30000吨散货船舵系计算书
30000吨散货船舾装数计算书
船长L
178.0
m
型宽B
27.60
m
型深D
13.9
m
设计吃水
9.6
m
结构吃水d
10.15
m
排水量(结构吃水)
41054
t
梁拱
0.45
m
二、舾装数N
按“CCS”2001年钢质海船入级与建造规范计算
N =2/3+2Bh+A/10
=410542/3+2x27.6x17.95+1072.65/10
a ——从船中夏季载重水线至上甲板的距离,
hI——各层宽度大于B/4的舱室,在其中心线处量计的高度.
A——船长L范围内夏季载重水线以上的船体部分和上层建筑以及各层宽度大于B/4的甲板室的侧投影面积的总和,1072.65 m2
A=(13.9-10.15+0.45)x178+30.4x3.0+21.2x2.7+21.2x2.7+13.6x2.7+13.6x2.65+15.8 x2.95
舾装数
N
数量
(个)
每个重量
kg
总长度
m
直径mm
长度
m
破断力
kN
根数
长度
(m /根)
破断力
kN
AM2
2380-2530
3
7350
605
76
240
1453
5
200
480.5
=1190.06+993.6+1072.65/10
=2288
式中:
——型排水量(结构吃水),41054 t
B——船宽,27.6 m
舵系计算书
舵臼内深度,按§3.2.7.3规定,实取80mm
2.舵叶结构尺寸计算:
根据§3.2.5.5,单板舵的舵板厚度t应不小于按下式计算所得之值:
t = 0.7 =0.7× =6.5mm
根据§3.2.5.6,单板舵舵叶上的水平加强筋在舵杆处的带板剖面模数W应不小于下式计算所得之值:
二、设计数据
水 线 长 LWL63.05m
两柱间长 LBP61.80m
型宽B11.3m
型深D4.2m
设计吃水 T.3.4m
设计航速 Vd16Km/h
最大转动舵角α 左、右各350
三、舵形状
四、舵形参数
1.舵叶面积: S=3.64m2(单叶)
2.平衡部分面积: S1=1.18m2
3.平衡系数: e=S1/S=1.18÷3.64=0.32
舵杆扭矩:M = PnX1= 45×0.055= 2.4KN.m
选用舵机:本船实选4 t-m电动液压舵机一台。
六、舵系零件
1பைடு நூலகம்舵杆计算
A.根据§3.2.2.1规定,下舵承处的舵杆直径D应不小于按下式计算所得之值:
D =73.25
式中: A--舵面积 A = 3.64m2
V--设计航速 V = 16Km/h
式中:V = 4.44 m/sα= 35 A =3.64m2
2.舵压力中心计算
压力中心至舵导缘的距离
Xc=(0.195 + 0.305Sinα)b
=(0.195 + 0.305Sin350)×1.77
= 0.655 m
压力中心至舵杆中心的距离:
X1=Xc-b1=0.655-0.6=0.055 m
舵强度计算书.
1. 概述1.1 本船是54m 甲板货船,适航于内河A 、B 、C 级航区。
1.2 本船舵计算按中国船级《钢质内河规范》(2009)的有关要求进行。
1.3 主尺度及参数总长L OA 59.5m水线长L S 58.53m型宽B 12.0m型深D 2.9m吃水d 1.2.3m航速V S =12km/h=6.4865kn=3.34m/s1.4 舵的计算参数舵叶数 2只舵类型 NACA0018悬挂舵舵平均高h 1.32m舵平均宽b 1.26展弦比λ 1.048舵面积A 1.67m 2面积系数μ 0.041平舵比e 0.286最大厚度t 0.227m最大舵角δ 35°2 舵杆计算2.1 下舵承处 按3.2.2.12.1.1 Cn 、 Cp 计算λ= 1.048Cn=1.059Cp=0.3952.1.2 R 计算(悬挂舵) m r h R 870.09075.0.22=+=式中:h=0.86 r=0.1372.1.2.1 r 计算,下列两式计算所得之值取大者r=|Cp -e|b=0.137r=0.1b=0.126式中:Cp=0.395 e=0.286 b=1.26mm R AV NC KD n b 15.8325.7323==δ实取:D=120mm式中: K=3.5 N=1 Cn=1.059A=1.67m 2 V=12km/h R=0.87 R 2=1.1r=0.15δb = 530N/mm 2 (#35)3 舵叶3.1 舵叶板(含顶板及底板)厚度 按3.2.5.1 mm V NC d a t n 31.410394.0105.12=++=式中:a=0.45m d=2.3 m N=1Cn=1.06 V=12km/h实取:t=5mm3.2 垂直隔板、水平隔板的厚度 按3.2.5.3实取:t=5mm4 舵力和舵杆扭矩计算 按蒲福-乔赛尔公式 详见《船舶设计实用手册.总体分册.中国船舶工业总公司.1998》。
舾装数计算书
§1.7.4.1:沿海航区船舶锚泊设备可降低一档选取,舾装数N=240-280
项目
规范要求
实际配备
首锚
数量
3
3
重量
660kg
660kg
霍尔锚(其中1只备用)
有档首锚链
总长度
302.5m
320m
直径
AM2Φ22
AM2Φ22
拖索
总长度
1ቤተ መጻሕፍቲ ባይዱ0m
180m
破断负荷
129.4KN
Φ21.5钢丝绳
(2)B----船宽(米)
B=10m
(3)a----从夏季载重水线到上甲板的距离(米)
a=0.65m
(4)hi----各层宽度大于B/4的舱室,在其中心线处量计的高度(米)
车辆甲板~驾驶甲板h1=5.193m
驾驶甲板~罗经甲板h2=2.201m
h=a+∑hi=8.04m
(5)A1----夏季载重水线以上船体部份的侧投影面积(米2)
A1=122.31m2
(6)A2----甲板室侧投影面积(米2)
A2=75.23m2
(7)A3----超过1.5m的挡风板和舷墙侧投影面积(米2)
A3=22.54m2
(8)A----所有的侧投影面积(米2)
A=220.08m2
共 3 页
第 3 页
四、舾装数N
N=△2/3+2Bh+A/10=245
五、锚及系泊设备配备
8车位客滚船
舾 装 数 计 算 书
标记
数量
修改单号
签字
日期
标 记
重(kg)量
比 例
设绘
描图
散货船设计计算书——船舶设计原理课程设计
89700t散货船设计计算书——《船舶设计原理》课程设计目录第一章课程设计任务书及分析 (5)1.1 船型、用途与航区 (5)1.2 规范与法规 (5)1.3 载重量与舱容 (5)1.4 船舶主尺度限制 (5)1.5 航速与续航力 (5)1.6 总体其他性能 (6)1.7 货舱与舱口盖 (6)1.8 船员定额 (6)1.9 主辅机及锅炉 (6)1.10 其他设备 (6)1.11 本章小结 (6)第二章船型特征及分析 (7)2.1 散货船用途 (7)2.2 载重吨位 (7)2.3 布置特点 (7)2.4 货舱数量 (7)2.5 积载因数 (7)2.6 起货设备 (7)2.7 货舱形式 (7)2.8 本章小结 (8)第三章新船主要要素选择 (8)3.1 主尺度选择 (8)3.1.1主要要素初步分析 (8)3.1.2 排水量初步选择 (9)3.1.3船长 (9)3.1.4船宽 (9)3.1.5方形系数和吃水 (9)3.1.6型深D的初步选择 (10)3.1.7主机初步选择 (10)3.1.8主尺度小结 (10)3.2重量估算 (11)3.2.1空船重量估算 (11)3.2.1.1主船体钢料重量 (11)3.2.1.2上层建筑钢料及舱内设备重量 (11)3.2.1.3舱口盖及舱口围板重量 (11)3.2.1.4机电设备重量 (11)3.2.1.5外舾装设备重量 (12)3.2.1.6螺旋桨重量 (12)3.2.1.7其他部分重量 (12)3.2.1.8空船重量小结 (12)3.2.2载重量与载货量 (12)3.2.2.1人员、行李及食品 (12)3.2.2.2备品及供应品 (12)3.2.2.3淡水 (13)3.2.2.4燃油 (13)3.2.2.5滑油及污油水 (13)3.2.2.6载货量 (13)3.2.2.7载重量与载货量小结 (13)3.3舱容初步计算与平衡(货舱段) (13)3.3.1新船所需舱容 (13)3.3.1.1货舱所需舱容 (13)3.3.1.3油水舱舱容 (14)3.3.2新船所能提供的舱容 (14)3.3.3舱容计算小结及舱容平衡 (15)3.4本章小结 (15)第四章新船总布置设计 (16)4.1主船体的区划 (16)4.1.1 首尾尖舱 (17)4.1.2机舱 (17)4.1.3货舱 (17)4.1.4双层底 (18)4.1.5首楼 (18)4.2货舱布置 (18)4.3油水舱布置 (19)4.3.1 压载舱布置 (19)4.3.2 燃油舱布置 (20)4.3.3 淡水舱布置 (20)4.4生活和工作舱室布置 (20)4.5舱容详细校核 (20)4.6本章小结 (22)第五章新船型线设计 (22)5.1型线设计概述 (22)5.2型线图及型值表 (22)5.3本章小结 (22)第六章性能计算 (23)6.1 最小干舷计算 (23)6.2 航速计算 (24)6.2.1阻力计算 (24)6.2.2航速估算 (26)6.3 登记吨位计算 (29)6.4 静水力性能计算 (31)6.5 典型装载情况的浮态和稳性计算 (32)6.5.2重量重心计算 (33)6.5.3浮态计算 (36)6.5.4完整稳性 (36)第七章课程设计小结 (37)7.1 船型、用途及航区 (38)7.2 主尺度和船型系数 (38)7.3 吨位、载重量及载货量 (38)7.4 航速和续航力 (38)7.5空船重量重心 (38)7.6 舱容 (38)7.7 轮机 (38)7.8螺旋桨 (39)7.9 船员人数 (39)7.10总布置图和型线图 (39)7.12课程设计体会 (39)7.12致谢 (40)第一章课程设计任务书及分析1.1 船型、用途与航区本船为钢质、单甲板、单机、单桨、尾机型散货船,设有首楼。
舵计算书
技术设计
标记
数量
修改标记
签字
日期
舵计算书
HBTC403-220-001JS
编制
翟景东
会签
校对
喻霁
打字
标检
朱显玲
总面积
m2
共4页
第1页
审核
杨鹄
湖北省船舶建造共性技术推广服务中心
审定
日期
2013.12
1.船舶主要数据
总长LOA47.00m
水线长Lwl44.75m
型宽BWL9.00m
设计吃水d 1.6m
型深D 2.25m
设计航速VS20Km/h
2.舵的基本参数
舵面积AR 1.69m2
舵高h 1.30m
舵平均宽度b 1.30m
平衡系数e 0.23
展舷比λ1
舵杆中心与舵叶前缘平均距离a 0.30 m
舵面积系数μ4.69%
舵剖面型式单板舵
3舵杆直径计算:按照CCS《钢质内河船舶入级与建造规范》(2002)
r=|Cp-e|b=0.2325
b=1.3
Cp=0.385
实取r=0.2325m
实取:D=90mm
3.2上舵承处舵杆ห้องสมุดไป่ตู้径D1按3.2.2.3
D1=69(KNCnAV2R2/σb)1/3=53.09mm
式中;R2=1.1r
K,σb,N,Cn,A,r,V同式3.1
实取D1=60mm
3.3舵叶的计算:按3.2.5.5
单板舵的舵板厚度t不小于下式计算之值:
t=0.7=5.1mm
式中:
D=53.09
实取t=6mm
3.4水平加强筋
单板舵舵叶上水平加强筋在舵杆处连同带板剖面模数W不小于下式计算之值:
舵系计算书
舵系计算书行选配。
本船设悬挂平板舵一门。
13.50m 11.90m 2.80m 0.90m 0.50m12km/h0.244m 24.1%0.58m 0.7240.145m0.250材料为#25优质碳素钢。
5mm本舵实际选用φ7-6×7+FC-1570钢丝绳。
9~11mm9七、舵柄、舵柄毂本船的舵柄、舵柄毂参照中国船级社《钢质内河船舶建造规范》(2009)第1篇第3章的要求进行计算。
由《规范》3.2.10.1规定矩形舵柄在距离舵杆中心线1.5D1处的剖面对其垂直轴的剖面模数式中:D 1= 4.9cm R=40cm 则:W=13.44cm 3实际舵柄的剖面模数不小于cm 344mm 实取h=50mm 88mm 实取D 0=100mm六、人力操舵装置传动零件1、舵链直径由《规范》7.2.5.2 规定舵链(索)直径应不小于 7~9 mm。
实取角钢L 63×63×5 双复作加强筋。
2、传动拉杆由《规范》7.2.5.3规定舵的传动拉杆直径应为舵链直径的1.2倍,即d′=本舵实际传动拉杆直径为 d =mm 的圆钢。
由《规范》3.2.10.1规定舵柄毂的高度h≥ 0.9D 1 =舵柄毂的外径D 0≥1.8D 1 =展舷比:λ=舵前缘距舵杆中心 a =四、舵杆:三、舵要素:一、概述:舵型:悬挂平板舵舵面积: A=舵面积系数: u=舵宽: b=型深: D =计算航速:V =总长:Loa=甲板宽: B=设计吃水: d=五、舵叶:1、由《规范》7.2.2.2 规定舵杆直径应不小于35mm。
应不小于W=0.14(1- 1.5D 1/R)D 13 cm 313.442、舵柄毂实取舵叶板厚度为: t =2、由《规范》7.2.4.1 规定平板舵舵叶上增设加强筋本舵实取舵杆直径D =60mm,本船舵系按中国船级社《内河小型船舶建造规范》(2006)对 B 级航区船舶的有关要求进平衡比: e=二、船舶主要参数:垂线间长:Lpp =1、由《规范》7.2.4.1规定平板舵的舵板厚度应不小于5mm。
散货船设计计算书——船舶设计原理课程设计
89700t散货船设计计算书——《船舶设计原理》课程设计目录第一章课程设计任务书及分析 (5)1.1 船型、用途与航区 (5)1.2 规范与法规 (5)1.3 载重量与舱容 (5)1.4 船舶主尺度限制 (5)1.5 航速与续航力 (5)1.6 总体其他性能 (6)1.7 货舱与舱口盖 (6)1.8 船员定额 (6)1.9 主辅机及锅炉 (6)1.10 其他设备 (6)1.11 本章小结 (6)第二章船型特征及分析 (7)2.1 散货船用途 (7)2.2 载重吨位 (7)2.3 布置特点 (7)2.4 货舱数量 (7)2.5 积载因数 (7)2.6 起货设备 (7)2.7 货舱形式 (7)2.8 本章小结 (8)第三章新船主要要素选择 (8)3.1 主尺度选择 (8)3.1.1主要要素初步分析 (8)3.1.2 排水量初步选择 (9)3.1.3船长 (9)3.1.4船宽 (9)3.1.5方形系数和吃水 (9)3.1.6型深D的初步选择 (10)3.1.7主机初步选择 (10)3.1.8主尺度小结 (10)3.2重量估算 (11)3.2.1空船重量估算 (11)3.2.1.1主船体钢料重量 (11)3.2.1.2上层建筑钢料及舱内设备重量 (11)3.2.1.3舱口盖及舱口围板重量 (11)3.2.1.4机电设备重量 (11)3.2.1.5外舾装设备重量 (12)3.2.1.6螺旋桨重量 (12)3.2.1.7其他部分重量 (12)3.2.1.8空船重量小结 (12)3.2.2载重量与载货量 (12)3.2.2.1人员、行李及食品 (12)3.2.2.2备品及供应品 (12)3.2.2.3淡水 (13)3.2.2.4燃油 (13)3.2.2.5滑油及污油水 (13)3.2.2.6载货量 (13)3.2.2.7载重量与载货量小结 (13)3.3舱容初步计算与平衡(货舱段) (13)3.3.1新船所需舱容 (13)3.3.1.1货舱所需舱容 (13)3.3.1.3油水舱舱容 (14)3.3.2新船所能提供的舱容 (14)3.3.3舱容计算小结及舱容平衡 (15)3.4本章小结 (15)第四章新船总布置设计 (16)4.1主船体的区划 (16)4.1.1 首尾尖舱 (17)4.1.2机舱 (17)4.1.3货舱 (17)4.1.4双层底 (18)4.1.5首楼 (18)4.2货舱布置 (18)4.3油水舱布置 (19)4.3.1 压载舱布置 (19)4.3.2 燃油舱布置 (20)4.3.3 淡水舱布置 (20)4.4生活和工作舱室布置 (20)4.5舱容详细校核 (20)4.6本章小结 (22)第五章新船型线设计 (22)5.1型线设计概述 (22)5.2型线图及型值表 (22)5.3本章小结 (22)第六章性能计算 (23)6.1 最小干舷计算 (23)6.2 航速计算 (24)6.2.1阻力计算 (24)6.2.2航速估算 (26)6.3 登记吨位计算 (29)6.4 静水力性能计算 (31)6.5 典型装载情况的浮态和稳性计算 (32)6.5.2重量重心计算 (33)6.5.3浮态计算 (36)6.5.4完整稳性 (36)第七章课程设计小结 (37)7.1 船型、用途及航区 (38)7.2 主尺度和船型系数 (38)7.3 吨位、载重量及载货量 (38)7.4 航速和续航力 (38)7.5空船重量重心 (38)7.6 舱容 (38)7.7 轮机 (38)7.8螺旋桨 (39)7.9 船员人数 (39)7.10总布置图和型线图 (39)7.12课程设计体会 (39)7.12致谢 (40)第一章课程设计任务书及分析1.1 船型、用途与航区本船为钢质、单甲板、单机、单桨、尾机型散货船,设有首楼。
30000吨多用途船船体舱段强度的有限元计算分析_英文_
第4卷第6期船舶力学V ol.4N o.6 2000年12月Journal of Shi p M echanics Dec.2000Finite Element Calculation of Three Dimensional H oldSection Stren g th of30000DWT Multi p ur p ose Shi pCHEN Qin g-q ian g,J IANG Nan,ZHU Shen g-chan g(China Shi p S cientific Research Center,Shan g hai200011,China)HU Jin-tao,WU Bin(Shan g hai Shi p Desi g n&Research Institute,Shan g hai200032,China)Abstract:In this p a p er,w e calculate and anal y ze the stren g th of the hold fram e of a30000DWT multi p ur2 p ose shi p b y3D F.E.M.Accordin g to direct calculation of G L Rules,the influence of lon g itudinal bendin g m om ents must be taken into account to g ether w ith the local loads of hull sections such as h y drod y nam ic p res2 sure,car g o load and g ravit y load.T he hull structure stresses and distortions are calculated under ballast,full and derrick o p eratin g load conditions.T he calculations indicate that the shi p stren g th can be ensured suffi2 cientl y accordin g to direct calculation of G L Rules.K e y w ords:finite element;hold section;srten g th;multi p ur p ose shi p;G L R ules1I ntroduction30000DWT multi p ur p ose shi p belon g s to a shi p for which there is an extensive dem and in the international m arket.T his t y p e of shi p either servers as a bulk carrier or as a containershi p.In com p arison w ith other t y p es of shi p,the hull structure of this shi p has its own features,such as lar g e deck o p enin g s,central lon g itudinal bulkhead at m id shi p.F or the structure features of this multi2 p ur p ose shi p,three hold sections are selected from N o.3to N o.5holds and anal y sis of three-dim ension hold section stren g th in the t y p ical o p eratin g m odes is carried out.B y usin g structural finite elem ent calculation and anal y sis of three-dim ensional hold section,the stress level and the stress distribution m a y be obtained and the hold section stren g th m a y be evaluated for the m ain hull of30000DWT multi p ur p ose shi p,so that the desi g ners m a y distribute the m aterials m ore reasonabl y and take necessar y m easures a g ainst the hi g h stress p ositions to av oid dam a g es to the hull structure in navi g ation.H old section anal y sis is an effective w a y in the direct calculation of the hull structure.T w o t y p ical load conditions,this is,full y-loaded de p arture and ballast arrival are selected to check the stren g th of three-dim ensional hold section in the hull structure.T he stren g th calculation and anal y sis are p erform ed for the calculated hold sections in the o p eratin g m odes when these hold sections are sub j ected to local load onl y and the concurrent action of the g irder bendin g m om ent and local load.2Princi p al p articulars of the hull and featuresT he30000DWT multi p ur p ose shi p is of double-bottom and double-shell structure and con-Received:2000-06-15tains five car g o holds for the containers.E ach hold m a y be divided into left and ri g ht half hold and either bulk car g oes or containers u p to six store y s m a y be loaded in the car g o hold.As for finite elem ent stren g th calculation of three hold sections ,three hold sections betw een N o.41and N o.145hold sections are selected to p erform calculation and anal y sis.T he p rinci p al p articulars of this shi p hull is g iven below:Overall len g th L =192.90mLen g th betw een p er p endicularsL p p =182.0m M olded breadthB =27.8m M olded de p thD =15.5m Calculated draftT =11.2m S p eedV =20.2kn Dis p lacem entΔ=42233.9t Block coefficient C b=0.723O p eratin g modes for anal y sis3.1Load conditionsExternal loads de p end on the fact that the hull is sub j ected to m ore heavil y t y p ical load condi 2tions.Basicall y ,this shi p is sub j ected to tw o load conditions ,i.e.full draft de p arture condition ,ballast de p arture condition.In the full draft de p arture condition ,three m iddle holds are loaded w ith car g oes ,fore and aft holds are em p t y holds ,ballast com p artm ent is in li g ht condition and the shi p is in sa gg in g condition ;in the ballast de p arture condition ,the shi p is loaded w ith no car g o ,ballast com p artm ent is full y loaded w ith ballast w ater and the shi p is in ho gg in g condition.T herefore ,these tw o load conditions are selected to be the load o p eratin g m odes ,servin g as the o p eratin g m odes for calculation under the action of the sa gg in g (ho gg in g )w ave bendin g m om ent to check the hold sec 2tion stren g th of the hull under the concurrent action of the g irder bendin g m om ent and the local load.In accordance w ith G L rules and Re g ulations ,it is necessar y to check the stren g th of hold section of the hull in tw o o p eratin g m odes in which the hold section is sub j ected to the load onl y w ithout reference to the action of the g irder bendin g m om ent.Because the shi p is re q uired w ith derricks at tw o transverse bulkheads ,the force and the bendin g m om ent p roduced b y them are g reater and w ill exert som e influence on the local p ositions in the hull ,hence ,in the loadin g o p er 2atin g m ode ,hold section stren g th of the hull is calculated a g ain to take into account the influence of the derricks.3.2O p eratin g modes for anal y sis(1)T he first o p eratin g m ode :full y -loaded de p arture and concurrent action of sa gg in g bendin g m om ent and hold section load.(2)T he second o p eratin g m ode :full y -loaded de p arture and the action of hold section load.(3)T he third o p eratin g m ode :full y -loaded de p arture and the action of hold section load and derrick load.52船舶力学第4卷第6期第6期Chen Q in gq ian g et al:F inite E lem ent Calculation (53)(4)T he fourth o p eratin g m ode:ballast de p arture and concurrent action of ho gg in g bendin g m om ent and hold section load.(5)T he fifth o p eratin g m ode:ballast de p arture and the action of hold section load.4Three dimensional finite element structure model4.1Determination of coordinate s y stemT he coordinate s y stem determ ined in this com p utational m odel is selected on the central lon g i2 tudinal section,the ori g in of coordinates is taken at the intersection p oint of the aft p er p endicular and the base line and on the basis of the ri g ht-handed coordinate s y stem law,X ax is(lon g itudinal) is in the bow direction,Yax is(transverse)is in the p ort direction of the shi p and Z ax is(vertical) is in the u p w ard direction to the deck.4.2Finite element model and boundar y constraintOn the hold sections of30000DWT multi p ur p ose shi p,all structures such as decks,bulkheads, bottoms and sides are m odeled and the finite elem ent m odel m ainl y consists of p late elem ents and beam elem ents.T hree inte g ral holds in N o.41to N o.145car g o hold area are selected in the cal2 culation of the finite elem ent m odel and the ri g id bulkheads are set at tw o ends of the transverse bulkhead for the boundar y constraints.In the calculation of local stren g th,the constraints are set at the bottoms and on the sides of N o.69and N o.sections and the sim p l y su pp orted ends are set at the ri g id bulkheads of tw o ends of the m odel.In the calculation of takin g into account the action of the g irder bendin g m om ent,the ri g id constraint is m ade at the ri g id bulkhead of the ri g ht end(at the p lace where X value is g reater) of the m odel and the bendin g m om ent and the shearin g force m a y be exerted on the ri g id bulkhead of the left end(at the p lace where X value is less)of the m odel and a certain node at the left to the central p lace of the cross-section of the hull beam.T he ri g id bulkhead consists of p late elem ents and beam elem ents and bendin g and torsion m om ent of inertia of the beam elem ent in tw o directions m a y take the sam e order of m a g nitude as that of the m om ent of inertia of the hull beam.T w o m odel ends and ri g id bulkheads onl y act as the boundar y conditions and no stren g th evaluation is m ade in the calculation.F i g.1shows the discrete dia g ram of three-dim ensional finite elem ent m odel for three-hold section structure of the hull.4.3T yp es of finite element model4.3.1Quadrilateral and trian g le p late elem entsT hese elem ents are g enerall y used in deck(p latform)p late,inner bottom p late,outer bottom shell p late,side p late,bulkhead p late,etc of the discrete hull.In addition,the discretization of bot2 tom keel and the w ebs of structural com p onents such as floor p late,side fram e m a y be realized in the form of the p late elem ent.4.3.2Beam elem entsT hese elem ents are norm all y used in the transverse beams on the sides,the strin g ers and the fram es for su pp ortin g the containers,etc.F i g .1T hree -dim ensional finite elem ent m odel for three -hold section structure of the hull4.3.3Bar elem entsT hese elem ents are used to set the boundar y constraint conditions in p erform in g the local stren g th calculation.4.4Sizes of finite element modelT here are m ore than 16000m odel nodes for calculatin g the three -dim ensional finite elem ent structure of the whole shi p hull.T he elem ents are divided into 22batches totalin g 31993elem ents and am on g them there are 14batches of p late elem ents am ountin g to 17745which are the p rim ar y elem ents for the m odel calculation ,7batches of beam elem ents am ountin g to 14240,a batch of bar elem ents am ountin g to 8.T he e q uations used to calculate the finite elem ent m odel of the structure total 65952(F i g .2shows the finite elem ent m odel of t y p ical cross -section structure of the m ain hull ).F i g .2T he finite elem ent m odel of t y p ical cross -section structure of the m ain hull4.5Boundar y force calculation in hold section anal y sisIn accordance w ith the direct calculation of G L Rules and Re g ulations ,the calculation and anal y sis m ethod for three -dim ensional finite elem ent of the hold section are re q uired to check the stren g th of hull hold section under the su p er p osition influence of the g eneral hull stren g th.It w ill be54船舶力学第4卷第6期necessar y to take into account the bendin g m om ent and the shearin g force for the g eneral hull stren g th,that is,in the direct calculation and anal y sis of finite elem ent m odel of three hold sections, the central p art of the m iddle hold is re q uired to have the stated bendin g m om ent value for the g eneral hull stren g th and the bulkhead p lace is re q uired to re g ulate the calculation of the hull boundar y force to determ ine the shearin g force value and the bendin g m om ent value new l y exerted on the boundar y.All actin g forces on the three-dim ensional finite elem ent m odel of the hold section, includin g the load force of the container car g oes,static w ave p ressure,d y nam ic p ressure,etc are g iven in the form of the concentrated nodal forces.T he si g n of the nodal forces is the sam e as the g lobal coordinate s y stem OXY Z.T he balance relation of all forces and m om ents actin g on the hold section m a y be ado p ted to determ ine the shearin g force and the bendin g m om ent added to the left end of the ri g id bulkhead.5Calculation of hull stren g th5.1Checkin g standardT he stresses obtained from the calculation are g enerall y resolved into the norm al stresses in X and Ydirections and the shearin g stress in XYdirection.T he stresses described in this re p ort refer to the nom inal stresses unless other noted and the nom inal stress is derived b y the follow in g ex p res2 sion:σ0=σ2x+σ2y-σxσy+3τ2x ywhereσ0:the resultant stress in the elem ent p lace;σx:the nom inal stress in the elem ent p lace and in X direction;σy:the nom inal stress in the elem ent p lace and in Y direction;τx y:the shearin g stress in the elem ent p lace and in XY direction.Stress discrim ination is usuall y m ade b y takin g the stress center of the q uadrilateral elem ent or trian g le elem ent as the standard,therefore,the stresses listed in the dia g rams are the stresses actin g on the elem ent center.Accordin g to the direct calculation of G L Rules and Re g ulations,(a)In consideration of the cou p lin g action of hull g irder bendin g m om ent,the stress in each structure com p onent of the hull hold section should not be g reater than the follow in g value:σ0= 230/k MPa.where k is a coefficient for comm on steel k=1.0,σ0=230MPa and for hi g h stren g th steel AH36 and DH36k=0.72.(b)T he stress in each structural com p onent of the hull hold section onl y sub j ected to the local load of the hull hold section should not be g reater than the follow in g value:σ1,σq=150/k MPaτ=100/k MPawhereσ1is the lon g itudinal bendin g stress of each structural com p onent sub j ected to the local load,第6期Chen Q in gq ian g et al:F inite E lem ent Calculation (55)σq is the transverse bendin g stress of each structural com p onent sub j ected to the local load andτisthe shearin g stress of each structural com p onent sub j ected to the local load.F or comm on steelσ1,σq=150MPa,τ=100MPa,and for hi g h stren g th steel AH36and Dh36σ1,σq=208.3/k MPa,τ=138.8/k MPa.(c)Checkin g u p should be based on the p erm issible stress(a)for anal y zin g the first and the fourth o p eratin g m ode and checkin g u p should be based on the p erm issible stress(b)for anal y zin g the second and the fifth o p eratin g m ode.5.2The first o p eratin g mode:full y-loaded de p arture and concurrent action of sa gg in gbendin g moment and hold section loadT his o p eratin g m ode is the o p eratin g m ode for shi p o p eration and a t y p ical o p eratin g m ode.Because the resultant bendin g m om ent is a g reater value,the g eneral stress level is g reater.It is reco g nized b y calculatin g that the stress distribution is less influenced b y the car g o w ei g ht load and the h y drod y nam ic p ressure of the hull,but influenced p rinci p all y b y the g irder bendin g m om ent.In this o p eratin g m ode,the deck stress is m ore uniform l y distributed and the stress distribution is less influenced b y the car g o w ei g ht load and h y drod y nam ic p ressure of the hull,but p rinci p all y in2 fluenced b y the g irder bendin g m om ent.Because of the g reater value of the sa gg in g bendin g m o2 m ent,the deck stress value is g reater at m idshi p,that is,near N o.119section and decreases g rad2 uall y in the direction of the stern p osition.S ince the m ain deck is far from the neutral ax is,its stress value is g reater.T he m ain deck of N o.3hold shows the m ax imum stress value due to bein g close to the m idshi p p osition and its stress value ran g es from206.52MPa to258.21MPa.T he stress value of the m ain deck of N o.4hold is relativel y less and its stress ran g es from137.68MPa to206.52MPa, whereas the stress value of the m ain deck of N o.5hold is much less.T he second deck falls a bit,and the stress at the p latform p osition below is much less than that of the m ain deck.In this o p eratin g m ode,the m ax imum stress of the hull hold section is at the to p p lace of the central lon g itudinal bulkhead,the m ax imum stress at this p lace is calculated to be262.13MPa which occurs at N o.121section.T he stress at the lon g itudinal bulkhead and the side p late shows bar-sha p ed distribution,the stress in shi p len g th direction decreases in the direction from m idshi p p lace to the stern,the stress in shi p hei g ht direction is g reater near the m ain deck and the bottom,the stress at the m iddle p lace is relativel y less and the stress at the m ain deck is g reater than that at the bottom.T he stress value of side p late of N o.3hold ran g es from198.48MPa to212.60MPa near the m ain deck p lace.T he stress value at the to p of the side lon g itudinal bulkhead of N o.3hold ran g es from225.35MPa to260.07MPa.F or the stress distribution of inner and outer bottom p lates of the hull,in this o p eratin g m ode, since N o.5hold is not loaded w ith car g oes whereas N o.3and N o.4holds are loaded w ith car g oes, the stress value is clearl y g reater than that of N o.5hold.T he stress decreases g raduall y in shi p breadth direction from the center to both sides.T he m ax imum stress of the inner bottom p late of N o.3hold is123.66MPa and occurs at N o.119section,T he m ax imum stress of the outer bottom p late is164.06MPa and occurs at N o.119section.T he stress in the bottom keel ran g es from 137.59MPa to158.77MPa.T he stress at the p i p in g p assa g ew a y of the bottom floor of N o.3hold is 56船舶力学第4卷第6期第6期Chen Q in gq ian g et al:F inite E lem ent Calculation (57)g reater than that at the other p laces.Because there ex ists car g o load on the p i p in g p assa g ew a y,to ascertain the variation of the local stress at the p i p in g p assa g ew a y,p lane finite elem ent anal y sis is m ade at N o.119section of the m ax imum stress w ith the p i p in g p assa g ew a y subdivided finel y.T he anal y ses indicate that the stress at the m id s p an of the p i p in g p assa g ew a y is113.27MPa.As the transverse m ember of hull section is less influenced b y the g irder bendin g m om ent and is chiefl y influenced b y the h y dro-d y nam ic p ressure,the stress level in g enerall y less.5.3The second o p eratin g mode:full y-loaded de p arture and the action of hold section loadIt is reco g nized b y calculatin g that the stress distribution is p rinci p all y influenced b y the car g o w ei g ht load and the h y drod y nam ic p ressure of the hull.S ince the influence of the hull g irder bendin g m om ent is not taken into account,the stress level of each p rim ar y m ember of the hull hold section is less.Because N o.5hold is sub j ected to h y drod y nam ic p ressure onl y and no car g o load,the stress is relativel y g reater in com p arison w ith these of the other tw o holds.In this o p eratin g m ode,the deck stress distribution is less influenced b y the car g o w ei g ht load and the h y drod y nam ic p ressure of the hull and the stress in N o.5hold is g reater.T he g reater stress of the lon g itudinal bulkhead occurs at the p lace near the hull bottom and b y discardin g the influence of the boundar y constraint,the m ax imum stress of the central lon g itudinal bulkhead is35.70MPa at N o.65section near the bottom,whereas the m ax imum stress of the side bulkhead is37.66MPa at N o.65section and at the hei g ht of4096mm.T he stress value of the side p late in this area is27.95MPa.F or the stress distribution of inner and outer bottom p lates of the hull,in this o p eratin g m ode, since N o.5hold is not loaded w ith car g oes and onl y sub j ected to h y drod y nam ic p ressure,therefore, the m ax imum stress occurs at the m iddle p art of N o.5hold.T he m ax imum stress of the inner bottom p late of N o.5hold is19.71MPa and occurs at the central lon g itudinal p lace of N o.52section.T he m ax imum stress of the outer bottom p late is31.38MPa and occurs at N o.54section at a distance 3230mm from the central lon g itudinal p lace.T he bottom keel is m ore influenced b y car g o load.T he stress at the p i p in g p assa g ew a y p lace of N o.3hold of bottom floor is g reater than that at the other p laces.5.4The third o p eratin g mode:full y-loaded de p arture and the action of hold sectionload and derrick loadT he third o p eratin g m ode adds the load action of the derricks betw een N o.4and N o.5holds and betw een N o.3and N o.4holds to the o p eratin g m ode for the calculation in full y-loaded de p arture and the action of the hold section load.Because g reater load of the derricks exerts influence on the local p lace of the hull,in p articular on the transverse bulkhead p lace,therefore,stren g th anal y sis of the hull structure influenced b y the derricks is m ade on the basis of the second o p eratin g m ode.In this o p eratin g m ode,derrick force and bendin g m om ent act p rinci p all y on the su pp ortin g bulkheads below the derricks and exert som e influence on the m ain deck and the second deck throu g h the j uncture of the su pp ortin g bulkhead and the deck.It is reco g nized b y calculatin g that under the action of the derrick load,the stress value at the j uncture of the m ain deck and the su pp ortin g bulkhead of the derrick is18.83MPa.T he stress of the second deck is g reater than that58船舶力学第4卷第6期of the m ain deck because the second deck carries the load transm itted from the su pp ortin g bulkhead of the derricks betw een N o.62and N o.66areas and the stress value ran g es from30.01MPa to 36.00MPa.T he central lon g itudinal bulkhead betw een tw o transverse bulkheads of the hold also carries derrick load,hence,the stress of the central lon g itudinal bulkhead betw een N o.62and N o.66 areas and betw een N o.103and N o.107areas is g reater than that of the other p laces,the stress of the form er p lace is u p to107.97MPa and the stress of the latter p lace is86.30MPa.T he transverse bulkheads of N o.103and N o.107areas also su pp ort the derricks and the stress value of the trans2 verse bulkhead at the derrick p lace ran g es from90.02MPa to96.59MPa.5.5The fourth o p eratin g mode:ballast de p arture and concurrent action of ho gg in gbendin g moment and hold section loadIn this o p eratin g m ode,the stress of the m ain deck of N o.3hold is m ore uniform ed distributed and the stress value ran g es from245.06MPa to282.82MPa.T he m ax imum stress of the hull hold section occurs at the to p of the central lon g itudinal bulkhead.T he m ax imum stress at the m iddle p art of N o.3is290.17MPa and occurs at N o.125section.T he stress attains to the m ax imum value at the to p of the side lon g itudinal bulkhead of N o.140section and its stress value is289.88MPa.T he m ax imum stress of the side p late near the m ain deck is255.07MPa at N o.125section.T he stress of the lon g itudinal bulkhead and the side p late shows the barsha p ed distribution sim ilar to that in the first o p eratin g m ode.In this o p eratin g m ode,the stress distribution of inner and outer bottom p late of the hull is sim ilar to that in the first o p eratin g m ode.T he m ax imum stress of inner bottom p late of N o.3hold is 118.66MPa and occurs at N o.119section.T he m ax imum stress of outer bottom p late of N o.3hold is 173.77MPa and also occurs at N o.119section.T he stress of the bottom keel ran g es from 139.16MPa to173.97MPa.5.6The fifth o p eratin g mode:ballast de p arture and the action of hold section loadIn this o p eratin g m ode,the deck stress distribution is less influenced locall y b y the h y drod y2 nam ic p ressure of the hull.T he stress of the hold near the bulkhead is relativel y g reater.T he m ax i2 mum stress of N o.4hold near the bulkhead is37.76MPa and occurs at N o.101section.T he m ax imum stress of the side bulkhead is50.80MPa and occurs at the hei g ht of4096mm of N o.61 section.T he m ax imum stress of the side p late is46.56MPa and occurs at the neutral ax is of N o.66 section.In this o p eratin g m ode,the stress distribution of inner bottom p late of the hull is sub j ected to ballast w ater,the outer bottom p late is under the action of ballast w ater and h y drod y nam ic p ressure w ithout considerin g the influence of the boundar y condition.T he m ax imum stress of the inner bottom p late occurs at the m iddle p art of N o.5hold,the m ax imum stress is29.22MPa and occurs at N o.52 section at a distance3230mm from the central lon g itudinal p lace.6Conclusions(1)Stress level and stress distribution of each p rim ar y m ember of hull hold section are derived第6期Chen Q in gq ian g et al:F inite E lem ent Calculation (59)from calculatin g and anal y zin g the stren g th of three hold section finite elem ent on30000DWT multi p ur p ose shi p in five o p eratin g m odes.T he calculations indicate that the shi p stren g th m a y be ensured sufficientl y.(2)Am on g the five o p eratin g m odes for the calculation,the first and the fourth o p eratin g m odes are the ones under the cou p lin g action of the g irder stren g th and the local stren g th,where the fourth o p eratin g m ode,that is,ballast de p arture and the action of ho gg in g w ave bendin g m om ent is the o p eratin g m ode in which the hull is under the m ax imum action of the vertical bendin g m om ent and the total stress level is g reater than that in the first o p eratin g m ode.B y summ in g u p these tw o o p2 eratin g m odes for calculatin g and anal y zin g the hull hold section,the m ax imum nom inal stress level of the deck is obtained to be282.82MPa,the m ax imum nom inal stress level of the central lon g itu2 dinal bulkhead is290.17MPa,the m ax imum nom inal stress level of the side lon g itudinal bulkhead is 289.88MPa and the m ax imum nom inal stress level of the side p late of the hull is255.07MPa.H i g h stren g th steels of AH36and DH36are used for the hull at the hi g hl y stressed p laces of these m embers,the y ield stren g th of the m aterial is353.03MPa,the p erm issible stress is319.44MPa, therefore,the stren g th at the above p laces m a y be ensured.At the bottom,the m ax imum nom inal stress level of the inner bottom p late is118.66MPa,the m ax imum nom inal stress level of the outer bottom p late is173.77MPa,the m ax imum nom inal stress level of the bottom keel is173.97MPa,the comm on steel w ith y ield stren g th235MPa is em p lo y ed at these p laces,its p erm issible stress is 225.55MPa,the stress value at these p laces is also less than the p erm issible stress,so the structural stren g th of the hold section com p lies w ith the stren g th re q uirem ents.(3)T he second and the fifth o p eratin g m odes for the calculation are the o p eratin g m odes in which the hull hold section is sub j ected to the local load and are used to anal y ze the local stren g th of each p rim ar y m ember of hull hold section and the calculations indicate that the stren g th of these m embers is less than the p erm issible standard in which the p erm issible stress of the m aterial w ith comm on stren g th is140.10MPa.(4)T he third o p eratin g m ode for the calculation is the o p eratin g m ode in which the influence of the derrick on the local stren g th of hull structure is anal y zed.T he calculation results indicate that when the derrick is in o p eration,the derrick load w ill increase the structural stress at the su pp ortin g p lace below the derrick but onl y a little and the stren g th of thses m embers com p lies w ith the stren g th re q uirem ents.R eference[1]G L Rules for C lassification and C onstruction[S].30000吨多用途船船体舱段强度的有限元计算分析陈庆强,江南,朱胜昌(中国船舶科学研究中心,上海200011)胡劲涛,吴斌(上海船舶研究院设计院,上海200032)摘要:本文对30000吨多用途船船体舱段强度进行了有限元直接计算分析。
3000T舾装规范计算书
m
肋 距
s
0.50
0.65
m
三、计算尺度:
计算船长
90.92
m
计算型宽
16.20
m
计算型深
5.50
m
计算吃水
d
4.00
m
肋 距
s
0.50
0.65
m
方型系数
Cb
0.8488
货舱长
l1
65.50
m
货舱宽
b1
12.96
m
四、舵系
1.舵杆:
1.1下舵承处的舵杆直径(§3.2.2.1)
应不小于下列计算所得:
五、锚泊及系泊设备
5.1舾装数(§3.4.2)
5.2锚及锚链:(§3.4.3)
根据舾装数及规范选取:
首锚:数量——2个;重量——2850 Kg
首锚链:长度——165 x2 m;锚链直径——38 mm
尾锚:数量——1个;重量——400 Kg
尾锚钢索:长度——50 m;锚索直径——20.5 mm
5.3系泊设备(§3.4.5)
矩形舵柄在距离舵杆中心1.5D处的剖面对其垂直轴的剖面模数W应不小于
实取舵柄截面尺寸(150×100),W=2250 cm3
舵扇毂的高度h=120≥0.9D1=90 mm
舵扇毂的外径D0=200≥1.8D1=180 mm
舵柄与舵柄之间的连杆剖面积a和剖面惯性矩I应不小于(§3.2.10.3)
连杆实取φ89x6,a=15.6 cm2, I=134.8 cm4
一、概述:
1.本船为钢质、具有纵通大舱口,在货舱区域设有双舷、双底的多用途集装箱船。
2.本船按中国船级社《钢质内河船舶入级与建造பைடு நூலகம்范》(2009年)对A级航区要求进行核算。
30000吨散货船建造方针要点说明
30000吨大湖型(CSR)散货船建造方针目录1.总则 01 2.合同概要 02 3.船舶主要技术参数 03 4.物量估算 04 5.建造法 05 6.建造主要大节点计划 06 7.相关部门的业务与要求 07 8.专项研究 0830000吨大湖型(CSR)散货船建造方针精心组织完整制造扩大总组缩短周期1、总则:《30000吨大湖型(CSR)散货船建造方针》(下称《建造方针》)是工厂组织30000吨大湖型(CSR)散货船(下称CSR大湖型船)建造的纲领性文件。
该建造方针将贯穿于CSR大湖型船建造的始终,各生产单位应遵照执行。
2、合同概况:2.1 船东:NB2.2 船型:钢质散货船、单机单桨、载重量29800吨。
2.3 建造数量:NB艘。
2.4 建造精度标准:按照《中国造船质量标准》(CB/T4000-2005 2005-12-27)和NB重工造船质量标准。
2.5 船级与应满足的规:2.51 本船所入船级为美国船级(下称ABS),船舶的建造和配套设备应符合ABS规的要求。
2.52船级符号:+A1 ○E, Bulk Carrier, CSR, ICE CLASS 1C, BC-A, Strengthened for heavy cargoes, Hold No.2,4,6 may be empty, ESP,IWS, BWMP(S),+AMS, +ACCU。
2.6 船旗:Hong Kong()。
2.7 交船罚款条件:2.71交船期:2.72主机油耗:2.73航速:2.74载重量:3.1 主尺度:总长约186 米;垂线间长 178.8 米;型宽 23.7 米;型深 14.6 米;设计吃水 10.4 米;载重量 29800 吨;航速 14 节。
3.2 结构型式与分舱:本船为一层连续的干舷甲板,前倾型船首,球鼻首,首楼甲板,五层居住舱室。
居住、驾驶、机舱被安装在后部。
机舱和货舱区为双层底结构。
该船为六个货舱,机舱、艏尖舱和艉尖舱,由九个水密壁分割开。
舵系结构计算
--平衡系数, = e =0.25;
则:R正=0.08c=0.0224m ,取R正=0.1c =0.028m,
R倒=0.41c =0.115m,
带入上式,则得:
正车时:T正=509.17 Nm;倒车时:T倒=653.5 Nm;
3、舵机选择:
考虑到风浪阻力及各舵承处的摩擦力矩,故按1.5倍的舵杆扭矩选取舵机,即舵机的最小扭矩:T=1.5 x T正= 1.5 x 509.17 =763.76 N.m = 77.85 Kg.m
2、舵叶板厚度:
按3.1.14.2规定,舵叶板t厚度就不小于ห้องสมุดไป่ตู้下式计算所得之值:
T=1.5sVd+2.5 mm;
式中:s=0.602 m,Vd=V正=12.96 Kn ;
则:t=1.5 x 0.602 x 12.96 + 2.5 = 14.20 (mm) ;
实取:t= 16 mm ,不设加强筋,满足要求。
1.5、下舵承支持力:
P=F+ =9321.65 N;
1、舵杆直径核算:
2.1、舵柄处舵杆直径:
按3.1.5.5,舵柄处传递舵扭矩的舵杆直径Dt应不小于按下式计算所得之值:
Dt=4.2 = 18.38 mm;
式中:T=T正=136.35 Nm; =(450/235) =1.628;
实取Dc=63.5 mm。
3、舵杆轴承的核算:
本船舵杆的下舵承为滑动轴承(铜套),上舵承为滚动轴承(向心推力滚柱轴承)。
按3.1.13.1,轴承应具有足够的润滑,其支承面积Ab(支承面的长度乘以直径)应不小于按下式计算所得之值:
mm
式中:P—为轴承的支承力,对下舵承P=9321.65 N ,
30000t大件运输船总体设计分析
30000t大件运输船总体设计分析孙丽娜【摘要】With the development of the global economy and the improvement of the level of equipment manufacturing industry, more and more goods appear to be large and heavy, which need specialized ships for transportation. Because of the high degree of large transport specialization, and more and more obvious irreplaceable advantages in the shipping market position, this ship type has a promising market potential. In view of the high requirements of the special nature and transport reliability, safety and applicability of this kind of ship, thorough study and demonstration on the ship form, main dimensions and lines of the ship have been made at initial design stage. Outstanding hull lines were used as basic reference, and CFD optimization, analysis and design were carried out in combination with the special operation requirements from the ship owners and the inherent characteristics of this ship type. And in-depth research and reasonable arrangement were also made on the maneuverability, performance and general arrangement. The over ballasting conditions and the ultra large cargo transportation condition in harbor were analyzed with an emphasis. Considering the non-standard feature of transported cargo on general arrangement, the hull division, superstructure, engine room position and mooring, rudder, sound and light signal systems are properly arranged, to meet the requirements of ship owner and classification society. This design scheme can be referredby similar ship type design.%随着全球经济的发展和装备制造业水平的提高,越来越多的货物出现大型化和重型化的发展趋势,必须由专业的特种船舶运输,且由于大件运输专业化程度高、不可替代的优势在航运市场中的地位日趋显著,市场发展前景广阔.鉴于此类船舶的特殊性及运输可靠性、安全性、适用性的高要求,在设计初始对于船型、主尺度、线型进行了充分的研究和论证.参考和借鉴优秀的线型进行CFD优化、分析、设计,并且结合船东在使用方面的特殊要求和此类船舶的固有属性,在操纵性、性能和总体布置上深入研究、合理布置.着重分析港内超压载工况和装运超大型货物的典型工况;考虑到运载货物的非标准性和特殊性对于总体布置上的影响,在船体划分、上建,机舱位置以及系泊、舵、声光信号等系统做了合理布置,满足船东、船级社的要求.该设计方案可供同类船舶设计参考.【期刊名称】《船舶与海洋工程》【年(卷),期】2015(031)005【总页数】6页(P11-16)【关键词】大件运输船;大型货物;性能分析;总体设计【作者】孙丽娜【作者单位】上海佳豪船舶工程设计股份有限公司,上海 201612【正文语种】中文【中图分类】U6620 引言大件运输船舶又称重载船,是指用于运输不可分解的、常规船舶不能运输的重件或大件的船舶。
30000吨散货船建造方针解读
30000吨大湖型(CSR)散货船建造方针目录1.总则 01 2.合同概要 02 3.船舶主要技术参数 03 4.物量估算 04 5.建造法 05 6.建造主要大节点计划 06 7.相关部门的业务与要求 07 8.专项研究 0830000吨大湖型(CSR)散货船建造方针精心组织完整制造扩大总组缩短周期1、总则:《30000吨大湖型(CSR)散货船建造方针》(下称《建造方针》)是工厂组织30000吨大湖型(CSR)散货船(下称CSR大湖型船)建造的纲领性文件。
该建造方针将贯穿于CSR大湖型船建造的始终,各生产单位应遵照执行。
2、合同概况:2.1 船东:NB2.2 船型:钢质散货船、单机单桨、载重量29800吨。
2.3 建造数量:NB艘。
2.4 建造精度标准:按照《中国造船质量标准》(CB/T4000-2005 2005-12-27)和NB重工造船质量标准。
2.5 船级与应满足的规范:2.51 本船所入船级为美国船级(下称ABS),船舶的建造和配套设备应符合ABS规范的要求。
2.52船级符号:+A1 ○E, Bulk Carrier, CSR, ICE CLASS 1C, BC-A, Strengthened for heavy cargoes, Hold No.2,4,6 may be empty, ESP,IWS, BWMP(S),+AMS, +ACCU。
2.6 船旗:Hong Kong(香港)。
2.7 交船罚款条件:2.71交船期:2.72主机油耗:2.73航速:2.74载重量:3.1 主尺度:总长约186 米;垂线间长 178.8 米;型宽 23.7 米;型深 14.6 米;设计吃水 10.4 米;载重量 29800 吨;航速 14 节。
3.2 结构型式与分舱:本船为一层连续的干舷甲板,前倾型船首,球鼻首,首楼甲板,五层居住舱室。
居住、驾驶、机舱被安装在后部。
机舱和货舱区为双层底结构。
该船为六个货舱,机舱、艏尖舱和艉尖舱,由九个水密壁分割开。
舵计算书
共 6 页
第 3 页
Vd正=V=12.0 kn
Vd倒=6.0kn
3.2 舵杆扭矩 按§3.1.3
T正=F正R正=*N.m
T倒=F倒R倒=*N.m
式中:R正=C(α正-β)=*×(*-*)=*m
取: R正=0.1C=*m
R倒=C(α倒-β)=*×(*-*)=*m
3.3 舵杆-舵叶系统的受力 按§3.1.4
6.2螺母:按§3.1.8.5
螺纹外径dg≥0.65Dc=91.67mm
螺母长度hn≥0.6dg=55 mm
螺母外径dn≥1.2Du=156.0或者dn≥1.5dg=137.51 mm
实取螺母M120×2,螺母长度70mm,螺母外径166mm
共 6页
第 6页
5舵机功率计算(按乔赛尔公式)
5.1正车状态(最大舵角35°,最大航速 =12kn=6.173m/s)
且舵顶板和底板不小于舵旁板。
实取:旁板t=6 mm
顶板、底板t=8 mm
共 6 页
第 5 页
5.2 垂直隔板及水平隔板 按§3.1.6.3
t≮0.7t舵旁板=*mm
且t≮8 mm
实取:t=*mm
5.3 导边板3.1.6.4
t=1.2t舵旁板=*mm
实取: t=*mm
6. 舵杆与舵叶的有键锥形连接 按§3.1.8
下舵承处的舵杆最大弯矩Mb计算:(见下图)
Mb正=F正〔l2+ 〕=*N.m
Mb倒=F倒〔l2+ 〕=*N.m
式中:F正=*N
F倒=*N
l1=*m
l2=*m
l3=*m
=*m
=*m
共 6 页
第 4 页
30000载重吨散货船主尺度确定
30000载重吨散货船主尺度确定 船海XS1001班 张水林 0121002090626已知载重量DW=30000t ,船舶的航速取为s V =14 Kn1主尺度确定1.1船长L 的确定船长采用以下统计公式(适用于10000t<DW <100000t 的散货船)估算: 0.29188.545L DW =算得船长L= 173.04 m1.2船宽B 的确定船宽采用以下统计公式(适用于DW>10000t 的散货船)估算: 1.1370.0734B L =算得船宽B = 25.73 m1.3吃水d 的确定吃水采用以下统计公式(适用于DW>10000t 的散货船)估算: 1.0510.0441d L =算得吃水d=9.93 m1.4估算型深由于型深主要是根据相关因素(舱容、布置地位等)的校核结果来确定的,所以估算型深的近似公式仅在初始选择型深时使用。
/0.75D d = 算得型深D=13.24 m1.5方形系数B C 的确定方形系数采用以下统计公式估算:0.17020.15870.06120.03171.0911B s C L B d V --=式中s V 为船舶的航速,取为s V =14 kn算得方形系数B C =0.8042、根据浮性平衡方程计算船的实际排水量B kLBdC ρ∆=∑式中ρ为海水的密度,取为1.025;k 为附体系数,取为1.006; 算得∆=36653.3 t3、空船重量LW 计算通常船舶的排水量分为空船重量和载重量两部分,即LW DW ∆=+ 空船重量通常由船体钢料重量H W 、舾装重量O W 和机电重量M W 三个部分组成,即H O M LW W W W =++3.1船体钢料重量H W 计算采用下列统计公式初步估算船体钢料重量243.90(0.7)101200H B W KL B C -=+⨯+ 式中:3/230010.75100L K -⎛⎫=- ⎪⎝⎭算得K=9.319 ;H W =5411.5 t 3.2舾装重量O W 估算采用统计公式O W KLB =K 为每平方米舾装重量,根据图表插值,取为K=0.22 算得O W =979.5 t3.3机电重量M W 估算用经验公式估算:()0.5/0.7355M M W C P =式中P 为主机功率 M C ——系数,MCR 在10000KW 以下时,M C =8~9,这里取M C =8.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
审 定日 期 2004.01标 检审 核校 对描 校编 制 吴 强描 打30000吨级散货船详 细 设 计舵系计算书JH403-230-01js上海佳豪船舶工程有限公司标记数量修改单号签 字 日 期总面积 m 2 0.6875 共 页 11 第 页1 会 签旧底图登记号 底图登记号1、概述本船为单甲板、双底层、艉机型、单机、单桨、单舵船。
航行在国内沿海港口。
本船装载货物以煤炭为主,兼运铁矿石谷物等散货。
2、计算依据本计算书是根据“2001钢质海船入级与建造规范”第2分册第3章第一节的有关要求进行计算的。
3、船舶的主要尺度及要素:总长L0a 178.00m垂线间长Lbp 170.80m型宽B 27.60m型深D 13.90m设计吃水d 9.60m服务航速v 13.5m4、舵的要素计算型式:半平衡半悬挂舵舵数量:1只4.1舵面积:A=A1+A2=25.26m2A1= A11+ A1ƒ==15.482m2A2= A22+ A2 ƒ==9.78m2ą1——系数0.33(正车),0.66(倒车)ą2——系数0.25(正车),0.55(倒车)A1ƒ=5.318 m2 A11=10.16 m2 A2 ƒ=1.425 m2 A2 2=8.357 m2正车:F=132×1.27×1.1×1.0×25.26×13.52=848.93KN 倒车:F=132×1.27×0.8×1.0×25.26×6.752=154.35KN 4.3舵杆扭矩T=F ·R NM式中:F —舵力 正车 F=848.93KN 倒车 F=154.35KNR —臂矩 m R=c 1(α1-β1)A A 1+ c 2(α2-β2)AA2 (m) 式中:A 1=15.482 m 2 A 2=9.78 m 2 c 1=78.32432.1614.2=+ c 2=22h A =2158.2815.2+=2.49β1=11A f A =482.15318.5=0.343 β2=22A f A =78.9425.1=0.146 正车时:R=3.78×(0.33-0.343)×235.25482.15+2.49×(0.25-0.146)×235.25753.9 =-0.03+0.1=0.07 m 又在正车时 R>A 101(A 1c 1+ A 2c 2)=26.25101⨯×(15.483×3.78+9.753×2.49)=0.328取R=0.328m 倒车时:R=3.78×(0.66-0.343)×235.25482.15+2.49×(0.55-0.146) ×235.25753.9 =0.735+0.389=1.124m∴正车时舵杆扭矩:T=F ·R=848.93×0.328=278.45KN.m 倒车时舵杆扭矩:T=F ·R=154.35×1.124=173.1 KN.m考虑船在风浪中及航行中受到的附加扭矩和舵系的摩擦扭矩。
取附加扭矩0.5T则舵机扭矩T 总=T ×1.5=417.68KNm 现选51TM 电动液压舵机一台 5、舵系受力计算5.1 A 2面积部分的舵力F R2 F R2=F R AA 2=848.93×KN 31.52026.25842.15= 5.2 舵销处的弯矩 M R =KNm F R 68.114424.431.52021022=⨯=⨯ 5.3 下舵承处弯矩M b =KNm F R 5.422)189.2(104.493.848)3020(1010222=+⨯=+5.4 舵上端处的弯矩 M s =KNm M R 68.665)189.2(14.468.11442)3020(3010222=+⨯⨯⨯=+5.5 舵销处的剪力 B 1=KN h F c R 79.1038189.276.493.8483020+⨯=+5.6 下舵承处的剪力 B 2=KN F R 23.212493.8484== 5.7 上舵承处剪力 B 3=KN Mb 88.16161.25.42240== 5.8 舵业缺口处的强度校核 5.8.1 弯曲应力σ=WM R<75N/min W -缺口处的剖面模数 19282.3cm 3 M R -缺口处的弯矩 1233670Nmσ=W M R 2/98.633.192821233670mm N =<75N/mm25.8.2 剪切应力 τ≤50N/mm2P=B 1=1038.79KN -缺口处剪力 At -119867.8mm 2-缺口处面积τ=231/97.98.1198671015.179.102815.1mm N At B =⨯⨯= <50N/mm 25.8.3 等效应力 223τστ+=e ≤100N/mm 22222/100/27.6697.9398.63mm N mm N e <=⨯+=τ6、舵系主要零件尺寸计算6.1舵柄处的舵杆直径 Dt=4.23SK Tmm 式中:T=舵杆扭矩 T=278450NmK S =舵杆材料系数 K S =2356s =235220=0.936 Dt=4.23936.0278450=66.76×4.2=280.37mm 取Dt=320mm6.2下舵承处及其以下的舵杆直径Dc= Dt 2)(3416TMb + 式中:Dt —舵柄处的舵杆直径 Dt=280.37mmT —舵杆扭矩 T=278.45KNmMb —下舵承至舵叶顶部间舵杆最大弯矩 Mb=422.5KNm Dc=280.37×62)45.2785.422(341⨯+ =280.37×6069.4==327.69mm 取Dt=380mm 6.3下舵承处舵杆强度校核等效应力 σe =23t τσ+<118Ks N/mm 2 式中:σ=32.10Dt Mb ⨯×103=3)380(814.3102.10⨯×103=54872000108.31703023⨯=57.78N/mm 2τ=31.5Dt T ×103=33)380(103201.5⨯⨯×103=29.74N/mm 2σe =2274.29378.57⨯+=77.4N/m 2 [σe ] =118Ks=118×0.936=110.45N/mm 2 σe <[σe ] 满足强度要求 6.4舵销直径 Dp=0.35KpPmm 式中:P —舵销对舵叶的支持力 P=1038.79KN Kp —舵销的材料系数 Kp=235s σ=235220=0.936 Dp=0.35×936.01079.10383⨯=0.35×1053.5=368.72mm舵销所取Dp=400mm 6.5舵叶6.5.1舵叶旁板、顶板和底板的厚度tt=5.5S β1410⋅+AFd +25 式中:d —夏季载重线吃水 9.6m F —舵力 848.93KN A —舵叶面积 26m 2β=2)(5.01.1bs -=2)65.06.0(5.01.1⨯-=0.821其中:S —板格短边 0.6m b —板格长边 0.65m t=5.5×0.6×0.821×41026.258489306.9—⨯++2.5 =12.25mm t 取 t=14mm 下舵销区域的旁板 t=24mm 6.5.2垂直隔板和水平隔板厚度t 1t 1≥0.7t=0.7×12.25=8.58mm取t 1=12mm6.5.3舵叶导边板厚度t 2t 2≥1.2t=1.2×12.25=14.7mm取t 216mm6.6舵杆与舵接维体长度L 1=1.5Dc=1.5×327.69=491.54mm取L 1=520MM 锥体的锥度取1:106.7承受舵杆圆锥体的舵叶内构件其长度中点处厚度σ1=0.5Dt=0.5×280.37=140.185mm取σ1=160mm6.8舵销在其舵扭内的支承长度L 2舵销轴承的支承长度不小于舵销衬套的直径,但不应该超过舵销衬套直径的1.2倍故取L 2=420mm6.9舵销与销座锥体连接锥体的锥度取1:10锥体长度≦Dp 0取锥体长度L 3=420mm 6.10舵扭、销座的厚度δ2δ2=0.4Dp=0.4×382.63=153.05取δ2=160mm6.11键6.11.1舵杆与舵叶的有键锥形连接1) 键的剪切面积AsAs=sk D Tfσ⨯16 cm 2 式中:D k =舵杆锥体装键处的平均直径 取354mmσs =键材料为#45钢,屈服应力为355N/mm 2 T ƒ=0.02664Dt 3Ks=1368235.5N.m 其中Dt —舵杆直径 380mm Ks —舵杆材料系数 0.936A s =3553545.136823516⨯⨯=174.2cm 22) 键的受挤压面积A k =sk D Tf σ5式中:Dk —354mm舵 系 计 算 书 JH403-230-01JS 第 11 页σs —200N/mm 2(船体结构用铸钢)T f =1368235.5N.mA k =2003545.13682355⨯⨯=96.6 cm 2实取键 A80X32X4206.12螺母的尺寸螺绞外径: dg ≥0.65Dc=0.65×327.69=213mm式中Dc=327.69mm螺母长度: hn ≥0.6dg=127.8mm螺母外径: dn ≥1.2Du=1.2×328=393.6mm或dn ≥1.5dg=328mm 取大者式中: Du=328mm实取螺母为 M230×6其dg=230mm>218.65mm螺母长度为 hn=140mm>127.8mm螺母外径 dn=420mm>393.6mm6.13 金属轴承的经向间隙σ值σ=11000+d 下舵承处 σ=mm 38.111000380=+ 舵销处 σ=mm 4.111000400=+。