2014届江苏高考数学考前指导卷(1)(含答案)
江苏省苏大附中2014届高考数学1考前指导卷苏教版
苏州大学2014届高考考前指导卷(1)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合A ={x |x >5},集合B ={x |x <a },若A B={x |5<x <6},则实数a 的值为 . 2.设(1+2i)2=a +b i(,a b ∈R ),则ab = .3.若函数f (x )=sin(x +φ)(0<φ<π)是偶函数,则φ= .4.已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为 .5.从3位男生1位女生中任选两人,恰好是一男一女的概率是________.6.已知函数2()a y x a x=+∈R 在1x =处的切线与直线210x y -+=平行,则a =________. 7.图1是某学生的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A 1,A 2,…,A 14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是________.8.已知等差数列{a n }的公差不为零,a 1+a 2+a 5>13,且a 1,a 2,a 5成等比数列,则a 1的取值范围为 .9.在△ABC 中,若AB =1,3,||||AC AB AC BC =+=,则BA →·BC→|BC →|= .10.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.11.已知三棱锥P ABC -的底面是边长为3的正三角形,其三条侧棱的长分别为3,4,5,则该三棱锥P ABC -的体积为 .12.已知函数f (x )=|x 2+2x -1|,若a <b <-1,且f (a )=f (b ),则ab +a +b 的取值范围是 .13.已知实数b a ,分别满足15323=+-a a a ,55323=+-b b b , 则b a +的值为 .14.已知A ,B ,C 是平面上任意三点,BC =a ,CA =b ,AB =c ,则y =ca +b +b c的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2a cos B =c cos B +b cos C .(1)求角B 的大小;(2)设向量m =(cos A ,cos 2A ),n =(12,-5),求当m·n 取最大值时,tan C 的值.16.如图,在四棱锥P - ABCD 中,已知AB =1,BC = 2,CD = 4,AB ∥CD ,BC ⊥CD ,平面PAB ⊥平面ABCD ,PA ⊥AB . (1)求证:BD ⊥平面PAC ;(2)已知点F 在棱PD 上,且PB ∥平面FAC ,求DF :FP .A B C D F P17.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y (单位:万元)随投资收益x (单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y =f (x )模型制定奖励方案,试用数学语言表述该公司对奖励函数f (x )模型的基本要求,并分析函数y =x150+2是否符合公司要求的奖励函数模型,并说明原因;(2)若该公司采用模型函数y =10x -3ax +2作为奖励函数模型,试确定最小的正整数a 的值.18.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别是12,F F ,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴、短轴端点外的任一点,过点P 作直线l ,使得l 与椭圆C 有 且只有一个公共点,设l 与y 轴的交点为A ,过点P 作与l 垂直的直线m ,设m 与y 轴的交点为B ,求证:△PAB 的外接圆经过定点.19.已知函数f (x )=ax +ln x ,g (x )=e x.(1)当a ≤0时,求f (x )的单调区间;(2)若不等式g (x )<x -mx有解,求实数m 的取值范围.20.已知无穷数列{a n }的各项均为正整数,S n 为数列{a n }的前n 项和.(1)若数列{a n }是等差数列,且对任意正整数n 都有33()n n S S 成立,求数列{a n }的通项公式;(2)对任意正整数n ,从集合{a 1,a 2,…,a n }中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a 1,a 2,…,a n 一起恰好是1至S n 全体正整数组成的集合. (ⅰ)求a 1,a 2的值;(ⅱ)求数列{a n }的通项公式.苏州大学2014届高考考前指导卷(1)参考答案一、填空题1.6 2.12 3.π2 4.x 220-y 25=1 5.126.07.108.(1, +∞) 9.12 10.533或- 3 11.1112.(-1,1) 13.214.2-12二、解答题15.(1)由题意,2sin A cos B =sin C cos B +cos C sin B ,所以2sin A cos B =sin(B +C )=sin(π-A )=sin A .因为0<A <π,所以sin A ≠0.所以cos B =22.因为0<B <π,所以B =π4.(2)因为m·n =12cos A -5cos 2A ,所以m·n =-10cos 2A +12cos A +5=-10⎝⎛⎭⎪⎫cos A -352+435.所以当cos A =35时,m·n 取最大值.此时sin A =45(0<A <π2),于是tan A =43.所以tan C =-tan(A +B )=-tan A +tan B1-tan A tan B=7.16.证明(1)∵平面PAB ⊥平面ABCD ,平面PAB 平面ABCD = AB , PA ⊥AB ,PA ⊂平面PAB ,∴ PA ⊥平面ABCD .∵BD ⊂平面ABCD ,∴PA ⊥BD .连结AC BD O =,∵AB = 1,BC = 2,CD = 4, ∴12AB BC BC CD ==. ∵AB ∥CD ,BC ⊥CD ,∴Rt ABC ∆∽Rt BCD ∆. ∴BDC ACB ∠=∠.∴90ACB CBD BDC CBD ∠+∠=∠+∠=︒. 则AC ⊥BD .∵AC PA A =,∴BD ⊥平面PAC .(2)∵PB //平面FAC ,PB ⊂平面PBD ,平面PBD 平面FAC= FO ,∴FO ∥PB ,∴DF DOPF OB=. 又∵AB //CD ,且14BO AB OD CD ==,∴DF :FP=4:1. 17.(1)设奖励函数模型为y =f (x ),按公司对函数模型的基本要求,函数y =f (x )满足:当x ∈[10,1 000]时,①f (x )在定义域[10,1 000]上是增函数;②f (x )≤9恒成立;③P FDCBA Of (x )≤x5恒成立.对于函数模型f (x )=x150+2.当x ∈[10,1 000]时,f (x )是增函数,f (x )max =f (1 000)=1 000150+2=203+2<9,所以f (x )≤9恒成立.但x =10时,f (10)=115+2>105,即f (x )≤x5不恒成立,故该函数模型不符合公司要求.(2)对于函数模型f (x )=10x -3a x +2,即f (x )=10-3a +20x +2,当3a +20>0,即a >-203时递增;要使f (x )≤9对x ∈[10,1 000]恒成立,即f (1 000)≤9,3a +18≥1 000,a ≥9823;要使f (x )≤x 5对x ∈[10,1 000]恒成立,即10x -3a x +2≤x 5,x 2-48x +15a ≥0恒成立,所以a ≥1925.综上所述,a ≥9823,所以满足条件的最小的正整数a 的值为328.18.(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程22221x y a b +=,得y =±2b a .由题意知22b a=1,即a =2b 2,又e =ca=32, 所以a =2,b =1. 所以椭圆C 的方程为2214x y +=.(2)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立0022,1,4y kx y kx x y =+-⎧⎪⎨+=⎪⎩ 整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又220014x y +=,所以16y 20k 2+8x 0y 0k +x 20=0,故k =-4x y . 所以直线l 方程为0014x xy y +=,令x =0,解得点A 01(0,)y ,又直线m 方程为00043y y x y x =-,令x=0,解得点B 0(0,3)y -, △PAB 的外接圆方程为以AB 为直径的圆方程,即2001()(3)0x y y y y +-+=.整理得:220013(3)0x y y y y +-+-=,分别令2230,0,x y y ⎧+-=⎨=⎩ 解得圆过定点(3,0)±.19.(1)f (x )的定义域是(0,+∞),f ′(x )=a +1x(x >0),1°当a =0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;2°当a <0时,由f ′(x )=0,解得x =-1a,则当x ∈⎝ ⎛⎭⎪⎫0,-1a 时,f ′(x )>0,f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1a ,+∞时,f ′(x )<0,f (x )单调递减,综上所述:当a =0时,f (x )在(0,+∞)上单调递增,当a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-1a 上单调递增,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减.(2)由题意:e x<x -m x有解,即e x x <x -m 有解,因此只需m <x -e xx ,x ∈(0,+∞)有解即可,设h (x )=x -e xx ,h ′(x )=1-e xx -ex2x=1-e x⎝ ⎛⎭⎪⎫x +12x ,因为x +12x≥212=2>1,且x ∈(0,+∞)时e x>1, 所以1-e x ⎝⎛⎭⎪⎫x +12x <0,即h ′(x )<0.故h (x )在(0,+∞)上单调递减,∴h (x )<h (0)=0,故m <0.20.(1)设无穷等差数列{a n }的公差为d ,因为33()n n S S =对任意正整数n 都成立,所以分别取n =1,n =2时,则有:⎩⎪⎨⎪⎧a 1=a 31,8a 1+28d =2a 1+d 3.因为数列{a n }的各项均为正整数,所以d ≥0. 可得a 1=1,d =0或d =2.当a 1=1,d =0时,a n =1,33()n n S S =成立;当a 1=1,d =2时,S n =n 2,所以33()n n S S =.因此,共有2个无穷等差数列满足条件,通项公式为a n =1或a n =2n -1.(2)(ⅰ)记A n ={1,2,…,S n },显然a 1=S 1=1.对于S 2=a 1+a 2=1+a 2,有A 2={1,2,…,S n }={1,a 2,1+a 2,|1-a 2|}={1,2,3,4},故1+a 2=4,所以a 2=3. (ⅱ)由题意可知,集合{a 1,a 2,…,a n }按上述规则,共产生S n 个正整数.而集合{a 1,a 2,…,a n ,a n +1}按上述规则产生的S n +1个正整数中,除1,2,…,S n 这S n 个正整数外,还有a n +1,a n +1+i ,|a n +1-i |(i =1,2,…,S n ),共2S n +1个数. 所以,S n +1=S n +(2S n +1)=3S n +1.又S n +1+12=3⎝ ⎛⎭⎪⎫S n +12,所以S n =⎝⎛⎭⎪⎫S 1+12·13n --12=12·3n -12.当n ≥2时,a n =S n -S n -1=12·3n -12-⎝ ⎛⎭⎪⎫12·13n --12=13n -,而a 1=1也满足a n =13n -.所以,数列{a n }的通项公式是a n =13n -.。
2014年江苏高考数学试题含答案(WORD版)
绝密★启用前2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的侧面积公式:cl S =圆柱侧,其中c 是圆柱底面的周长,l 为母线长.圆柱的体积公式:Sh V =圆柱,其中S 是圆柱的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ .2.已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ .3.右图是一个算法流程图,则输出的n 的值是 ▲ .4.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的 乘积为6的概率是 ▲ .5.已知函数x y cos =与)2sin(ϕ+=x y (0ϕπ≤<),它们的图象有一 个横坐标为3π的交点,则ϕ的值是 ▲ .注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
(第3题)6.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7.在各项均为正数的等比数列}{n a 中,若21a =, 4682a a a +=,则6a 的值是 ▲ .8.设甲、乙两个圆柱的底面分别为1S ,2S ,体积 分别为1V ,2V ,若它们的侧面积相等,且4921=S S , 则21V V 的值是 ▲ . 9.在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ . 10.已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+,都有0)(<x f 成立,则实数m 的取值范围是 ▲ .11.在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ .12.如图,在平行四边形ABCD 中,已知8=AB ,5=AD , 3=,2=⋅,则⋅的值是 ▲ .13.已知)(x f 是定义在R 上且周期为3的函数,当[0,3)x ∈时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间[3,4]-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .14.若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.ABD CP (第12题)底部周长/cm(第6题)16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,6PA =,8BC =,5DF =.求证:(1)直线//PA 平面DEF ; (2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a b y a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若1F C AB ⊥,求椭圆离心率e 的值.18.(本小题满分16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大? 19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”. (1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”; (2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.(第17题)P DC EF B A (第16题) (第18题)绝密★启用前2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两......小题,并在....相应的...答题区域内作答........若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点. 证明:D OCB ∠=∠.B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵⎥⎦⎤⎢⎣⎡-=x A 121,⎥⎦⎤⎢⎣⎡-=1211B ,向量⎥⎦⎤⎢⎣⎡=y 2α,x ,y 为实数. 若ααB A =,求y x +的值.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
2014届高三数学考前指导
规范答题最重要
1、作图题先用2B铅笔绘出, 再用0.5毫米黑色签字笔描 清楚; 2、必须按各题号的答题区域 答题江苏省大丰高级中学 ; 陈彩余
不按规定的题号答题,答错区域
★ 专家点评:主观题阅卷是按题号进行切割并 送到阅卷老师终端进行评分的,如上15、16题 江苏省大丰高级中学 陈彩余 16题的 相互答错区域,阅 15题的老师看到的是 答案,容易被判失分,同时按考务相关规定有 可能扣分。
江苏省大丰高级中学 陈彩余
根据填空时所填写的内容形式,可以将填空 题分成两种类型: 一是定量型,要求学生填写数值、数集或数 量关系,如:方程的解、不等式的解集、函 数的定义域、值域、最大值或最小值、线段 长度、角度大小等等.由于填空题和选择题 相比,缺少选择支的信息,所以高考题中多 数是以定量型问题出现. 二是定性型,要求填写的是具有某种性质的 对象或者填写给定的数学对象的某种性质, 如:给定二次曲线的准线方程、焦点坐标、 江苏省大丰高级中学 陈彩余 离心率等等.
12、解应用性问题的思路:审题尤为重 要.审题需将那些与数学无关内容抛开,以 数学的眼光捕捉信息,构建模型,同时要注 意将图形、文字、表格等语言转变为数学语 言.具体做法是:①先全面理解题意和概念 背景②透过冗长叙述,抓重点词句,提出重 点数据③综合联系,提炼数量关系,依靠数 学方法,建立数学模型(模型一般很简 单).如此将应用问题化为纯数学问题.此外, 江苏省大丰高级中学 陈彩余 求解过程和结果不能离开实际背景.
答。
考生实际书写图像
扫描切割后的电子图像
★ 专家点评: 计算机对主观题的图像切割 是按黑色矩形框进行的,超出黑色矩形框 江苏省大丰高级中学 陈彩余 外的答案会被切掉,超出上下边界相同。
题卡破损及污损
2014年江苏高考数学试题及答案
2014年普通高等学校招生全国统一考试(江苏卷)数学(Ⅰ)一、填空题1.已知集合{}2,1,3,4A =--,{1,2,3B =-2.已知复数2(52)Z i =-(i 为虚数单位)3.右图是一个算法流程图,则输出的n4.从1,2,3,6这四个数中一次随机地取为 。
5.已知函数cos y x =与函数sin(2y x φ=+点,则ϕ的值是 。
6.某种树木的底部周长的取值范围是[直方图如图所示,则在抽测的60的底部周长小于100 cm..7.在各项均为正数的等比数列{}n a 中,若2a 8642a a a =+,则6a 的值是 。
8.设甲,乙两个圆柱的底面面积分别为12,S S ,体积为12,V V ,若它们的侧面积相等且1294S S =,则12VV 的值是 。
9.在平面直角坐标系xoy 中,直线230x y +-=被22(2)(1)4x y -++=圆截得的弦长为 。
10.已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 。
11. 在平面直角坐标系xoy 中,若曲线2by ax x=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += 。
底部周长 cm第6题图12.如图在平行四边形ABCD 中,已知8,5AB AD ==,3,2CP PD AP BP =⋅=,则AB AD ⋅的值是 。
13.已知()f x 是定义在R 上且周期为3的函数,当[)0,3x ∈时,21()22f x x x =-+,若函数()y f x a =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 。
14.若ABC ∆的内角满足sin 2sin A B C =,则cos C 的最小值是 。
二、简答题 15.(14分)已知sin 25παπα⎛⎫∈=⎪⎝⎭,,。
2014年江苏省高考数学试卷(含答案)
2014年江苏省高考数学试卷解析参考版答案仅供参考一、填空题(每题5分,满分70分,将答案填在答题纸上).【答案】{1,3}- 【解析】由题意得{1,3}A B =-.【考点】集合的运算【答案】21【解析】由题意22(52)25252(2)2120z i i i i =+=+⨯⨯+=+,其实部为21. 【考点】复数的概念.【答案】5【解析】本题实质上就是求不等式220n>的最小整数解.220n>整数解为5n ≥,因此输出的5n =【考点】程序框图.【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==. 【考点】古典概型.【答案】6π 【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.【考点】三角函数图象的交点与已知三角函数值求角.6.【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=. 【考点】频率分布直方图.【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.【考点】等比数列的通项公式.【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.【考点】圆柱的侧面积与体积.【答案】2555【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)33512d +⨯--==+,所求弦长为22925522455l r d =-=-=.【考点】直线与圆相交的弦长问题.【答案】2(2-【解析】据题意222()10,(1)(1)(1)10,f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩解得202m -<<. 【考点】二次函数的性质.【答案】2- 【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得1,1,a b =-⎧⎨=-⎩所以b=—2,a+b=—3.【考点】导数与切线斜率.【答案】22【解析】由题意,14AP AD DP AD AB =+=+,3344BP BC CP BC CD AD AB =+=+=-, 所以13()()44AP BP AD AB AD AB ⋅=+⋅-2213216AD AD AB AB =-⋅-, 即1322564216AD AB =-⋅-⨯,解得22AD AB ⋅=. 【考点】向量的线性运算与数量积.【答案】1(0,)2【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大,7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈.【考点】函数的零点,周期函数的性质,函数图象的交点问题.62- 【解析】由已知sin 22sin A B C =及正弦定理可得22a b c +=,2222222(2cos 22a b a b a b cC abab++-+-==223222262262a b ab ab ab +---=≥=,当且仅当2232a b =即23a b =时等号成立,所以cos C 62- 【考点】正弦定理与余弦定理.二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)【答案】(1)1010-;(2)33410+-. 【解析】(1)由题意2525cos 1()55α=--=-, 所以2252510sin()sincos cossin ()444252510πππααα+=+=⨯-+⨯=-. (2)由(1)得4sin 22sin cos 5ααα==-,23cos 22cos 15αα=-=, 所以5553314334cos(2)cos cos 2sin sin 2()666252510πππααα+-=+=-⨯+⨯-=-. 【考点】同角三角函数的关系,二倍角公式,两角和与差的正弦、余弦公式.【答案】证明见解析.【解析】(1)由于,D E 分别是,PC AC 的中点,则有//PA DE ,又PA DEF ⊄平面,DE DEF ⊂平面,所以//PA DEF 平面.(2)由(1)//PA DE ,又PA AC ⊥,所以PE AC ⊥,又F 是AB 中点,所以132DE PA ==,142EF BC ==,又5DF =,所以222DE EF DF +=,所以DE EF ⊥,,EF AC 是平面ABC 内两条相交直线,所以DE ABC ⊥平面,又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC . 【考点】线面平行与面面垂直.【答案】(1)2212x y +=;(2)12. 【解析】(1)由题意,2(,0)F c ,(0,)B b ,2222BF b c a =+==又41(,)33C ,∴22241()()3312b+=,解得1b =.∴椭圆方程为2212x y +=. (2)直线2BF 方程为1x yc b +=,与椭圆方程22221x y a b +=联立方程组,解得A 点坐标为2322222(,)a c b a c a c -++,则C 点坐标为2322222(,)a c b a c a c ++,133222232222F C b b a c k a c a c c c a c +==+++,又AB b k c =-,由1F C AB ⊥得323()12b b a c c c ⋅-=-+,即42242b a c c =+,∴222224()2a c a c c -=+,化简得12c e a ==. 【考点】(1)椭圆标准方程;(2)椭圆离心率.【答案】(1)150m ;(2)10m . 【解析】yx(1)如图,以,OC OA 为,x y 轴建立直角坐标系,则(170,0)C ,(0,60)A ,由题意43BC k =-,直线BC 方程为4(170)3y x =--.又134AB BC k k =-=,故直线AB 方程为3604y x =+,由4(170)33604y x y x ⎧=--⎪⎪⎨⎪=+⎪⎩,解得80120x y =⎧⎨=⎩,即(80,120)B ,所以22(80170)120150BC =-+=()m ; (2)设OM t =,即(0,)M t (060)t ≤≤,由(1)直线BC 的一般方程为436800x y +-=,圆M 的半径为36805t r -=,由题意要求80,(60)80,r t r t -≥⎧⎨--≥⎩,由于060t ≤≤,因此36805t r -=6803313655t t -==-,∴313680,53136(60)80,5t t t t ⎧--≥⎪⎪⎨⎪---≥⎪⎩∴1035t ≤≤,所以当10t =时,r 取得最大值130m ,此时圆面积最大.【考点】解析几何的应用,直线方程,直线交点坐标,两点间的距离,点到直线的距离.【答案】(1)证明见解析;(2)13m ≤-;(3)当11()2e a e e+<<时,11a e e a --<,当a e =时,11a e e a --=,当a e >时,11a e e a -->.【解析】(1)证明:函数()f x 定义域为R ,∵()()xx f x e e f x --=+=,∴()f x 是偶函数.(2)由()1xmf x em -≤+-得(()1)1x m f x e --≤-,由于当0x >时,1x e >,因此()2x x f x e e -=+>,即()110f x ->>,所以11()11x x x x e e m f x e e -----≤=-+-211x x x e e e -=+-,令211x x xe y e e-=+-,设1xt e =-,则0t <,21(1)11t t t y t t -+==+-,∵0t <,∴12t t+≤-(1t =-时等号成立),即1213y ≤--=-,103y -≤<,所以13m ≤-.(3)由题意,不等式3()(3)f x a x x <-+在[1,)+∞上有解,由3()(3)f x a x x <-+得330x x ax ax e e --++<,记3()3x x h x ax ax e e -=-++,2'()3(1)x x h x a x e e -=-+-,显然'(1)0h =,当1x >时,'()0h x >(因为0a >),故函数()h x 在[1,)+∞上增函数,()(1)h x h =最小,于是()0h x <在[1,)+∞上有解,等价于1(1)30h a a e e =-++<,即11()12a e e>+>.考察函数()(1)ln (1),(1)g x e x x x =---≥,1'()1e g x x-=-,当1x e =-时,'()0g x =,当11x e <<-时,'()0g x >,当1x e >-时'()0g x <,即()g x 在[1,1]e -上是增函数,在(1,)e -+∞上是减函数,又(1)0g =,()0g e =,11()12e e +>,所以当11()2e x e e+<<时,()0g x >,即(1)ln 1e x x ->-,11e x x e -->,当x e>时,()0g x <,,即(1)ln 1e x x -<-,11e x xe --<,因此当11()2e a e e+<<时,11a e e a --<,当a e =时,11a e e a --=,当a e >时,11a e e a -->.【考点】(1)偶函数的判断;(2)不等式恒成立问题与函数的交汇;(3)导数与函数的单调性,比较大小.【答案】(1)证明见解析;(2)1d =-;(3)证明见解析.【解析】(1)首先112a S ==,当2n ≥时,111222n n n n n n a S S ---=-=-=,所以12,1,2,2,n n n a n -=⎧=⎨≥⎩,所以对任意的*n N ∈,2n n S =是数列{}n a 中的1n +项,因此数列{}n a 是“H 数列”.(2)由题意1(1)n a n d =+-,(1)2n n n S n d -=+,数列{}n a 是“H 数列”,则存在*k N ∈,使(1)1(1)2n n n d k d -+=+-,1(1)12n n n k d --=++,由于(1)*2n n N -∈,又*k N ∈,则1n Z d -∈对一切正整数n 都成立,所以1d =-.(3)首先,若n d bn =(b 是常数),则数列{}n d 前n 项和为(1)2n n n S b -=是数列{}n d 中的第(1)2n n -项,因此{}n d 是“H 数列”,对任意的等差数列{}n a ,1(1)n a a n d =+-(d 是公差),设1n b na =,1()(1)n c d a n =--,则n n n a b c =+,而数列{}n b ,{}n c 都是“H 数列”,证毕.【考点】(1)新定义与数列的项,(2)数列的项与整数的整除;(3)构造法.。
2014年苏州市高考数学考前指导卷
.
π 2 x sin (0≤x≤1)的最小值为 g(θ),则对一切 θ [0, ] ,g(θ)的最大值 x 2 2 cos
二、解答题:本大题共 6 小题,共计 90 分.请在答题卡指定区域内 作答,解答时应写出必要的文字说明、 ........ 证明过程或演算步骤.
15.如图,三棱柱ABC—A 1 B 1 C 1 的侧面AA 1 B 1 B为正方形,侧面BB 1 C 1 C为菱形,∠CBB 1 = 60°,AB⊥B 1 C. (1)求证:平面AA 1 B 1 B⊥平面BB 1 C 1 C; C C1 (2)若AB=2,求三棱柱ABC A 1 B 1 C 1 的体积.
20.已知函数 f ( x) x3 3 x 2 ax (a R ) , g ( x) | f ( x) | .
(1)求以 P 2, f (2) 为切点的切线方程,并证明此切线恒过一个定点; (2)若 g ( x) ≤ kx 对一切 x[0,2]恒成立,求 k 的最小值 h(a) 的表达式; (3)设 a > 0,求 y g ( x) 的单调增区间.
要使竹篱笆用料最省,只需其长度 PQ 最短,所以 PQ 2 x 2 y 2 2 xy cos120 x y xy
2 2
(200 1.5 y )2 y 2 (200 1.5 y ) y 1.75 y 2 400 y 40000 ( 0 y
当y
400 ) 3
200 21 800 200 时, PQ 有最小值 ,此时 x . 7 7 7 答:(Ⅰ)当 AP AQ 100 米时,三角形地块 APQ 的面积最大为 2500 3 平方米; 200 800 (Ⅱ)当 AP 米 , AQ 米时,可使竹篱笆用料最省. 7 7
2014年普通高等学校招生全国统一考试数学试题(江苏卷,解析版)
2014年普通高等学校招生全国统一考试〔江苏卷〕答案解析数 学Ⅰ一、填空题:本大题共14小题,每一小题5分,共70分.请把答案直接填写在答题卡相应位置上. 1、集合}4,3,1,2{A --=,}3,2,1{B -=,如此B A = ▲ . 【答案】}3,1{-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为}3,1{-【点评】此题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。
属于根底题,难度系数较小。
2、复数2)25(i z -=(i 为虚数单位〕,如此z 的实部为▲ .【答案】21【解析】根据复数的乘法运算公式,i i i i z 2021)2(2525)25(222-=+⨯⨯-=-=,实部为21,虚部为-20。
【点评】此题重点考查的是复数的乘法运算公式,容易出错的地方是计算粗心,把12-=i 算为1。
属于根底题,难度系数较小。
〔第33、右图是一个算法流程图,如此输出的n 的值是▲ . 【答案】5【解析】根据流程图的判断依据,此题202>n是否成立,假设不成立,如此n 从1开始每次判断完后循环时,n 赋值为1+n ;假设成立,如此输出n 的值。
此题经过4次循环,得到203222,55>===n n ,成立,如此输出的n 的值为5【点评】此题重点考查的是流程图的运算,容易出错的地方是判断循环几次时出错。
属于根底题,难度系数较小。
4、从6,3,2,1这4个数中一次随机地取2个数,如此所取2个数的乘积为6的概率是▲ .【答案】31【解析】将随机选取2个数的所有情况“不重不漏〞的列举出来:〔1,2〕,〔1,3〕〔1,6〕,〔2,3〕,〔2,6〕,〔3,6〕,共6种情况,满足题目乘积为6的要求的是〔1,6〕和〔2,3〕,如此概率为31。
【点评】此题主要考查的知识是概率,题目很平稳,考生只需用列举法将所有情况列举出来,再将满足题目要求的情况选出来即可。
数学_2014年江苏省泰州市高考数学考前指导试卷(含答案)
2014年江苏省泰州市高考数学考前指导试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1. 已知集合A ={1, 2},集合B ={1, a, 3},且A ⊆B ,则实数a 的值为________.2. 已知复数(1+i)⋅(1−bi)为实数,则实数b 的值为________.3. 为了了解初中生的身体素质,某地区随机抽取了n 名学生进行跳绳测试,根据所得数据画样本的频率分布直方图如图所示,且从左到右第一小组的频数是10,则n 的值为________.4. 已知命题p:x =1且y =1,命题q:x +y =2,则命题p 是命题q 的________条件.5. 如图是一个算法的流程图,输出的结果是________.6. 在平面直角坐标系xOy 中,D 是到原点的距离不大于1的点构成的区域,E 是满足不等式组{x −y +1≥0x +y ≥0x ≤0的点(x, y)构成的区域,向D 中随机投一点,则所投的点落在E 中的概率是________.7. 设E ,F ,G ,H 是三棱锥A −BCD 的棱AB ,BC ,CD ,DA 的中点,若AC =BD =1,则EG 2+FH 2的值为________.8. 已知质点P 在半径为10cm 的圆上按逆时针方向做匀速圆周运动,角速度是1rad/s ,设A(10, 0)为起始点,记点P 在y 轴上的射影为M ,则10π秒时点M 的速度是________cm/s .9. 用[x]表示不超过x 的最大整数.已知f(x)=x +[x]的定义域为[−1, 1),则函数f(x)的值域为________.10. 已知函数f(x)=sinωx +cosωx(ω>0)向右最少平移1个单位长度后为偶函数,则ω的最小值为________.11. 已知正项等比数列{a n }满足:a 6=a 5+2a 4,若存在两项a m ,a n 使得√a m a n =2a 1,则1m +4n 的最小值为________.12. 已知以T =4为周期的函数f(x)={m√1−x 2,x ∈(−1,1]1−|x −2|,x ∈(1,3],其中m >0.若方程3f(x)=x 恰有5个实数解,则m 的取值范围为________. 13. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =√32,A 、B 是椭圆的左、右顶点,P 是椭圆上不同于A 、B 的一点,直线PA 、PB 斜倾角分别为α、β,则cos(α−β)cos(α+β)=________.14.如图,直线l 1,l 2交于点A ,点B 、C 在直线l 1,l 2上,已知∠CAB =45∘,AB =2,设CD →=λAB →,点P 为直线l 2上的一个动点,当λ=________时,|2PB →+PD →|的最小值是3√2.二、解答题:(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15. 在△ABC 中,角A 、B 、C 的对边分别记为a 、b 、c ,已知sinC +cosC =1−sin C2,(1)求sinC 的值;(2)若△ABC 外接圆面积为(4+√7)π,试求AC →⋅BC →的取值范围.16.如图,在直四棱柱ABCD −A 1B 1C 1D 1中,已知底面ABCD 是边长为1的正方形,侧棱C 1C 垂直于底面ABCD ,且C 1C =2,点P 是侧棱C 1C 的中点. (1)求证:AC 1 // 平面PBD ; (2)求证:A 1P ⊥平面PBD ;(3)求三棱锥A 1−BDC 1的体积V .17. 在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对称图形),其中矩形ABCD 的三边AB 、BC 、CD 由长6分米的材料弯折而成,BC 边的长为2t 分米(1≤t ≤32);曲线AOD 拟从以下两种曲线中选择一种:曲线C 1是一段余弦曲线(在如图所示的平面直角坐标系中,其解析式为y =cosx −1),此时记门的最高点O 到BC 边的距离为ℎ1(t);曲线C 2是一段抛物线,其焦点到准线的距离为98,此时记门的最高点O 到BC 边的距离为ℎ2(t).(1)试分别求出函数ℎ1(t)、ℎ2(t)的表达式;(2)要使得点O 到BC 边的距离最大,应选用哪一种曲线?此时,最大值是多少?18. 如图,过椭圆L 的左顶点A(−3, 0)和下顶点B 且斜率均为k 的两直线l 1,l 2分别交椭圆于C ,D ,又l 1交y 轴于M ,l 2交x 轴于N ,且CD 与MN 相交于点P ,当k =3时,△ABM 是直角三角形. (1)求椭圆L 的标准方程;(2)(I)证明:存在实数λ,使得AM →=λOP →;(II)求|OP|的取值范围.19. 设非零数列{a n }满足a n a n+2=a n+12+λ(−1)n+1(n ∈N +).(1)当λ=0时,求证:a n−m a n+m =a n 2,(n >m 且m ,n ∈R +). (2)当a 1=1,a 2=2,λ=3,求证:a n+2=a n +3a n+1.20. 已知函数f(x)=ke x ,g(x)=1k lnx ,其中k >0.若函数f(x),g(x)在它们的图象与坐标轴交点处的切线互相平行. (1)求k 的值;(2)是否存在直线l ,使得l 同时是函数f(x),g(x)的切线?说明理由.(3)若直线x =a(a >0)与f(x)、g(x)的图象分别交于A 、B 两点,直线y =b(b >0)与ℎ(x)的图象有两个不同的交点C 、D .记以A 、B 、C 、D 为顶点的凸四边形面积为S ,求证:S >2.选修4-1:几何证明选讲 三.[选做题]在以下四小题中只能选做2题,每小题0分,共计20分.解答应写出文字说明、证明过程或演算步骤.21. (选做题)如图,PA 与⊙O 相切于点A ,D 为PA 的中点,过点D 引割线交⊙O 于B ,C 两点,求证:∠DPB =∠DCP .四、选修4-2:矩阵与变换22. 如图矩形OABC 在变换T 的作用下变成了平行四边形OA′B′C′,求变换T 所对应的矩阵M .五、选修4-4:坐标系与参数方程23. 已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合,曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=3,直线l 的参数方程为{x =−√3ty =1+t (t,t ∈R).试在曲线C 上求一点M ,使它到直线l 的距离最大.六、选修4-5:不等式选讲24. 若不等式|a −1|≥x +2y +2z 对满足x 2+y 2+z 2=1的一切实数x 、y 、z 恒成立,求a 的取值范围.七.[必做题]第25题、第26题,每题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.25.如图,在三棱柱ABC −A 1B 1C 1中,AB ⊥AC ,顶点A 1在底面ABC 上的射影恰为点B ,且AB =AC =A 1B =2. (1)求棱AA 1与BC 所成的角的大小;(2)在棱B 1C 1上确定一点P ,使AP =√14,并求出二面角P −AB −A 1的平面角的余弦值. 26. 设函数f(x)=(1−x)e x −1.(1)证明:当x >0时,f(x)<0;(2)设a 1=1,a n e a n+1=e a n −1,证明对任意的正整数n ,总有a n+1<a n .2014年江苏省泰州市高考数学考前指导试卷答案1. 22. 13. 1004. 充分不必要5. 636. 14π7. 1 8. 109. [−2, −1)∪[0, 1) 10. 3π411. 73 12. (√153,√7) 13. 35 14. 1或−515. 解:(1)由sinC +cosC =1−sin C2得,2sin C2cos C2=2sin 2C2−sin C2...2分 ∵ sin C2>0,∴ sin C2−cos C2=12 (∗)…4分将(∗)式两边同时平方得,1−sinC =14⇒sinC =34...7分(2)由(∗)式知,sin C 2>cos C 2,从而C 2>π4,从而C 为钝角,∴ cosC =−√74.…9分 根据正弦定理,c =2RsinC ,从而c 2=4R 2sin 2C =94(4+√7)…11分根据余弦定理,又c 2=94(4+√7)=a 2+b 2−2ab ⋅(−√74)≥2ab(1+√74), ∴ 0<ab ≤92,因此,AC →⋅BC →=abcosC ∈[−9√78, 0),即AC →⋅BC →范围为∈[−9√78, 0).…14分.16. (1)证明:连接AC,AC∩BD=O,连接OC1,则O是AC的中点,∵ 点P是侧棱C1C的中点,∴ AC1 // OP,∵ AC1⊄平面PBD,OP⊂平面PBD,∴ AC1 // 平面PBD;(2)证明:CP=1,CB=1,在Rt△BCP中,PB=√2,同理可知,A1P=√3,A1B=√5所以A1P2+PB2=A1B2,则A1P⊥PB,同理可证,A1P⊥PD,由于PB∩PD=P,PB⊂平面PBD,PD⊂平面PBD,∴ A1P⊥平面PBD.(3)解:易知三棱锥A1−BDC1的体积等于四棱柱的体积减去四个体积相等的三棱锥的体积,即AB×AD×A1A−4×13×(12AB×AD)×A1A=13×1×1×2=23.17. 解:(1)对于曲线C1,因为曲线AOD的解析式为y=cosx−1,所以点D的坐标为(t, cost−1)…所以点O到AD的距离为1−cost,而AB=DC=3−t,则ℎ1(t)=(3−t)+(1−cost)=−t−cost+4(1≤t≤32)…对于曲线C2,因为抛物线的方程为x2=−94y,即y=−49x2,所以点D的坐标为(t,−49t2)…所以点O到AD的距离为49t2,而AB=DC=3−t,所以ℎ2(t)=49t2−t+3(1≤t≤32)…(2)因为ℎ1′(t)=−1+sint<0,所以ℎ1(t)在[1,32]上单调递减,所以当t=1时,ℎ1(t)取得最大值为3−cos1…又ℎ2(t)=49(t−98)2+3916,而1≤t≤32,所以当t=32时,ℎ2(t)取得最大值为52…因为cos1>cosπ3=12,所以3−cos1<3−12=52,故选用曲线C 2,当t =32时,点O 到BC 边的距离最大,最大值为52分米… 18. (1)解:由题意,∵ 当k =3时,△ABM 是直角三角形,左顶点A(−3, 0)和下顶点B ∴ 0+b−3=−13, ∴ b =1,∴ 椭圆L 的标准方程为x 29+y 2=1;(2)(I)证明:设两直线l 1,l 2的方程分别为y =k(x +3)和y =kx −1,其中k ≠0,则M(0, 3k),N(1k , 0).y =k(x +3)代入椭圆方程可得(1+9k 2)x 2+54k 2x +81k 2−9=0, 方程一根为−3,则由韦达定理可得另一根为3−27k 21+9k 2, ∴ C(3−27k 21+9k 2, 6k 1+9k 2). 同理D(18k 1+9k2, 9k 2−11+9k 2)∵ 两直线l 1,l 2平行,∴ 可设MP →=tMN →,CP →=tCD →,从而可得P(31+3k, 3k 1+3k)∴ OP →=(31+3k , 3k1+3k)∵ AM →=(3, 3k),∴ 存在实数λ=1+3k ,使得AM →=λOP →; (II)∵ OP →=(31+3k , 3k1+3k ),∴ 消去参数可得P 的轨迹方程为x +3y −3=0, ∴ |OP|的最小值为d =√10=3√1010∴ |OP|的取值范围为[3√1010, +∞). 19. 证明:(1)当λ=0时,a n a n+2=a n+12,所以{a n }是等比数列,设公比为q ,则a n−m a n+m =a 1q n−m+1⋅a 1q n +m−1=a n 2,得证.…4分(2)由条件知a 3=a 22+3a 1=7,…6分由a n a n+2=a n+12+λ(−1)n+1得a n+2−a n a n+1=a n+2a n −a n2a n+1a n =a n+12−a n+1a n−1a n+1a n=a n+1−a n−1a n,…14分所以数列{a n+2−a n a n+1}是常数列,则a n+2−a n a n+1=a 3−a 1a 2=3,整理即得a n+2=a n+3a n+1....16分.20. (1)解:f(x),g(x)与坐标轴的交点分别为(0, k),(1, 0),由f(x)=ke x,g(x)=1k lnx,得f′(x)=ke x,g′(x)=1kx,由题意知f′(0)=g′(1),即k=1k,又k>0,所以k=1....2分(2)解:假设存在直线l同时是函数f(x),g(x)的切线,设l与f(x),g(x)分别相切于点M(m, e m),N(n, lnn)(n>0),则l:y−e m=e m(x−m)或表示为y−lnn=1n(x−n),则e m=1n,且e m(1−m)=lnn−1,要说明l是否存在,只需说明上述方程组是否有解.…4分由e m=1n得n=e−m,代入e m(1−m)=lnn−1,得e m(1−m)=−m−1,即e m(1−m)+m+1=0,令ℎ(m)=e m(1−m)+m+1,因为ℎ(1)=2>0,ℎ(2)=−e2+3<0,所以方程e m(1−m)+m+1=0有解,则方程组有解,故存在直线l,使得l同时是函数f(x),g(x)的切线....8分(3)证明:设A(x0, e x0),B(x0, lnx0),则AB=|e x0−lnx0|,设F(x)=e x0−lnx0,∴ G(x)=F′(x)=e x0−1x0,∴ G′(x)=e x0+1x02>0,即G(x)在(0, +∞)上单调递增,又G(0.5)=√e−2<0,G(1)=e−1>0,故G(x)在(0, +∞)上有唯一零点,设为t∈(0.5, 1),则e t−1t=0,因此t=−lnt,当x∈(0, t)时,F′(x)=G(x)<G(t)=0,∴ F(x)在(0, t)上单调递减;当x∈(t, +∞)时,F′(x)=G(x)>G(t)=0,∴ F(x)在(t, +∞)上单调递增,因此F(x)≥F(t)=e t−lnt=1t+t,由于t∈(0.5, 1),∴ F(x)=1t+t>2,则AB=|e x0−lnx0|>2.…14分设C(x1, e x1),D(x2, lnx2),则e x1=lnx2,令e x1=lnx2=u,则x1=lnu,x2=e u,∴ CD=|x2−x1|=|e u−lnu|>2,故S=12AB⋅CD>12⋅2⋅2=2....16分.21. 证明:因为PA与圆相切于A,所以DA2=DB⋅DC,因为D为PA中点,所以DP=DA,所以DP2=DB⋅DC,即PDDC =DBPD.…因为∠BDP=∠PDC,所以△BDP∽△PDC,所以∠DPB=∠DCP.…22. 解:由矩形OABC 变换成平行四边形OA ′B ′C ′可以看成先将矩形OABC 绕着O 点旋转90∘, 得到矩形OA ′′B ′′C ′′,然后再将矩形OA ′′B ′′C ′′作切变变换得到平行四边形OA ′B ′C ′. 故旋转变换矩阵为:M =[cos90∘−sin90∘sin90∘cos90∘]=[0−110]切变变换:[x y ]→[x′y′]=[x −x +y ]=[10−11][xy ]∴ 切变变换矩阵为N =[10−11]∴ 矩阵MN =[10−11][0−110]=[0−111]23. 曲线C 的普通方程是x 23+y 2=1. 直线l 的普通方程是x +√3y −√3=0. 设点M 的坐标是(√3cosθ,sinθ),Ml 的距离是d =|√3cosθ+√3sinθ−√3|2=√3|√2sin(θ+π4)−1|2.−√2≤√2sin(θ+π4)≤√2,sin(θ+π4)=−1,θ+π4=2kπ−π2(k ∈Z),θ=2kπ−3π4(k ∈Z),d 取得最大值. √3cosθ=−√62,sinθ=−√22. ,M(−√62,−√22),.(10) 24. 解:由柯西不等式9=(12+22+22)⋅(x 2+y 2+z 2)≥(1⋅x +2⋅y +2⋅z)2 即x +2y +2z ≤3,当且仅当 x1=y2=z2且x 2+y 2+z 2=1取等号, 即 x =13,y =23,z =23时,x +2y +2z 取得最大值3.∵ 不等式|a −1|≥x +2y +2z ,对满足x 2+y 2+z 2=1的一切实数x ,y ,z 恒成立, 只需|a −1|≥3,解得a −1≥3或a −1≤−3, ∴ a ≥4或a ≤−2.即实数的取值范围是(−∞, −2]∪[4, +∞).25. 解:(1)如图,以A 为原点建立空间直角坐标系, 则C(2, 0, 0),B(0, 2, 0),A 1(0, 2, 2),B 1(0, 4, 2),AA 1→=(0,2,2),BC →=B 1C 1→=(2,−2,0).cos⟨AA 1→,BC →>=|AA 1→|⋅|BC →|˙=−4√8⋅√8=−12, 故AA 1与棱BC 所成的角是π3.(2)设B 1P →=λB 1C 1→=(2λ,−2λ,0), 则P(2λ, 4−2λ, 2).于是AP =√4λ2+(4−2λ)2+4=√14⇒λ=12(λ=32舍去), 则P 为棱B 1C 1的中点,其坐标为P(1, 3, 2). 设平面P −AB −A 1的法向量为n 1→=(x, y, z),则{n 1→⋅AB →=0˙⇒{x +3y +2z =02y =0⇒{x =−2zy =0故n 1→=(−2, 0, 1).而平面ABA 1的法向量是n 2→=(1, 0, 0), 则cos <n 1→,n 2→>=|n 1→|⋅|n 2|→˙=√5,故二面角P −AB −A 1的平面角的余弦值是2√55. 26. 证明:(1)因为f(x)=(1−x)e x −1, 所以f′(x)=−e x +(1−x)e x =−xe x ,当x >0时,f′(x)<0,所以函数f(x)在(0, +∞)上单调递减, 因此f(x)<f(0)=0. …2分 (2)首先用数学归纳法证明a n >0.①当n =1时,a 1=1>0,∴ a n >0成立. ②假设n =k 时,a k >0. 那么当n =k +1时,a n ea n+1=ea n−1,则ea k+1=e a k −1a k,…4分当x >0时,由不等式e x −1>x 得e x −1x>1.所以e a k+1>1,a k+1>0.由①②可知对任意的正整数n ,总有a n >0.由(1)知(1−a n )e a n −1<0,所以e a n −1<a n e a n .由a n e a n+1=e a n −1知a n e a n+1<a n e a n ,所以a n+1<a n . …10分.。
2014届高三数学《考前指导》1
2014届高三数学《考前指导》专题一 填空题的解法一、 知识归纳数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,解答填空题时,由于不反映过程,只要求结果,故对正确性的要求比解答题更高、更严格,《考试说明》中对解答填空题提出的基本要求是“正确、合理、迅速”.为此在解填空题时要做到:快——运算要快,力戒小题大作;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意.数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。
解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整。
合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求。
二、方法讲解题型1: 直接求解法 这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
例1.设集合A={-1,1,3},B={a +2, a 2+4},A∩B={3},则实数a =例2. 已知向量),(,(3211-==,若k 2-与垂直,则实数k 等于______________;题型2: 特例法 当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值(或特殊函数,或特殊角,特殊数列,图形特殊位置,特殊点,特殊方程,特殊模型等)代替,即可以得到正确结果。
例3.设a>b>1,则log log log a b ab b a b 、、的大小关系是______________;例4.在∆ABC 中,如果a 、b 、c 成等差数列,则=++C A C A cos cos 1cos cos例5.椭圆x y 22941+=的焦点为F F 12、,点P 为其上的动点,当∠F PF 12为钝角时,点P 横坐标的取值范围是_______________________;题型3: 数形结合法 对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
(完整word版)2014年江苏省高考数学试卷答案与解析
2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21.3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是5.4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.P=故答案为:.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.的交点,可得.根据的交点,.,∴,+=.故答案为:.6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24株树木的底部周长小于100cm..7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是4.=8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.=,它们的侧面积相等,==故答案为:.9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.==2故答案为:10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).,,,解得﹣<,11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3.(,解方程可得答案.,(,,,,是解答的关键.12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22.=3,可得=+,﹣,=3•=3,=+,=﹣,•(+)(﹣)=||•﹣|﹣•﹣•=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).|的图象如图:由图象可知)14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.(bcosC==≥=当且仅当≤.故答案为:.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.(((.∴﹣=+=sin cos﹣+.,=,﹣=cos sin2﹣)的值为:﹣16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB 的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.DE=EF=BC=417.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.的坐标为(,,即,,)+y+(=0)()==(得.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?CE=OP=m m PC=PQ=m=﹣﹣19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论.﹣,当且仅当m﹣﹣()﹣﹣()20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.=,解得,,则,三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.A=B,可得方程组,即可求A=B==A=B,﹣【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.的参数方程为,化为普通方程为=8【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.3,两式相乘可得结论.,(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).个球共有个球颜色相同共有P==,P=26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.代入式子求值;代入所给的式子求解验证.=代入上式得,(+))x+)对任意时,=)对任意代入上式得,(+)+cos=±)(|=。
mjt-苏州大学2014届高考数学考前指导卷【1】及答案
苏州大学2014届高考考前指导卷(1)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合A ={x |x >5},集合B ={x |x <a },若A B={x |5<x <6},则实数a 的值为 . 2.设(1+2i)2=a +b i(,a b ∈R ),则ab = .3.若函数f (x )=sin(x +φ)(0<φ<π)是偶函数,则φ= .4.已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为 .5.从3位男生1位女生中任选两人,恰好是一男一女的概率是________.6.已知函数2()a y x a x=+∈R 在1x =处的切线与直线210x y -+=平行,则a =________. 7.图1是某学生的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A 1,A 2,…,A 14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是________.8.已知等差数列{a n }的公差不为零,a 1+a 2+a 5>13,且a 1,a 2,a 5成等比数列,则a 1的取值范围为 .9.在△ABC 中,若AB =1,|||AC AB AC BC =+=,则BA →·BC→|BC →|= .10.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.11.已知三棱锥P ABC -的底面是边长为3的正三角形,其三条侧棱的长分别为3,4,5,则该三棱锥P ABC -的体积为 .12.已知函数f (x )=|x 2+2x -1|,若a <b <-1,且f (a )=f (b ),则ab +a +b 的取值范围是 .13.已知实数b a ,分别满足15323=+-a a a ,55323=+-b b b , 则b a +的值为 .14.已知A ,B ,C 是平面上任意三点,BC =a ,CA =b ,AB =c ,则y =c a +b +bc的最小值是 .解 依题意,得b+c ≥a,于是c/(a+b)+b/c=[c/(a+b)]+[(a+b)/2c]-(1/2)≥2[c/(a+b)*(a+b)/c]^(1/2)-(1/2) =(根2)-(1/2).其中,等号当且仅当b+c=a 且c/(a+b)=(a+b)/2c,即a=(1+根2)c/2,b=(-1+根2)c/2时成立.所以,所求最小值为:(根2)-(1/2).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2a cos B =c cos B +b cos C .(1)求角B 的大小;(2)设向量m =(cos A ,cos 2A ),n =(12,-5),求当m·n 取最大值时,tan C 的值.16.如图,在四棱锥P - ABCD 中,已知AB =1,BC = 2,CD = 4,AB ∥CD ,BC ⊥CD ,平面P AB ⊥平面ABCD ,P A ⊥AB . (1)求证:BD ⊥平面P AC ;(2)已知点F 在棱PD 上,且PB ∥平面F AC ,求DF :FP .17.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y (单位:万元)随投资收益x (单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数y =f (x )模型制定奖励方案,试用数学语言表述该公司对奖励函数f (x )模型的基本要求,并分析函数y =x150+2是否符合公司要求的奖励函数模型,并说明原因;(2)若该公司采用模型函数y =10x -3ax +2作为奖励函数模型,试确定最小的正整数a 的值.A BC D FPx 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴、短轴端点外的任一点,过点P 作直线l ,使得l 与椭圆C 有 且只有一个公共点,设l 与y 轴的交点为A ,过点P 作与l 垂直的直线m ,设m 与y 轴的交点为B ,求证:△P AB 的外接圆经过定点.19.已知函数f (x )=ax +ln x ,g (x )=e x .(1)当a ≤0时,求f (x )的单调区间;(2)若不等式g (x )<x -mx有解,求实数m 的取值范围.20.已知无穷数列{a n }的各项均为正整数,S n 为数列{a n }的前n 项和.(1)若数列{a n }是等差数列,且对任意正整数n 都有33()n n S S =成立,求数列{a n }的通项公式;(2)对任意正整数n ,从集合{a 1,a 2,…,a n }中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a 1,a 2,…,a n 一起恰好是1至S n 全体正整数组成的集合. (ⅰ)求a 1,a 2的值;(ⅱ)求数列{a n }的通项公式.苏州大学2014届高考考前指导卷(1)参考答案一、填空题1.6 2.-12 3.π2 4.x 220-y 25=1 5.126.07.108.(1, +∞) 9.12 10.533或- 3 1112.(-1,1) 13.214.2-12二、解答题15.(1)由题意,2sin A cos B =sin C cos B +cos C sin B ,所以2sin A cos B =sin(B +C )=sin(π-A )=sin A .因为0<A <π,所以sin A ≠0.所以cos B =22.因为0<B <π,所以B =π4.(2)因为m·n =12cos A -5cos 2A ,所以m·n =-10cos 2A +12cos A +5=-10⎝⎛⎭⎫cos A -352+435. 所以当cos A =35时,m·n 取最大值.此时sin A =45(0<A <π2),于是tan A =43.所以tan C =-tan(A +B )=-tan A +tan B1-tan A tan B=7.16.证明(1)∵平面P AB ⊥平面ABCD ,平面P AB 平面ABCD = AB , P A ⊥AB ,P A ⊂平面P AB ,∴ P A ⊥平面ABCD .∵BD ⊂平面ABCD ,京翰教育北京家教辅导——全国中小学一对一课外辅导班∴12AB BC BC CD ==. ∵AB ∥CD ,BC ⊥CD , ∴Rt ABC ∆∽Rt BCD ∆.∴BDC ACB ∠=∠. ∴90ACB CBD BDC CBD ∠+∠=∠+∠=︒.则AC ⊥BD .∵AC PA A =,∴BD ⊥平面P AC .(2)∵PB //平面F AC ,PB ⊂平面PBD ,平面PBD 平面F AC= FO ,∴FO ∥PB ,∴DF DOPF OB=. 又∵AB //CD ,且14BO AB OD CD ==,∴DF :FP=4:1. 17.(1)设奖励函数模型为y =f (x ),按公司对函数模型的基本要求,函数y =f (x )满足: 当x ∈[10,1 000]时,①f (x )在定义域[10,1 000]上是增函数;②f (x )≤9恒成立;③f (x )≤x5恒成立.对于函数模型f (x )=x150+2.当x ∈[10,1 000]时,f (x )是增函数,f (x )max =f (1 000)=1 000150+2=203+2<9,所以f (x )≤9恒成立.但x =10时,f (10)=115+2>105,即f (x )≤x5不恒成立,故该函数模型不符合公司要求.(2)对于函数模型f (x )=10x -3a x +2,即f (x )=10-3a +20x +2,当3a +20>0,即a >-203时递增;要使f (x )≤9对x ∈[10,1 000]恒成立,即f (1 000)≤9,3a +18≥1 000,a ≥9823;要使f (x )≤x 5对x ∈[10,1 000]恒成立,即10x -3a x +2≤x 5,x 2-48x +15a ≥0恒成立,所以a ≥1925.综上所述,a ≥9823,所以满足条件的最小的正整数a 的值为328.18.(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程22221x y a b +=,得y =±2b a .由题意知22b a=1,即a =2b 2,又e =c a=32, 所以a =2,b =1. 所以椭圆C 的方程为2214x y +=. (2)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立0022,1,4y kx y kx x y =+-⎧⎪⎨+=⎪⎩ 整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0. 由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又220014x y +=,所以16y 20k 2+8x 0y 0k +x 20=PF D CBA O0,故k =-4y . 所以直线l 方程为0014x xy y +=,令x =0,解得点A 01(0,)y ,又直线m 方程为00043y y x y x =-,令x=0,解得点B 0(0,3)y -, △P AB 的外接圆方程为以AB 为直径的圆方程,即2001()(3)0x y y y y +-+=.整理得:220013(3)0x y y y y +-+-=,分别令2230,0,x y y ⎧+-=⎨=⎩ 解得圆过定点(.19.(1)f (x )的定义域是(0,+∞),f ′(x )=a +1x(x >0),1°当a =0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;2°当a <0时,由f ′(x )=0,解得x =-1a,则当x ∈⎝⎛⎭⎫0,-1a 时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎫-1a ,+∞时,f ′(x )<0,f (x )单调递减,综上所述:当a =0时,f (x )在(0,+∞)上单调递增,当a <0时,f (x )在⎝⎛⎭⎫0,-1a 上单调递增,在⎝⎛⎭⎫-1a ,+∞上单调递减. (2)由题意:e x <x -mx有解,即e x x <x -m 有解,因此只需m <x -e x x ,x ∈(0,+∞)有解即可,设h (x )=x -e x x ,h ′(x )=1-e xx -e x 2x=1-e x ⎝⎛⎭⎫x +12x ,因为x +12x≥212=2>1,且x ∈(0,+∞)时e x >1,所以1-e x ⎝⎛⎭⎫x +12x <0,即h ′(x )<0.故h (x )在(0,+∞)上单调递减,∴h (x )<h (0)=0,故m <0.20.(1)设无穷等差数列{a n }的公差为d ,因为33()n n S S =对任意正整数n 都成立,所以分别取n =1,n =2时,则有:⎩⎪⎨⎪⎧a 1=a 31,8a 1+28d =(2a 1+d )3.因为数列{a n }的各项均为正整数,所以d ≥0. 可得a 1=1,d =0或d =2.当a 1=1,d =0时,a n =1,33()n n S S =成立;当a 1=1,d =2时,S n =n 2,所以33()n n S S =. 因此,共有2个无穷等差数列满足条件,通项公式为a n =1或a n =2n -1.n n 1121222S n }={1,a 2,1+a 2,|1-a 2|}={1,2,3,4},故1+a 2=4,所以a 2=3.(ⅱ)由题意可知,集合{a 1,a 2,…,a n }按上述规则,共产生S n 个正整数.而集合{a 1,a 2,…,a n ,a n +1}按上述规则产生的S n +1个正整数中,除1,2,…,S n 这S n 个正整数外,还有a n +1,a n +1+i ,|a n +1-i |(i =1,2,…,S n ),共2S n +1个数. 所以,S n +1=S n +(2S n +1)=3S n +1.又S n +1+12=3⎝⎛⎭⎫S n +12,所以S n =⎝⎛⎭⎫S 1+12·13n --12=12·3n -12. 当n ≥2时,a n =S n -S n -1=12·3n -12-⎝⎛⎭⎫12·13n --12=13n -,而a 1=1也满足a n =13n -. 所以,数列{a n }的通项公式是a n =13n -.。
江苏省泰州市2014届高三高考数学指导试卷Word版含答案
泰州市2014年高考数学指导试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}1,2A =,集合{}1,,3B a =, 且A B ⊆,则实数a的值为 . 1.2;2.已知复数(1)(1)i bi +⋅-为实数,则实数b 的值为 . 2.1;3. 为了了解初中生的身体素质,某地区随机抽取了n 名学生进行跳绳测试,根据所得数据画样本的频率分布直方图如图所示,且从左到右第一小组的频数是10,则n 的值为 . 3.100;4.已知命题:11p x y ==且,命题:2q x y +=,则命题p 是命题q 的 条件。
5.下图是一个算法的流程图,输出的结果是 . 5.63;6.在平面直角坐标系xOy 中,D 是到原点的距离不大于1的点构成的区域,E 是满足不等式组1000x y x y x -+⎧⎪+⎨⎪⎩≥≥≤的点()x y ,构成的区域,向D 中随机投一点,则所投的点落在E 中的概率是 . 6.14π;7.设H G F E ,,,是三棱锥BCD A -的棱DA CD BC AB ,,,的中点,若1==BD AC ,则22EG FH +的值为 . 7.1;8.已知质点P 在半径为10cm 1rad/s ,设(10,0)A 为起始点,记点P 在y 轴上的射影为M ,则10π秒时点的速度是 cm/s . 8.10;9.用[]x 表示不超过x 的最大整数,设()[]([1,1))f x x x x =+∈-,则函数()f x 的值域为 .9.[2,1)[0,1)--U ;10.已知函数x x x f ωωcos sin )(+= )0(>ω向右最少平移1个单位长度后为偶函数,则ω的最小值为 ▲ . 答案:4π11.已知正项等比数列{}n a 满足: 6542a a a =+,若存在两项m a ,n a12a =,则14m n +的最小值为________. 答案:94。
江苏省2014届高三高考模拟专家卷 数学(1) 含答案
2014年江苏高考数学模拟试题(一)数学Ⅰ 必做题部分一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{}0,1A =,集合{}1,0,B x =-, 且A B ⊆,则实数x 的值为 .1.答案:1,解析:根据子集的定义知x 的值为1.2.已知复数(1)(1)i bi +⋅+为纯虚数,则实数b 的值为 .2.答案:1,解析:(1)(1)(1)(1)i bi b b i +⋅+=-++ ,(1)(1)i bi +⋅+是纯虚数,10b ∴-=,且10b +≠ ,1b ∴=.3.一个算法的流程图如下图所示,则输出s 的结果为 .3.答案:11,解析:第一次循环后,3Y =,第二次循环后,5Y =,第三次循环后,7Y =,⋅⋅⋅,所以输出11Y =.4.如图表示甲、乙两名篮球运动员每场得分情况的茎叶注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题-第14题)、解答题(第15题-第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将本卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、准考证号用0。
5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 5.请保持答题卡卡面清洁,不要折叠、破损.I←1While I <6Y ←2I+1图,则甲、乙得分的中位数分别是,a b ,则a b += . 4.答案:57.5,解析:由茎叶图知甲的中位数为32a =,乙的中位数为25.5a =,.57.5a b ∴+=.5.一口袋中放有质地、大小完全相同的6个球,编号分别为1,2,3,4,5,6,甲先摸出一个球,记下编号,放回后乙再摸一个球,甲、乙两人所摸球的编号不同的概率是 .5.答案:56,解析:设“编号不相同”为事件B ,则“编号相同"为其对立事件B ,事件B 包含的基本事件为(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),61()366P B ==, 所以15()1()166P B P B =-=-=,编号不同的概率为56. 6.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且tan 21tan A cB b+=,则角A 的大小为 .6.答案:π3,解析:tan 2sin cos 2sin 11tan sin cos sin A c A B C B b B A B +=⇒+=,即sin cos sin cos 2sin sin cos sin B A A B C B A B +=, ∴sin()2sin sin cos sin A B C B A B +=, ∴1cos 2A =.∵0πA <<,∴π3A =.7.已知质点P 在半径为10cm 的圆上按逆时针方向做匀速圆周运动,角速度是1rad/s ,设(10,0)A 为起始点,记点P 在y 轴上的射影为M ,则10π秒时点M 的速度是cm/s .7.答案:10,解析:运动t s 后,(10cos ,10sin ),P t t 则M 的位移()10sin S t t =,10cos v S t '∴==,则10π秒时点M 的速度是10cm/s .瞬时变化率就是导数是解题的关键. 轴为8.如图,设椭圆22221(0)x y a b a b +=>>长轴为AB ,短CD ,E 是椭圆弧BD 上的一点,AE 交CD 于K ,CExyAM OP交AB 于L ,则22EK EL AK CL ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的值为 。
江苏省2014届高考数学考前辅导之解答题(含答案)
C 江苏省2014届高考数学考前辅导之解答题1.已知向量2(3sin ,1),(cos ,cos )444x x xm n ==.(1)若1m n ⋅=,求2cos()3x π-的值;(2)记()f x m n =⋅,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足C b B c a cos cos )2(=-,求函数f (A )的取值范围.1.解:(1)23sin cos cos 444x x x m n ⋅=⋅+ 1sin(262x π=++∵1m n ⋅= ∴1sin(262x π+= ┉┉┉┉┉┉┉┉┉┉┉┉┉4分211cos()12sin ()23262x x ππ+=-+= 21cos()cos()332x x ππ-=-+=- ┉┉┉┉┉7分(2)∵(2a -c )cos B =b cos C由正弦定理得(2sinA -sin C)cos B=sinBcosC ┉┉┉┉┉┉8分 ∴2sinAcosB-sinCcosB=sinBcosC ∴2sinAcosB=sin(B+C)∵A B C π++= ∴sin()sin 0B C A +=≠,∴1cos ,23B B π== ∴203A π<< ┉┉┉┉┉┉11分∴1,sin()(,1)6262262A A ππππ<+<+∈ ┉┉┉┉┉┉12分 又∵1()sin(262x f x π=++,∴1()sin(262A f A π=++ ┉┉┉┉┉┉13分故函数f (A )的取值范围是3(1,)2. ┉┉┉2.设锐角△ABC 内角A ,B ,C 的对边分别为a ,b ,c .已知边a =23,△ABC 的面积S =34(b 2+c 2-a 2).求:(1)内角A ;(2)周长l 的取值范围.3.如图,AB 为圆O 的直径,点E 、F 在圆O 上,且//AB EF ,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且2AB =,1AD EF ==.(1)求证:AF ⊥平面CBF ;(2)设FC 的中点为M ,求证://OM 平面DAF ; (3)设平面CBF 将几何体EFABCD 分成的两个锥体的体积分别为F ABCD V -,F CBE V -,求:F ABCD F CBE V V --. 3.解:(1)证明: 平面⊥ABCD 平面ABEF ,AB CB ⊥,平面 ABCD 平面ABEF =AB ,⊥∴CB 平面ABEF ,⊂AF 平面ABEF ,CB AF ⊥∴ ,又AB 为圆O 的直径,BF AF ⊥∴, ⊥∴AF 平面CBF . ………5分 (2)设DF 的中点为N ,则MN //CD 21,又AO //CD 21, 则MN //AO ,MNAO 为平行四边形,//OM ∴AN ,又⊂AN 平面DAF ,⊄OM 平面DAF ,//OM ∴平面DAF . ………9分(3)过点F 作AB FG ⊥于G , 平面⊥ABCD 平面ABEF ,⊥∴FG 平面ABCD ,FG FG S V ABCD ABCD F 3231=⋅=∴-, ………11分⊥CB 平面ABEF ,CB S V V BFE BFE C CBE F ⋅==∴∆--31FG CB FG EF 612131=⋅⋅⋅=, ………14分ABCD F V -∴1:4:=-CBE F V .4.多面体PABCD 的直观图及三视图如图所示,E 、F 、G 分别为PA 、AD 和BC 的中点,M 为PG 上的点,且:3:4PM MG =.(1)求多面体PABCD 的体积; (2)求证:PC BDE 平面; (3)求证:FM ⊥平面PBC .4.解:(14分(2)连接AC 与BD 交于点O ,连接EO则在PAC ∆中,由E 、O 分别为PA 和AC 的中点,得EO PC ………………6分 因为EO BDE ⊂平面所以PC BDE 平面 ……………………………………………… 8分 (3)连接PF 与FG ,则BC ⊥平面PFG所以BC FM ⊥ ……………………………………………… 10分 在PFG ∆中,2,PF FG PG ==:3:4PM MG =可求得MG =,FM =,故222FM MG FG += 所以FM PG ⊥ ……………………………………………… 12分 又PG BC G ⋂=所以FM ⊥平面PBC ……………………………………………… 14分5.(本小题满分15分)P A B CD E F GM 左视图主视图 俯视图在平面直角坐标系xOy 中 ,已知以O 为圆心的圆与直线l :(34)y mx m =+-,()m R ∈恒有公共点,且要求使圆O 的面积最小. (1)写出圆O 的方程;(2)圆O 与x 轴相交于A 、B 两点,圆内动点P 使||PA 、||PO 、||PB 成等比数列,求PA PB ⋅的范围; (3)已知定点Q (4-,3),直线l 与圆O 交于M 、N 两点,试判断tan QM QN MQN ⋅⨯∠ 是否有最大值,若存在求出最大值,并求出此时直线l 的方程,若不存在,给出理由.5.解:(1)因为直线l :(34)y mx m =+-过定点T (4,3)由题意,要使圆O 的面积最小, 定点T (4,3)在圆上,所以圆O 的方程为2225x y +=. ………4分(2)A (-5,0),B (5,0),设00(,)P x y ,则220025x y +< (1)00(5,)PA x y =---,00(5,)PB x y =--,由||,||,||PA PO PB 成等比数列得,2||||||PO PA PB =⋅,4[,0)2PA PB ∴⋅∈-………………………9分 (3)tan ||||cos tan QM QN MQN QM QN MQN MQN ⋅⨯∠=⋅∠⨯∠||||sin 2MQNQM QN MQN S=⋅∠= . ………11分由题意,得直线l 与圆O 的一个交点为M (4,3),又知定点Q (4-,3),直线MQ l :3y =,||8MQ =,则当(0,5)N -时MQN S 有最大值32. ………14分即tan QM QN MQN ⋅⨯∠有最大值为32,此时直线l 的方程为250x y --=. ………15分6.如图,在四棱锥A -BCDE 中,底面BCDE 是直角梯形,∠BED =90︒,BE ∥CD ,AB =6,BC =5,CD BE =13,侧面ABE ⊥底面BCDE .且∠BAE =90︒. (1)求证:平面ADE ⊥平面ABE ;(2)过点D 作平面α∥平面ABC ,分别与BE ,AE交于点F ,G ,求△DFG 的面积.7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线l 为圆O :x 2+y 2=b 2的一条切线,且经过椭圆的右焦点,记椭圆离心率为e .(1)若直线l 的倾斜角为π6,求e 的值;(2)是否存在这样的e ,使得原点O 关于直线l 的对称点恰好在椭圆C 上?若存在,请求出e 的值;若不存在,请说明理由.8.如图,已知椭圆x 2a 2+y 24=1(a >0)上两点A (x 1,y 1),B (x 2,y 2),x 轴上两点M (1,0),N (-1,0).(1)若tan ∠ANM =-2,tan ∠AMN =12,求该椭圆的方程;(2)若MA →=-2MB →,且0<x 1<x 2,ABC D E求椭圆的离心率e的取值范围.9.已知线段CD =CD 的中点为O ,动点A 满足2AC AD a +=(a 为正常数). (1)求动点A 所在的曲线方程;(2)若存在点A ,使AC AD ⊥,试求a 的取值范围;(3)若2a =,动点B 满足4BC BD +=,且AO OB ⊥,试求AOB ∆面积的最大值和最小值.9.解:(1)以O 为圆心,CD 所在直线为轴建立平面直角坐标系若2AC AD a +=<0a <A 所在的曲线不存在;若2AC AD a +==a =,动点A所在的曲线方程为0(y x =≤;若2AC AD a +=>a >,动点A 所在的曲线方程为222213x y a a +=-. ……………………………………………… 4分(2)由(1)知a A ,使AC AD ⊥, 则以O为圆心,OC =26a ≤所以aa . ……………………………………………8分(3)当2a =时,其曲线方程为椭圆2214x y +=由条件知,A B 两点均在椭圆2214x y +=上,且AO OB ⊥ 设11(,)A x y ,22(,)B x y ,OA 的斜率为k (0)k ≠,则OA 的方程为y kx =, OB 的方程为1y x k=-解方程组2214y kxx y =⎧⎪⎨+=⎪⎩得212414x k =+,212414k y k =+ 同理可求得222244k x k =+,22244y k =+ …………………………………………… 10分 A O B ∆面积2S= ………………12分 令21(1)k t t +=>则S =令22991125()49()(1)24g t t t t t =-++=--+> 所以254()4g t <≤,即415S ≤< ……………………………………………… 14分当0k =时,可求得1S =,故415S ≤≤, 故S 的最小值为45,最大值为1. ……………………………………………… 10.(本小题满分15分)某工厂有216名工人接受了生产1000台GH 型高科技产品的总任务,已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成.每个工人每小时能加工6个G 型装置或3个H 型装置.现将工人分成两组同时开...始.加工,每组分别加工一种装置.设加工G 型装置的工人有x 人,他们加工完G 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x )(单位:小时,可不为整数). (1)写出g (x ),h (x )的解析式;(2)比较g (x )与h (x )的大小,并写出这216名工人完成总任务的时间f (x )的解析式; (3)应怎样分组,才能使完成总任务用的时间最少? 10. 解:(1)由题知,需加工G 型装置4000个,加工H 型装置3000个,所用工人分别为x 人,(216-x )人.∴g (x )=x64000,h (x )=3)216(3000⋅-x ,即g (x )=x 32000,h (x )=x-2161000(0<x <216,x ∈N *). ……………………4分 (2)g (x )-h (x )=x 32000-x-2161000=)216(3)5432(1000x x x --⋅. ∵0<x <216,∴216-x >0.当0<x ≤86时,432-5x >0,g (x )-h (x )>0,g (x )>h (x );当87≤x <216时,432-5x <0,g (x )-h (x )<0,g (x )<h (x ).∴f (x )=⎪⎪⎩⎪⎪⎨⎧∈<≤-∈≤<.,21687,2161000,,860,32000**N N x x xx x x……………………8分(3)完成总任务所用时间最少即求f (x )的最小值. 当0<x ≤86时,f (x )递减,∴f (x )≥f (86)=8632000⨯=1291000. ∴f (x )min =f (86),此时216-x =130.当87≤x <216时,f (x )递增,∴f (x )≥f (87)=872161000-=1291000.∴f (x )min =f (87),此时216-x =129. ∴f (x )min =f (86)=f (87)=1291000.∴加工G 型装置,H 型装置的人数分别为86、130或87、129……………………15分11.抛掷一枚骰子,当它每次落地时,向上的点数称为该次抛掷的点数,可随机出现1到6点中的任一个结果,连续抛掷三次,将第一次,第二次,第三次抛掷的点数分别记为c b a ,,,求长度为c b a ,,的三条线段能构成等腰三角形的概率.11.【解】连续抛掷三次, 点数分别为c b a ,,的基本事件总数为216666=⨯⨯ 长度为c b a ,,的三条线段能构成等腰三角形有下列两种情形①当c b a ==时, 能构成等边三角形,有;1,1,1;2,2,2; 6,6,6共6种可能. ②当c b a ,,恰有两个相等时,设三边长为z y x ,,,其中}6,5,4,3,2{∈x ,且y x ≠;若2=x ,则y 只能是1或3,共有2种可能; 若3=x ,则y 只以是5,4,2,1,共有4种可能; 若6,5,4=x ,则y 只以是集合}6,5,4,3,2,1{中除x 外的任一个数,共有53⨯种可能; ∴当c b a ,,恰有两个相等时,符合要求的c b a ,,共有63)5342(3=⨯++⨯ 故所求概率为722366363=+=P 12.已知关于x 的一元二次函数14)(2+-=bx ax x f .(1)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数)(x f y =在区间[),1+∞上是增函数的概率;(2)设点(a ,b )是区域⎪⎩⎪⎨⎧>>≤-+0008y x y x 内的随机点,求()[1,)y f x =+∞在区间上是增函数的概率.12.解:(1)∵函数14)(2+-=bx ax x f 的图象的对称轴为,2abx =要使14)(2+-=bx ax x f 在区间),1[+∞上为增函数,当且仅当a >0且a b ab≤≤2,12即 ……………………………3分 若a =1则b =-1, 若a =2则b =-1,1; 若a =3则b =-1,1; ……………………5分∴事件包含基本事件的个数是1+2+2=5∴所求事件的概率为51153=. ……………………………7分(2)由(Ⅰ)知当且仅当a b ≤2且a >0时,函数),1[14)(2+∞+-=在区是间bx ax x f 上为增函数,依条件可知试验的全部结果所构成的区域为80(,)00a b a b a b ⎧⎫+-≤⎧⎪⎪⎪>⎨⎨⎬⎪⎪⎪>⎩⎩⎭构成所求事件的区域为三角形部分. 由),38,316(208得交点坐标为⎪⎩⎪⎨⎧==-+ab b a …………11分 ∴所求事件的概率为31882138821=⨯⨯⨯⨯=P .13.如图,已知椭圆2222:1x y C a b+=(0)a b >>的左顶点,右焦点分别为,A F ,右准线为m 。
2014年江苏高考数学试题及详细答案(含附加题)
2014年江苏高考数学试题数学Ⅰ试题参考公式:圆柱的侧面积公式:S 圆柱=cl , 其中c 是圆柱底面的周长,l 为母线长. 圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{2134}A =--,,,,{123}B =-,,,则A B =.【答案】{13}-,2.已知复数2(52)z i =+(i 为虚数单位),则z 的实部为. 【答案】213.右图是一个算法流程图,则输出的n 的值是. 【答案】54.从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的 概率是. 【答案】135.已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为 3π的交点,则ϕ的值是. 【答案】6π6.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有株 树木的底部周长小于100 cm . 【答案】247.在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+, 则6a 的值是. 【答案】48.设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12V V 的值是. 【答案】329.在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为. 【答案】255510.已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是. 【答案】202⎛⎫- ⎪⎝⎭,11.在平面直角坐标系xOy 中,若曲线2b y ax x =+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是. 【答案】3-12.如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的 值是. 【答案】2213.已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是. 【答案】()102,14.若ABC ∆的内角满足sin 2sin 2sin A B C +=,则cos C 的最小值是.【答案】624- 二、解答题:本大题共6小题, 共计90 分. 请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14 分)已知()2απ∈π,,5sin 5α=. (1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.【答案】本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能 力. 满分14分.(1)∵()5sin 25ααπ∈π=,,,∴225cos 1sin 5αα=--=-()210sin sin cos cos sin (cos sin )444210αααααπππ+=+=+=-;(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,∴()()3314334cos 2cos cos2sin sin 2666252510ααα5π5π5π+-=+=-⨯+⨯-=-.16.(本小题满分14 分)如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC .【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系, 考查空间想象能力和推理论证能力.满分14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴132DE PA ==∵E F ,为AC AB ,中点 ∴142EF BC ==∴222DE EF DF +=∴90DEF ∠=°,∴DE ⊥EF ∵//DE PA PA AC ⊥,,∴DE AC ⊥ ∵ACEF E =∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC .17.(本小题满分14 分)如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF =,求椭圆的方程;(2)若1FC AB ⊥,求椭圆离心率e 的值.【答案】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运 算求解能力. 满分14分.(1)∵()4133C ,,∴22161999a b+=∵22222BF b c a =+=,∴22(2)2a ==,∴21b =∴椭圆方程为2212x y += (2)设焦点12(0)(0)()F c F c C x y -,,,,,∵A C ,关于x 轴对称,∴()A x y -,∵2B F A ,,三点共线,∴b y b c x +=--,即0bx cy bc --=① ∵1FC AB ⊥,∴1yb xc c ⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩∴()2222222a c bc C b c b c --, ∵C 在椭圆上,∴()()222222222221a cbc b c b c a b --+=,化简得225c a =,∴55c a =, 故离心率为5518.(本小题满分16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?解:本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.满分16分. 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43.又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=--k AB =603,04b a -=- 解得a =80,b=120. 所以BC =22(17080)(0120)150-+-=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F . 因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803. CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45, 又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.19.(本小题满分16分)已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明你的结论.【答案】本小题主要考查初等函数的基本性质、导数的应用等基础知识,考查综合运用数学思想 方法分析与解决问题的能力.满分16分.(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数 (2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤ ∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1x x x m ---+-≤对(0)x ∈+∞,恒成立令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立 ∴13m -≤(3)'()e e x x f x -=-,当1x >时'()0f x >,∴()f x 在(1)+∞,上单调增 令3()(3)h x a x x =-+,'()3(1)h x ax x =--∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2e f a =+<,即()11e 2ea >+ ∵e-1e 111ln ln ln e (e 1)ln 1ea a aa a a ---=-=--+设()(e 1)ln 1m a a a =--+,则()e 1e 111'()1e 2ea m a a a a ---=-=>+,当()11e e 12e a +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减 因此()m a 至多有两个零点,而(1)(e)0m m == ∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2e a +<<时,()0m a <,e 11e a a -->; 当e a =时,()0m a =,e 11e a a --=.20.(本小题满分16分)设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立.【答案】本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力, 满分16分.(1)当2n ≥时,111222n n n n n n a S S ---=-=-=当1n =时,112a S ==∴1n =时,11S a =,当2n ≥时,1n n S a += ∴{}n a 是“H 数列” (2)1(1)(1)22n n n n n S na d n d --=+=+ 对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d=+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-(3)设{}n a 的公差为d令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=- 1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列 {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N 因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”. {}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立,即{}n c 为“H 数列” 因此命题得证.数学Ⅱ(附加题)21.【选做题】本题包括A, B,C,D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.【选修4-1:几何证明选讲】(本小题满分10分)如图,AB 是圆O 的直径,C 、 D 是圆O 上位于AB 异侧的两点 证明:∠OCB =∠D .本小题主要考查圆的基本性质,考查推理论证能力.满分10分. 证明:因为B , C 是圆O 上的两点,所以OB =OC . 故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点, 故∠B ,∠D 为同弧所对的两个圆周角, 所以∠B =∠D . 因此∠OCB =∠D .B.【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,若A α=B α,求x y ,的值. 【答案】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10分. 222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=, C.【选修4-4:坐标系与参数方程】(本小题满分10分) 在平面直角坐标系xOy 中,已知直线l 的参数方程为212222x t y t ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24y x =交于A B ,两点,求线段AB 的长.【答案】本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力.满分10分.直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+= ∴交点(12)A ,,(96)B -,,故||82AB = D.【选修4-5:不等式选讲】(本小题满分10分) 已知x >0, y >0,证明:(1+x +y 2)( 1+x 2+y )≥9xy.本小题主要考查算术一几何平均不等式.考查推理论证能力.满分10分. 证明:因为x >0, y >0, 所以1+x +y 2≥2330xy >,1+x 2+y ≥2330x y >,所以(1+x +y 2)( 1+x 2+y )≥223333xy x y ⋅=9xy.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,,中的最大数,求X 的概率分布和数学期望()E X .22.【必做题】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力.满分10分.(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况∴取出的2个球颜色相同的概率1053618P ==(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X === 3131453639C C C C 13(3)C 63P X +=== 11(2)1(3)(4)14P X P X P X ==-=-==∴X 的概率分布列为X 2 3 4 P111413631126故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=23.(本小题满分10分)已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()124442n n nf f -πππ+=成立.23.【必做题】本题主要考查简单的复合函数的导数,考查探究能力及运用数学归纳法的推理论证能力.满分10分.(1)解:由已知,得102sin cos sin ()(),x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭于是21223cos sin sin 2cos 2sin ()(),x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭所以12234216(),(),22f f πππππ=-=-+ 故122()() 1.222f f πππ+=- (2)证明:由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=, 即01()()cos sin()2f x xf x x x π+==+,类似可得 122()()sin sin()f x xf x x x π+=-=+,2333()()cos sin()2f x xf x x x π+=-=+, 344()()sin sin(2)f x xf x x x π+==+. 下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. (i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+. 因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+, 所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. 令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ). 所以12()()4442n n nf f πππ-+=(n ∈*N ).。
2014年高考数学江苏卷【word版-含答案】
2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的侧面积公式:cl S =圆柱侧,其中c 是圆柱底面的周长,l 为母线长. 圆柱的体积公式:Sh V =圆柱, 其中S 是圆柱的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置上.... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A .2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 .3. 右图是一个算法流程图,则输出的n 的值是 .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 . 6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100cm.7.在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 .8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是 . 9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 .11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 .12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,3=,2=⋅,则⋅(第3N 18911010015 020 025 030 底部周长/cm(第的值是 .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分) 已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值; (2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(第16题)P DCEFBAx(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.东题)20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区.................域内作答.....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点. 证明:∠OCB= ∠D .B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵 1 2 1 1,1 x 2 -1A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,向量 2a y ⎡⎤=⎢⎥⎣⎦,x ,y 为实数. 若Aa =Ba ,求x+y 的值.C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线 l 的参数方程为 212222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),直线l 与抛物线 24y x =相交于A ,B 两点,求线段AB 的长. D .[选修4-5:不等式选讲](本小题满分10分)已知x>0,y>0,证明: 22(1)(1)9x y x y xy ++++≥.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分) 盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同. (l)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出 4个球其中红球、黄球、绿球的个数分别记为123,,x x x ,随机变量X 表示123,,x x x 中的最大数,求X 的概率分布和数学期望E(X).23.(本小题满分10分) 已知函数 0sin ()(0)xf x x x=>,设 ()n f x 为 1()n f x -的导数,n N *∈. (1)求 122222f f πππ⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭的值;(2)证明:对任意的 n N *∈,等式 14442n n nf f πππ-⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭都成立.2014年江苏高考数学试题参考答案数学Ⅰ试题一、填空题1、{13}-,2、213、54、13 5、6π 6、24 7、4 8、329、255 10、20⎛⎫ ⎪⎝⎭ 11、3- 12、22 13、()102, 14、62- 二、解答题15. 本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能力. 满分14分.(1)∵()5sin 2ααπ∈π,,,∴225cos 1sin αα=-()210sin sin cos cos sin sin )444αααααπππ+=++=;(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,∴()()3314334cos 2cos cos2sin sin 2666525ααα5π5π5π+-=+=+⨯-=16. 本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥PA ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴PA ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴132DE PA ==∵E F ,为AC AB ,中点 ∴142EF BC ==∴222DE EF DF += ∴90DEF ∠=°,∴DE ⊥EF ∵//DE PA PA AC ⊥,,∴DE AC ⊥ ∵ACEF E = ∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC .17. 本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运算求解能力. 满分14分.(1)∵()4133C ,, ∴22161999a b+=∵22222BF b c a =+=,∴22(2)2a ==,∴21b = ∴椭圆方程为2212x y += (2)设焦点12(0)(0)()F c F c C x y -,,,,,∵A C ,关于x 轴对称, ∴()A x y -,∵2B F A ,,三点共线, ∴b y bc x+=--,即0bx cy bc --=① ∵1FC AB ⊥, ∴1yb xc c⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩∴()2222222a c bc C b c b c --, ∵C 在椭圆上,∴()()222222222221a cbc b c b c a b --+=,化简得225c a =,∴5c a = 518. 本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.满分16分.解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy . 由条件知A (0, 60),C (170, 0),直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=--k AB =603,04b a -=-解得a =80,b=120. 所以BC 22(17080)(0120)150-+-=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35. 因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半 径,并设MD =r m ,OM =d m(0≤d ≤60). 因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.19.本小题主要考查初等函数的基本性质、导数的应用等基础知识,考查综合运用数学思想方法分析与解决问题的能力.满分16分.(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数 (2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤∵(0)x ∈+∞,,∴e e 10x x-+->,即e 1e e 1x x x m ---+-≤对(0)x ∈+∞,恒成立令e (1)x t t =>,则211tm t t --+≤对任意(1)t ∈+∞,恒成立∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立∴13m -≤(3)'()e e x x f x -=-,当1x >时'()0f x >,∴()f x 在(1)+∞,上单调增 令3()(3)h x a x x =-+,'()3(1)h x ax x =--∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2ef a =+<,即()11e 2e a >+∵e-1e 111ln ln ln e (e 1)ln 1ea a a a a a ---=-=--+设()(e 1)ln 1m a a a =--+,则()e 1e 111'()1e 2ea m a a a a ---=-=>+,当()11e e 12e a +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减因此()m a 至多有两个零点,而(1)(e)0m m == ∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2e a +<<时,()0m a <,e 11e a a -->; 当e a =时,()0m a =,e 11e a a --=.20. 本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力,满分16分.(1)当2n ≥时,111222n n n n n n a S S ---=-=-= 当1n =时,112a S == ∴1n =时,11S a =,当2n ≥时,1n n S a += ∴{}n a 是“H 数列” (2)1(1)(1)22n n n n n S na d n d --=+=+ 对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d=+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-(3)设{}n a 的公差为d 令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=- 1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列 {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N 因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”. {}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立,即{}n c 为“H 数列” 因此命题得证.数学Ⅱ(附加题)参考答案21.【选做题】A.【选修4-1:几何证明选讲】本小题主要考查圆的基本性质,考查推理论证能力.满分10分. 证明:∵B , C 是圆O 上的两点,∴OB =OC . 故∠OCB =∠B .又∵C , D 是圆O 上位于AB 异侧的两点, 故∠B ,∠D 为同弧所对的两个圆周角, ∴∠B =∠D . ∴∠OCB =∠D .B.【选修4-2:矩阵与变换】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10分. 222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=, C.【选修4-4:坐标系与参数方程】满分10分.本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力. 直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+= ∴交点(12)A ,,(96)B -,,故||82AB =D.【选修4-5:不等式选讲】本小题主要考查算术一几何平均不等式.考查推理论证能力.满分10分. 证明:因为x >0, y >0, 所以1+x +y 2≥2330xy >,1+x 2+y ≥2330x y >, 所以(1+x +y 2)( 1+x 2+y )≥223333xy x y =9xy.22.【必做题】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力.满分10分.(1)一次取2个球有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况∴取出的2个球颜色相同的概率1053618P ==(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X === 3131453639C C C C 13(3)C 63P X +=== 11(2)1(3)(4)14P X P X P X ==-=-==∴X 的概率分布列为故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=23.【必做题】本题主要考查简单的复合函数的导数,考查探究能力及运用数学归纳法的推理论证能力.满分10分.(1)解:由已知,得102sin cos sin ()(),x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭ 于是21223cos sin sin 2cos 2sin ()(),x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭所以12234216(),(),22f f πππππ=-=-+ 故122()() 1.222f f πππ+=- (2)证明:由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=, 即01()()cos sin()2f x xf x x x π+==+,类似可得 122()()sin sin()f x xf x x x π+=-=+,2333()()cos sin()2f x xf x x x π+=-=+, 344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.(i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++ (1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+, 所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+(n ∈*N ).。
【免费下载】江苏省2014届高考数学考前辅导之解答题(含答案)
3.解:(1)证明: 平面 ABCD 平面 ABEF , CB AB ,
平面 ABCD 平面 ABEF = AB ,CB 平面 ABEF ,
AF 平面 ABEF , AF CB ,
函数 f(A)的取值范围.
1.解:(1) m n
3 sin x cos x cos2 x
∵mn 1
1 cos(x ) 1 2sin2 ( x ) 1
2
(2)∵(2a-c)cosB=bcosC
3
44
由正弦定理得(2sinA-sinC)cosB=sinBcosC
(3)过点 F 作 FG AB 于 G ,平面 ABCD 平面 ABEF ,
FG
VF CBE
平面
ABCD ,VFABCD
CB 平面 ABEF ,
VCBFE
1 3 SBFE
VFABCD : VFCBE 4 :1 .
CB
1 3
11 32
S ABCD
7
………5 分
………11 分
………14 分
2
2 左视图
2
所以 BC FM
……………………………………………… 10 分
在 PFG 中, PF 3, FG 2, PG 7 , PM : MG 3 : 4
可求得 MG 4 7 , FM 2 21 ,故 FM 2 MG2 FG2
5.(本小题满分 15 分)
在平面直角坐标系 xOy 中 ,已知以 O 为圆心的圆与直线 l : y mx (3 4m) , (m R) 恒有公共点,且要
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014届江苏高考数学考前指导卷(1)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡...相应位置上...... 1.已知集合A ={x |x >5},集合B ={x |x <a },若A B={x |5<x <6},则实数a 的值为 . 2.设(1+2i)2=a +b i(,a b ∈R ),则ab = .3.若函数f (x )=sin(x +φ)(0<φ<π)是偶函数,则φ= .4.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为 .5.从3位男生1位女生中任选两人,恰好是一男一女的概率是________.6.已知函数2()ay x a x=+∈R 在1x =处的切线与直线210x y -+=平行,则a =________.7.图1是某学生的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A 1,A 2,…,A 14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是________.8.已知等差数列{a n }的公差不为零,a 1+a 2+a 5>13,且a 1,a 2,a 5成等比数列,则a 1的取值范围为 .9.在△ABC 中,若AB =1,|||AC AB AC BC =+=,则BA →·BC→|BC →|= .10.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.11.已知三棱锥P ABC -的底面是边长为3的正三角形,其三条侧棱的长分别为3,4,5,则该三棱锥P ABC-的体积为 .12.已知函数f (x )=|x 2+2x -1|,若a <b <-1,且f (a )=f (b ),则ab +a +b 的取值范围是 .13.已知实数b a ,分别满足15323=+-a a a ,55323=+-b b b , 则b a +的值为 .14.已知A ,B ,C 是平面上任意三点,BC =a ,CA =b ,AB =c ,则y =c a +b +bc的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2a cos B =c cos B +b cos C .(1)求角B 的大小;(2)设向量m =(cos A ,cos 2A ),n =(12,-5),求当m·n 取最大值时,tan C 的值.16.如图,在四棱锥P - ABCD 中,已知AB =1,BC = 2,CD = 4,AB ∥CD ,BC ⊥CD ,平面P AB ⊥平面ABCD ,P A ⊥AB .(1)求证:BD ⊥平面P AC ;(2)已知点F 在棱PD 上,且PB ∥平面F AC ,求DF :FP .A B C D F P17.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y (单位:万元)随投资收益x (单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数y =f (x )模型制定奖励方案,试用数学语言表述该公司对奖励函数f (x )模型的基本要求,并分析函数y =x150+2是否符合公司要求的奖励函数模型,并说明原因;(2)若该公司采用模型函数y =10x -3ax +2作为奖励函数模型,试确定最小的正整数a 的值.18.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别是12,F F ,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴、短轴端点外的任一点,过点P 作直线l ,使得l 与椭圆C 有 且只有一个公共点,设l 与y 轴的交点为A ,过点P 作与l 垂直的直线m ,设m 与y 轴的交点为B ,求证:△P AB 的外接圆经过定点.19.已知函数f (x )=ax +ln x ,g (x )=e x .(1)当a ≤0时,求f (x )的单调区间;(2)若不等式g (x )<x -mx有解,求实数m 的取值范围.20.已知无穷数列{a n }的各项均为正整数,S n 为数列{a n }的前n 项和.(1)若数列{a n }是等差数列,且对任意正整数n 都有33()n n S S 成立,求数列{a n }的通项公式; (2)对任意正整数n ,从集合{a 1,a 2,…,a n }中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a 1,a 2,…,a n 一起恰好是1至S n 全体正整数组成的集合.(ⅰ)求a 1,a 2的值;(ⅱ)求数列{a n }的通项公式.参考答案一、填空题1.6 2.-12 3.π2 4.x 220-y 25=1 5.126.0 7.108.(1, +∞) 9.12 10.533或- 31112.(-1,1) 13.2 14.2-12二、解答题15.(1)由题意,2sin A cos B =sin C cos B +cos C sin B ,所以2sin A cos B =sin(B +C )=sin(π-A )=sin A .因为0<A <π,所以sin A ≠0.所以cos B =22.因为0<B <π,所以B =π4.(2)因为m·n =12cos A -5cos 2A ,所以m·n =-10cos 2A +12cos A +5=-10⎝⎛⎭⎫cos A -352+435. 所以当cos A =35时,m·n 取最大值.此时sin A =45(0<A <π2),于是tan A =43.所以tan C =-tan(A +B )=-tan A +tan B1-tan A tan B=7.16.证明(1)∵平面P AB ⊥平面ABCD ,平面P AB 平面ABCD = AB , P A ⊥AB ,P A ⊂平面P AB ,∴ P A ⊥平面ABCD .∵BD ⊂平面ABCD ,∴P A ⊥BD .连结AC BD O =,∵AB = 1,BC = 2,CD = 4, ∴12AB BC BC CD ==. ∵AB ∥CD ,BC ⊥CD , ∴Rt ABC ∆∽Rt BCD ∆. ∴BDC ACB ∠=∠.∴90ACB CBD BDC CBD ∠+∠=∠+∠=︒.则AC ⊥BD .∵AC PA A =,∴BD ⊥平面P AC .(2)∵PB //平面F AC ,PB ⊂平面PBD ,平面PBD 平面F AC= FO ,∴FO ∥PB ,∴DF DOPF OB=. 又∵AB //CD ,且14BO AB OD CD ==,∴DF :FP=4:1. 17.(1)设奖励函数模型为y =f (x ),按公司对函数模型的基本要求,函数y =f (x )满足:当x ∈[10,1 000]时,①f (x )在定义域[10,1 000]上是增函数;②f (x )≤9恒成立;③f (x )≤x5恒成立.对于函数模型f (x )=x150+2.当x ∈[10,1 000]时,f (x )是增函数,f (x )max =f (1 000)=1 000150+2=203+2<9,所以f (x )≤9恒成立.但x =10时,f (10)=115+2>105,即f (x )≤x5不恒成立,故该函数模型不符合公司要求.(2)对于函数模型f (x )=10x -3a x +2,即f (x )=10-3a +20x +2,当3a +20>0,即a >-203时递增;要使f (x )≤9对x ∈[10,1 000]恒成立,即f (1 000)≤9,3a +18≥1 000,a ≥9823;要使f (x )≤x 5对x ∈[10,1 000]恒成立,即10x -3a x +2≤x 5,x 2-48x +15a ≥0恒成立,所以a ≥1925.综上所述,a ≥9823,所以满足条件的最小的正整数a 的值为328.P FDCBA O18.(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程22221x y a b +=,得y =±2b a .由题意知22b a=1,即a =2b 2,又e =c a =32, 所以a =2,b =1. 所以椭圆C 的方程为2214x y +=. (2)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立0022,1,4y kx y kx x y =+-⎧⎪⎨+=⎪⎩ 整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0. 由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又220014x y +=,所以16y 20k 2+8x 0y 0k +x 20=0,故k =-004x y . 所以直线l 方程为0014x x y y +=,令x =0,解得点A 01(0,)y ,又直线m 方程为00043y y x y x =-,令x=0,解得点B 0(0,3)y -,△P AB 的外接圆方程为以AB 为直径的圆方程,即2001()(3)0x y y y y +-+=.整理得:220013(3)0x y y y y +-+-=,分别令2230,0,x y y ⎧+-=⎨=⎩解得圆过定点(.19.(1)f (x )的定义域是(0,+∞),f ′(x )=a +1x(x >0),1°当a =0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;2°当a <0时,由f ′(x )=0,解得x =-1a,则当x ∈⎝⎛⎭⎫0,-1a 时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎫-1a ,+∞时,f ′(x )<0,f (x )单调递减, 综上所述:当a =0时,f (x )在(0,+∞)上单调递增,当a <0时,f (x )在⎝⎛⎭⎫0,-1a 上单调递增,在⎝⎛⎭⎫-1a ,+∞上单调递减. (2)由题意:e x <x -mx有解,即e x x <x -m 有解,因此只需m <x -e x x ,x ∈(0,+∞)有解即可,设h (x )=x -e x x ,h ′(x )=1-e x x -e x 2x=1-e x ⎝⎛⎭⎫x +12x , 因为x +12x≥212=2>1,且x ∈(0,+∞)时e x >1,所以1-e x ⎝⎛⎭⎫x +12x <0,即h ′(x )<0.故h (x )在(0,+∞)上单调递减,∴h (x )<h (0)=0,故m <0.20.(1)设无穷等差数列{a n }的公差为d ,因为33()n n S S =对任意正整数n 都成立,所以分别取n =1,n =2时,则有:⎩⎪⎨⎪⎧a 1=a 31,8a 1+28d =(2a 1+d )3.因为数列{a n }的各项均为正整数,所以d ≥0. 可得a 1=1,d =0或d =2.当a 1=1,d =0时,a n =1,33()n n S S =成立;当a 1=1,d =2时,S n =n 2,所以33()n n S S =.因此,共有2个无穷等差数列满足条件,通项公式为a n =1或a n =2n -1.(2)(ⅰ)记A n ={1,2,…,S n },显然a 1=S 1=1.对于S 2=a 1+a 2=1+a 2,有A 2={1,2,…,S n }={1,a 2,1+a 2,|1-a 2|}={1,2,3,4},故1+a 2=4,所以a 2=3.(ⅱ)由题意可知,集合{a 1,a 2,…,a n }按上述规则,共产生S n 个正整数.而集合{a 1,a 2,…,a n ,a n +1}按上述规则产生的S n +1个正整数中,除1,2,…,S n 这S n 个正整数外,还有a n +1,a n +1+i ,|a n +1-i |(i =1,2,…,S n ),共2S n +1个数. 所以,S n +1=S n +(2S n +1)=3S n +1.又S n +1+12=3⎝⎛⎭⎫S n +12,所以S n =⎝⎛⎭⎫S 1+12·13n --12=12·3n -12. 当n ≥2时,a n =S n -S n -1=12·3n -12-⎝⎛⎭⎫12·13n --12=13n -,而a 1=1也满足a n =13n -. 所以,数列{a n }的通项公式是a n =13n -.。