、塔板压降、塔顶温度、塔板液体高度和塔板塔顶气体速度的计算公式,希望能对读者有所帮助。

当然,精馏塔的计算和分析涉及到更多的参数和复杂的情况,需要结合具体的工程实际情况进行综合分析和计算。

Aspen简捷法精馏塔设计计算

Aspen简捷法精馏塔设计计算
在冷凝器中完成。
例5-1 简捷法精馏设计计算
• 利用精馏方法对附表中进料流 股进行分离,其压强为445830 , 处于饱和液体状态。规定该
分离操作的轻、重关键组分分
别为和,塔顶产品中轻、重关 键组分的回收率()分别为0.9 908和0.0112,并规定操作采用 回流比为最小回流比的1.8倍。 体系热力学性质计算采用“” 模型方程。
• 灵敏度分析定义方法:

(模型分析工具)
• (灵敏度分析)
• 灵敏度分析对象管理器
例5-3 灵敏度分析
例5-3 以例5-2为基础,由灵敏度分析工具,考 察回流比的变化对实际塔板数的影响。 灵敏度分析定义方法: 1)定义目标变量 2)定义自变量 3)规定表格
例5-3 灵敏度分析
例5-3 灵敏度分析
1)定义因变量( )
例5-3 灵敏度分析
1)定义因变量( )
例5-3 灵敏度分析
2)定义自变量()回流比()自1.4-10,步长为0.5变化
例5-3 灵敏度分析
3)规定表格()规定需要软件计算的变量列表
例5-3 灵敏度分析
5 塔模块简捷蒸馏模块
➢(简捷法精馏核算)
➢ 模型可以模拟一个带有一股进料和两
种产品的多级多组分的蒸馏塔,塔可带有 分凝器或全凝器。模型假定恒摩尔流和恒 相对挥发度。用法进行产品组成。
5 塔模块简捷蒸馏模块
➢(简捷法精馏核算) ➢模型必需规定: ➢理论板数 ➢回流比 ➢塔顶产品流率 ➢其他相关的塔设备参数等 ➢可规定一个部分的或全部冷凝器。
例5-1 简捷法精馏设计计算
3) 组分输入
例5-1 简捷法精馏设计计算
4) 进料流股参数设置
例5-1 简捷法精馏设计计算

aspen应用基础

aspen应用基础

aspen应⽤基础(1)DSTWU的连接图DSTWU 模块⽤Winn-Underwood-Gilliland捷算法进⾏精馏塔的设计,根据给定的加料条件和分离要求计算最⼩回流⽐、最⼩理论板数、给定回流⽐下的理论板数和加料板位置。

(2)Distl 简捷精馏(操作)Distl 模块⽤Edmister ⽅法计算给定精馏塔的操作结果。

设定:理论板数,加料板位置,回流⽐,D/F,冷凝器类型。

计算:D 和W组成,再沸器和冷凝器热负荷,塔顶、塔底和加料板温度。

Distl ——连接(3)RadFrac 精密分离模块RadFrac 模块同时联解物料平衡、能量平衡和相平衡关系,⽤逐板计算⽅法求解给定塔设备的操作结果。

RadFrac 模块⽤于精确计算精馏塔、吸收塔(板式塔或填料塔)的分离能⼒和设备参数。

RadFrac模型的连接图如下RadFrac——模型设定RadFrac 模型具有以下设定表:1、配置(Configuration)2、流股(Streams)3、压⼒(Pressure)4、冷凝器(Condenser)5、再沸器(Reboiler)6、三相(3-Phase)RadFrac ——配置1、塔板数(Number of Stages)2、冷凝器(Condenser)3、再沸器(Reboiler)4、有效相态(Valid Phase)5、收敛⽅法(Convergence)6、操作设定(Operation Specifications)冷凝器配置从四个选项中选择⼀种:1、全凝器(Total)2、部分冷凝-汽相馏出物(Partial-Vapor)3、部分冷凝-汽相和液相馏出物(Partial-Vapor-Liquid)4、⽆冷凝器(None)再沸器配置从三个选项中选择⼀种:再沸器配置从三个选项中选择⼀种:1、釜式再沸器(Kettle)2、热虹吸式再沸器(Thermosyphon)3、⽆再沸器(None)有效相态从四个选项中选择⼀种:1、汽-液(Vapor-Liquid)2、汽-液-液(Vapor-Liquid -Liquid )3、汽-液- 再沸器游离⽔(Vapor-Liquid-FreeWaterCondensor)4、汽-液- 任意塔板游离⽔收敛⽅法从六个选项中选择⼀种:1、标准⽅法(Standard)2、⽯油/宽沸程(Petroleum/Wide-Boiling)3、强⾮理想液相(Strongly Non-ideal Liquid)4、共沸体系(Azeotropic)5、深度冷冻体系(Cryogenic)6、⽤户定义(Custom)操作设定从⼗个选项中选择:1、回流⽐(Reflux Ratio)2、回流速率(Reflux Rate)3、馏出物速率(Distillate Rate)4、塔底物速率(Bottoms Rate)5、上升蒸汽速率(Boilup Rate)6、上升蒸汽⽐(Boilup Ratio)7、上升蒸汽/进料⽐(Boilup to Feed Ratio)8、馏出物/进料⽐(Distillate to Feed Ratio)9、冷凝器热负荷(Condenser Duty)10、再沸器热负荷(Reboiler Duty)RadFrac ——流股1、进料流股(Feed Streams)指定每⼀股进料的加料板位置。

第四章 第五节 Aspen Plus计算精馏过程

第四章 第五节 Aspen Plus计算精馏过程
rac 模块同时联解物料平衡、能量平衡 和相平衡关系,用逐板计算方法求解给定塔设 备的操作结果。
三、简捷计算法
轻关键组分对重关键组分的‘相对挥发度
Fenske方程
最小级数
其他组分的回收率
Underwood方程
最小汽相流量
Gilliland关联式
Aspen Plus计算精馏过程
郭宁
guoning@
一、精馏塔的设计计算
平衡级数的计算
确定轻重关键组分 确定分离任务 确定计算方法并计算
精馏塔类型的选择和设计
二、平衡级数的计算
简捷法计算
DSTWU 模块用Winn-UnderwoodGilliland捷算法进行精馏塔的设计,根据给定 的加料条件和分离要求计算最小回流比、最小 理论板数、给定回流比下的理论板数和加料板 位置。
(2)相平衡方程——E方程:
yji=Kjixji
(3)加和方程 S方程:
y 1
ji
x 1
ji
(4)热量衡算方程—— H方程
Fjhf+Vj+1Hj+1+Lj-1h1=(Vj+Gj)Hj+(Lj+Uj)hj+Qj
四、例题
使用简捷法计算进料组成见下表,温度为75,压力138psig条件下精 馏塔的理论板数和回流比。(要求丙烷完全从塔顶脱出(0.99))
Chemical Propane
Boiling Point/℃ at 1atm -42.1
Feed/(lb mol/h) 100
ISOBUTANE
n-Butane i-Pentane(2-METHYL-BUTANE) n-Pentane
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例5-2 简捷法精馏设计计算
5)DSTWU模型设置
这里轻关键组分为NC4, 重关键组分为I-C5。
对于轻关键组分NC4
Recov=29.7248/30=0.9908
重关键组分为I-C5 Recov=0.2247/20=0.01124
第27页
例5-2 简捷法精馏设计计算
5) DSTWU模型设置
回流比的输入可随便输入一个值,该值如果小于Rmin,则系统安装 2Rmin作为回流比进行计算;如大于Rmin,就按照实际的值进行计 算。
第6页
5 塔Columns模块---简捷蒸馏模块
Distl(简捷法精馏核算)
Distl模型可以模拟一个带有一股进料和两种 产品的多级多组分的蒸馏塔,塔可带有分凝 器或全凝器。模型假定恒摩尔流和恒相对挥 发度。用Edimister法进行产品组成。
第7页
5 塔Columns模块---简捷蒸馏模块
Distl(简捷法精馏核算)
第2页
5 塔Columns模块
进行简捷蒸馏的模型有DSTWU, Distl和
SCFrac
进行严格的多级分离的模块有RadFrac,
MultiFrac, PetroFrac, RateFrac
用于液-液萃取塔的严格模型有Extract
第3页
5 塔Columns模块---简捷蒸馏模块 DSTWU(简捷法精馏设计) Distl(简捷法精馏核算)
第5页
5 塔Columns模块---简捷蒸馏模块
DSTWU(简捷法精馏设计)
采用Winn法估算最小级数,Underwood法估算 最小回流比,Gilliland法规定级数所必需的回 流比或规定回流比所必需的级数。
可确定最小回流比、最小级数或实际回流比、 实际级数。模型也估算最适宜的进料位置、冷 凝器和再沸器负荷。可生成回流比对于级数的 表和曲线。
第30页
灵敏度分析
• 灵敏度分析定义方法: Data/ model analysis Tools(模型分析工具 )
/sensitivity(灵敏度分析)
灵敏度分析对象管理器
第31页
例5-3 灵敏度分析
例5-3 以例5-2为基础,由灵敏度分析工具,考 察回流比的变化对实际塔板数的影响。 灵敏度分析定义方法:
第28页
例5-2 简捷法精馏设计计算
6) DSTWU结果查看
第29页
例5-2 简捷法精馏设计计算
6) DSTWU结果查看
• 最小回流比为1.32
• 实际回流比为1.8 • 最小理论板数为12.8
• 实际塔板数为23.7
• 进料板位置为第12块板
• 再沸器所需的热量为753.31kJ/sec
• 冷凝器所需的热量为688.95kJ/sec
中完成。
第10页
5 塔Columns模块---简捷蒸馏模块
SCFrac (简捷法多塔蒸馏)
SCFrac估算:
产品组成和流率
每一段的级数
每一段的热或冷负荷
该模型不能处理固体,游离水计算可在冷凝器 中完成。
第11页
例5-1 简捷法精馏设计计算
• 利用精馏方法对附表中进料流 股进行分离,其压强为445830 Pa, 处于饱和液体状态。规定 该分离操作的轻、重关键组分 分别为N-Butane和I-Pentane, 塔顶产品中轻、重关键组分的 回收率(recovery)分别为0.99 08和0.0112,并规定操作采用 回流比为最小回流比的1.8倍。 体系热力学性质计算采用“SR K”模型方程。 试确定:该条件下的最小回流 比、理论板数、最小理论板数 及适宜的进料位置。 组分 Propane I-Butane N-Butane I-Pentane 流量 / kmol/s 0.0006 0.0013 0.0038 0.0025
第39页
简捷法精馏设计计算---习题
5.1 设计一脱乙烷塔分离附表所 示物料,要求塔顶采出中丙烷流 率不得高于2 kmol/h,塔底出料 中乙烷流率不得高于2 kmol/h。 假定操作回流比为最小回流比的 2.5倍,选择(部分)冷凝器。 计 算最小回流比、所需的平衡级数 及适宜的进料位置。(进料流股温 度为305.4K,压强2500kPa) n-C5 5 C1 组分 流量 / kmol/h 160
N-Pentane
N-Hexane
0.0019
0.0025
第12页
例5-1 简捷法精馏设计计算
1) 流程图绘制 • 在Columns/DSTWU中ICON1
第13页
例5-1 简捷法精馏设计计算
1 )流程图绘制
第14页
例5-1 简捷法精馏设计计算
2)全局参数设置
进入setup/specification进行全局变量(global 设置。这里
Distl模型必需规定: 理论板数 回流比 塔顶产品流率 其他相关的塔设备参数等 可规定一个部分的或全部冷凝器。
Distl可估算冷凝器和再沸器的负荷。
第8页
5 塔Columns模块---简捷蒸馏模块
SCFrac (简捷法多塔蒸馏)
SCFrac模型可以对具有一股进料、一股可选的 汽提蒸汽流和任何股产品的复杂塔进行简捷法 蒸馏的模拟计算,估算理论级数和每个塔段的 加热(冷却)负荷。用于模拟炼油塔(原油单 元和减压塔)。模型将有n个产品的塔分割成n1个塔段并从上而下为这些塔段编号。
第36页
例5-3 灵敏度分析
3)规定表格(Tabulate)---规定需要软件计算的变量列表
第37页
例5-3 灵敏度分析
课堂练习:
分析回流比对于再沸器热负荷和冷凝器
的冷量的影响,将计算结果绘图
第38页
例5-3 灵敏度分析
运行计算,/Model Analysis Tools/Sensitivity/S-1/Res ults/, 查看结果
1)计算所需的平衡级数、操作回 流比及适宜的进料位置。
2)估算塔顶馏出液及釜液组成, 并与题中给定值做比较。
第44页
第45页

工程单位:自定义 us-1(以MET为基础)
• Run Type: Flowsheet
• 报告要求显示流股的摩尔分率。
第15页
例5-1 简捷法精馏设计计算
3) 组分输入
第16页

例5-1 简捷法精馏设计计算
4) 进料流股参数设置
第17页
例5-1 简捷法精馏设计计算
5) DSTWU模型设置
回流比的输入可随便输入一个值,该值如果小于Rmin,则系统安装2Rmin作为 回流比进行计算;如大于Rmin,就按照实际的值进行计算。
第18页
例5-1 简捷法精馏设计计算
6 ) DSTWU结果查看
第19页
例5-1 简捷法精馏设计计算
6) DSTWU结果查看
• 最小回流比为1.05
• 实际回流比为1.8 • 最小理论板数为10.5
• 实际塔板数为17.5
• 进料板位置为第10块板
• 再沸器所需的热量为76551cal/sec
• 冷凝器所需的冷量量为308.5cal/sec
第20页
例5-2 简捷法精馏设计计算
例2 设计一精馏塔。泡点 进料,进料组成、塔顶 产品要求见表。操作压 力为4.4atm。要求塔顶 采用全凝器,回流比为 1.8。热力学计算采用物 性方法PENG-ROB。采 用DSTWU模块设计满 足上述分离要求的精馏 塔。
进料 组分 丙烷 异丁烷 正丁烷 异戊烷 进料流 率/ kmol/h 5 10 30 20 塔顶流率 要求/ kmol/h
第9页
5 塔Columns模块---简捷蒸馏模块
SCFrac (简捷法多塔蒸馏)
对每个塔段必需规定产品压力和基于进料流率
的产品流率或分率,对所有产品,除馏出物外 必须规定蒸汽与产品的比值。
计算中由于进行蒸汽计算,所以水必须被定义
为一个组分。所以水都与塔顶产品一起离开。
该模型不能处理固体,游离水计算可在冷凝器
5 简捷法精馏塔设计计算
1
第1页
5 塔Columns模块
塔设备是化工生产中应用最为广泛的操作设备 之一,通常在其中进行蒸馏(精馏)、吸收和 萃取单元操作。吸收和蒸馏实际都是气液相平 衡的单元操作,只是蒸馏过程的热量平衡相对 更为复杂。
对塔设备可分为三大类:简捷法计算的蒸馏塔 、严格法计算的蒸馏塔和液-液萃取塔三类。
不低于 29.7248 不高于 0.2247
正戊烷 正己烷
15 20
第21页
例5-2 简捷法精馏设计计算
1) 流程图绘制 • 在Columns/DSTWU中ICON1
• 冷凝器为全凝器;连接流股时注意连接位置,
第22页
例5-2 简捷法精馏设计计算
1) 流程图绘制
第23页
例5-2 简捷法精馏设计计算
SCFrac模块
第4页
5 塔Columns模块---简捷蒸馏模块
DSTWU(简捷法精馏设计)
模型可针对一个带有分凝器或全凝器、一股进 料和两种产品的蒸馏塔,采用Winn-Underwood -Gilliland方法进行简捷法蒸馏设计计算。
模型中假设恒定的摩尔流和恒定的相对挥发度 ,需输入轻、重关键组分的回收率。
2)全局参数设置
进入setup/specification进行全局变量(global 设置。这里

工程单位:MET
• Run Type: Flowsheet
• 报告要求显示流股的摩尔分率。
第24页
例5-2 简捷法精馏设计计算
3) 组分输入
第25页
例5-2 简捷法精馏设计计算
4)进料流股参数设置
第26页
C2
C3
370
240
n-C4
相关文档
最新文档