数学建模课后习题
数学建模课后习题
第一章 课后习题6、利用1、5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒与致命得最小剂量。
解:假设病人服用氨茶碱得总剂量为a ,由书中已建立得模型与假设得出肠胃中得药量为: 由于肠胃中药物向血液系统得转移率与药量成正比,比例系数,得到微分方程(1)原模型已假设时血液中药量无药物,则,得增长速度为。
由于治疗而减少得速度与本身成正比,比例系数,所以得到方程:(2)方程(1)可转换为:ﻩ 带入方程(2)可得:将与带入以上两方程,得:针对孩子求解,得:严重中毒时间及服用最小剂量:,; 致命中毒时间及服用最小剂量:, 针对成人求解:严重中毒时间及服用最小剂量:, 致命时间及服用最小剂量:,课后习题7、对于1、5节得模型,如果采用得就是体外血液透析得办法,求解药物中毒施救模型得血液用药量得变化并作图。
解:已知血液透析法就是自身排除率得6倍,所以 ,x 为胃肠道中得药量,1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dtdzt 解得:用matla b画图:图中绿色线条代表采用体外血液透析血液中药物浓度得变化情况。
从图中可以瞧出,采取血液透析时血液中药物浓度就开始下降。
T=2时,血液中药物浓度最高,为236、5;当z=200时,t=2、8731,血液透析0、8731小时后就开始解毒。
第二章1、用2、4节实物交换模型中介绍得无差别曲线得概念,讨论以下得雇员与雇主之间得关系:1)以雇员一天得工作时间与工资分别为横坐标与纵坐标,画出雇员无差别曲线族得示意图,解释曲线为什么就是那种形状;2)如果雇主付计时费,对不同得工资率画出计时工资线族,根据雇员得无差别曲线族与雇主得计时工资线族,讨论双方将在怎样得一条曲线上达成协议;3)雇员与雇主已经达成了协议,如果雇主想使用雇员得工作时间增加到t2,她有两种办法:一就是提高计时工资率,在协议线得另一点达成新得协议;二就是实行超时工资制,即对工时仍付原计时工资,对工时付给更高得超时工资,试用作图方法分析那种办法对雇主更有利,指出这个结果得条件。
数学建模课后习题作业
【陈文滨】1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?【模型假设】(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。
【模型建立】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。
数学建模课后作业
数学建模实验P.172 实验二最短电缆长度问题设有九个节点,它们的坐标分别为a(0,15), b(5,20), c(16,24), d(20,20), e(33,25), f(23,11), g(35,7), h(25,0), i(10,3)任意两个节点之间的距离为:问:怎样连接电缆,使每个节点都连通,且所用的总电缆的长度为最短.问题分析:本题研究的是一个最优化问题。
问题中给出了9个节点坐标,需要从复杂的连接方案中选出最短的电缆连接路线。
要设计方案求最短电缆长度,可先求出任意两点间的距离,然后在构造边权矩阵,用prim算法求电缆线的最优连通方案。
符号说明:W:任意两点之间的距离矩阵X:节点的横坐标Y:节点的纵坐标解:先计算出任意两点间的距离;W=[];X = [0 5 16 20 33 23 35 25 10]; Y = [15 20 24 20 25 11 7 0 3]; N=length(X);for i=1:Nfor j=1:N W=[W;(abs(X(i)-X(j))+abs(Y(i)-Y( j)))]endendW'输出结果截图为:将结果整理列表如下:用prim算法求电缆线的最优连通方案;运行结果截图为:分析结果可知:最小生成树的边集合为{(1,2),(2,3),(3,4),(4,6),(6,8),(6,7),(3,5),(8,9)}即用prime算法求出的最优电缆连接方案为:{(a,b),(b,c),(c,d),(d,f),(f,h),(f,g),(c,e),(h,i)}。
P186实验一求最短路问题求图14.9所示有向网络中自点1到点6的最短有向路问题分析:用floyde 算法算出任意两点之间的最短的距离。
符号说明:D:任意两个点之间的最短距离n:迭代次数解:function [D,path]=floyd(a)n=size(a,1);%设置D和Path的初值D=a;path=zeros(n,n);for i=1:nfor j=1:nif D(i,j)~=infpath(i,j)=j; %j是i的后继点endendend%做n次迭代,每次迭代均更新D(i,j)和path(i,j) for k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);path(i,j)=path(i,k);endendendend在MATLAB命令窗口键入:a=[0 5 inf 3 inf inf;inf 0 4 2 inf inf;inf inf 0 2 4 3;inf inf inf 0 5 inf;inf inf inf inf 0 2;inf inf inf inf inf 0];[D,path]=floyd(a)运行结果截图为:D =0 5 9 3 8 10 Inf 0 4 2 7 7 Inf Inf 0 2 4 3 Inf Inf Inf 0 5 7 Inf Inf Inf Inf 0 2 Inf Inf Inf Inf Inf 0 path =1 2 2 4 4 4 0 2 3 4 4 3 0 0 3 4 5 6 0 0 0 4 5 5 0 0 0 0 5 6 0 0 0 0 0 6由运行结果得:因为path(1,6)=4,意味着顶点1的后继点为4, path(4,6)=5,从而顶点4的后继点为5,同理,因path(5,6)=6,从而顶点5的后继点为6,故1→4→5→6便是顶点1到顶点6的最短路径。
数学建模陈东彦版课后答案
第一部分 练习与思考题2.9-3.7 3.6-5.144.1-7.1 4.4-7.35.9-11.1 5.1-9.16.5-4.7 6.10-4.14第1章 建立数学模型1.1 在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?(稳定的椅子问题见姜启源《数学模型》第6页)1.2 在商人们安全过河问题中,若商人和随从各四人,怎样才能安全过河呢?一般地,有n 名商人带n 名随从过河,船每次能渡k 人过河,试讨论商人们能安全过河时,n 与k 应满足什么关系。
(商人们安全过河问题见姜启源《数学模型》第7页)1.3 人、狗、鸡、米均要过河,船需要人划,另外至多还能载一物,而当人不在时,狗要吃鸡,鸡要吃米。
问人、狗、鸡、米怎样过河?1.4 有3对夫妻过河,船至多载两人,条件是任一女子不能在其丈夫不在的情况下与其他的男子在一起。
问怎样过河?1.5 如果银行存款年利率为5.5%,问如果要求到2010年本利积累为100000元,那么在1990年应在银行存入多少元?而到2000年的本利积累为多少元?1.6 某城市的Logistic 模型为2610251251N N dt dN ⨯-=,如果不考虑该市的流动人口的影响以及非正常死亡。
设该市1990年人口总数为8000000人,试求该市在未来的人口总数。
当∞→t 时发生什么情况。
1.7 假设人口增长服从这样规律:时刻t 的人口为)(t x ,最大允许人口为m x ,t 到t t ∆+时间内人口数量与)(t x x m -成正比。
试建立模型并求解,作出解的图形并与指数增长模型和阻滞增长模型的结果进行比较。
1.8 一昼夜有多少时刻互换长短针后仍表示一个时间?如何求出这些时间?1.9 你在十层楼上欲乘电梯下楼,如果你想知道需要等待的时间,请问你需要有哪些信息?如果你不愿久等,则需要爬上或爬下几个楼层?1.10 居民的用水来自一个由远处水库供水的水塔,水库的水来自降雨和流入的河流。
数学建模课后习题
第一章 课后习题6.利用节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。
解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为:)()0(mg M x =由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程M x x dtdx=-=)0(,λ (1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。
由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程:0)0(,=-=y y x dtdyμλ (2) 方程(1)可转换为:tMe t x λ-=)(带入方程(2)可得:)()(t t e e M t y λμμλλ----=将01386=λ和1155.0=μ带入以上两方程,得: 针对孩子求解,得:严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解:严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987=课后习题7.对于节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。
解:已知血液透析法是自身排除率的6倍,所以639.06==μut e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ解得:()2,274.112275693.01386.0≥+=--t e et z t t用matlab 画图:图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。
从图中可以看出,采取血液透析时血液中药物浓度就开始下降。
T=2时,血液中药物浓度最高,为;当z=200时,t=,血液透析小时后就开始解毒。
数学建模习题答案
数学建模部分课后习题解答中国地质大学 能源学院 华文静1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解:模型假设(1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。
这个假设相当于给出了椅子能放稳的必要条件(3) 椅子在任何位置至少有三只脚同时着地。
为了保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。
因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。
模型建立在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。
首先,引入合适的变量来表示椅子位置的挪动。
生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。
然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。
于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。
注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。
把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置。
为此,在平面上建立直角坐标系来解决问题。
设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。
椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。
其次,把椅脚是否着地用数学形式表示出来。
当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。
由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。
数学建模习题集与答案解析课后习题集
第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。
学生们要组织一个10人得委员会,试用下列办法分配各宿舍得委员数:(1)按比例分配取整数得名额后,剩下得名额按惯例分给小数部分较大者。
(2)2、1节中得Q值方法。
(3)d’Hondt方法:将A,B,C各宿舍得人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线得数分别为2,3,5,这就就是3个宿舍分配得席位。
您能解释这种方法得道理吗。
如果委员会从10人增至15人,用以上3种方法再分配名额。
将3种方法两次分配得结果列表比较。
(4)您能提出其她得方法吗。
用您得方法分配上面得名额。
2.在超市购物时您注意到大包装商品比小包装商品便宜这种现象了吗。
比如洁银牙膏50g装得每支1、50元,120g装得3、00元,二者单位重量得价格比就是1、2:1。
试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w得关系。
价格由生产成本、包装成本与其她成本等决定,这些成本中有得与重量w成正比,有得与表面积成正比,还有与w无关得因素。
(2)给出单位重量价格c与w得关系,画出它得简图,说明w越大c越小,但就是随着w得增加c减少得程度变小。
解释实际意义就是什么。
3.一垂钓俱乐部鼓励垂钓者将调上得鱼放生,打算按照放生得鱼得重量给予奖励,俱乐部只准备了一把软尺用于测量,请您设计按照测量得长度估计鱼得重量得方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼得如下数据(胸围指鱼身得最大周长):先用机理分析建立模型,再用数据确定参数4.用宽w得布条缠绕直径d得圆形管道,要求布条不重叠,问布条与管道轴线得夹角应多大(如图)。
若知道管道长度,需用多长布条(可考虑两端得影响)。
如果管道就是其她形状呢。
5.用已知尺寸得矩形板材加工半径一定得圆盘,给出几种简便、有效得排列方法,使加工出尽可能多得圆盘。
数学建模课后习题
数学建模课后习题第⼀章课后习题6、利⽤1、5节药物中毒施救模型确定对于孩⼦及成⼈服⽤氨茶碱能引起严重中毒与致命得最⼩剂量。
解:假设病⼈服⽤氨茶碱得总剂量为a ,由书中已建⽴得模型与假设得出肠胃中得药量为:由于肠胃中药物向⾎液系统得转移率与药量成正⽐,⽐例系数,得到微分⽅程(1)原模型已假设时⾎液中药量⽆药物,则,得增长速度为。
由于治疗⽽减少得速度与本⾝成正⽐,⽐例系数,所以得到⽅程:(2)⽅程(1)可转换为:? 带⼊⽅程(2)可得:将与带⼊以上两⽅程,得:针对孩⼦求解,得:严重中毒时间及服⽤最⼩剂量:,; 致命中毒时间及服⽤最⼩剂量:, 针对成⼈求解:严重中毒时间及服⽤最⼩剂量:, 致命时间及服⽤最⼩剂量:,课后习题7、对于1、5节得模型,如果采⽤得就是体外⾎液透析得办法,求解药物中毒施救模型得⾎液⽤药量得变化并作图。
解:已知⾎液透析法就是⾃⾝排除率得6倍,所以 ,x 为胃肠道中得药量,1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dtdzt 解得:⽤matla b画图:图中绿⾊线条代表采⽤体外⾎液透析⾎液中药物浓度得变化情况。
从图中可以瞧出,采取⾎液透析时⾎液中药物浓度就开始下降。
T=2时,⾎液中药物浓度最⾼,为236、5;当z=200时,t=2、8731,⾎液透析0、8731⼩时后就开始解毒。
第⼆章1、⽤2、4节实物交换模型中介绍得⽆差别曲线得概念,讨论以下得雇员与雇主之间得关系:1)以雇员⼀天得⼯作时间与⼯资分别为横坐标与纵坐标,画出雇员⽆差别曲线族得⽰意图,解释曲线为什么就是那种形状;2)如果雇主付计时费,对不同得⼯资率画出计时⼯资线族,根据雇员得⽆差别曲线族与雇主得计时⼯资线族,讨论双⽅将在怎样得⼀条曲线上达成协议;3)雇员与雇主已经达成了协议,如果雇主想使⽤雇员得⼯作时间增加到t2,她有两种办法:⼀就是提⾼计时⼯资率,在协议线得另⼀点达成新得协议;⼆就是实⾏超时⼯资制,即对⼯时仍付原计时⼯资,对⼯时付给更⾼得超时⼯资,试⽤作图⽅法分析那种办法对雇主更有利,指出这个结果得条件。
数学建模课后习题答案
方程及方程组的求解1、路灯照明问题。
在一条20m 宽的道路两侧,分别安装了一只2kw 和一只3kw 的路灯, 它们离地面的高度分别为5m 和6m 。
在漆黑的夜晚,当两只路灯开启时 (1)两只路灯连线的路面上最暗的点和最亮的点在哪里? (2)如果3kw 的路灯的高度可以在3m 到9m 之间变化,如何路面上最暗点的亮度最大? (3)如果两只路灯的高度均可以在3m 到9m 之间变化,结果又如何?解:根据题意,建立如图模型P1=2kw P2=3kw S=20m 照度计算公式:2sin r p k I α= (k 为照度系数,可取为1;P 为路灯的功率)(1)设Q(x,0)点为两盏路灯连线上的任意一点,则两盏路灯在Q 点的照度分别为21111sin R p k I α= 22222sin R p k I α=22121x h R += 111sin R h =α22222)(x s h R -+= 222sin R h =αQ 点的照度:3232322222322111))20(36(18)25(10))((()(()(x x x s h h P x h h P x I -+++=-+++=X S P1 P2R1 α1α2 Q yx OR2 h1 h2要求最暗点和最亮点,即为求函数I(x)的最大值和最小值,所以应先求出函数的极值点5252522222522111'))20(36()20(54)25(30))(()(3)(3)(x x x x x s h x s h P x h x h P x I -+-++-=-+-++-=利用MATLAB 求得0)('=x I 时x 的值代码:s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))'); s1=vpa(s,8); s1运行结果: s1 =19.97669581 9.338299136 8.538304309-11.61579012*i .2848997038e-1 8.538304309+11.61579012*i因为x>=0,选取出有效的x 值后,利用MATLAB 求出对应的I(x)的值,如下表:x 0 0.028489970 9.3382991 19.976695 20 I(x) 0.081977160.081981040.018243930.084476550.08447468综上,x=9.33m 时,为最暗点;x=19.97m 时,为最亮点。
《数学建模》习题及参考答案 第一章 建立数学模型
第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
数学建模课后习题作业
数学建模课后习题作业选修课——数学建模部分习题详细解答【陈文滨】1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?【模型假设】(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。
【模型建立】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为数学模型:已知f(θ)和g(θ)是θ的非负连续函数,对任意θ,f(θ)•g(θ)=0,证明:存在θ0∈[0,π],使得f(θ0)=g(θ0)=0成立。
【模型求解】如果f(0)=g(0)=0,那么结论成立。
如果f(0)与g(0)不同时为零,不妨设f(0)>0,g(0)=0。
这时,将长方形ABCD绕点O 逆时针旋转角度π后,点A,B分别与C,D互换,但长方形ABCD在地面上所处的位置不变,由此可知,f(π)=g(0),g(π)=f(0).而由f(0)>0,g(0)=0,得g(π)>0, f (π)=0。
数学建模课后习题第二章参考答案
数学建模第二章课后习题第5题参考答案5.(1)at m me w w w w w t w --+=)()(000,要使,只需。
联系:在目前的情况下,当时,两个模型中猪的体重的变化都一样,当时,新的假设中猪的体重增长的比较快,当时,新的假设猪的体重增长的比较慢。
因为,所以函数为增函数,即当t 增大时,猪的体重会随着增加,这与原来的假设是一致的。
两个假设都满足'(0)w r =,在最佳出售时机附近误差微小。
区别:150200250300当a=1/60时两个假设模型的比较由图可知,新假设是阻滞增长模型,体重w 是t 的增函数,体重增加的速率先快后慢,时间充分长后,体重趋于w m 。
而原假设w(t)=0w +rt 只假设体重匀速增加。
从长时间来看,新假设比原假设更符合实际。
(2) 则t 天之后比现在出售多赚的纯利润为:0000((0))()()()()(0)(0)(0)()matm p gt w w Q t p t w t C t p w ct p w w w w e--=--=--+- 其中p(0)=12,g=0.08, 900=w ,270=m w ,,c=3.2,代入数据并用matlab 中的fminbnd 函数运算得到: 在t=14.4336时,纯利润到达最大值:Qm =12.1513。
代码如下:Q=@(t)((12-0.08*t)*90.*270)./(90+(270-90).*exp(-(1/60)*t))-3.2*t-12*90;nQ=@(t)-Q(t);[t,Q1]=fminbnd(nQ,0,100), Qm=-Q1 t = 14.4336 Q1 = -12.1513 Qm =12.1513 (3)所以,如果生猪体重wm 增加1%,灵敏度S(tm,dwm)= 3.7669,最佳出售时间tm 就推迟0.038%。
灵敏度比较小,所以wm 对tm 不灵敏。
程序如下:Q=@(t,wm)((12-0.08*t)*90.*wm)./(90+(wm-90).*exp(-(1/60)*t))-3.2*t-12*90;数值计算W m 对t m 的灵敏度(W m =270,t m =14.4336)m m w w +∆ ()/%m m w w ∆ m m t t +∆ ()/%m m t t ∆ (,)m m S w t272.70001.000014.9773 0.0377 3.7669 283.5000 5.0000 17.0565 0.1817 3.6345 297.0000 10.0000 19.46010.34833.4825数值计算W m 对Q m 的灵敏度(W m =270,Q m =12.1513) m m w w +∆ ()/%m m w w ∆ m m Q Q +∆ ()/%m m Q Q ∆ (,)m m S w Q272.7000 1.0000 13.1078 0.0787 7.8720 283.5000 5.0000 17.1208 0.4090 8.1794 297.0000 10.0000 22.47540.84968.4963d=[.01;.05;.1];dwm=d*270;Q1=@(t)-Q(t,270+dwm(1));[t1,Q1]=fminbnd(Q1,0,30);Q2=@(t)-Q(t,270+dwm(2));[t2,Q2]=fminbnd(Q2,0,30);Q3=@(t)-Q(t,270+dwm(3));[t3,Q3]=fminbnd(Q3,0,30);Qm1=-Q1;Qm2=-Q2;Qm3=-Q3;tm=14.4336;Qm=12.1513;Sw_t=@(t,w)((t-tm)/tm)./(w/270);Sw_Q=@(Q,w)((Q-Qm)/Qm)./(w/270);t=[t1;t2;t3],Q=[Qm1;Qm2;Qm3],a=[270+d.*270,d.*100,t,(t-tm)./tm,Sw_t(t,d.*270)],b=[270+d.*270,d.*100,Q,(Q-Qm)./Qm,Sw_Q(Q,d.*270)], t =14.977317.056519.4601Q =13.107817.120822.4754a =272.7000 1.0000 14.9773 0.0377 3.7669 283.5000 5.0000 17.0565 0.1817 3.6345 297.0000 10.0000 19.4601 0.3483 3.4825b =272.7000 1.0000 13.1078 0.0787 7.8720 283.5000 5.0000 17.1208 0.4090 8.1794297.0000 10.0000 22.4754 0.8496 8.4963 (4)由图可知,新假设模型是一个阻滞增长模型,比原来的模型更符合实际,可以在较长时间内使用。
数学建模课程及答案
《数学建模课程》练习题一一、填空题一、填空题1.1. 设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为长问题的马尔萨斯模型应为 。
2.2. 设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 。
3. 3. 某服装店经营的某种服装平均每天卖出某服装店经营的某种服装平均每天卖出110件,进货一次的手续费为200元,存储费用为每件0.01元/天,店主不希望出现缺货现象,则最优进货周期与最优进货量分别为 。
4. 4. 一个连通图能够一笔画出的充分必要条件是一个连通图能够一笔画出的充分必要条件是一个连通图能够一笔画出的充分必要条件是 .5.5.设开始时的人口数为设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若允许的最大人口数为m x ,人口增长率由sx r x r -=)(表示,则人口增长问题的罗捷斯蒂克模型为表示,则人口增长问题的罗捷斯蒂克模型为 . 6. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:将和下列因素有关:(1)参加展览会的人数n ; (2)气温T 超过C10; (3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为由此建立的冰淇淋销量的比例模型应为 . 7、若银行的年利率是x %,则需要则需要 时间,存入的钱才可翻番存入的钱才可翻番.. 若每个小长方形街路的路的8. . 如图是一个邮路,邮递员从邮局如图是一个邮路,邮递员从邮局A 出发走遍所有长方形街路后再返回邮局出发走遍所有长方形街路后再返回邮局.. 边长横向均为1km ,纵向均为2km ,则他至少要走,则他至少要走 km.. A9. 设某种新产品的社会需求量为无限,开始时的生产量为100件,且设产品生产的增长率控制在0.1,t 时刻产品量为)(t x ,则)(t x = . 10. 商店以10元/件的进价购进衬衫,若衬衫的需求量模型是802,Q p p =-是销售单价(元(元//件),为获得最大利润,商店的出售价是,为获得最大利润,商店的出售价是 . 二、分析判断题二、分析判断题1.从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料.从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个)个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决。
高中数学北师大版 第四章 数学建模活动(三) 课后练习、课时练习
一、单选题
1. 对20不断进行“乘以2”或“减去3”的运算,每进行一次记作一次运算,若运算n
次得到的结果为23,则n的最小值为()
A.7 B.8 C.9 D.10
二、解答题
2. 吴淞口灯塔采用世界先进的北斗卫星导航遥测遥控系统,某校数学建模小组
测量其高度(单位:,如示意图,垂直放置的标杆的高度,使,,在同一直线上,也在同一水平面上,仰角,.(本题的距离
精确到
(1)该小组测得、的一组值为,,请据此计算的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到灯塔的距离(单位:,使与之差较大,可以提高测量精确度.若灯塔的实际高度为,试问为多少时,最大?。
高中数学湘教版 第6章 数学建模 课后练习、课时练习
一、单选题1. 一般的数学建模包含如下活动过程:①建立模型;②实际情境;③提出问题;④求解模型;⑤实际结果;⑥检验结果,则正确的序号顺序为()A.③②①④⑤⑥B.③②①④⑥⑤C.②①③④⑤⑥D.②③①④⑥⑤2. 对20不断进行“乘以2”或“减去3”的运算,每进行一次记作一次运算,若运算n 次得到的结果为23,则n的最小值为()A.7 B.8 C.9 D.103. 下列说法正确的是()A.数学探究活动是数学建模B.用数学的思想方法分析、解决了实际问题的过程就是数学建模C.数学建模的第一步是对数学问题进行抽象概括D.数学建模的对象是现实世界中的实际问题二、填空题4. 在一个十字路口,每次亮绿灯的时长为30秒,那么,每次绿灯亮时,在一条直行道路上能有多少汽车通过?这个问题涉及车长、车距、车速、堵塞的干扰等多种因素,不同型号车的车长是不同的,驾驶员的习惯不同也会使车距、车速不同,行人和非机动车的干扰因素则复杂且不确定.面对这些不同和不确定,需要作出假设.例如小明发现虽然通过路口的车辆各种各样,但多数是小轿车,因此小明给出如下假设:通过路口的车辆长度都相等,请写出一个你认为合理的假设________________________.5. 我们知道,提出问题比解决问题更重要,提出关于现实世界问题是创新的起点.作为中学生我们应该自觉地观察现实世界并提出实际问题,以便养成面对实际情景提出实际问题的习惯,为成为创新型人才打下坚实的基础.生活中,我们经常经过熟悉的十字路口,面对“熟悉的十字路口”这一现实世界情景,请你就“熟悉的十字路口”提出关于现实世界的问题,作为自己学习数学建模的第一步.你提出的实际问题是______.(答案不唯一)三、解答题6. 如图,在山顶P点已得三点A,B,C的俯角分别为,,,其中A,B,C为山脚下两侧共线的三点,现欲沿直线AC挖掘一条隧道,试根据测得的AD,EB,BC的长度,建立估计隧道DE长度的数学模型.7. 下图1为世界各洲在一段时间内人口数量随时间变化的曲线,这些曲线描述的人口变化规律与图2中的曲线有何不同?试分析原因.8. 如图,有三个新兴城镇分别位于A,B,C处,且,().今计划在BC的垂直平分线上建一个中心医院P,方便三镇居民就医,试在下列条件下求P的位置:(1)P到三镇距离平方和最小;(2)P到三镇距离之和最小;(3)P到三镇的最远距离最小.9. 1981年,生物学家根据触角长和翼长将蠓虫分为Af和Apf两类,已知9只Af 蠓虫和6只Apf蠓虫的标本数据如下(单位:mm):Af蠓虫触角长 1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 1.56 翼长 1.72 1.74 1.64 1.82 1.90 1.70 1.82 1.82 2.08Apf蠓虫触角长 1.14 1.18 1.20 1.26 1.28 1.30翼长 1.78 1.96 1.86 2.00 2.00 1.96现另有三个蠓虫标本的触角长和翼长分别为,,,请设法确定哪个是Af蠓虫,哪个是Apf蠓虫.(可以借助网络等资源查询相关资料,得到解决问题的思路)。
数学建模习题及答案课后习题
数学建模习题及答案课后习题第⼀部分课后习题1.学校共1000名学⽣,235⼈住在A宿舍,333⼈住在B宿舍,432⼈住在C宿舍。
学⽣们要组织⼀个10⼈的委员会,试⽤下列办法分配各宿舍的委员数:(1)按⽐例分配取整数的名额后,剩下的名额按惯例分给⼩数部分较⼤者。
(2)节中的Q值⽅法。
(3)d’Hondt⽅法:将A,B,C各宿舍的⼈数⽤正整数n=1,2,3,…相除,其商数如下表:将所得商数从⼤到⼩取前10个(10为席位数),在数字下标以横线,表中A,B,C⾏有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种⽅法的道理吗。
如果委员会从10⼈增⾄15⼈,⽤以上3种⽅法再分配名额。
将3种⽅法两次分配的结果列表⽐较。
(4)你能提出其他的⽅法吗。
⽤你的⽅法分配上⾯的名额。
2.在超市购物时你注意到⼤包装商品⽐⼩包装商品便宜这种现象了吗。
⽐如洁银⽛膏50g装的每⽀元,120g装的元,⼆者单位重量的价格⽐是:1。
试⽤⽐例⽅法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。
价格由⽣产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正⽐,有的与表⾯积成正⽐,还有与w⽆关的因素。
(2)给出单位重量价格c与w的关系,画出它的简图,说明w越⼤c越⼩,但是随着w的增加c减少的程度变⼩。
解释实际意义是什么。
3.⼀垂钓俱乐部⿎励垂钓者将调上的鱼放⽣,打算按照放⽣的鱼的重量给予奖励,俱乐部只准备了⼀把软尺⽤于测量,请你设计按照测量的长度估计鱼的重量的⽅法。
假定鱼池中只有⼀种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼⾝的最⼤周长):⾝长(cm)重量76548211627374821389652454(g)胸围(cm)先⽤机理分析建⽴模型,再⽤数据确定参数4.⽤宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹⾓应多⼤(如图)。
若知道管道长度,需⽤多长布条(可考虑两端的影响)。
如果管道是其他形状呢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 课后习题6.利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。
解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为:)()0(mg M x =由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程M x x dtdx=-=)0(,λ (1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。
由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程:0)0(,=-=y y x dtdyμλ (2) 方程(1)可转换为:tMe t x λ-=)(带入方程(2)可得:)()(t t e e M t y λμμλλ----=将01386=λ和1155.0=μ带入以上两方程,得:t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t针对孩子求解,得:严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解:严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987=课后习题7.对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。
解:已知血液透析法是自身排除率的6倍,所以639.06==μut e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---=1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dtdzt 解得:()2,274.112275693.01386.0≥+=--t e e t z t t用matlab 画图:图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。
从图中可以看出,采取血液透析时血液中药物浓度就开始下降。
T=2时,血液中药物浓度最高,为236.5;当z=200时,t=2.8731,血液透析0.8731小时后就开始解毒。
第二章1.用2.4节实物交换模型中介绍的无差别曲线的概念,讨论以下的雇员和雇主之间的关系:1)以雇员一天的工作时间和工资分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图,解释曲线为什么是那种形状;2)如果雇主付计时费,对不同的工资率画出计时工资线族,根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议;3)雇员和雇主已经达成了协议,如果雇主想使用雇员的工作时间增加到t 2,他有两种办法:一是提高计时工资率,在协议线的另一点达成新的协议;二是实行超时工资制,即对工时仍付原计时工资,对工时付给更高的超时工资,试用作图方法分析那种办法对雇主更有利,指出这个结果的条件。
解:1)雇员的无差别曲线族是下凸的,如图。
当工资较低时,他愿意以多的工作时间换取少的工资;当工资较高时,就要求以多的工资来增加工作时间。
2)雇主的计时工资族是,是工资率,这族直线与的切点,等的连线为雇员与雇主的协议线,通常是上升的,见图:3)设双方在点达成协议,当雇主想使雇员的工作时间增至时,用提高计时工资率的办法,应在协议线上找出横坐标为的点,工资额为,见上图,用超时工资的办法,应从点作某一条无差别曲线的切线,使切点P2’的横坐标刚好是t2,若点P2’在P2的下方,则工资额w2’<w2,即第二种办法对雇主有利,得到这个结果的条件是,在雇员没有工作时和已经工作了t1时,其无差别曲线族没有变化。
课后第三章习题1.在3.1节的存贮模型总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量,证明在不允许缺货模型和允许缺货模型中结果都与原来的一样。
解:设购买单位重量货物的费用为k,对于不允许缺货模型,每天平均费用为,T,Q的最优结果不变,对于允许缺货模型,每天平均费用为,注意到,可知T,Q的最优结果也不变。
2.建立不允许缺货的生产销售存贮模型,设生产速率为常数k,销售速率为常数r,k>r,在每个生产周期T内,开始的一段时间一边生产一边销售,后来的一段时间只销售不生产,画出存贮量q(t)的图形,设每次生产准备费为c1,单位时间每件产品存贮费为c2,以总费用最小为目标确定最优生产周期,讨论和的情况。
解:贮存量q(t)的图形如图,单位时间总费用,,使c(T)达到最小值的最优周期。
当k>>r时,,相当于不考虑生产的情况,当时,,产量被销售量抵消,无法形成贮存量。
第四章1、某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级,到期年限,收益如表所示。
按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税。
此外还有以下限制:(1)政府及代办机构的证券总共至少要购进400万元;(2)所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高);(3)所购证券的平均到期年限不超过5年。
表1 证券信息证券名称证券种类信用等级到期年限到期税前收益/%A 市政 2 9 4.3B 代办机构 2 15 5.4C 政府 1 4 5D 政府 1 3 4.4E 市政 5 2 4.5问:(1)若该经理有1000万元资金,应如何投资?(2)如果能够以2.75%的利率借到不超过100万元的资金,该经理应如何操作?(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?1.1 问题分析问经理应该如何投资实际上是在问对已知的几种类型的证券要如何投资才能使得经理的最终收益最大。
应该先对表中所给的几种证券的各个数据进行分析,列出几种证券投资后经理的收益函数,同时使得该函数所得结果要满足题目中给定的几个限制。
对于(2)、(3)问的求解只用调整相应的限制条件和第一问函数的几个三叔即可。
1.2 模型建立(1)假设投资给证券A ,B ,C ,D ,E 的资金分别为a ,b ,c ,d ,e (百万元),经理最终的收益为y (百万元),则可以建立如下数学模型:e *0.045d *0.022c *0.025b *0.027a *0.043y ++++=⎪⎪⎩⎪⎪⎨⎧≥≤+≤++≥++0e d,c,b,a,0e *3-d *2-c -b *10a *40e *36d *4-c *4-b *6a *64d c b 用LINGO 软件求解:得到如下结果:证券A 投资2.182百万元,证券C 投资7.364百万元,证券E 投资0.454百万元;经理最大税后收益为0.298百万元。
(2)由(1)的结果可知,若资金增加100万元,收益可增加0.0298百万元。
大于以2.75%的利率借到100万元资金的利息,所以应借贷。
修改(1)中的条件建立如下的心新模型:e *0.045d *0.022c *0.025b *0.027a *0.043y ++++=⎪⎪⎩⎪⎪⎨⎧≥≤+≤++≥++0e d,c,b,a,0e *3-d *2-c -b *10a *411e *36d *4-c *4-b *6a *64d c b求解得到:证券A投资2.40百万元,证券C投资8.10百万元,证券E投资0.50百万元,最大税后收益为0.3007百万元。
(3)由(1)的结果中目标函数系数的允许范围可知,证券A的税前收益可增加0.35%,故若证券A的税前收益增加为4.5%,投资不应改变;证券C的税前收益可减少0.112%(注意按50%的税率纳税),故若证券C的税前收益减少为4.8%,投资应该改变。
2、一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。
每个销售代理点只能向本区和相邻区的大学生售书,这两点销售代理点应建立在何处,才能使所能供应的大学生的数量最大?建立该问题的整数线性规划模型并求解。
图12.2 问题分析首先简化作图,使得图中的邻里关系更加清楚,其次,通过假设0-1变量得到供应量最大化的函数,由于一个地区不能被两个销售点供应,所以得到七个限制条件,并由LINGO求解,得到一个0-1整数规划问题的解.2.3 建立模型将大学生数量为34,29,42,21,56,18,71的区分别编号为1,2,3,4,5,6,7区,如图所示:123 4567记r i r 为第i 区的大学生人数,用0-1变量ij x =1表示(i,j)区的大学生由一个销售代理点供应图书(i<j 且i,j 相邻),否则ij x =0。
建立该问题的整数线性规划模型: maxijj i jixr r ∑+相邻,)(2,≤∑ji ij xi x x jji jij ∀≤+∑∑,1{}1,0∈ij x63x 12+76x 13+71x 23+50x 24+85x 25+63x 34+77x 45+39x 46+92x 47+74x 56+89x 67x 12+x 13+x 23+x 24+x 25+x 34+x 45+x 46+x 47+x 56+x 67 2x 12+x 13 1 x 12+x 23+x 24+x 25 1 x 13+x 23+x 24 1 x 24+x 34+x 45+x 46+x 47 1 x 25+x 45+x 56 1 x 46+x 56+x 67 1 x 47+x 67 1 x ij =0或1用LINGO 软件求解:得到最优解为x25 = x47= 1,其余均为0,最优解为177人。
3、某储蓄所每天的营业时间是上午9:00到下午5:00。
根据经验,每天不同时间段所需要的服务员数量如表所示:时间段/时9 - 10 10-11 11-12 12-1 1-2 2-3 3-4 4-5服务员数量 4 3 4 6 5 6 8 8储蓄所可以雇佣全时和半时两类服务员。
全时服务员每天报酬100元,从上午9:00到下午5:00工作,但中午12:00到下午2:00之间必须安排1h的午餐时间。
储蓄所每天可以雇佣不超过3名的半时服务员,每个半时服务员必须连续工作4h,报酬40元。
问该储蓄所应如何雇佣全时和半时两类服务员?如果不能雇佣半时服务员,每天至少增加多少费用?如果该雇佣半时服务员的数量没有限制,每天可以减少多少费用?3.2 问题分析先为午餐时间的服务人员假定一个人数,再利用题目所给的表中的各个时段服务人员的相应限制人数来假定各个时段的无非人员人数。
表中每个时段所需服务员人数可以得到若干个约束条件,目标函数即为服务员数与工资的乘积得出,最小值即为最优解。