解析几何基础100题

合集下载

考研数学(二)题库(高等数学)-第四章 向量代数和空间解析几何【圣才出品】

考研数学(二)题库(高等数学)-第四章 向量代数和空间解析几何【圣才出品】

x2/2+y2/2-z2/3=0 中,x2,y2 系数相等,则旋转轴应是 z 轴。(若三项系数均不相等,
则应选 D 项)
10.方程 x2-y2-z2=4 表示的旋转曲面是( )。 A.柱面 B.双叶双曲面 C.锥面 D.单叶双曲面 【答案】B 【解析】x2-y2-z2=4 等价于 x2/4-(y2+z2)/4=1,故可将原方程表示的旋转曲 面看作是将 xOy 平面 x2/4-y2/4=1 绕 x 轴旋转一周所得的双叶双曲面。




【解析】由a={3,5,-2},b={2,1,4}可知 λa+μb={3λ+2μ,5λ+μ,-2λ+4μ},




又 λa+μb与 Oz 轴垂直,则(λa+μb)·{0,0,1}=0,即(-2λ+4μ)×1=0 得 λ=2μ。
→→
→→
2.设a,b为非零向量,且a⊥b,则必有(
→→


A.|a+b|=|a|+|b|
圣才电子书 十万种考研考证电子书、题库视频学习平台

第四章 向量代数和空间解析几何
一、选择题




1.若向量a={3,5,-2},b={2,1,4},且 λa+μb与 Oz 轴垂直,则 λ 与 μ 的关
系为( )。
A.λ=μ
B.λ=-μ
C.λ=2μ
D.λ=3μ
【答案】C
(-7)×(-1)+3×(-1)=0,所以直线与平面平行。
x 3y 2z 1 0 7.设有直线 L : 2x y 10z 3 0 及平面∏:4x-2y+z-2=0,则直线 L( )。
A.平行于∏
3 / 25
圣才电子书

高中数学解析几何100题经典大题汇编

高中数学解析几何100题经典大题汇编

a-c=
2c 2 ,a
2 =2,
2 ∴a=1,b=c= 2
故 C 的方程为:y2+x2=1 1 2
…………………3 分 …………4 分
(2)当直线斜率不存在时: m = ± 1 2
…………5 分
当直线斜率存在时:设 l 与椭圆 C 交点为 A(x 1,y1),B(x2,y2)
=y kx + m

2x2
(Ⅰ)推导双曲线 C 的离心率 e 与 λ 的关系式; (Ⅱ)当 λ = 1 时, 经过点 (1,0) 且斜率为 − a 的
直线交双曲线于 A, B 两点, 交 y 轴于点 D , 且
y
M
P
DA = ( 3 − 2)DB ,求双曲线的方程. 【答案】22: 解:(Ⅰ)Q MP = OF, ∴OFPM 为平行四边形.
【山东省苍山县 2014 届高三上学期期末检测理】22.(本题满分 14 分)
如图,斜率为 1 的直线 l 过抛物线 Ω : y=2 2 px( p > 0) 的焦点 F,与抛物线交于两点 A,
B。
(1)若|AB|=8,求抛物线 Ω 的方程; (2)设 P 是抛物线 Ω 上异于 A,B 的任意一点,直线 PA,PB 分别交抛物线的准线于 M,
m2 + 2m − 1 − 6m +14 ……10 分 3 3(3k 2 +1)
要使上式与 K 无关,则有 6m +14 = 0, ,解得 m = − 7 ,存在点 M (− 7 ,0) 满足题意。12 分
3
3
【山东省济宁市金乡二中 2014 届高三 11 月月考理】23、(本小题满分12 分)[来源:学科网] 已知曲线 C 上的动点 P 到点 F (2,0) 的距离比它到直线 x = −1的距离大1.

线性代数与空间解析几何综合练习100题

线性代数与空间解析几何综合练习100题

综合练习100题一、填空题1.设A 是n 阶矩阵,满足,||0'=<AA E A ,则||+=A E 0. 2.若4阶行列式D 的某一行的所有元素及其余子式都相等,则D =0.3.在一个n 阶行列式中,如果等于零的元素多于2n n -个,那么这个行列式D =0. 4.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,若m n >,则||=AB 0. 5.若n 阶方阵,A B 满足,||0=-≠AB B A E ,则=B 0. 6.若n 阶方阵,A B 满足+=A AB E ,则+=A BA E . 7.若n 阶方阵,,A B C 满足=ABC E ,则'''=B A C E . 8.若、A B 都是n 阶方阵,||1,||3==-A B ,则*1|3|-=A B13n --.9.若n 阶方阵A 满足*||0.=≠0A A ,则秩()=A 1n -. 10.设,A B 是两个n 阶方阵,||1,||2+=-=A B A B ,则=A B BA2 .11.设矩阵111022003⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则*1()-=A 111666110331002⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭. 12.A 为m 阶方阵,B 为n 阶方阵,||,||a b ==A B ,则C=0AB (1)mn ab -.13.设矩阵A 满足24+-=0A A E ,其中E 为单位矩阵,则1()--=A E 1(2)2+A E .14.设A 为3阶方阵,其特征值为3,1,2-,则2||+=A E 100.15.已知11000101100100110100*********a -⎛⎫⎪- ⎪ ⎪=-⎪- ⎪ ⎪-⎝⎭A ,则4,4,()5,4.a R a =-⎧=⎨≠-⎩当时当时A16.已知n 阶方阵A 的各行元素之和都等于0,且()1n =-R A ,则=0AX 的通解为(1,1,,1),k k '为任意常数.17.矩阵m n ⨯A 满足,m n <||0'≠AA ,则=0AX 的基础解系一定由n m -个线性无关的解向量构成.18.若矩阵A 满足3=A A ,则A 的特征值只能是0或1或1-.19.如果(1,1,1)'=-ξ是方阵2125312a b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭A 的一个特征向量,则a =3-;b =0.20.已知A 与B 相似,且3021⎛⎫= ⎪⎝⎭B ,则2||λ-=A A 3(1)(31)λλ--.21.已知33⨯A 的特征值为1,2,3,则1*||-+=A A 376.22.已知2是A 的一个特征值,则2|6|+-=A A E 0.23.设,αβ是n 维列向量,0'=βα,则'αβ的特征值为0()n 重. 24.若n 阶方阵A 的行向量组线性相关,则0一定是A 的一个特征值. 25.直线1022270x y x x y z +-=⎧⎨+-=⎩的单位方向向量为. 26.已知2768444424798188D =,41424344,,,A A A A 为D 中第4行元素的代数余子式,则41424344+++=A A A A 0.27.设A 是3阶方阵,X 是3维列向量,使得2,,X AX A X 线性无关,且3232=-A X AX A X ,记2(,,)=P X AX A X ,则1-=P AP 000103012⎛⎫⎪⎪ ⎪-⎝⎭.28.若两个非零几何向量,a b 满足||||a b a b +=-,则a 与b 是夹角θ=2π.29.直线260:210x y z L x y z +--=⎧⎨-+-=⎩的参数方程为8,5113,55.x t y t z t ⎧=-⎪⎪⎪=+⎨⎪=⎪⎪⎩30.圆22212462402210x y z x y z x y z ⎧++-+-+=⎨+++=⎩的半径R =3.二、选择题1.设n 元齐次线性方程组=0AX 的系数矩阵A 的秩为r ,则=0AX 有非零解的充要条件是(C ).(A )r n =; (B )A 的行向量组线性无关; (C )A 的列向量组线性相关; (D )A 的列向量组线性无关.2.设A 是m n ⨯矩阵,=0AX 是非齐次线性方程组=AX β所对应的齐次线性方程组,则下列结论正确的是(C ).(A )若=0AX 只有零解,则=AX β有唯一解; (B )若=0AX 有非零解,则=AX β有无穷多解; (C )若=AX β有无穷多解,则=0AX 有非零解; (D )=AX β的任两解之和还是=AX β的解.3.设非齐次线性方程组=AX β的系数行列式为零,则(C ). (A )方程组有无穷多解; (B )方程组无解; (C )若方程组有解,则有无穷多解; (D )方程组有唯一解.4.设A 是m n ⨯矩阵,对于线性方程组=AX β,下列结论正确的是(A ). (A )若A 的秩等于m ,则方程组有解; (B )若A 的秩小于n ,则方程组有无穷多解; (C )若A 的秩等于n ,则方程组有唯一解; (D )若m n >,则方程组无解.5.设5阶方阵A 的秩是3,则其伴随矩阵*A 的秩为(C ). (A )3; (B )4; (C )0; (D )2.6.设A 是n 阶方阵,*2,n >A 是A 的伴随矩阵,则下列结论正确的是(B ).(A )*||=AA A ; (B )若||0≠A ,则*||0≠A ; (C )**1||=A A A ; (D )秩()=A 秩*()A . 7.设,AB 是n 阶方阵,A 非零,且=AB 0,则必有(D ).(A )=0B ; (B )=0BA ; (C )222()+=+A B A B ; (D )||0=B . 8.设有两个平面方程 11111:0a x b y c z d π+++=,22222:0a x b y c y d π+++=,如果 秩1112222a b c a b c ⎛⎫=⎪⎝⎭,则一定有(D ) (A )1π与2π平行; (B )1π与2π垂直; (C )1π与2π重合; (D )1π与2π相交.9.设A 为n 阶可逆矩阵,λ是A 的一个特征根,则A 的伴随阵*A 的特征根之一是(D ). (A )1n λ-; (B )||λA ; (C )λ; (D )1||λ-A .10.n 阶方阵A 有n 个不同的特征值是A 与对角阵相似的(B ). (A )充分必要条件; (B )充分而非必要条件; (C )必要而非充分条件; (D )既非充分条件也非必要条件. 11.已知n 阶方阵A 与某对角阵相似,则(C ).(A )A 有n 个不同的特征值; (B )A 一定是n 阶实对称阵;(C )A 有n 个线性无关的特征向量; (D )A 的属于不同特征值的特征向量正交. 12.下列说法正确的是(D ). (A )若有全不为0的数12,,,m k k k 使11m m k k ++=0αα,则向量组12,,,mααα线性无关;(B )若有一组不全为0的数12,,,m k k k 使得1122m m k k k +++≠0ααα,则向量组12,,,m ααα线性无关;(C )若存在一组数12,,,m k k k 使1122m m k k k +++=0ααα,则向量组12,,,m ααα线性相关;(D )任意4个3维几何向量一定线性相关.13.设,A B 是n 阶方阵,满足:对任意12(,,,)n x x x '=X 都有''X AX =X BX ,下列结论中正确的是(D ).(A )若秩()=A 秩()B ,则=A B ; (B )若'=A A ,则'=B B ;(C )若'=B B ,则=A B ; (D )若,''==A A B B ,则=A B . 14.设,A B 均为n 阶正定矩阵,则必有(B ).(A )AB 正定; (B )2+A B 正定; (C )-A B 正定; (D )k A 正定. 15.设A 是n 阶方阵,2=A E ,则(C ).(A )A 为正定矩阵;(B )A 为正交矩阵;(C )*2()=A E ;(D )2tr()n =A . 16.设,A B 是n 阶方阵,下列结论中错误的是(D ). (A )若,A B 都可逆,则'A B 也可逆;(B )若,A B 都是实对称正定矩阵,则1-+A B 也是实对称正定矩阵; (C )若,A B 都是正交矩阵,则AB 也是正交矩阵; (D )若,A B 都是实对称矩阵,则AB 是实对称矩阵. 17.设,A B 是n 阶方阵,下列结论中错误的是(B ). (A )若A 经列的初等变换化成B ,则秩()=A 秩()B ; (B )若A 经行的初等变换化成B ,则11--=A B ;(C )若A 经行的初等变换化成B ,则=0AX 与=0BX 同解;(D )若A 经列的初等变换化成B ,则A 的列向量组与B 的列向量组等价.18.设111213212223212223111213313233311132123313,a a a a a a a a a a a a a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭A B 12010100100010001101⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P ,则必有(C ).(A )12=AP P B ;(B )21=AP P B ;(C )12=P P A B ;(D )21=P P A B .19.若A 与B 相似,则(B ).(A )λλ-=-E A E B ;(B )||||λλ+=+E A E B ;(C )**=A B ;(D )11--=A B .20.若2=A E ,则(D ).(A )+A E 可逆; (B )-A E 可逆;(C )+=0A E 或-=A E 0; (D )≠A E 时,+A E 不可逆.21.设1111111111111111⎛⎫ ⎪⎪= ⎪⎪ ⎪⎝⎭A ,4000000000000000⎛⎫⎪⎪= ⎪⎪⎪⎝⎭B ,则A 与B (A ).(A )合同且相似; (B )合同但不相似; (C )不合同但相似; (D )不合同且不相似.22.实二次型f '=X AX 为正定二次型的充要条件是(C ). (A )f 的负惯性指数是0; (B )存在正交阵P 使'=A P P ; (C )存在可逆阵T 使'=A T T ; (D )存在矩阵B 使'=A B B . 23.设B 是m n ⨯实矩阵,'=A B B ,则下列结论中错误的是(D ). (A )线性方程组=0BX 只有零解⇔A 正定;(B )()()R R =A B ; (C )A 的特征值大于等于0; (D )()R m =⇔B A 正定. 24.设A 是n 阶方阵,||0a =≠A ,则*1||-A A 等于(C ). (A )a ; (B )1a; (C )2n a -; (D )na . 25.设,A B 是n 阶方阵,则必有(D ). (A )11||||||--+=+A BA B ; (B )111||---+=+A B B A ;(C )222()=AB A B ; (D )||||'=A B BA .26.已知12,ηη是非齐次线性方程组=AX β的两个不同的解,12,ξξ是对应的齐次线性方程组=0AX 的基础解系,12,k k 为任意常数,则方程组=AX β的通解为(B ). (A )1211222k k -++ηηξξ; (B )1211212()2k k ++++ηηξξξ;(C )112121()k k +-+ξηηη; (D )1121212()()k k +-++ξηηηη.27.设有直线1158:121x y z L --+==-与26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为(C ). (A )6π; (B )4π; (C )3π; (D )2π.28.若12312,,,,αααββ都是4维列向量,且4阶行列式1231||,m =αααβ 1223||n =ααβα,则4阶行列式12312||+αααββ等于(D ).(A )m n +; (B )()m n -+; (C )m n -; (D )n m -. 29.设n 阶矩阵A 非奇异(2)n >,则(C ). (A )**1()||n -=A A A ; (B )**1()||n +=A A A ; (C )**2()||n -=A A A ; (D )**2()||n +=A A A .30.设矩阵111222333a b c a b c a b c ⎛⎫⎪⎪ ⎪⎝⎭的秩是3,则直线333121212x a y b z c a a b b c c ---==---与直线111232323x a y b z c a a b b c c ---==---(A ).(A )相交于一点; (B )重合; (C )平行但不重合; (D )异面.三、计算题1.设1111111111111111--⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭A ,求5A 及10||A . 解:由311111111||(4)11111111λλλλλλλ+---+--==+-+---+E A故A 的特征值为12340,4λλλλ====-.对0λ=,由1()λ-=0E A x ,可解得三个线性无关的特征向量,1(1,1,0,0)'=ξ,2(1,0,1,0)'=ξ,3(1,0,0,1)'=-ξ.对4λ=-,由(4)--=0E A x ,可解得特征向量4(1,1,1,1)'=--ξ,令 12341111010010(),0101000114D⎛⎫⎛⎫⎪⎪- ⎪ ⎪== ⎪ ⎪- ⎪⎪--⎝⎭⎝⎭T T T T T ,由=AT TD 得 11*13111131111113||41111---⎛⎫ ⎪- ⎪=== ⎪--- ⎪ ⎪--⎝⎭A TDTT T T 故 1111013111001011311()0101011134001141111-⎛⎫⎛⎫⎛⎫ ⎪⎪⎪-- ⎪⎪⎪=⋅ ⎪⎪⎪---- ⎪⎪⎪ ⎪⎪⎪----⎝⎭⎝⎭⎝⎭A 1111111111111111--⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭551511110131110010113110101011134001141111--⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-⎪⎪ ⎪==⋅ ⎪⎪ ⎪---- ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭A TD T 88111111112211111111--⎛⎫ ⎪-- ⎪== ⎪-- ⎪ ⎪--⎝⎭A . 又10161016642,|||2|2||0====A A A A A .2.设0100102a c b ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭A ,(1),,a b c 满足什么条件时,A 的秩是3;(2),,a b c 取何值时,A 是对称矩阵; (3)取一组,,a b c ,使A 为正交阵.解:(1)01002002000010010010120120100102a c a bc a bc a c b b b ⎛⎫⎪--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭A当2a bc ≠时,A 的秩是3.(2)0100102a b c ⎛⎫ ⎪ ⎪'= ⎪ ⎪ ⎪⎝⎭A ,要想A 成为对称矩阵,应满足'=A A ,即1,0a b c ===.(3)要想A 为正交阵,应满足'=A A E ,即00101001000010110010022a b a c c b ⎛⎫⎛⎫⎪⎪⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭ ⎪⎪⎝⎭⎝⎭.2221,10,211,2a b ac b c ⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ 解得1,2a b c ===. 3.设有三维列向量123211101,1,1,111λλλλλ⎛⎫+⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==+== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭αααβ 问λ取何值时,(1)β可由123,,ααα线性表示,且表达式唯一; (2)β可由123,,ααα线性表示,但表达式不唯一; (3)β不能由123,,ααα线性表示.解法1: 设111111111λλλ+⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭A , 21110111111λλλλλ+⎛⎫⎪=+ ⎪ ⎪+⎝⎭B由22211100(2)(1)1110(1)111111λλλλλλλλλλλλλλλλ⎛⎫+--+-+⎛⎫⎪ ⎪=+−−→-- ⎪ ⎪⎪ ⎪++⎝⎭⎝⎭行B 22222003(12)1110(1)0(1)11100(3)(12)λλλλλλλλλλλλλλλλλλλλλλ⎛⎫⎛⎫----+ ⎪ ⎪−−→--−−→-- ⎪ ⎪ ⎪ ⎪+-+--⎝⎭⎝⎭行行(1)当0λ≠且3λ≠-时,()()3R R ==A B ,此时β可由123,,ααα线性表示,且表达式唯一.(2)当0λ=时,()()13R R ==<A B ,β可由123,,ααα线性表示,且表达式不唯一.(3)当3λ=-时,()()R R ≠A B ,β不能由123,,ααα线性表示. 解法2:2111||111(3)111λλλλλ+=+=++A① 当0λ≠且3λ≠-时,||0≠A ,β可由123,,ααα线性表示,且表达式唯一, ② 当0λ=时,()()13R R ==<A B ,β可由123,,ααα线性表示,且表达式不唯一, ③ 当3λ=-时,()()R R ≠A B ,β不能由123,,ααα线性表示.4.设3阶矩阵A 的特征值为1231,2,3λλλ===,对应的特征向量依次为,1231111,2,3149⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ,又12322=-+βξξξ,求nA β(n 为正整数).解:由于 123123222(,,)21⎛⎫⎪=-+=- ⎪ ⎪⎝⎭βξξξξξξ又由于 1111n n λ==A ξξξ,22222n n nλ==A ξξξ,33333n n n λ==A ξξξ. 所以 12312322(,,)2(,,)211n n n n n⎛⎫⎛⎫ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A A A A A βξξξξξξ111232221232(,2,3)2123211231nn n n n n n n ++++⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ 12132223223223n n n n n n +++++⎛⎫-+ ⎪=-+ ⎪ ⎪-+⎝⎭.5.设122212221-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,(1)求A 的特征值;(2)求1-+E A 的特征值.解:(1)2122||212(1)(5)0221λλλλλλ+---=-+=-+=-+E A得A 的特征值为1231,5λλλ===-.·129·(2)由A 是对称阵,A 的特征值是1,1,5-,存在可逆阵T 使1115-⎛⎫ ⎪= ⎪ ⎪-⎝⎭T AT 于是 111115--⎛⎫ ⎪ ⎪= ⎪ ⎪- ⎪⎝⎭T A T , 112()245--⎛⎫⎪ ⎪+= ⎪ ⎪⎪⎝⎭T E A T ,故1-+E A 的特征值为42,2,5.6.已知(1,,1)k '=α是211121112⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的逆阵1-A 的特征向量,试求常数k 的值.解:设α为A 的特征值为λ的特征向量,则λ=A αα.即 2111112111211k k λ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.即 322k k kλλ+=⎧⎨+=⎩解得 220k k +-=,即1k =或2-.7.设11 111, 1112a a a ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A β,已知线性方程组=AX β有无穷多解,试求:(1)a 的值;(2)正交阵P ,使'P AP 为对角阵.解:(1)211111111101101120112a a a a aa a a a ⎛⎫⎛⎫ ⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭B 111011000(1)(2)2a a a a a a ⎛⎫ ⎪→-- ⎪ ⎪-+--⎝⎭要使=AX β有无穷多解,必须()()3R R =<A B ,因此2a =-.·130· (2)此时112121211-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,112||121(3)(3)0211λλλλλλλ---=-+-=-+=--E A ,得A 的特征值1230,3,3λλλ===-.对于10λ=,由1112121211ξ--⎛⎫⎪--=⎪ ⎪--⎝⎭0,得特征向量1111⎛⎫⎪= ⎪ ⎪⎝⎭ξ,单位化得13⎛⎫ ⎪=⎝⎭η; 对于23λ=,由2212151212ξ-⎛⎫⎪--= ⎪ ⎪-⎝⎭0,得特征向量2101⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得2202⎛⎫⎪⎪= ⎪ - ⎝⎭η;对于34λ=-,由3412111214ξ--⎛⎫ ⎪---= ⎪ ⎪--⎝⎭0,得特征向量3121⎛⎫ ⎪=- ⎪ ⎪⎝⎭ξ,单位化得363η⎛⎫ ⎪ =- ⎪⎪⎪⎪⎝⎭;·131·令3260⎛⎫ ⎪=⎪⎪⎪⎪⎝⎭P ,此时P 为正交阵,并且'P AP 为对角阵033⎛⎫⎪⎪ ⎪-⎝⎭. 8.已知线性方程组(I )1111221331442112222332440a x a x a x a x a x a x a x a x +++=⎧⎨+++=⎩的一个基础解系为112112221213231424, b b b bb b b b ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,试求线性方程组.(II )11112213314421122223324400b y b y b y b y b y b y b y b y +++=⎧⎨+++=⎩的通解.解:设11121314111213142122232421222324a a a a b b b b a a a a b b b b ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭A B由12,ξξ为(I )的一个基础解系得0'=AB .由12,ξξ线性无关,所以()2R =B ,又0'=BA ,所以1111213142(,,,),a a a a '==ηη21222324(,,,)a a a a '是B 的基础解系,通解为112212,,k k k k +ηη为任意常数.9.已知方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩ 有三个线性无关的解向量,求,a b 的值及方程组的通解.解:1111111111(|)43511011531310131a b a a b a a --⎛⎫⎛⎫⎪ ⎪=--−−→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭行A β10242011530042452a b a a -⎛⎫⎪−−→-- ⎪ ⎪-+--⎝⎭行由于该非齐次线性方程组有三个线性无关的解向量,故()(|),()1 3.R R A n R =-+=A A β·132· 其中4n =. 于是()(|)2R R ==A A β.从而2,3a b ==-. 该方程组与方程组13423424253x x x x x x =-++⎧⎨=--⎩ 同解. 令3142,x k x k ==得该方程组的通解112212314224253x k k x k k x k x k -++⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭X 12242153100010k k -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中12,k k 为任意常数.10.设3221423kk -⎛⎫⎪=-- ⎪ ⎪-⎝⎭A ,问当k 为何值时,存在可逆阵P ,使得1-P AP 为对角阵,并求出一个P 及相应的对角阵A . 解:A 的特征方程为:322122||11423123k k k λλλλλλλλ-----=+-=+---+--+E A2122(1)01(1)(1)0123k λλλλλ-=-+-=-+=-+.解得特征根为1231,1λλλ===-.当1λ=时,()2,R -=E A A 有1个线性无关的特征向量.当1λ=-时,211422211100022422000000E A -⎛⎫---⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪⎝⎭⎝⎭⎝⎭k k k k k k·133·因存在可逆阵P ,使1-P AP 为对角阵,所以(1)1R --=E A ,从而0k =.因此 322010423-⎛⎫⎪=-⎪ ⎪-⎝⎭A , 对应于11λ=的特征向量为1ξ,由222020424--⎛⎫⎪⎪ ⎪--⎝⎭1=0ξ得1(1,0,1)'=ξ 对应于231λλ==-的特征向量为23,ξξ,由422000422--⎛⎫ ⎪= ⎪ ⎪--⎝⎭0ξ,得 23(1,2,0),(0,1,1)''=-=ξξ令110021101⎛⎫⎪=- ⎪ ⎪⎝⎭P 且P 为可逆阵,相应的对角阵111⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .11.设101020101⎛⎫⎪=⎪ ⎪⎝⎭A ,方阵B 满足2+=+AB E A B ,求B . 解:由2+=+AB E A B 得 2()()()-=-=-+A E B A E A E A E由于001010100⎛⎫ ⎪-= ⎪ ⎪⎝⎭A E ,所以-A E 可逆,得 201030102⎛⎫ ⎪=+= ⎪ ⎪⎝⎭B A E ,12.已知将3阶可逆阵A 的第2行的2倍加到第3行得矩阵B ,求1-AB .解:令100010021⎛⎫⎪= ⎪ ⎪⎝⎭C ,则=CA B ,由于,A C 均可逆,故B 可逆,所以 11100010021--⎛⎫ ⎪== ⎪ ⎪-⎝⎭AB C .13.设有线性方程组·134· 123123123000ax bx bx bx ax bx bx bx ax ++=⎧⎪++=⎨⎪++=⎩ (,a b 不全为0) (1),a b 为何值时方程组有非零解; (2)写出相应的基础解系及通解; (3)求解空间的维数.解:(1)齐次方程组有非零解的充要条件是系数行列式0a b bba b b b a=即 2()(2)0a b a b -+= 故0a b =≠,或20a b =-≠时,方程组有非零解. (2)当0a b =≠时,方程组为1230x x x ++=,即123x x x =--.其基础解系为12111,001--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭ξξ,通解为12121110,,10k k k k --⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数.当20a b =-≠时,方程组为123123123202020x x x x x x x x x -++=⎧⎪-+=⎨⎪+-=⎩,解得基础解系为111⎛⎫ ⎪⎪ ⎪⎝⎭,通解为11,1k k ⎛⎫ ⎪⎪ ⎪⎝⎭为任意常数.(3)当0a b =≠时,解空间维数为2;当20a b =-≠时,解空间维数为1.14.设二次型222123122313222f x x x ax x bx x x x =+++++经正交变换=X PY 化成22232f y y =+,其中123123(,,),(,,),x x x y y y ''==X Y P 是3阶正交矩阵,求,a b 及满足上述条件的一个P .解:正交变换前后,二次型的矩阵分别为11111a a b b ⎛⎫ ⎪= ⎪ ⎪⎝⎭A , 000010002⎛⎫⎪= ⎪ ⎪⎝⎭B故二次型可以写成f '=X AX 和f '=Y BY ,且1-'==B P AP P AP .·135·由,A B 相似知||||λλ-=-E A E B ,即322223(2)()a b a b λλλ-+--+-3232λλλ=-+,比较系数得:0,0a b ==.由1000010002-⎛⎫ ⎪== ⎪ ⎪⎝⎭P AP B ,知A 的特征值是0,1,2.解方程组(0)-=0E A x ,得1101⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得11120||2ξξ⎛⎫⎪ ⎪== ⎪ - ⎝⎭P 解方程组()-=0E A x ,得22201,0⎛⎫ ⎪== ⎪ ⎪⎝⎭P ξξ,解方程组(2)-=0E A x ,得3101⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化得33320||2⎛ ⎪== ⎪ ⎝⎭P ξξ故123022()010022⎛ ⎪== ⎪ - ⎝⎭P P P P . 15.求直线110:220x y z L x y z +--=⎧⎨+--=⎩与2220:2240x y z L x y z +--=⎧⎨+++=⎩的公垂线方程.解:1L 与2L 的标准式及参数形式分别为:11:011x y z L -==与1,,;x y t z t =⎧⎪=⎨⎪=⎩22:210x y z L +==-与2,,2.x y z λλ=⎧⎪=-⎨⎪=-⎩·136· 1L 的方向向量为12(0,1,1),L =s 的方向向量为2(2,1,0)=-s .设1L 与2L 公垂线垂足为(1,,),(2,,2)t t λλ--A B ,则应有(21,,2)AB t t λλ=-----,且1220s λ⋅=---=AB t ,2520s λ⋅=+-=AB t .解得4,32.3t λ⎧=-⎪⎪⎨⎪=⎪⎩所以1{1,2,2}3AB =-,故公垂线方程为 44133122y z z ++-==-. 16.求直线210:10x y z L x y z -+-=⎧⎨+-+=⎩在平面:20x y z π+-=上投影的方程.解:A 点坐标为44(1,,)33--.设通过直线L 垂直于平面π的平面0π的方程为21(1)0x y z x y z λ-+-++-+=.0π的法向量为1(2,1,1)λλλ=+-+-n . 平面π的法向量为(1,2,1)=-n . 由0ππ⊥,知10⋅=n n ,得 22(1)(1)0λλλ++-+--= 解得14λ=. 从而得0π方程为310.x y z -+-=所以所求直线0L 方程为310,20.x y z x y z -+-=⎧⎨+-=⎩17.设矩阵A 与B 相似,且111200242,0203300a b -⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B , (1)求,a b 的值;(2)求一个可逆阵P ,使1-=P AP B .解:(1)因为A 与B 相似,所以有||||λλ-=-E A E B ,32111||242(5)(53)6633a a a aλλλλλλλ---=--=-++++--E A232||(2)()(4)(44)4b b b b λλλλλλ-=--=-+++-E BππL 0L·137·比较两式系数可得:5344664a b a b +=+⎧⎨-=-⎩解得56a b =⎧⎨=⎩.(2)因A 与226⎛⎫⎪= ⎪ ⎪⎝⎭B 相似,所以A 的特征值为2,2,6. 1112222333-⎛⎫ ⎪-=-- ⎪ ⎪-⎝⎭E A . 解(2)-=0E A X 得A 的对应于特征值2的特征向量12111,001-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,5116222331-⎛⎫ ⎪-=- ⎪ ⎪⎝⎭E A . 解()E A X -=60得A 的对应于特征值6的特征向量3123⎛⎫⎪=- ⎪ ⎪⎝⎭ξ.令123111()102013P -⎛⎫ ⎪==- ⎪ ⎪⎝⎭ξξξ,则有1-=P AP B .18.已知3阶实对称阵A 的特征值为03,2,2,10⎛⎫ ⎪- ⎪ ⎪⎝⎭及01 ⎪ ⎪⎝⎭分别是A 的对应于特征值3,2的特征向量,(1)求A 的属于特征值2-的一个特征向量;(2)求正交变换=X PY 将二次型f '=X AX 化为标准形.解:(1)设2-对应的特征向量为X ,则有12(,)0,(,)0==X X ξξ,可取310⎛⎫⎪= ⎪ ⎝ξ.(2)把特征向量规范正交化后得:·138·12310221,0,00122⎛⎫⎛⎫ ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ - ⎪⎝⎭⎝⎭P P P .令10221001022⎛⎫ ⎪⎪= ⎪ - ⎝⎭P , 则在正交变换=X PY 下f 化为 222123322f y y y =+-.19.已知二次型22212312232355266f x x cx x x x x x x =++-+-的秩为2,求c 及此二次型对应矩阵的特征值,指出123(,,)1f x x x =代表三维几何空间中何种几何曲面.解:二次型f 所对应的矩阵为51315333c -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A ,因f 的秩为2,即A 的秩为2,故有||0=A ,所以3c =.513||153(4)(9)0333λλλλλλλ---=-=--=--E A ,得特征值为0,4,9. 与特征值相对应的单位特征向量分别为123(,,'''===P P P , 取正交变换阵0⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭P ,则在正交线性变换=X PY 下,方程123(,,)1f x x x =化为椭圆柱面2223491y y +=.20.设有数列01201321120,1,,,,,n n n a a a a a a a a a a a --===+=+=+,求1000a .解法1:·139·由1121110n n n n a a a a ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 得9991000109991110a a a a ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.记 1110⎛⎫=⎪⎝⎭A 得A,并且1211,2211⎛⎫⎛⎫+ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ分别是A的对应于特征值1122+的特征向量.记1211(,)2211⎛⎫+ ⎪== ⎪ ⎪⎝⎭T ξξ,于是111-⎛ ⎪=⎪-⎪⎝⎭T则100-⎫⎪ = ⎝A T T99999911020-⎛⎫+ ⎪= ⎝A T T1000100010001000999999999999]]-+⎪= ⎪-+⎪⎝⎭所以10001000100011(()())522a +-=-. 解法2:设 1111n D +++=++αβαβαβαβαβαβαβαβ·140· 将n D 按第一行展开可得1n n n D D αβ--= (1)由, αβ的对称性可得1nn n D D βα--= (2)若αβ≠,(1)、(2)联立解之11n n n D αβαβ++-=- (3)若αβ=,由(1)1(1)n nn n D D n ααα-=+=+ (4)考察令 11111111111n D --=-补充定义100,1D D -==,则12,1,2,n n n D D D n --=+= 于是1n n a D -= 解:11αβαβ+=⎧⎨=-⎩, 得001122αβ+==,由(3)知 00000000001000999000000111a D αβαβαβαβαβαβαβαβ+++==++100010000000αβαβ-=-10001000⎡⎤⎥=-⎥⎝⎭⎝⎭⎦.·141·四、证明题1.证明69169169(1)316916n n D n ==+,(n 为正整数). 证:1 1n =时,16(11)3D ==+⋅2 假设当n k ≤时结论成立,当1n k =+时,若12k +=,由226936927(21)316D ==-==+⋅知命题成立.若13k +≥,将1k D +按第一行展开得11169169696(1)39316916k k k k k D D D k k -+-==-=+-⋅⋅1(2)3k k +=+⋅由数学归纳法,对一切自然数n 结论都成立.2.设A 为2阶方阵,证明:若存在大于等于2的自然数m 使m=0A ,则=20A .证:因m=0A ,所以||||0mm==A A ,又A 为2阶方阵,故()1R ≤A .所以A 经初等变换可以化为100000000000⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,于是存在可逆阵,P Q ,使 1000100000(100)00000⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A P Q P Q ,·142· 取10,(100)0⎛⎫ ⎪ ⎪'== ⎪ ⎪⎝⎭U P V Q ,则'=A UV .令k '=V U ,则2.k k '''===A UV UV UV A 由m m k -==10A A 知0k =,或者=0A ,故2k ==0A A . 3.设A 是幂等阵2()=A A ,试证 (1)A 的特征值只能是1或0, (2)()()n R R n +-=A A E , (3)A 可相似对角化; (4)()tr()R =A A .证:(1)设λ是A 的任一特征值,则存在≠0X 使λ=AX X . 于是22λ=A X X .由2=A A 知,2λλ=X X . 由≠0X 得2λλ=,故1λ=或0. (2)由2=A A 知,()-=0A A E ,于是()()R R n +-≤A A E (1)由()n n +-=A E A E 知()()()()()n n n R R R R R =≤+-=+-E A E A A A E (2)综合(1),(2)可得()().n R R n +-=A A E(3)记12(),()n R r R r =-=A A E .当10r =或20r =时,=0A 或n =A E ,命题显然成立. 以下设120,0r r ≠≠,由12r r n +=知10r n <<,20r n <<. 取112,,,n r -ξξξ为=0AX 的基础解系212,,,n r -ηηη是()n -=0A E X 的基础解系,则112,,,n r -ξξξ是A 的属于特征值0的线性无关的特征向量,212,,,n r -ηηη是A 的属于特征值1的线性无关的特征向量,故由12()()n r n r n -+-=知A 有n 个线性无关的特征向量1211,,,,,n r n r --ξξηη. 从而A可相似对角化.(4)由(1)、(3)可知存在可逆阵T 使10r-⎛⎫=⎪⎝⎭E T AT 于是1()tr()tr()R r -===A TAT A .4.设,A B 是n 阶正定矩阵,证明:AB 的特征值全大于0.·143·证:因,A B 正定,则存在可逆阵12,P P ,使11221122''''===A P P B P P AB P P P P12221121212()()()-'''''==P AB P P P P P P P P P因12,P P 可逆,则12'P P 可逆,从而1212()()''P P PP 正定,它的特征值全大于0, 因AB 与1212()()''''P P P P 相似,从而AB 的特征值全大于0. 5.设A 为n 阶方阵,试证:(1)若1k +=0A α且k≠0A α,则1,,,,kk -A A A αααα线性无关;(2)1n +=0A X 的解一定是n =0A X 的解; (3)1()()n nR R +=A A .证:(1)反证法若1,,,,kk +A A A αααα线性相关,则存在不全为零的数01,,,k l l l ,使01k k l l l +++=0αααA A ,设i l 是第一个不等于零的系数,即0110,0i i l l l l -====≠, 则 11i i k i i k l l l +++++=0A A A ααα,两边乘以矩阵k i -A ,得121k k k i i i k l l l +-++++=0A A A ααα,由于1k +=0Aα,故对任意1m k ≥+都有m =0A α,从而由上式得k i l α=0A ,但k ≠0A α,故0i l =与假设矛盾. (2)证明:假设α是1n +=0A X 的解,但不是n =0A X 的解,即有 1n +=0A α 但n≠0A α.由(1)知1,,,,nn -A A A αααα线性无关,与1n +个n 维向量1,,,,n n -A A A αααα线性相关矛盾,故α是n =0A X 的解. (3)由(2)知1n +=0AX 的解一定是n =0A X 的解,且易知n =0A X 的解一定是1n +=0A X 的解,所以方程1n +=0A X 与n =0A X 同解,所以1()()n n +=R A R A .6.已知向量组12,,,(2)m m ≥ααα线性无关,试证:向量组1112,m k =+=βααβ22111,,,m m m m m m m k k ---+=+=ααβααβα线性无关.证:假设有一组数121,,,,m m l l l l -使得112211m m m m l l l l --++++=0ββββ.则有11222111()()()m m m m m m m m l k l k l k l ---+++++++=0ααααααα,即有·144· 112211112211()m m m m m m l l l l k l k l k l ----++++++++=0αααα由于12,,,m ααα线性无关,所以 1211122110m m m m l l l l k l k l k l ---====++++=,所以1210m m l l l l -=====.故12,,,m βββ线性无关.7.设12,,,m ααα线性无关,m 为奇数,试证:1122231,,,m -=+=+=βααβααβ11,m m m m -+=+ααβαα线性无关.证:假设存在一组数12,,,m k k k 使112211m m m m k k k k --++++=0ββββ,则有112223111()()()()m m m m m k k k k --++++++++=0αααααααα,即111221()()()m m m m k k k k k k -++++++=0ααα 又由于12,,,m ααα线性无关,所以11210m m m k k k k k k -+=+==+=,因为m 是奇数,所以线性方程组(1)的系数行列式1101111(1)20010001m D +==+-=≠, 1121000m m m k k k k k k -+=⎧⎪+=⎪⎨⎪⎪+=⎩ (1) 故(1)只有零解,所以120m k k k ====,故12,,,m βββ线性无关.8.设n 阶矩阵A 的n 个列向量为12,,,n ααα,n 阶矩阵B 的n 个列向量为122311,,,,,()n n n R n -++++=ααααααααA ,问齐次线性方程组=0BX 是否有非零解,证明你的结论.证:当n 为奇数时,齐次线性方程组=0BX ,没有非零解. 当n 为偶数时,=0BX 有非零解.·145·由于()R n =A ,所以n 阶矩阵A 的n 个列向量12,,,n ααα线性无关,由上题知,当n 为奇数时,122311,,,,n n n -++++αααααααα也线性无关,所以()R n =B ,因此齐次线性方程组=0BX 没有非零解,但当n 为偶数时,因122311()()()()n n n -+-++++-+=0αααααααα,122311,,,,n n n -++++αααααααα线性相关,所以()R n <B .因此,齐次线性方程组=0BX 有非零解.9.设12,,,n ξξξ是n 阶方阵A 的分别属于不同特征值的特征向量,12n =+++αξξξ. 试证:1,,,n -A A ααα线性无关.证:设A 的n 个互不相同的特征值为12,,,n λλλ,对应的特征向量依次为12,,,n ξξξ,则1111(),,n n n n λλ=++=++=++A A A A αξξξξξξ11111n n n n n λλ---=++A αξξ.设有一组数011,,,n k k k -,使得1011n n k k k --+++=0αααA A 即1101111111()()()n n n n n n n k k k λλλλ---+++++++++=0ξξξξξξ.可得1101111101212201(λλ)(λλ)(λn n n n n k k k k k k k k ξξ----+++++++++++11)n n n n k λ--+=0ξ.由于12,,,n ξξξ线性无关,所以1011111012121011000n n n n n nn n k k k k k k k k k λλλλλλ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 即 1011212211111n n n n n n k k k ----⎛⎫⎛⎫⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0λλλλλλ又由于1111221111()01n n i j j i nn nn --≤<≤-=-≠∏λλλλλλλλ.所以0110n k k k -====, 即21,,,,n -A A A αααα线性无关.·146· 10.已知,A B 是两个n 阶实对称矩阵,试证A 与B 相似的充要条件是,A B 的特征多项式相等.证:(1)若A 与B 相似,记1-=T AT B ,则11||||||||||||λλλλ---=-=-=-E B E T AT T E A T E A .(2)若,A B 的特征多项式相等,则,A B 有相同的特征值12,,,n λλλ. 因,A B 都是实对称矩阵,存在正交阵,P Q 使112211,n n λλλλλλ--⎛⎫⎛⎫⎪⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP Q BQ 于是11--=P AP Q BQ .即111()()---=PQ A PQ B故A 与B 相似.11.设A 是n 阶实矩阵,证明当0k >时,k '+E A A 正定.证:()()()k k k ''''''+=+=+E A A E A A E A A ,即k '+E A A 是实对称阵. 对任意n 维非零实列向量X ,有()()()()k k k '''''''+=+=+X E A A X X E X X A AX X X AX AX由于0k >,所以()0k '>X X ,又()0'≥AX AX ,所以()0k ''+>X E A A X .即k '+E A A 正定.12.设A 是m n ⨯实矩阵,证明:()()()R R R ''==A A AA A ,并举例说明A 是复矩阵时,结论未必成立. 证:考察方程组'=0A AX , (1)=0AX (2)显然(2)的解均为(1)的解,因而()()n R n R '-≤-A A A ,即有()()R R '≤A A A (3)·147·另一方面,对任意1nn x x ⎛⎫ ⎪=∈ ⎪ ⎪⎝⎭R X 如果'=0A AX ,则()0''=X A AX , 即()()0'=AX AX (4)设12(,,,)n a a a '=AX ,由(4)知210ni i a ==∑,因为A 为实矩阵,X 为实向量,故i a 均为实数,所以120n a a a ====,即=0AX ,由于(2)的解也是(1)的解,故有()()n R n R '-≤-A A A ,即()()R R '≤A A A (5)综合(3),(5)式知()()R R '=A A A由()()R R '=A A 知()(())()()R R R R '''''===AA A A A A故有()()()R R R ''==A A AA A .令1i ⎛⎫= ⎪⎝⎭A ,则(1,)i '=A ,于是(0)'=A A ,即A 是复矩阵,结论不成立. 13.若任意n 维列向量都是n 阶方阵A 的特征向量,试证:A 一定是标量矩阵. 证:先证A 的任两个特征值都相等,否则设1212,()λλλλ≠是A 的两个特征值,≠0X ,≠0Y ,使12,λλ==AX X AY Y . 因12λλ≠,所以,X Y 线性无关,+≠0X Y . 依题意存在k ,使()()k +=+A X Y X Y ,于是1212()(),k k k λλλλ-+-===0X Y ,矛盾,故A 的所有特征值都相等,记为λ.令j e 为n 阶单位阵E 的第j 个列向量,1,,j n =,于是 1()E e e e =jn由已知,1,2,,j j j n λ==Ae e得11()(),,A e e e e e e AE E A E λλλ===j n j n即A 是数量矩阵.14.设A 是n 阶正定矩阵,试证:存在正定矩阵B 使2=A B . 证:A 是正定阵,则存在正交矩阵P ,使得·148· 121n λλλ-⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭P AP D ,其中0,(1,2,,)ii n λ>=令(1,2,,)i i n δ==,则21111222222n n n n λδδδλδδδλδδδ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎪⎪ ⎪⎪⎪===⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭D 而 11221n n δδδδδδ-⎛⎫⎛⎫ ⎪⎪⎪⎪'== ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭A PDP P P 1122n n δδδδδδ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪''= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P P P 令 12n δδδ⎛⎫ ⎪⎪'= ⎪ ⎪ ⎪⎝⎭B P P ,易验证B 为正定阵,故2=A B . 15.设α是n 维非零实列向量,证明:2'-'E αααα为正交矩阵.证:因为22()'''-=-''E E αααααααα,故2222()()()()'''''--=--''''E E E E αααααααααααααααα 224444()()()()()''''''=-+=-+''''E E αααααααααααααααααααα 44''=-+=''E E αααααααα. 因而2'-'E αααα为正交矩阵.16.设方程组=0AX 的解都是=0BX 的解,且()()R R =A B ,试证:=0AX 与·149·=0BX 同解.证:设()()R R r ==A B ,则=0AX 的基础解系含有n r -个线性无关的向量,不妨设为12,,,n r -ξξξ. 有,(,,)A ==-01i i n r ξ.又=0AX 的解必为=0BX 的解,从而,(,,)i i n r ξ==-01B从而12,,,n r -ξξξ也是=0BX 的基础解系.于是=0BX 的通解为11.n r n r k k --+ξξ则=0AX 与=0BX 同解.17.设A 是n 阶方阵,12(,,,)n b b b '=β是n 维列向量,0⎛⎫= ⎪'⎝⎭A B ββ,若()()R R =A B ,则=AX β有解.证:由于()()()R R R ≤=A B A β,又由于()()R R ≤A A β,所以()()R R =A A β即=AX β有解.18.设12(,,,)(1,2,,,)i i i in a a a i r r n '==<α是r 个线性无关的n 维实向量,12(,,,)n b b b '=β 是线性方程组111122121122221122000n n n n r r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的实非零解向量,试证:12,,,,r αααβ线性无关.证:假设12,,,,r αααβ线性相关,由已知12,,,r ααα线性无关,必有1122r r k k k =+++βααα, (1)又由β为方程组的解,从而(,)0,(1,,)i i r ==βα于是11(,)(,)0r r k k =++=βββαα, 从而=0β,矛盾.所以12,,,,r αααβ线性无关. 19.设,A B 是两个n 阶正定矩阵,若A 的特征向量都是B 的特征向量,则AB 正定. 证:因为,A B 是两个n 阶正定矩阵,因此,A B 也必为实对称矩阵,设12,,,n P P P 为A 的n 个标准正交的特征向量,记12()n =P P P P ,则·150· 112211,,n n k k k λλλ--⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP P BP 并且,0,(1,,)i i k i n λ>=,所以 1122111n n k k k λλλ---⎛⎫⎛⎫ ⎪⎪ ⎪⎪=⋅= ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭P ABP P AP P BP 1122n n k k k λλλ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ 且0,(1,,)i i k i n λ>=. 再由1-'=P P 得()'=AB AB ,因此AB 正定.20.设12,,,t ααα是齐次线性方程组=0AX 的基础解系,向量β不是=0AX 的解,试证向量组12,,,,t +++ββαβαβα线性无关. 证:设有一组数01,,,t k k k 使得011()()t t k k k +++++=0ββαβα即0121122()t t t k k k k k k k ++++++++=0βααα (1)由于12,,,t ααα是齐次线性方程组=0AX 的基础解系,向量β不是=0AX 的解,所以β不能表为1,,t αα的线性组合,所以0120t k k k k ++++=,因此(1)式变为1122t t k k k +++=0ααα,由于1,,t αα线性无关,所以120t k k k ====,进而00k =,故向量组12,,,,t +++ββαβαβα线性无关.。

新数学高考六道大题题型

新数学高考六道大题题型

新数学高考六道大题题型一、解析几何1. 平面几何定理题目:已知直角三角形ABC中,∠C=90°,且AC=5,BC=12。

求AB 的长度。

解题思路:根据勾股定理,可以得到AB的长度。

即AB=√(AC²+BC²)=√(25+144)=√169=13。

2. 空间几何定理题目:已知四棱锥的底面是一个菱形,底面边长为6,四个脚顶点在菱形对角线的两端,且离底面中心的距离都是3。

求这个四棱锥的体积。

解题思路:根据四棱锥的体积公式,可以得到体积V=(1/3)*底面面积*高。

由菱形的对角线长和底面边长可求得底面面积为18,而高等于脚顶点到底面中心的距离,即3。

带入公式可得V=(1/3)*18*3=18。

二、函数与方程3. 函数求值题目:设函数f(x)满足f(x+2)-2f(x+1)+f(x)=x,且f(1)=1,f(2)=4。

求f(3)的值。

解题思路:将x分别取1和2代入已知的方程,可以得到两个方程:f(3)-2f(2)+f(1)=1 和f(4)-2f(3)+f(2)=2。

再结合已知条件f(1)=1和f(2)=4,可以得到一个关于f(3)的一元二次方程,解方程可得f(3)=2。

4. 方程求根题目:解方程x²-5x+6=0。

解题思路:这是一个一元二次方程,可以使用求根公式进行求解。

根据求根公式,方程的根分别是x=(5±√(5²-4*1*6))/(2*1)。

带入公式可得x₁=3,x₂=2。

三、概率与统计5. 概率计算题目:甲、乙、丙三个人独立地制作产品A的过程中,每个人的失误率分别是0.1、0.2和0.3。

其中甲独立制作30件,乙制作50件,丙制作20件。

现从中随机抽取一件产品,求抽出的产品是失误的概率。

解题思路:根据独立事件的概率公式,可以将问题化简为分别求甲、乙、丙制作的产品中出现失误的概率,然后将三个概率相加。

甲独立制作30件,失误的概率是0.1,所以甲制作的产品中失误的数量是30*0.1=3;同理,乙和丙的失误数量分别是10和6。

数学一轮复习单元质检卷九解析几何理

数学一轮复习单元质检卷九解析几何理

单元质检卷九解析几何(时间:100分钟满分:140分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1。

点P(2,3)到直线l:ax+y—2a=0的距离为d,则d的最大值为()A。

3 B.4 C。

5 D.72.(2020山东潍坊二模,4)以抛物线E:x2=4y的焦点为圆心,且与E的准线相切的圆的方程为()A.(x-1)2+y2=4 B。

x2+(y+1)2=4C.(x+1)2+y2=4D.x2+(y—1)2=43。

(2020江西上饶三模,文11)圆x2+y2+2x-2y—2=0上到直线l:x+y+√2=0距离为3的点共有()A.1个B.2个C.3个D.4个4。

(2020江西上饶三模,文10)过双曲线x24−y28=1的右焦点作直线l交双曲线于A,B两点,则满足|AB|=8的直线l有()A.1条 B.2条C。

3条D。

4条5。

已知抛物线C:y2=2px(p>0)的焦点为F,过点F的直线l与抛物线C交于A,B两点,且直线l与圆x2-px+y2—34p2=0交于C,A.±√22B.±√32C.±1D.±√26.(2020山东青岛三模,6)“蒙日圆"涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆。

若椭圆C:x2 a+1+y2a=1(a>0)的离心率为12,则椭圆C的蒙日圆方程为()A。

x2+y2=9 B。

x2+y2=7C。

x2+y2=5 D.x2+y2=47.已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ 垂直l于点Q,M,N分别为PQ,PF的中点,直线MN与x轴相交于点R,若∠NRF=60°,则|FR|等于()A.12B.1 C。

2 D.48.如图,点F是抛物线C:x2=4y的焦点,点A,B分别在抛物线C 和圆x2+(y—1)2=4的实线部分上运动,且AB总是平行于y轴,则△AFB周长的取值范围是()A。

2024年数学九年级上册解析几何基础练习题(含答案)

2024年数学九年级上册解析几何基础练习题(含答案)

2024年数学九年级上册解析几何基础练习题(含答案)试题部分一、选择题:1. 在平面直角坐标系中,点A(2, 3)关于x轴的对称点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)2. 已知点P在第二象限,且到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A. (3, 4)B. (3, 4)C. (4, 3)D. (4, 3)3. 直线y=2x+1的斜率是()A. 1B. 2C. 1D. 24. 下列函数中,哪一个是一次函数?()A. y=x^2B. y=2xC. y=x^3D. y=1/x5. 在平面直角坐标系中,点A(1, 2)和点B(2, 4)所在的直线方程是()A. y=2x+4B. y=2x+4C. y=x+3D. y=x+36. 一次函数y=kx+b的图象经过一、二、四象限,则k和b的取值范围是()A. k>0, b>0B. k<0, b>0C. k>0, b<0D. k<0, b<07. 下列各点中,哪一个点不在直线y=x+3上?()A. (1, 2)B. (2, 1)C. (1, 4)D. (2, 5)8. 已知直线y=2x+1与y轴的交点坐标是(0, a),则a的值为()A. 0B. 1C. 2D. 19. 在平面直角坐标系中,两条平行线的斜率分别是2和2,则这两条直线()A. 相交B. 平行C. 重合D. 垂直10. 已知一次函数y=kx+b的图象与y轴交于点(0, 3),且过点(1,5),则该函数的解析式为()A. y=2x+3B. y=3x+3C. y=2x+3D. y=3x+3二、判断题:1. 一次函数的图象是一条直线。

()2. 两条平行线的斜率一定相等。

()3. 一次函数y=kx+b中,当k>0时,直线必经过第一象限。

()4. 点(0, 0)是所有直线上的点。

()5. 直线y=2x+1的斜率为2,说明直线与x轴的夹角为60度。

解析几何课后习题答案

解析几何课后习题答案

解析几何课后习题答案解析几何是数学中的一个重要分支,它研究的是空间中的点、线、面等几何图形的性质和变换。

在解析几何中,习题是巩固和深化学生对知识的理解和运用的重要手段。

然而,很多学生在解析几何的习题中常常会遇到困惑和困难,特别是对于一些较为复杂的问题。

因此,本文将为大家解析几何课后习题的答案,希望能够帮助大家更好地掌握解析几何的知识。

第一题:已知平面上三点A(1,2),B(3,4),C(5,6),求直线AB的斜率。

解答:直线的斜率可以通过两点的坐标计算得到。

设直线AB的斜率为k,则有k=(y2-y1)/(x2-x1)。

代入A(1,2)和B(3,4)的坐标,得到k=(4-2)/(3-1)=1。

所以直线AB的斜率为1。

第二题:已知直线y=2x-1与x轴的交点为A,与y轴的交点为B,求线段AB的中点坐标。

解答:线段的中点坐标可以通过两个端点的坐标计算得到。

设线段AB的中点坐标为M(x,y),则有x=(x1+x2)/2,y=(y1+y2)/2。

代入A(0,-1)和B(0,1)的坐标,得到x=(0+0)/2=0,y=(-1+1)/2=0。

所以线段AB的中点坐标为M (0,0)。

第三题:已知直线y=3x+2与直线y=-2x+5的交点为P,求直线OP的斜率,其中O为坐标原点。

解答:直线OP的斜率可以通过两点的坐标计算得到。

设直线OP的斜率为k,则有k=(y2-y1)/(x2-x1)。

代入O(0,0)和P的坐标,得到k=(y-0)/(x-0)=(3x+2-(-2x+5))/(x-0)=(5x+3)/(x-0)=5。

所以直线OP的斜率为5。

第四题:已知直线y=kx-2与x轴的交点为A,与y轴的交点为B,求k的值使得线段AB的长度为10。

解答:线段的长度可以通过两个端点的坐标计算得到。

设线段AB的长度为d,直线y=kx-2与x轴的交点为A(x1,0),与y轴的交点为B(0,y1),则有d=sqrt((x2-x1)^2+(y2-y1)^2)=sqrt((0-x1)^2+(y1-0)^2)=sqrt(x1^2+y1^2)。

专题08 平面解析几何(解答题)

专题08  平面解析几何(解答题)

专题08 平面解析几何(解答题)1.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M e 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M e 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M e 与直线x +2=0相切,所以M e 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥u u u u r u u u r,故可得2224(2)a a +=+,解得=0a 或=4a . 故M e 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M e 的半径为=|+2|,||=2r x AO .由于MO AO ⊥u u u u r u u u r ,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.2.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(1)31-;(2)4b =,a 的取值范围为[42,)+∞.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,13PF c =,于是122(31)a PF PF c =+=+,故C 的离心率是31ce a==-. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y yx c x c⋅=-+-,22221x y a b +=,即||16c y =,① 222x y c +=,②22221x y a b+=,③ 由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故42a ≥.当4b =,42a ≥时,存在满足条件的点P . 所以4b =,a 的取值范围为[42,)+∞.【名师点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.3.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 【答案】(1)见解析;(2)22542x y ⎛⎫+-= ⎪⎝⎭或22522x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM u u u u r =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||2EM =u u u u r ,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭.【名师点睛】此题第一问是圆锥曲线中的定点问题和第二问是求圆的方程,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.4.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)见解析. 【解析】(1)由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(2)设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为1111y y x x -=+. 令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t kt k k t t k k-+=-⋅+-⋅-+-++12||1t t+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t =0,所以直线l 经过定点(0,0).【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已知3||2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【答案】(1)12;(2)2211612x y +=.【解析】(1)设椭圆的半焦距为c ,由已知有32a b =,又由222a b c =+,消去b 得22232a a c ⎛⎫=+ ⎪ ⎪⎝⎭,解得12c a =. 所以,椭圆的离心率为12. (2)由(1)知,2,3a c b c ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+, 点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-. 代入到l 的方程,解得1239,214y c y c ==-.因为点P在x轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C在直线4x=上,可设(4, )C t.因为OC AP∥,且由(1)知( 2 , 0)A c-,故3242ctc c=+,解得2t=.因为圆C与x轴相切,所以圆的半径长为2,又由圆C与l相切,得23(4)242314c+-=⎛⎫+ ⎪⎝⎭,可得=2c.所以,椭圆的方程为2211612x y+=.【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力. 6.【2019年高考江苏卷】如图,在平面直角坐标系xOy中,椭圆C:22221(0)x ya ba b+=>>的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:222(1)4x y a-+=交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=52.(1)求椭圆C的标准方程;(2)求点E的坐标.【答案】(1)22143x y+=;(2)3(1,)2E--.【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴, 所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C:221 43x y+=.如图,连结EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B,所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x轴,所以EF1⊥x轴.因为F1(−1,0),由221431xx y⎧⎪⎨+==-⎪⎩,得32y=±.又因为E是线段BF2与椭圆的交点,所以32y=-.因此3(1,)2E--.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.7.【2019年高考浙江卷】如图,已知点(10)F,为抛物线22(0)y px p=>的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得ABC△的重心G在x轴上,直线AC交x轴于点Q,且Q在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为312+,此时G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,122113222134323424S m S m m m m m m=-=--=+++++⋅+…. 当3m =时,12S S 取得最小值312+,此时G (2,0). 【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.8.【2018年高考全国Ⅰ文数】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠. 【答案】(1)y =112x +或112y x =--;(2)见解析. 【解析】(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2). 所以直线BM 的方程为y =112x +或112y x =--. (2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .【名师点睛】本题主要考查抛物线的标准方程与几何性质、直线与抛物线的位置关系,考查考生的化归与转化能力、运算求解能力,考查的数学核心素养是直观想象与数学运算.在设直线的方程时,一定要注意所设方程的适用范围,如用点斜式时,要考虑到直线的斜率不存在的情况,以免解答不严密或漏解.(1)求出直线l 与抛物线的交点,利用两点式写出直线BM 的方程;(2)由(1)知,当直线l 与x 轴垂直时,结论显然成立,当直线l 与x 轴不垂直时,设出斜率k ,联立直线l 与C 的方程,求出M ,N 两点坐标之间的关系,再表示出BM 与BN 的斜率,得其和为0,从而说明BM 与BN 两条直线的斜率互为相反数,进而可知两角相等.9.【2018年高考全国Ⅱ卷文数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【答案】(1)y =x –1;(2)22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 【解析】(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+=,故212224k x x k++=. 所以212244(1)(1)k AB AF BF x x k+=+=+++=. 由题设知22448k k +=,解得k =–1(舍去),k =1. 因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.【名师点睛】本题主要考查抛物线与直线和圆的综合,考查考生的数形结合能力、运算求解能力,考查的数学核心素养是直观想象、数学运算.(1)利用点斜式写出直线l 的方程,代入抛物线方程,得到关于x 的一元二次方程,利用根与系数的关系以及抛物线的定义加以求解;(2)由题意写出线段AB 的垂直平分线所在直线的方程,设出圆心的坐标,由题意列出方程组,解得圆心的坐标,即可求解.10.【2018年高考全国Ⅲ卷文数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r .证明:2||||||FP FA FB =+u u u r u u u r u u u r. 【答案】(1)见解析;(2)见解析.【解析】(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-.(2)由题意得F (1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP u u u r . 于是222211111||(1)(1)3(1)242x x FA x y x =-+=-+-=-u u u r .同理2||=22x FB -u u u r .所以1214()32FA FB x x +=-+=u u u r u u u r .故2||=||+||FP FA FB u u u r u u u r u u u r .【名师点睛】本题主要考查椭圆的方程及简单几何性质、直线的斜率公式、直线与椭圆的位置关系、向量的坐标运算与向量的模等,考查运算求解能力、数形结合思想,考查的数学核心素养是数学抽象、数学运算.圆维曲线中与中点弦有关的问题常用点差法,建立弦所在直线的斜率与中点坐标间的关系,也可以通过联立直线方程与圆锥曲线方程,消元,根据根与系数的关系求解.11.【2018年高考北京卷文数】已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)44Q -共线,求k .【答案】(1)2213x y +=;(2)6;(3)1. 【解析】(1)由题意得222c =,所以2c =,又63c e a ==,所以3a =, 所以2221b a c =-=,所以椭圆M 的标准方程为2213x y +=.(2)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则222212121264||1||1()42m AB k x x k x x x x ⨯-=+-=+⋅+-=,易得当20m =时,max ||6AB =,故||AB 的最大值为6. (3)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 【名师点睛】本题主要考查椭圆的方程及几何性质、直线与椭圆的位置关系,考查考生的逻辑思维能力、运算求解能力,考查数形结合思想,考查的数学核心素养是直观想象、逻辑推理、数学运算.解决椭圆的方程问题,常用基本量法,同时注意椭圆的几何量的关系;弦长的计算,通常要将直线与椭圆方程联立,利用根与系数的关系求解.12.【2018年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为53,||13AB =. (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.【答案】(1)22194x y +=;(2)12-. 【解析】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分.(1)设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由22||13AB a b =+=,从而3,2a b ==.所以,椭圆的方程为22194x y +=.(2)设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>, 点Q 的坐标为11(,)x y --.由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =. 易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y ,可得12694x k =+. 由215x x =,可得2945(32)k k +=+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-.当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意.所以,k 的值为12-.【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,涉及轨迹方程问题、定值问题、最值问题、参数的取值或取值范围问题等,其中考查较多的圆锥曲线是椭圆与抛物线,解决此类问题要重视化归与转化思想及设而不求法的应用.13.【2018年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F -,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为267,求直线l 的方程.【答案】(1)椭圆C的方程为2214xy+=,圆O的方程为223x y+=;(2)①(2,1);②532y x=-+.【解析】(1)因为椭圆C的焦点为12()3,0,(3,0)F F-,可设椭圆C的方程为22221(0)x ya ba b+=>>.又点1(3,)2在椭圆C上,所以2222311,43,a ba b⎧+=⎪⎨⎪-=⎩,解得224,1,ab⎧=⎪⎨=⎪⎩因此椭圆C的方程为2214xy+=.因为圆O的直径为12F F,所以其方程为223x y+=.(2)①设直线l与圆O相切于0000(),,(00)P x y x y>>,则22003x y+=,所以直线l的方程为000()xy x x yy=--+,即0003xy xy y=-+.由22001,43,xyxy xy y⎧+=⎪⎪⎨⎪=-+⎪⎩消去y,得222200004243640()x y x x x y+-+-=.(*)因为直线l与椭圆C有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x∆=--+-=-=.因为00,0x y>,所以002,1x y==.因此点P的坐标为(2,1).②因为三角形OAB的面积为267,所以21267AB OP⋅=,从而427AB=.设1122,,()(),A x y B x y ,由(*)得2200022001,22448(2)2(4)x y x x x y ±-=+,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =, 因此P 的坐标为102(,)22. 综上,直线l 的方程为532y x =-+.【名师点睛】本题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力. (1)利用椭圆的几何性质求圆的方程和椭圆的方程. (2)①利用直线与圆、椭圆的位置关系建立方程求解; ②结合①,利用弦长公式、三角形的面积公式求解.14.【2018年高考浙江卷】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.PMBAOyx(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.【答案】(1)见解析;(2)1510[62,]4. 【解析】本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.满分15分. (1)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴. (2)由(1)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-, 21200||22(4)y y y x -=-.因此,PAB △的面积3221200132||||(4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是1510[62,]4. 【名师点睛】圆锥曲线问题是高考重点考查内容之一,也是难点之一.椭圆、抛物线是其中常考内容,需要熟练地掌握椭圆和拋物线的定义、基本性质、标准方程等,对于处理有关问题有很大的帮助.同时还要注意运算能力的培养和提高.15.【2017年高考全国Ⅰ卷文数】设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 【答案】(1)1;(2)7y x =+.【解析】(1)设A (x 1,y 1),B (x 2,y 2),则12x x ≠,2114x y =,2224x y =,x 1+x 2=4,于是直线AB 的斜率12121214y y x x k x x -+===-.(2)由24x y =,得2x y'=.设M (x 3,y 3),由题设知312x =,解得32x =,于是M (2,1). 设直线AB 的方程为y x m =+,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y x m =+代入24xy =得2440x x m --=.当16(1)0m ∆=+>,即1m >-时,1,2221x m =±+. 从而12||=2||42(1)AB x x m -=+.由题设知||2||AB MN =,即42(1)2(1)m m +=+,解得7m =. 所以直线AB 的方程为7y x =+.【名师点睛】本题主要考查直线与圆锥曲线的位置关系,主要利用根与系数的关系:因为直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用根与系数的关系及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用根与系数的关系直接解决,但应注意不要忽视判别式的作用. (1)设A (x 1,y 1),B (x 2,y 2),由两点斜率公式求AB 的斜率;(2)联立直线与抛物线方程,消y ,得12||=2||42(1)AB x x m -=+,解出m 即可.16.【2017年高考全国Ⅱ卷文数】设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =u u u ru u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1)222x y +=;(2)见解析.【解析】(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00(,),(0,)NP x x y NM y =-=u u u r u u u u r ,由2NP NM =u u u ru u u u r 得0022x x y y ==,. 因为M (00,x y )在C 上,所以22122x y +=.因此点P 的轨迹方程为222x y +=.(2)由题意知F (−1,0),设Q (−3,t ),P (m ,n ),则(3,),(1,),33OQ t PF m n OQ PF m tn =-=---⋅=+-u u u r u u u r u u u r u u u r, (,),(3,)OP m n PQ m t n ==---u u u r u u u r.由1OP PQ ⋅=u u u r u u u r得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .【名师点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证0OQ PF ⋅=u u u r u u u r,先设 P (m ,n ),则需证330m tn +-=,即根据条件1OP PQ ⋅=u u u r u u u r可得2231m m tn n --+-=,而222m n +=,代入即得330m tn +-=.17.【2017年高考全国Ⅲ卷文数】在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【答案】(1)不会,理由见解析;(2)见解析 【解析】(1)不能出现AC ⊥BC 的情况,理由如下:设1(,0)A x ,2(,0)B x ,则12x x ,满足220x mx +-=,所以122x x =-. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为121112x x --⋅=-, 所以不能出现AC ⊥BC 的情况.(2)BC 的中点坐标为(2122x ,),可得BC 的中垂线方程为221()22x y x x -=-. 由(1)可得12x x m +=-,所以AB 的中垂线方程为2mx =-.联立22(21)22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩,,又22220x mx +-=,可得212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩,,所以过A 、B 、C 三点的圆的圆心坐标为(122m --,),半径292m r +=,故圆在y 轴上截得的弦长为22232m r -=(),即过A 、B 、C 三点的圆在y 轴上截得的弦长为定值. 【名师点睛】解答本题时,设()()12,0,,0A x B x ,由AC ⊥BC 得1210x x +=,由根与系数的关系得122x x =-,矛盾,所以不存在;求出过A ,B ,C 三点的圆的圆心坐标和半径,即可得圆的方程,再利用垂径定理求弦长.直线与圆综合问题的常见类型及解题策略:(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形.代数方法:运用根与系数的关系及弦长公式:222121212||1||1()4AB k x x k x x x x =+-=++-; (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 18.【2017年高考北京卷文数】已知椭圆C 的两个顶点分别为A (−2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.【答案】(1)2214x y +=;(2)见解析.【解析】(1)设椭圆C 的方程为22221(0)x y a b a b+=>>.由题意得2,3,2a c a=⎧⎪⎨=⎪⎩解得3c =.所以2221b a c =-=.所以椭圆C 的方程为2214x y +=.(2)设(,)M m n ,则(,0),(,)D m N m n -. 由题设知2m ≠±,且0n ≠.直线AM 的斜率2AM n k m =+,故直线DE 的斜率2DE m k n+=-. 所以直线DE 的方程为2()m y x m n +=--. 直线BN 的方程为(2)2ny x m=--. 联立2(),(2),2m y x m n n y x m +⎧=--⎪⎪⎨⎪=-⎪-⎩解得点E 的纵坐标222(4)4E n m y m n -=--+. 由点M 在椭圆C 上,得2244m n -=.所以45E y n =-. 又12||||||||25BDE E S BD y BD n =⋅=⋅△,1||||2BDN S BD n =⋅△,所以BDE △与BDN △的面积之比为4:5.【名师点睛】本题对考生计算能力要求较高,重点考查了计算能力,以及转化与化归的能力,解答此类题目,主要利用,,,a b c e 的关系,确定椭圆方程是基础,本题易错点是对复杂式子的变形能力不足,导致错漏百出.本题能较好地考查考生的逻辑思维能力、运算求解能力、分析问题与解决问题的能力等. (1)根据条件可知32,2c a a ==,以及222b a c =-,从而求得椭圆方程;(2)设(,)M m n ,则(,0),(,)D m N m n -,根据条件求直线DE 的方程,并且表示出直线BN 的方程,并求得两条直线的交点纵坐标,根据1212E BDE BDNN BD y S S BD y ⋅⋅=⋅⋅△△即可求出面积比值. 19.【2017年高考天津卷文数】已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(1)求椭圆的离心率;(2)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.【答案】(1)12;(2)(ⅰ)34;(ⅱ)2211612x y +=.【解析】(1)设椭圆的离心率为e .由已知,可得21()22b c a c +=.又由222b a c =-,可得2220c ac a +-=,即2210e e +-=. 又因为01e <<,解得12e =. 所以,椭圆的离心率为12. (2)(ⅰ)依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m. 由(1)知2a c =,可得直线AE 的方程为12x yc c +=,即220x y c +-=, 与直线FP 的方程联立,可解得(22)3,22m c c x y m m -==++,即点Q 的坐标为(22)3(,)22m c cm m -++. 由已知|FQ |=32c ,有222(22)33[]()()222m c c c c m m -++=++,整理得2340m m -=,所以43m =, 故直线FP 的斜率为34.(ii )由2a c =,可得3b c =,故椭圆方程可以表示为2222143x y c c+=.由(i )得直线FP 的方程为3430x y c -+=,与椭圆方程联立22223430,1,43x y c x y c c -+=⎧⎪⎨+=⎪⎩ 消去y ,整理得2276130x cx c +-=,解得137cx =-(舍去),或x c =. 因此可得点3(,)2c P c ,进而可得2235|()()22|c c FP c c =++=, 所以53||||||22c cFP FQ Q c P -=-==. 由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离, 故直线PM 和QN 都垂直于直线FP .因为QN FP ⊥,所以339||||tan 248c c QN FQ QFN =⋅∠=⨯=, 所以FQN △的面积为2127||||232c FQ QN =,同理FPM △的面积等于27532c ,由四边形PQNM 的面积为3c ,得22752733232c c c -=,整理得22c c =,又由0c >,得2c =.所以,椭圆的方程为2211612x y +=.【名师点睛】圆锥曲线问题在历年高考中都是较有难度的压轴题,本题对考生的计算能力要求较高,是一道难题,重点考查了运算求解能力以及转化与化归的能力.求解此类问题时,利用,,,a b c e 的关系,确定椭圆离心率是基础,通过联立直线方程与椭圆(圆锥曲线)的方程,根据根与系数的关系进行解题,但本题需求解交点坐标,在求解过程要善于发现四边形PQNM 中的几何关系,从而易求其面积,进而使问题获解.(1)先根据题意得出21()22b c a c +=,然后结合222b a c =-,即可求得离心率;(2)(ⅰ)首先设直线FP 的方程为x my c =-,再写出直线AE 的方程,两方程联立得到点Q 的坐标,根据32FQ c =求得m 的值,即得直线FP 的斜率;(ⅱ)将直线FP 的方程和椭圆方程联立,可得点P 的坐标,再求,FP FQ ,确定直线PM 和QN 都垂直于直线FP ,根据平面几何关系求面积,从而可求得c 的值,进而得椭圆的方程.20.【2017年高考山东卷文数】在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为22. (1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.【答案】(1)22142x y +=;(2)EDF ∠的最小值为π3. 【解析】(1)由椭圆的离心率为22,得2222()a a b =-, 又当1y =时,2222a x a b =-,得2222a a b-=,所以224,2a b ==,因此椭圆方程为22142x y +=.(2)设1122(,),(,)A x y B x y ,联立方程2224y kx mx y =+⎧⎨+=⎩, 得222(21)4240k x kmx m +++-=, 由0∆>得2242m k <+.(*)且122421kmx x k +=+, 因此122221my y k +=+,所以222(,)2121km mD k k -++, 又(0,)N m -, 所以222222()()2121km m ND m k k =-++++ 整理得2242224(13)(21)m k k ND k ++=+ , 因为NF m =,所以2422222224(31)831(21)(21)ND k k k k k NF+++==+++.令283,3t k t =+≥, 故21214t k ++=, 所以2221616111(1)2NDt t NFt t=+=++++ . 令1y t t=+,所以211y t'=-. 当3t ≥时,0y '>,从而1y t t =+在[3,)+∞上单调递增,因此1103t t +≥,等号当且仅当3t =时成立,此时0k =,所以22134ND NF≤+=,由(*)得 22m -<< 且0m ≠.故12NF ND ≥, 设2EDF θ∠=, 则1sin 2NF ND θ=≥ , 所以θ的最小值为π6, 从而EDF ∠的最小值为π3,此时直线l 的斜率是0. 综上所述:当0k =,(2,0)(0,2)m ∈-U 时,EDF ∠取到最小值π3. 【名师点睛】圆锥曲线中的两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题; ②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决; ②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解. 解答本题时,(1)由22c a =得2a b =,由椭圆C 截直线y =1所得线段的长度为22,得2222a a b -=,求得椭圆的方程为22142x y +=;(2)由2224x y y kx m⎧+=⎨=+⎩,解得22(21)4k x kmx +++ 2240m -=,确定222(,)2121km m D k k -++,4222||3221m DN k k k =+++,结合22ND NF的单调性求EDF ∠的最小值.21.【2017年高考浙江卷】如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点13(,)()22P x y x -<<.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求||||PA PQ ⋅的最大值. 【答案】(1)(1,1)-;(2)2716. 【解析】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.满分15分. (1)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-. (2)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩ 解得点Q 的横坐标是22432(1)Q k k x k -++=+. 因为|P A |=211()2k x ++=21(1)k k ++, |PQ |=222(1)(1)1()1Q k k k x x k -++-=-+,所以3(1)(1)k k PA PQ ⋅--+=.令3()(1)(1)f k k k =--+,因为2()(42)(1)f k k k '=--+,所以 f (k )在区间1(1,)2-上单调递增,1(,1)2上单调递减, 因此当k =12时,||||PA PQ ⋅取得最大值2716. 【名师点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.(1)由斜率公式可得AP 的斜率为12x -,再由1322x -<<,得直线AP 的斜率的取值范围;(2)联立直线AP 与BQ 的方程,得Q 的横坐标,进而通过表达||PA 与||PQ 的长度,利用函数3()(1)(1)f k k k =--+的单调性求解||||PA PQ ⋅的最大值.22.【2017年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=;(2)4737(,)77.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,。

解析几何1 (2)

解析几何1 (2)

学后反思 (1)对直线 的大致位置分析,界定了斜率的存在性及其范围,指 明了解题方向,这种分析是避免解题盲目性的重要技能. (2)本题将面积表示为k的函数,再用基本不等式求最小值,方程选择不同, 自然参数不同,但是求最值的方法首先考虑基本不等式,然后是函数单调性、 换元等方法.
举一反三
3. 已知直线 L过点P(3,2),且与x轴、y轴的正半轴分别交于A、B两点, 如图所示,求△ABO的面积的最小值及此时直线 L 的方程.
k 1
所以
S (k )
1 2
1 2 k 2


1 k 2
l 1 4 4k
1 1 4 4 4 k 2
当且仅当
4k
1 k
,即k=- 时,等号成立.
2 1
1
故直线 l 的方程为y-1=- (x-2),即x+2y-4=0. 2 x y l 方法二:设过P(2,1)的直线为 a b 1 (a>0,b>0), 则
2 a 1 b 1
.
l
2 1 2 1 1 ,即ab≥8, a b a b 2 1 1 1 S O AB ab 4 ,当且仅当 ,即a=4,b=2时,等号成立. a b 2 2 x y 故直线方程为 1 ,即x+2y-4=0. 4 2
由基本不等式得 2
5 3
5x+2y+1=0, 5 , ∴ l的斜率k=- ,
3

3x+2y-1=0, 得 l1 , l 2 的交点P(-1,2).
∴l :y-2=- (x+1),即5x+3y-1=0. 方法二:由 l ⊥ l 3 ,可设l :5x+3y+C=0. ∵l1 ,l 2 的交点可以求得为P(-1,2). ∴5〓(-1)+3〓2+C=0,∴C=-1, ∴l :5x+3y-1=0.

高中数学优质试题及答案

高中数学优质试题及答案

高中数学优质试题及答案试题一:函数与方程1. 已知函数\( f(x) = x^2 - 4x + 3 \),求\( f(x) \)的零点。

2. 判断函数\( g(x) = \frac{1}{x} \)在\( x > 0 \)时的单调性。

3. 已知方程\( x^2 + 2x + 1 = 0 \),求其根并判断根的性质。

试题二:几何与代数1. 已知三角形ABC的边长分别为\( a = 5 \),\( b = 7 \),\( c = 8 \),求其面积。

2. 已知圆的半径为\( r = 4 \),求圆的周长和面积。

3. 已知点A(1,2)和点B(4,6),求直线AB的斜率和方程。

试题三:概率与统计1. 一个袋子里有5个红球和3个蓝球,随机抽取2个球,求抽到至少一个红球的概率。

2. 某工厂生产的零件,合格率为90%,求生产100个零件中,至少有85个合格的概率。

3. 已知一组数据的平均数为50,中位数为48,标准差为10,求这组数据的方差。

试题四:数列与级数1. 已知等差数列的前三项分别为2, 5, 8,求其第10项。

2. 求等比数列\( a_n = 3^n \)的前n项和。

3. 判断数列\( b_n = \frac{1}{n} \)是否收敛,并求其极限。

试题五:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a = 3 \),\( b = 2 \),求椭圆的焦点坐标。

2. 已知双曲线\( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \),其中\( a = 2 \),\( b = 1 \),求其渐近线方程。

3. 已知抛物线\( y^2 = 4px \),求其焦点和准线方程。

答案:试题一:1. 零点为\( x = 1 \)和\( x = 3 \)。

2. 函数\( g(x) \)在\( x > 0 \)时单调递减。

北京大学801高等代数解析几何2006年(回忆版含答案)考研专业课真题试卷

北京大学801高等代数解析几何2006年(回忆版含答案)考研专业课真题试卷

2006年北京大学研究生考试高等代数与解析几何试题 本试卷满分150分 考试时间 3小时 日期:2006年1月15日下午高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。

(2) 设A 是数域K 上s n ×列满秩矩阵,试问:方程n XA E =是否有解?有解,写出它的解集;无解,说明理由。

(3) 设A 是数域K 上s n ×列满秩矩阵,试问:对于数域K 上任意s m ×矩阵B ,矩阵方程AX B =是否一定有解?当有解时,它有多少个解?求出它的解集。

要求说明理由。

2.(16分)(1) 设,A B 分别是数域K 上的,s n n s ××矩阵,证明:()()()n rank A ABA rank A rank E BA n −=+−−.(2) 设,A B 分别是实数域上n 阶矩阵。

证明:矩阵A 与矩阵B 的相似关系不随数域扩大而改变。

3. (16分)(1) 设A 是数域K 上的n 阶矩阵,证明:如果矩阵A 的各阶顺序主子式都不为0,那么A 可以分惟一的分解成A =BC , 其中B 是主对角元都为1的下三角矩阵,C 是上三角阵即。

(2) 设A 是数域K 上的n 阶可逆矩阵,试问:A 是否可以分解成A =BC , 其中B 是主对角元都为1的下三角矩阵,C 是上三角阵即?说明理由。

4.(10分)(1) 设A 是实数域R 上的n 阶对称矩阵,它的特征多项式()f λ的所有不同的复根为实数12,,,s λλλ⋅⋅⋅. 把A 的最小多项式()m λ分解成R 上不可约多项式的乘积。

说明理由。

(2) 设A 是n 阶实对称矩阵,令Α()A αα=, R n α∀∈根据第(1)问中()m λ的因式分解,把R n 分解成线性变换A 的不变子空间的直和。

2021学年新教材高中数学第二章平面解析几何2.6.2双曲线的几何性质课时分层作业含解析人教B版选择性必修一

2021学年新教材高中数学第二章平面解析几何2.6.2双曲线的几何性质课时分层作业含解析人教B版选择性必修一

课时分层作业(二十二) 双曲线的几何性质(建议用时:40分钟)一、选择题1.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A .5B .5C .2D .2A [由题意得b =2a ,又a 2+b 2=c 2,∴5a 2=c 2. ∴e 2=c 2a 2=5,∴e =5.]2.若双曲线的一个焦点为(0,-13),且离心率为135,则其标准方程为( ) A .x 252-y 2122=1 B .y 2122-x 252=1 C .x 2122-y 252=1D .y 252-x 2122=1D [依题意可知,双曲线的焦点在y 轴上,且c =13.又c a =135,所以a =5,b =c 2-a 2=12,故其标准方程为y 252-x 2122=1.]3.已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的焦点F 到渐近线距离与顶点A 到渐近线距离之比为3∶1,则双曲线C 的渐近线方程为( )A .y =±22xB .y =±2xC .y =±22xD .y =±24xD [根据题意,双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的焦点在y 轴上,其渐近线方程为y =±ab x ,若双曲线的焦点F 到渐近线距离与顶点A 到渐近线距离之比为3∶1,则c =3a ,则b =9a 2-a 2=22a ,则双曲线的渐近线方程为y =±24x .]4.平行四边形ABCD 的四个顶点均在双曲线x 2a 2-y 2b 2=1(a >0,b >0)上,直线AB ,AD 的斜率分别为12,1,则该双曲线的渐近线方程为( )A .x ±2y =0B .2x ±y =0C .x ±y =0D .x ±3y =0A [∵双曲线x 2a 2-y 2b 2=1(a >0,b >0)是中心对称的, 故平行四边形ABCD 的顶点B ,D 关于原点对称, 设A (x 0,y 0),B (x 1,y 1),则D (-x 1,-y 1), 故x 20a 2-y 20b 2=1,x 21a 2-y 21b 2=1,∴(x 0-x 1)(x 0+x 1)a 2-(y 0-y 1)(y 0+y 1)b 2=0,整理得到:b 2a 2=(y 0-y 1)(y 0+y 1)(x 0-x 1)(x 0+x 1),即b 2a 2-k AB ·k AD =0,故b 2a 2=12,即b a =22,∴渐近线方程为y =±22x ,即x ±2y =0.]5.若双曲线x 29-y 2m =1的渐近线的方程为y =±53x ,则双曲线焦点F 到渐近线的距离为( )A . 5B .14C .2D .2 5A [∵a =3,b =m ,∴m 3=53,∴m =5,∴c =a 2+b 2=14,∴一个焦点的坐标为(14,0),到渐近线的距离d =|5×14-3×0|5+9=5.]二、填空题6.已知点(2,3)在双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上,C 的焦距为4,则它的离心率为 .2 [根据点(2,3)在双曲线上,可以很容易建立一个关于a ,b 的等式,即4a 2-9b 2=1,考虑到焦距为4,可得到一个关于c 的等式,2c =4,即c =2.再加上a 2+b 2=c 2,可以解出a =1,b =3,c =2,所以离心率e =2.]7.与椭圆x 29+y 225=1共焦点,离心率之和为145的双曲线标准方程为 . y 24-x 212=1 [椭圆的焦点是(0,4),(0,-4), ∴c =4,e =45,∴双曲线的离心率等于145-45=2, ∴4a =2,∴a =2. ∴b 2=42-22=12.∴双曲线的标准方程为y 24-x 212=1.]8.已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |= .3 [因为双曲线x 23-y 2=1的渐近线方程为y =±33x ,所以∠MON =60°.不妨设过点F 的直线与直线y =33x 交于点M ,由△OMN 为直角三角形,不妨设∠OMN=90°,则∠MFO =60°,又直线MN 过点F (2,0),所以直线MN 的方程为y =-3(x -2),由⎩⎨⎧y =-3(x -2),y =33x ,得⎩⎪⎨⎪⎧x =32,y =32,所以M ⎝ ⎛⎭⎪⎫32,32,所以|OM |=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫32 2=3, 所以|MN |=3|OM |=3.] 三、解答题9.已知双曲线的一条渐近线为x +3y =0,且与椭圆x 2+4y 2=64有相同的焦距,求双曲线的标准方程.[解] 椭圆方程为x 264+y 216=1, ∴椭圆的焦距为83.①当双曲线的焦点在x 轴上时,设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),∴⎩⎨⎧ a 2+b 2=48b a =33,解得⎩⎪⎨⎪⎧ a 2=36b 2=12.∴双曲线的标准方程为x 236-y 212=1.②当双曲线的焦点在y 轴上时,设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),∴⎩⎨⎧a 2+b 2=48a b =33,解得⎩⎪⎨⎪⎧a 2=12b 2=36.∴双曲线的标准方程为y 212-x 236=1.由①②可知,双曲线的标准方程为x 236-y 212=1或y 212-x 236=1.10.设双曲线y 2a 2-x 23=1的两个焦点分别为F 1,F 2,离心率为2. (1)求此双曲线的渐近线l 1,l 2的方程;(2)若A ,B 分别为l 1,l 2上的点,且2|AB |=5|F 1F 2|,求线段AB 的中点M 的轨迹方程.[解] (1)∵e =2,∴c 2=4a 2. ∵c 2=a 2+3,∴a =1,c =2.∴双曲线方程为y 2-x 23=1,渐近线方程为y =±33x .∴l 1的方程为y =33x ,l 2的方程为y =-33x . (2)设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x ,y ). ∵2|AB |=5|F 1F 2|=5×2c =20, ∴|AB |=10, ∴(x 1-x 2)2+(y 1-y 2)2=10,即(x 1-x 2)2+(y 1-y 2)2=100. ∵y 1=33x 1,y 2=-33x 2, x 1+x 2=2x ,y 1+y 2=2y ,∴y 1+y 2=33(x 1-x 2),y 1-y 2=33(x 1+x 2), ∴y =36(x 1-x 2),y 1-y 2=233x , 代入(x 1-x 2)2+(y 1-y 2)2=100,得3×(2y )2+13(2x )2=100,整理得x 275+3y 225=1.11.(多选题)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),又点N ⎝ ⎛⎭⎪⎫-c ,3b 22a .若双曲线C 左支上的任意一点M 均满足|MF 2|+|MN |>4b ,则双曲线C 的离心率可能为( )A .3B .4C .32D .65ABD [双曲线C 左支上的任意一点M 均满足|MF 2|+|MN |>4b ,即(|MF 2|+|MN |)min >4b ,又|MF 2|+|MN |≥2a +|MF 1|+|MN |≥2a +|NF 1|=2a +3b 22a ,当且仅当M ,N ,F 1三点共线且M 在N ,F 1之间时取“=”,即2a +3b 22a >4b ⇒3b 2-8ab +4a 2>0⇒3⎝ ⎛⎭⎪⎫b a 2-8·b a +4>0, 解得b a >2或b a <23,∴e 2=1+b 2a 2>5或e 2<139,∴e >5或1<e <133.]12.设F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,若双曲线右支上存在一点P 满足|PF 2|=|F 1F 2|,且cos ∠PF 1F 2=45,则双曲线的渐近线方程为( )A .3x ±4y =0B .4x ±3y =0C .3x ±5y =0D .5x ±4y =0B [作F 2Q ⊥PF 1于Q ,因为|F 1F 2|=|PF 2|, 所以Q 为PF 1的中点, 由双曲线的定义知|PF 1|-|PF 2|=2a , 所以|PF 1|=2a +2c , 故|F 1Q |=a +c , 因为cos ∠PF 1F 2=45, 所以F 1QF 1F 2=cos ∠PF 1F 2,即a +c 2c =45,得3c =5a , 所以3a 2+b 2=5a ,得b a =43,故双曲线的渐近线方程为y =±43x ,即4x ±3y =0.]13.(一题两空)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,过F 作垂直于x 轴的直线与双曲线C 交于M 、N 两点,与双曲线的渐近线交于P 、Q 两点.若|PQ ||MN |>2,记过第一、三象限的双曲线C 的渐近线为l 1,则l 1的倾斜角的取值范围为 ,离心率的取值范围为 .⎝ ⎛⎭⎪⎫0,π4 (1,2) [如图,在双曲线C :x 2a 2-y 2b 2=1中,取x =c ,可得y =±b 2a ,∴|MN |=2b 2a .分别在双曲线的渐近线y =b a x 与y =-ba x , 取x =c ,求得|PQ |=2bca .由|PQ| |MN|>2,得2bca2b2a>2,即c2>2b2,∴a2+b2>2b2,∴ba<1,∴l1的倾斜角的取值范围为⎝⎛⎭⎪⎫0,π4e2=b2a2+1<2,∴e的取值范围为(1,2).]14.双曲线x2a2-y2b2=1(a>1,b>1)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和s≥45c,则双曲线的离心率e 的取值范围为.⎣⎢⎡⎦⎥⎤52,5[直线l的方程为xa+yb=1,即bx+ay-ab=0.由点到直线的距离公式,且a>1,b>1,得到点(1,0)到直线l的距离d1=b(a-1)a2+b2,点(-1,0)到直线l的距离d2=b(a+1)a2+b2,s=d1+d2=2aba2+b2=2abc.由s≥45c,得2abc ≥45c,即5a c2-a2≥2c2.于是得5e2-1≥2e2,即4e4-25e2+25≤0.解不等式,得54≤e2≤5,由于e>1,因此e的取值范围是52≤e≤5.]15.已知双曲线关于两坐标轴对称,且与圆x2+y2=10相交于点P(3,-1),若此圆过点P的切线与双曲线的渐近线平行,求此双曲线的方程.[解]切点为P(3,-1)的圆的切线方程为3x-y=10,因为双曲线的一条渐近线平行于此切线,且双曲线关于两坐标轴对称.所以双曲线的渐近线方程为3x±y=0.当焦点在x 轴上时,设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0), 则其渐近线方程为y =±b a x ,即ba =3, 则双曲线方程可化为x 2a 2-y 29a 2=1, 因为双曲线过点P (3,-1),所以9a 2-19a 2=1,所以a 2=809,b 2=80, 所以所求双曲线方程为x 2809-y 280=1.当焦点在y 轴上时,设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0), 则渐近线方程为y =±a b x ,即ab =3, 则双曲线方程可化为y 29b 2-x 2b 2=1, 因为双曲线过点P (3,-1), 所以19b 2-9b 2=1,得-809b 2=1,无解. 综上可知所求双曲线方程为x 2809-y 280=1.。

初二比较难的数学练习题

初二比较难的数学练习题

初二比较难的数学练习题在初二的数学学习中,遇到一些难题是很常见的。

这些题目需要我们掌握一定的数学知识和解题技巧才能顺利解答。

下面,我将为大家列举一些初二比较难的数学练习题。

一、立体几何题1. 某矩形纸片的长是宽的四倍,将该矩形剪成两个正方形,剪下的两个正方形面积之和是矩形面积的81%,求矩形的长和宽分别是多少?2. 下面的解析几何图形中,点A、B、C、D、E、F六点不在同一平面中,求ADE面与BCF面的夹角。

3. 设一条直线通过坐标轴上的点A(a, 0)和B(0, b),且直线与y轴交于点C(0, c),若三点A、B、C共线,求a、b、c之间的关系。

二、初中代数题4. 已知方程组:2x + 3y = 114x + ky = 15求k的值,使得方程组有唯一解。

5. 某数学题库有机试题100道,其中单选题每个题目的正确答案有4个选项,多选题每个题目的正确答案有5个选项,则这100道题中的选择题正确答案选项总数为多少?三、数列题6. 在等差数列{an}中,已知a1 = 3,a2 = 7,a4 = 17,则an的通项公式是什么?7. 若等比数列{bn}满足b1 = 2,b2 = 6,b4 = 90,则bn的通项公式是什么?四、概率题8. 一件商品的质量服从正态分布,已知其平均值为μ,标准差为σ。

若70%的商品质量在80kg到100kg之间,求μ和σ的值。

9. 一枚正六面体骰子有6个面,分别刻有1、2、3、4、5、6这6个数字。

现随机扔一枚骰子,连续扔5次,且每次都得到数字4的概率是多少?五、面积和体积题10. 在长方体中,一条对角线为18,长和宽的比为3:2,求长方体的体积和表面积。

以上是初二比较难的数学练习题,希望通过解题过程,能帮助大家加深对数学知识的理解和运用。

在解答这些题目时,我们要掌握相应的数学概念,并善于运用所学的数学方法和技巧进行推导和计算。

祝愿大家在数学学习中取得优异的成绩!。

解析几何基础100题

解析几何基础100题

解析几何基础100题一、选择题:1. 若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为A0916X Y ±= B 0169X Y ±= C 034X Y ±= D 043X Y±= 解 答:C易错原因:审题不认真,混淆双曲线标准方程中的a 和题目中方程的a 的意义.2. 椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是解 答:D易错原因:短轴长误认为是b3.过定点(1,2)作两直线与圆2222150x y kx y k ++++-=相切,则k 的取值范围是A k>2B —3〈k<2C k<—3或k>2D 以上皆不对 解 答:D易错原因:忽略题中方程必须是圆的方程,有些学生不考虑2240D E F +->4.设双曲线22221(0)x y a b a b-=>>的半焦距为C ,直线L 过(,0),(0,)a b 两点,已知原点到直线L 的距离为4,则双曲线的离心率为A 2B 2或233C 2D 233解 答:D易错原因:忽略条件0a b >>对离心率范围的限制.5.已知二面角βα--l 的平面角为θ,PA α⊥,PB β⊥,A ,B 为垂足,且PA=4,PB=5,设A 、B 到二面角的棱l 的距离为别为y x ,,当θ变化时,点),(y x 的轨迹是下列图形中的A B C D 解 答: D易错原因:只注意寻找,x y 的关系式,而未考虑实际问题中,x y 的范围。

6.若曲线24y x =-(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围是A 01k ≤≤B 304k ≤≤ C 314k -<≤ D 10k -<≤ 解 答:C易错原因:将曲线24y x =-转化为224x y -=时不考虑纵坐标的范围;另外没有看清过点(2,—3)且与渐近线y x =平行的直线与双曲线的位置关系。

几何画板作品100例小学数学

几何画板作品100例小学数学

几何画板作品100例小学数学第一章小学数学1.1数与代数实例1整数加法口算出题器实例25 以内数的分成实例3分数意义的动态演示实例4求最大公约数和最小公倍数实例5直线上的追及问题1.2 空间与图形实例6三角形分类演示实例7三角形三边的关系实例8三角形内角和的动态演示实例9三角形面积公式的推导实例10长方形周长的动态演示实例11长方体的初步认识实例12长方体的体积 .1.3 统计与概率实例13数据的收集与整理实例14折线统计图第二章中学数学2.1平面几何实例15中点四边形实例16三角形的高线实例17三角形全等实例18三角形拼接成平行四边形实例19三线八角实例20变式习题实例21轴对称图形 .实例22三角形相似实例23正n边形实例24平行四边形的面积实例25环形跑道实例26圆幂定理实例27车轮的滚动实例28动画彩轮2.2代数实例29一次函数实例30二次函数图像的动态演示实例31二次函数在闭区间上的值域实侧32. 两数的报合工具|实例33圆周上的追及问题实例34二分法求方程的根实例35函数y=a x的图像与y=log a x的图像的关系实例36用函数的观点研究等差数列前n项和的最值实例37等比数列的图像 (一)实例38等比数列的图像 (二)实例39函数 y= Asin(wx+中)的图像实例40轨迹- -边红、一边篮实例41正弦函数线实例42定积分意义的动态演示实例43打造个性化的课件2.3立体几何实例44异面直线所成的角实例45旋转二面角实例46切割三棱柱实例47截锥得台实例48棱柱、棱锥、棱台的辨证统一实例49圆的直观图实例50圆柱2.4解析几何实例51直线的斜率实例52两直线重直实例53网页探究型课件实例54览相圆大双曲线)的第二定义印实例55椭圆长、短轴变化(一)实例56椭圆长、短轴变化(二)实例57椭圆工具(已知项点和任意-一点) 实例58发掘课本习题的作用实例59半椭圆实例60双曲线的第一定义实例61双曲线的切线实例62抛物线的切线实例63抛物线的焦点弦实例64圆锥曲线的统一形式实例65与定线段成定张角的点的轨迹实例65与定线段成定张角的点的轨迹实例65与定线段成定张角的点的轨迹实例66到定点的距离与定直线的距离的比值等于定值的点的轨迹实例67与两定点的距离的比值等于定值的点的轨迹实例68与两定点连线的斜率之积等于定值的点的轨迹实例69与两定直线的距离之积等于定值的点的轨迹实例70心形曲线的构造第三章中学物理3.1力学实例71运动的合成与分解实例72圆周运动与向心力实例73匀变速运动 s-t图像研究实例74匀加速运动物体追赶匀速运动物体问题研究实例75动态演示力的分解实例76波的形成实例77调幅波与调频波实例78波的传播与质点振动实例79单摆实例80运动的合成与分解一纯滚动实例81弹簧摆的李萨如图实例82地球突然失去重力以后实例83简谐运动的图像实例84纵波的形成与传播实例85光斑的移动实例86水星的进动实例87行星的椭圆轨道3.2光学实例88光的三原色实例89水的折射成像研究实例90彩虹的成因实例91抛物线的光学特性3.3电磁学实例92电容器内部的场强与正对面积的关系实例93回旋加速器的工作原理实例94交流电的产生3.4热学实例95扩散现象实例96浸润现象与不浸润现象实例97分子间力3.3 自定义物理工具实例98力的分析工具实例99自定义弹簧工具实例100自定义箭头工具。

考研数学(三)题库 微积分(第四章 向量代数和空间解析几何)打印版【圣才出品】

考研数学(三)题库 微积分(第四章 向量代数和空间解析几何)打印版【圣才出品】

4 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台

r l
gnr
1 2 1
sin r r l gn
0 0 63
9.方程 x2/2+y2/2-z2/3=0 表示旋转曲面,它的旋转轴是( )。 A.x 轴 B.y 轴 C.z 轴 D.直线 x=y=z 【答案】C 【解析】由于选项中有三项均为坐标轴,可先考虑旋转轴是否为坐标轴,观察曲面方程 x2/2+y2/2-z2/3=0 中,x2,y2 系数相等,则旋转轴应是 z 轴。(若三项系数均不相等, 则应选 D 项)
A.|a+b|=|a|+|b|
→→


B.|a+b|=|a|-|b|
→→
→→
C.|a+b|=|a-b|
→→→→
D.a+b=a-b
【答案】C
→→
→→
【解析】由向量与平面几何图形之间的关系可知,a⊥b时,以a,b为边的四边形为矩
→→
→→
→→
→→
形,且|a+b|与|a-b|均是该矩形的对角线长,则必有|a+b|=|a-b|。
1 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台

→→→
→ →→
→→
3.设三向量a,b,c满足关系a+b+c=0,则a×b=( )。
→→A.c×b→→源自B.b×c→→C.a×c
→→
D.b×a
【答案】B
→ →→
→ →→

→→ →→
→→
→→ →→
【解析】a+b+c=0⇒(a+b+c)×b=0⇒a×b+c×b=0⇒a×b=-c×b=b×c。
10.方程 x2-y2-z2=4 表示的旋转曲面是( )。 A.柱面 B.双叶双曲面 C.锥面 D.单叶双曲面 【答案】B 【解析】x2-y2-z2=4 等价于 x2/4-(y2+z2)/4=1,故可将原方程表示的旋转曲 面看作是将 xOy 平面 x2/4-y2/4=1 绕 x 轴旋转一周所得的双叶双曲面。

职高数学练习题推荐

职高数学练习题推荐

职高数学练习题推荐一、代数部分1. 计算下列各式:(1) 3x 5 + 2x^2 4x + 7(2) (4x 3)(2x + 5)(3) (a + b)^2 (a b)^22. 解下列方程:(1) 2x 5 = 3(x + 1)(2) 5x^2 3x 2 = 0(3) |x 2| = 33. 化简下列分式:(1) $\frac{2x^2 4x}{x^2 2x}$(2) $\frac{x^2 9}{x^2 + 6x + 9}$二、几何部分1. 已知三角形ABC中,AB=5,BC=8,AC=10,求三角形ABC的面积。

2. 在直角坐标系中,点A(2,3)到直线y=2x+1的距离是多少?3. 证明:等腰三角形的底角相等。

三、概率与统计部分1. 从1到100的整数中随机抽取一个数,求这个数是3的倍数的概率。

2. 已知一组数据的平均数为50,方差为25,求这组数据中大于60的数的概率。

3. 某班有50名学生,其中男生30名,女生20名。

随机抽取5名学生,求至少有3名女生的概率。

四、函数与极限部分1. 求下列函数的定义域:(1) $f(x) = \sqrt{x^2 4}$(2) $g(x) = \frac{1}{x 3}$2. 已知函数$f(x) = 2x^3 3x^2 + x 1$,求$f'(x)$。

3. 计算极限$\lim_{x \to 0} \frac{\sin x}{x}$。

五、综合应用题1. 一辆汽车以60km/h的速度行驶,行驶过程中突然遇到紧急情况,需要立即刹车。

已知刹车过程中,汽车的平均加速度为5m/s^2,求汽车在停止前行驶的距离。

2. 某企业生产一种产品,固定成本为10000元,每生产一件产品的变动成本为200元。

已知该产品的市场价格为500元,求该企业至少生产多少件产品才能盈利。

3. 在一个长方体水池中,长、宽、高分别为10m、8m、6m。

现将水池装满水,然后将一个体积为24m^3的实心球放入水池中,求球没入水中的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何基础100题一、选择题:1. 若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为A0916X Y ±= B 0169X Y ±= C 034X Y ±= D 043X Y±= 解 答:C易错原因:审题不认真,混淆双曲线标准方程中的a 和题目中方程的a 的意义。

2. 椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是解 答:D易错原因:短轴长误认为是b3.过定点(1,2)作两直线与圆2222150x y kx y k ++++-=相切,则k 的取值范围是A k>2B -3<k<2C k<-3或k>2D 以上皆不对 解 答:D易错原因:忽略题中方程必须是圆的方程,有些学生不考虑2240D E F +->4.设双曲线22221(0)x y a b a b-=>>的半焦距为C ,直线L 过(,0),(0,)a b 两点,已知原点到直线L 的距离为4,则双曲线的离心率为A 2B 2或3解答:D易错原因:忽略条件0a b>>对离心率范围的限制。

5.已知二面角βα--l的平面角为θ,PAα⊥,PBβ⊥,A,B为垂足,且PA=4,PB=5,设A、B到二面角的棱l的距离为别为yx,,当θ变化时,点),(yx的轨迹是下列图形中的A B C D解答: D易错原因:只注意寻找,x y的关系式,而未考虑实际问题中,x y的范围。

6.若曲线y=(2)y k x=-+3有两个不同的公共点,则实数 k 的取值范围是A 01k≤≤ B34k≤≤ C314k-<≤ D10k-<≤解答:C易错原因:将曲线y=转化为224x y-=时不考虑纵坐标的范围;另外没有看清过点(2,-3)且与渐近线y x=平行的直线与双曲线的位置关系。

7.P(-2,-2)、Q(0,-1)取一点R(2,m)使︱PR︱+︱RQ︱最小,则m=()A 21B 0C –1D -34正确答案:D 错因:学生不能应用数形结合的思想方法,借助对称来解题。

8.能够使得圆x 2+y 2-2x+4y+1=0上恰好有两个点到直线2x+y+c=0距离等于1的一个值为( )A 2B 5C 3D 35 正确答案: C 错因:学生不能借助圆心到直线的距离来处理本题。

9.P 1(x 1,y 1)是直线L :f(x,y)=0上的点,P 2(x 2 ,y 2)是直线L 外一点,则方程f(x,y)+f(x 1,y 1)+f(x 2,y 2)=0所表示的直线( ) A 相交但不垂直 B 垂直 C 平行 D 重合正确答案: C 错因:学生对该直线的解析式看不懂。

10.已知圆()3-x 2+y 2=4 和 直线y=mx 的交点分别为P 、Q 两点,O 为坐标原点, 则︱OP ︱·︱OQ ︱=( ) A 1+m 2 B215m+ C 5 D 10 正确答案: C错因:学生不能结合初中学过的切割线定︱OP ︱·︱OQ ︱等于切线长的平方来解题。

11.在圆x 2+y 2=5x 内过点(25,23)有n 条弦的长度成等差数列,最短弦长为数列首项a 1,最长弦长为a n ,若公差d ∈⎥⎦⎤⎝⎛31,61,那么n 的取值集合为( )A {}654、、B {}9876、、、C {}543、、D {}6543、、、 正确答案:A错因:学生对圆内过点的弦何时最长、最短不清楚,不能借助d 的范围来求n.12.平面上的动点P 到定点F(1,0)的距离比P 到y 轴的距离大1,则动点P 的轨迹方程为( )A y 2=2x B y 2=2x 和 ⎩⎨⎧≤=00x yC y 2=4xD y 2=4x 和 ⎩⎨⎧≤=0x y 正确答案:D错因:学生只注意了抛物线的第二定义而疏忽了射线。

13.设双曲线22a x -22b y =1与22by -22a x =1(a >0,b >0)的离心率分别为e 1、e 2,则当a 、 b 变化时,e 21+e 22最小值是( ) A 4 B 42 C 2 D 2 正确答案:A 错因:学生不能把e 21+e 22用a 、 b 的代数式表示,从而用基本不等式求最小值。

14.双曲线92x -42y =1中,被点P(2,1)平分的弦所在直线方程是( )A 8x-9y=7B 8x+9y=25C 4x-9y=16D 不存在 正确答案:D错因:学生用“点差法”求出直线方程没有用“△”验证直线的存在性。

15.已知α是三角形的一个内角,且sin α+cos α=51则方程x 2sin α-y 2cos α=1表示( )A 焦点在x 轴上的双曲线B 焦点在y 轴上的双曲线C 焦点在x 轴上的椭圆D 焦点在y 轴上的椭圆 正确答案:D错因:学生不能由sin α+cos α=51判断角α为钝角。

16.过抛物线的焦点F 作互相垂直的两条直线,分别交准线于P 、Q 两点,又过P 、Q 分别作抛物线对称轴OF 的平行线交抛物线于M ﹑N 两点,则M ﹑N ﹑F 三点A 共圆B 共线C 在另一条抛物线上D 分布无规律 正确答案:B 错因:学生不能结合图形灵活应用圆锥曲线的第二定义分析问题。

17.曲线xy=1的参数方程是( )A x=t 21 B x=Sin α C x=cos α D x=tan α y=t 21- y=csc α y=See α y=cot α 正确答案:选D错误原因:忽视了所选参数的范围,因而导致错误选项。

18.已知实数x ,y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值是( ) A 、29B 、4C 、5D 、2 正确答案:B错误原因:忽视了条件中x 的取值范围而导致出错。

19.双曲线x 2n -y 2=1(n>1)的焦点为F 1、F 2,,P 在双曲线上 ,且满足:|PF 1|+|PF 2|=2n+2 ,则ΔPF 1F 2的面积是( ) A 、1 B 、2 C 、4 D 、12正确答案: A错因:不注意定义的应用。

20.过点(0,1)作直线,使它与抛物线x y 42=仅有一个公共点,这样的直线有( )A.1条B.2条C. 3条D. 0条 正确答案:C错解:设直线的方程为1+=kx y ,联立⎩⎨⎧+==142kx y xy ,得()x kx 412=+,即:01)42(22=+-+x k x k ,再由Δ=0,得k=1,得答案A.剖析:本题的解法有两个问题,一是将斜率不存在的情况考虑漏掉了,另外又将斜率k=0的情形丢掉了,故本题应有三解,即直线有三条。

21.已知动点P (x ,y )满足 ,则P 点的轨迹是 ( )A 、直线B 、抛物线C 、双曲线D 、椭圆 正确答案:A错因:利用圆锥曲线的定义解题,忽视了(1,2)点就在直线3x+4y-11=0|1143|)2()1(522-+=-+-y x y x上。

22.在直角坐标系中,方程()()02312=--+-+y x x y x 所表示的曲线为( )A .一条直线和一个圆B .一条线段和一个圆C .一条直线和半个圆D .一条线段和半个圆 正确答案:D错因:忽视定义取值。

23.设坐标原点为O ,抛物线22y x =与过焦点的直线交于A 、B 两点,则OA OB ⋅=( )A .34B .34- C .3 D .-3 正确答案:B 。

错因:向量数量积应用,运算易错。

24.直线134=+y x 与椭圆191622=+y x 相交于A 、B 两点,椭圆上的点P使PAB ∆的面积等于12,这样的点P 共有( )个 A .1 B .2 C .3 D .4 正确答案:B 错因:不会估算。

25.过点(1,2)总可作两条直线与圆2222150x y kx y k ++++-=相切,则实数k 的取值范围是( )A 2k >B 32k -<<C 3k <-或2k >D 都不对 正确答案:D26.已知实数x ,y 满足250x y ++=A .5B .10C .25D .210 正确答案:A27.若直线y x b =+与曲线224(0)x y y +=≥有公共点,则b 的取值范围是 A . [2,2]- B . [0,2] C .[2,22] D . [2,22]- 正确答案:D28.设f(x )= x 2+ax+b ,且1≤f (-1)≤2,2≤f (1)≤4,则点(a ,b )在aOb 平面上的区域的面积是( ) A .12 B .1 C .2 D .92正确答案:B29.当x 、y 满足约束条件0,,20x y x x y k ≥⎧⎪≤⎨⎪++≤⎩(k 为常数)时,能使3z x y =+的最大值为12的k 的值为( )A .-9B .9C .-12D .12 正确答案:A30.已知关于t 的方程20t tx y ++=有两个绝对值都不大于1的实数根,则点(,)P x y 在坐标平面内所对应的区域的图形大致是正确答案:A31.能够使得圆222410x y x y +-++=上恰有两个点到直线20x y c ++=距离等于1的c 的一个值为( )A BCDA .2 B.C .3D .正确答案:C32.抛物线y=4x 2的准线方程为( ) A 、x=-1 B 、y=-1 C 、x=161- D 、y=161- 答案:D点评:误选B ,错因把方程当成标准方程。

33.对于抛物线C :y 2=4x ,称满足y 02<4x 0的点M(x 0,y 0)在抛物线内部,若点M(x 0,y 0)在抛物线内部,则直线l :y 0y=2(x+x 0)与曲线C ( )A 、恰有一个公共点B 、恰有两个公共点C 、可能有一个公共点也可能有2个公共点D 、无公共点 答案:D点评:条件运用不当,易误选C 。

34.直线l 过点),1(),1,2(2m B A ,那么直线l 倾斜角α的取值范围是( )。

A. [0,π)B. [0,4π] (2π, π) C. [4π,π]D. [0,4π] (2π, π) 正解:B),1(),1,2(2m B A 02>m∴ 点A 与射线y x (1=≥0)上的点连线的倾斜角,选B 。

误解:选D ,对正切函数定义域掌握不清,故2π=x 时,正切函数视为有意义。

35.设F1和F2为双曲线1422=-y x 的两个焦点,点在双曲线上且满足 9021=∠PF F ,则21PF F ∆的面积是( )。

A. 1B.25C. 2D. 5正解:A1422=-y x 5,2==C a 4||||||21=-∴PF PF 16||||||2||222121=+-⇒PF PF PF PF ①又 9021=∠PF F ∴22221)52(||||=+PF PF ② 联立①②解得2||||21=∴PF PF∴121=∆PF F S误解:未将4||||||21=-∴PF PF 两边平方,再与②联立,直接求出||||21PF PF 。

相关文档
最新文档