九年级第一学期期末(初三)一模数学试卷含答案
2023-2024学年上海市长宁区九年级上学期期末考数学试卷(中考一模)含详解
2023学年第一学期初三数学教学质量调研试卷(考试时间:100分钟满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂】1.在Rt ABC △中,90C ∠=︒,如果,A BC a α∠==,那么AC 等于()A.tan a α⋅ B.cot a α⋅ C.sin aαD.cos a α2.下列关于抛物线223y x x =+-的描述正确的是()A.该抛物线是上升的B.该抛物线是下降的C.在对称轴的左侧该抛物线是上升的D.在对称轴的右侧该抛物线是上升的3.已知点C 在线段AB 上,且满足2AC BC AB =⋅,那么下列式子成立的是()A.512AC BC -= B.12AC AB -= C.512BC AB -= D.352BC AC =4.已知a为非零向量,且3a b =-,那么下列说法错误的是()A.13a b=-B.3b a = C.30b a += D.b a∥5.如果点D 、E 分别在△ABC 的两边AB 、AC 上,下列条件中可以推出DE ∥BC 的是()A.23AD BD =,23CE AE = B.23AD AB =,23DE BC =C.32AB AD =,12EC AE = D.43AB AD =,43AE EC =6.已知在ABC 与A B C ''' 中,点D D '、分别在边BC B C ''、上,(点D 不与点B C 、重合,点D ¢不与点B C ''、重合).如果ADC △与'''A D C △相似,点A D 、分别对应点A ''、D ,那么添加下列条件可以证明ABC 与A B C ''' 相似的是()①AD A D ''、分别是ABC 与A B C ''' 的角平分线;②AD A D ''、分别是ABC 与A B C ''' 的中线;③AD A D ''、分别是ABC 与A B C ''' 的高.A.①②B.②③C.①③D.①②③二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.如果53(,x y x y =均不为零),那么():x x y +的值是____________.8.式子2cos30tan45︒-︒的值是______.9.已知线段a=3cm ,b=4cm ,那么线段a 、b 的比例中项等于_______cm .10.若两个相似三角形的周长比为2:3,则它们的面积比是_________.11.如图,////AB CD EF ,如果:2:3,10AC CE BF ==,那么线段DF 的长是__________.12.二次函数()2f x ax bx c =++图像上部分点的坐标满足下表:那么()5f -=____________.x⋯3-2-1-01⋯()f x ⋯3-2-3-6-11-⋯13.已知向量a 与单位向量e 方向相反,且3a = ,那么a =____________________(用向量e 的式子表示)14.已知一条斜坡的长度为13米,高度为5米,那么该斜坡的坡度为____________.15.如图,在ABC 中,AD 是BC 上的高,且5,3BC AD ==,矩形EFGH 的顶点F G 、在边BC 上,顶点E H 、分别在边AB 和AC 上,如果2EH EF =,那么EH =____________.16.如图,在ABC 中,90BAC ∠=︒,点G 是ABC 的重心,联结GA GC 、,如果533AC AG ==,,那么GCA ∠的余切值为____________.17.我们把顶角互补的两个等腰三角形叫做友好三角形.在ABC 中,10AB AC ==,点D E 、都在边BC 上,5AD AE ==,如果ABC 与ADE V 是友好三角形,那么BC 的长为____________.18.如图,在矩形ABCD 中,8,4,AD AB AC ==是对角线,点P 在边BC 上,联结DP ,将DPC △沿着直线DP 翻折,点C 的对应点Q 恰好落在ADC △内,那么线段BP 的取值范围是____________.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.已知抛物线2241y x x =++.(1)用配方法把2241y x x =++化为2()y a x m k =++的形式,并写出该抛物线的开口方向、对称轴和顶点坐标;(2)如果将该抛物线上下平移,得到新的抛物线经过点()1,4,求平移后的抛物线的顶点坐标.20.在平行四边形ABCD 中,点E 是AD 的中点,BE AC 、相交于点F .(1)设,AB a AD b == ,试用a b 、表示EF ;(2)先化简,再求作:()()3222a b a b +-+(直接作在图中).21.如图,在四边形ABCD 中,90BAD AC BC DE AC ∠=⊥︒⊥,,,垂足为点43E AC DE ==,,.(1)求:AD AB 的值;(2)BD 交AC 于点F ,如果1tan 2BAC ∠=,求CF 的长.22.小明为测量河对岸大楼的高度,利用量角器和铅锤自制了一个简易测角仪,如图1所示.测量方法:如图2,人眼在P 点观察所测物体最高点C ,量角器零刻度线上A B 、两点均在视线PC 上,将铅锤悬挂在量角器的中心点O .当铅锤静止时,测得视线PC 与铅垂线OD 所夹的角为α,且此时的仰角为β.实践操作:如图3,小明利用上述工具测量河对岸垂直于水平地面的大楼EF 的高度.他先站在水平地面的点H 处,视线为GE ,此时测角仪上视线与铅垂线的夹角为60︒;然后他向前走10米靠近大楼站在水平地面的点R 处,视线为QE ,此时测角仪上视线与铅垂线的夹角为45︒.问题解决:(1)请用含α的代数式表示仰角β;(2)如果GH QR EF 、、在同一平面内,小明的眼晴到水平地面的距离为1.6米,求大楼EF 的高度.(结果保留根号)23.如图,在ABC 中,点,D E 分别是,BC AD 的中点,且AD AC =,连接CE 并延长交AB 于点F .(1)证明:ABC ECD ∽;(2)证明:4BF EF =.24.已知抛物线212y x bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,直线6y x =--经过点A 与点C .(1)求抛物线的表达式;(2)点P 在线段AC 下方的抛物线上,过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .①如果C F 、两点关于抛物线的对称轴对称,联结DF ,当DF CF ⊥时,求PDF ∠的正切值;②如果:3:5PD DE =,求点P 的坐标.25.已知ABC 中,2ABC C ∠=∠,BG 平分ABC ∠,8AB =,163AG =,点D ,E 分别是边BC ,AC 上的点(点D 不与点B ,C 重合),且ADE ABC =∠∠,AD ,BG 相交于点F .(1)求BC 的长;(2)如图1,如果2BF CE =,求:BF GF 的值;(3)如果ADE V 是以AD 为腰的等腰三角形,求BD 长.2023学年第一学期初三数学教学质量调研试卷一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂】1.在Rt ABC △中,90C ∠=︒,如果,A BC a α∠==,那么AC 等于()A.tan a α⋅ B.cot a α⋅ C.sin aαD.cos a α【答案】B【分析】本题考查了锐角三角函数的定义的应用,主要考查学生的理解能力和计算能力.画出图形,根据锐角三角函数的定义求出即可.【详解】解:cot ACBCα=,∴cot cot AC BC a αα=⋅=⋅,故选:B .2.下列关于抛物线223y x x =+-的描述正确的是()A.该抛物线是上升的B.该抛物线是下降的C.在对称轴的左侧该抛物线是上升的D.在对称轴的右侧该抛物线是上升的【答案】D【分析】本题考查二次函数的性质、二次函数图象上点的坐标特征,根据抛物线的解析式和二次函数的性质,可以判断各个选项中的说法是否正确.【详解】解:∵抛物线223y x x =+-,∴20a =>,在对称轴左侧,该抛物线下降,在对称轴右侧上升,故选项A 、B 、C 均错误,不符合题意,选项D 正确,符合题意;故选:D .3.已知点C 在线段AB 上,且满足2AC BC AB =⋅,那么下列式子成立的是()A.12AC BC -= B.12AC AB -= C.12BC AB -= D.32BC AC =【答案】B【分析】本题考查黄金分割、解一元二次方程,把AB 当作已知数求出AC ,求出BC ,再分别求出各个比值,根据结果判断即可.【详解】解:令AC x =,()0AB a a =>,则BC a x =-,2AC BC AB =⋅可变形为()2x a x a =-⋅,整理,得220x ax a +-=,()2224150a a a ∆=-⨯⨯-=>,解得22a a x -±-±==,边长为正数,∴)122a a x --+==,)(1322a a a x a -=-=,即512AC AB -=⋅,352BC AB =⋅,∴23525112A ABC BC -⋅=+==,故A选项错误;122ABACABAB -==,故B选项正确;3322BC B B ABA A -==⋅,故C选项错误;251B ABC AC =-==,故D 选项错误;故选B .4.已知a 为非零向量,且3a b =- ,那么下列说法错误的是()A.13a b=-B.3b a= C.30b a += D.b a∥【答案】C【分析】本题考查了实数与向量相乘,向量的相关定义,根据其运算法则进行计算即可求解.【详解】解:A .∵a 为非零向量,且3a b =- ,∴13a b =- ,正确,故本选项不符合题意;B .∵a 为非零向量,且3a b =-,∴3b a = ,正确,故本选项不符合题意;C .∵a 为非零向量,且3a b =- ,∴30b a += ,原说法错误,故本选项符合题意;D .∵a 为非零向量,且3a b =-,∴b a ∥,故本选项不符合题意;故选:C .5.如果点D 、E 分别在△ABC 的两边AB 、AC 上,下列条件中可以推出DE ∥BC 的是()A.23AD BD =,23CE AE = B.23AD AB =,23DE BC =C.32AB AD =,12EC AE = D.43AB AD =,43AE EC =【答案】C【分析】根据各个选项的条件只要能推出AD AE AB AC =或AB ACAD AE=,即可得出△ADE ∽△ABC ,推出∠ADE=∠B ,根据平行线的判定推出即可.【详解】解:A 、根据23AD BD =和23CE AE =,不能推出DE ∥BC ,故本选项错误;B 、根据23AD AB =和23DE BC =,不能推出DE ∥BC ,故本选项错误;C 、∵12EC AE =,∴32AC AE =,∵32AB AD =,∴AB AD =ACAE∵∠A=∠A ,∴△ABC ∽△ADE ,∴∠ADE=∠B ,∴DE ∥BC ,故本选项正确;D 、根据AB AD =43和AE EC =43,不能推出DE ∥BC ,故本选项错误;故选C .【点睛】本题考查了相似三角形的性质和判定,平行线的判定的应用,解题的关键是推出△ABC ∽△ADE .6.已知在ABC 与A B C ''' 中,点D D '、分别在边BC B C ''、上,(点D 不与点B C 、重合,点D ¢不与点B C ''、重合).如果ADC △与'''A D C △相似,点A D 、分别对应点A ''、D ,那么添加下列条件可以证明ABC 与A B C ''' 相似的是()①AD A D ''、分别是ABC 与A B C ''' 的角平分线;②AD A D ''、分别是ABC 与A B C ''' 的中线;③AD A D ''、分别是ABC 与A B C ''' 的高.A.①② B.②③C.①③D.①②③【答案】A【分析】本题考查添加条件证明三角形相似,根据ADC △与'''A D C △相似,可得C C '∠=∠,DAC D A C '''∠=∠,AC DCA C D C ='''',再根据相似三角形的判定方法逐项判断即可.【详解】解: ADC △与'''A D C △相似,点A D 、分别对应点A ''、D ,∴C C '∠=∠,DAC D A C '''∠=∠,AC DCA C D C ='''',①AD A D ''、分别是ABC 与A B C ''' 的角平分线时:2BAC DAC ∠=∠,2B A C D A C ''''''∠=∠,∴BAC B A C '''∠=∠,又∴C C '∠=∠,∴ABC A B C '''∽ ;故①正确;②AD A D ''、分别是ABC 与A B C ''' 的中线时,2BC DC =,2B C D C ''''=,∴BC DCB C D C='''',∴AC BCA CBC ='''',又∴C C '∠=∠,∴ABC A B C '''∽ ;故②正确;③AD A D ''、分别是ABC 与A B C ''' 的高时,现有条件不足以证明ABC A B C '''∽ ,故③错误;综上可知,添加①或②时,可以证明ABC 与A B C ''' 相似故选A .二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.如果53(,x y x y =均不为零),那么():x x y +的值是____________.【答案】38【分析】本题考查的是比例的基本性质,令3x a =,则5y a =,然后化简整理即可求得.令3x a =,则5y a =,,()():33538x x y +=+=::,即可作答.【详解】解:根据题意,可令3x a =,则5y a =,因此,()():3353838x x y a a a a a +=+==:::.故答案为:38.8.式子2cos30tan45︒-︒的值是______.【答案】1-##1-【分析】直接将特殊角的三角函数值代入计算即可解答.【详解】解:32cos30tan452112︒-︒=⨯-=.1.【点睛】本题主要考查了三角函数的混合运算,牢记特殊角的三角函数值成为解答本题的关键.9.已知线段a=3cm ,b=4cm ,那么线段a 、b 的比例中项等于_______cm .【答案】【详解】试卷分析:根据线段的比例中项的定义列式计算即可得解.∵线段a=3cm ,b=4cm ,∴线段a 、b 的比例中项=cm .故答案为考点:比例线段.10.若两个相似三角形的周长比为2:3,则它们的面积比是_________.【答案】4∶9【详解】解:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:9.故答案为:4:9.考点:相似三角形的性质.11.如图,////AB CD EF ,如果:2:3,10AC CE BF ==,那么线段DF 的长是__________.【答案】6【分析】根据平行线分线段成比例定理结合比例解答即可.【详解】解:∵////AB CD EF ,:2:3,AC CE =∴23BD AC DF CE ==∵10BF =∴31065DF =⨯=.故答案为6.【点睛】本题考查平行线分线段成比例定理,灵活应用平行线分线段成比例定理列出比例式是解答本题的关键.12.二次函数()2f x ax bx c =++图像上部分点的坐标满足下表:那么()5f -=____________.x ⋯3-2-1-01⋯()f x ⋯3-2-3-6-11-⋯【答案】11-【分析】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了抛物线的对称性.利用表中数据确定抛物线的对称轴,然后根据抛物线的对称性求解.【详解】解:利用表中数据得抛物线的对称轴为直线2x =-,所以5x =-和1x =时的函数值相等,即当5x =-时,y 的值为11-.故答案为:11-.13.已知向量a 与单位向量e 方向相反,且3a = ,那么a = ____________________(用向量e 的式子表示)【答案】3e- 【分析】此题考查了平面向量的知识,由向量a 与单位向量e 方向相反,且3a = ,根据单位向量与相反向量的知识,即可求得答案.【详解】解:∵向量a 与单位向量e 方向相反,且3a = ,∴3a e =- .故答案为:3e - .14.已知一条斜坡的长度为13米,高度为5米,那么该斜坡的坡度为____________.【答案】1:2.4【分析】本题考查坡度,先利用勾勾股定理求出水平距离,然后利用公式计算是解题的关键.【详解】解:如图,13AB =,5AE =,∴12BE ===,∴斜坡的坡度为i :5:121:2.4AE BE ===,故答案为:1:2.4.15.如图,在ABC 中,AD 是BC 上的高,且5,3BC AD ==,矩形EFGH 的顶点F G 、在边BC 上,顶点E H 、分别在边AB 和AC 上,如果2EH EF =,那么EH =____________.【答案】3011【分析】本题考查了相似三角形的判定和性质及矩形的性质,通过四边形EFGH 为矩形推出EH BC ,因此AEH 与ABC 两个三角形相似,将AM 视为AEH 的高,可得出::AM AD EH BC =,再将数据代入计算是本题的关键.【详解】解:设AD 与EH 交于点M .∵四边形EFGH 是矩形,∴EH BC ,∴AEH ABC ∽,∵AM 和AD 分别是AEH 和ABC 的高,∴::AM AD EH BC =,DM EF =,∴3AM AD DM AD EF EF =-=-=-,∵2EH EF =,代入可得:3235EF EF -=,解得1511EF =,∴153021111EH =⨯=,故答案为:3011.16.如图,在ABC 中,90BAC ∠=︒,点G 是ABC 的重心,联结GA GC 、,如果533AC AG ==,,那么GCA ∠的余切值为____________.【答案】23【分析】延长CG 交AB 于F ,过G 作GD AC ⊥于G ,直线DG 交BC 于E ,证明DCE ACB ∽V V ,得CD DE AC AB =,同理可得DG CD CG GE AF AC CF BF ===,即有DE CG AB CF=,根据G 为ABC 的重心,3AC =,得2DE =,设tan ACG x ∠=,根据勾股定理列式计算53AG ===可得答案.【详解】解:过G 作GD AC ⊥于G ,延长CF 交AB 于点F ,如图:∵90GD AC BAC ⊥∠=︒,,∴DE AB ∥,90CDE BAC ==︒∠∠,∵DCE ACB ∠=∠,∴DCG ACF ∽,∴CD DG CG AC AF CF==,∵G 为ABC 的重心,∴23CD DG CG AC AF CF ===,∵3AC =,∴21CD AD ==,,∴2243DG AG AD =-=,则在直角三角形CDG 中,423tan 23DG ACG CD ∠===,故答案为:23【点睛】本题考查三角形的重心,涉及相似三角形的判定与性质,勾股定理,解直角三角形,难度较大,综合性较强,解题的关键是作辅助线,构造相似三角形.17.我们把顶角互补的两个等腰三角形叫做友好三角形.在ABC 中,10AB AC ==,点D E 、都在边BC 上,5AD AE ==,如果ABC 与ADE V 是友好三角形,那么BC 的长为____________.【答案】5【分析】本题考查相似三角形的判定和性质,等腰三角形的性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程.如图,过过点A 作AF BC ⊥于点F .证明FAD FBA ∽,推出51102AD AF DF AB FB AF ====,设DF EF x ==,这24AF x BF x ==,,构建方程求解.【详解】解:如图,过点A 作AF BC ⊥于点F .∵AB AC AD AE AF BC ==⊥,,,∴DF EF BF FC BAF CAF DAF EAF ==∠=∠∠=∠,,,,∵180BAC DAE ∠+∠=︒,∴22180BAF DAF ∠+∠=︒,∴90BAF DAF ∠+∠=︒,∵90BAF B ∠+∠=︒,∴∠=∠DAF B ,∵90AFD AFB ∠=∠=︒,∴FAD FBA ∽,∴51102AD AF DF AB FB AF ====,设DF EF x ==,这24AF x BF x ==,,∵222AB AF BF =+,∴()()2221024x x =+,∴5x =,∴285BC BF x ===故答案为:85.18.如图,在矩形ABCD 中,8,4,AD AB AC ==是对角线,点P 在边BC 上,联结DP ,将DPC △沿着直线DP 翻折,点C 的对应点Q 恰好落在ADC △内,那么线段BP 的取值范围是____________.【答案】46BP <<【分析】本题考查矩形的折叠问题,相似三角形的判定和性质等,计算出点Q 恰好落在AD 边上,以及点Q 恰好落在AC 边上时BP 的值,即可得出线段BP 的取值范围.【详解】解:当点C 的对应点Q 恰好落在AD 边上时,如图:由折叠的性质知CD QD =,CP QP =,90PQD PCD ∠=∠=︒,又 矩形ABCD 中,90ADC ∠=︒,∴四边形QDCP 是正方形,∴4CP CD AB ===,∴844BP BC CP AD CP =-=-=-=;当点C 的对应点Q 恰好落在AC 边上时,如图,由折叠的性质知PD CQ ⊥,∴90PDC ACD ∠+∠=︒,又 矩形ABCD 中,90ADC ∠=︒,∴90CAD ACD ∠+∠=︒,∴PDC CAD ∠=∠,又 90PCD CDA ∠=∠=︒,∴PDC CAD ∽,∴PC CD CD AD =,即448PC =,∴2PC =,∴826BP BC PC =-=-=,∴线段BP 的取值范围是46BP <<.故答案为:46BP <<.三、解答题(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.已知抛物线2241y x x =++.(1)用配方法把2241y x x =++化为2()y a x m k =++的形式,并写出该抛物线的开口方向、对称轴和顶点坐标;(2)如果将该抛物线上下平移,得到新的抛物线经过点()1,4,求平移后的抛物线的顶点坐标.【答案】(1)该抛物线的开口向上,对称轴是直线=1x -,顶点坐标为(1,1)--(2)(1,4)--【分析】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,掌握二次函数的性质是解题的关键.(1)利用配方法把一般式化为顶点式,根据二次函数的性质写出抛物线的开口方向、对称轴和顶点坐标.(2)设平移后的抛物线解析式为22(1)y x =+1k -+,代入点(1,4),求得k 的值即可求解.【小问1详解】解:2241y x x =++()222121x x =++-+22(1)1x =+-,∴该抛物线的开口向上,对称轴是直线=1x -,顶点坐标为(1,1)--;【小问2详解】设平移后的抛物线解析式为22(1)y x =+1k -+,∵新的抛物线经过点(1,4),∴24221k =⨯-+,解得3k =-,∴平移后的抛物线解析式为22(1)4y x =+-,∴平移后的抛物线的顶点坐标是(1,4)--.20.在平行四边形ABCD 中,点E 是AD 的中点,BE AC 、相交于点F .(1)设,AB a AD b == ,试用a b 、表示EF;(2)先化简,再求作:()()3222a b a b +-+ (直接作在图中).【答案】(1)1136a b - (2)12a b -- ,见详解【分析】本题主要考查平行四边形的性质、平行线分线段成比例定理和平面向量,()1根据题意得AD BC ∥和BC AD =,进一步得到AE EF BC FB =,则1132EF DA AB ⎛⎫=+ ⎪⎝⎭,代入向量即可.()2化解得12a b -- ,将对应线段代入得到()AB AE -+ ,过点E 作EG AB ∥,则AE BG = ,1=2a b GA -- ,连接GA 即可.【小问1详解】解:∵四边形ABCD 为平行四边形,∴AD BC ∥,BC AD =,∴AFE CFB ∽,则AE EF BC FB=,∵点E 是AD 的中点,∴12AE AD =,则12EF FB =,∴()1111123332EF FB EB EA AB DA AB ⎛⎫===+=+ ⎪⎝⎭ ,∵,AB a AD b == ,∴1111=3236EF b a a b ⎛⎫=-+- ⎪⎝⎭ .【小问2详解】()()3312223222a b a b a b a b a b +-+=+--=-- ,∵,AB a AD b == ,∴()1122a b AB AD AB AE AB AE --=--=--=-+ ,过点E 作EG AB ∥,则AE BG = ,∴()()1===2a b AB AE AB BG AG GA --=-+-+- ,如图,GA即为所求.21.如图,在四边形ABCD 中,90BAD AC BC DE AC ∠=⊥︒⊥,,,垂足为点43E AC DE ==,,.(1)求:AD AB 的值;(2)BD 交AC 于点F ,如果1tan 2BAC ∠=,求CF 的长.【答案】(1)3:4(2)1CF =【分析】本题考查了相似三角形的性质与判定、解直角三角形:(1)根据90BAD AC BC DE AC ∠=⊥︒⊥,,,得90AED ACB ∠=∠=︒,EAD ABC ∠=∠,证明AED BCA △∽△,结合相似三角形的性质,得:AD AB 的值;(2)根据相似三角形的性质且1tan 2BAC ∠=,得2BC =, 1.5AE =,再证明BCF DEF ∽,列式代数计算,即可作答.【小问1详解】解:∵90BAD AC BC DE AC∠=⊥︒⊥,,∴90AED ACB ∠=∠=︒,90BAC DAE BAC ABC∠+∠=︒=∠+∠∴EAD ABC ∠=∠,∴AED BCA△∽△则::3:4AD AB DE AC ==【小问2详解】解:如图:∵AED BCA △∽△,1tan 2BAC ∠=,∴11242BC BC BAC ADE AC ==∠=∠,,,∴2BC =,∴1tan 32AE AE ADE ED ∠===,得 1.5AE =,∴4 1.5 2.5EC AC AE =-=-=,∵AC BC DE AC ⊥⊥,,∴90BCF DEF ∠=∠=︒,∵BFC DFE ∠=∠,∴BCF DEF ∽,即BC CF DE EF=,∴23 2.5CF CF =-,解得1CF =.22.小明为测量河对岸大楼的高度,利用量角器和铅锤自制了一个简易测角仪,如图1所示.测量方法:如图2,人眼在P 点观察所测物体最高点C ,量角器零刻度线上A B 、两点均在视线PC 上,将铅锤悬挂在量角器的中心点O .当铅锤静止时,测得视线PC 与铅垂线OD 所夹的角为α,且此时的仰角为β.实践操作:如图3,小明利用上述工具测量河对岸垂直于水平地面的大楼EF 的高度.他先站在水平地面的点H 处,视线为GE ,此时测角仪上视线与铅垂线的夹角为60︒;然后他向前走10米靠近大楼站在水平地面的点R 处,视线为QE ,此时测角仪上视线与铅垂线的夹角为45︒.问题解决:(1)请用含α的代数式表示仰角β;(2)如果GH QR EF 、、在同一平面内,小明的眼晴到水平地面的距离为1.6米,求大楼EF 的高度.(结果保留根号)【答案】(1)90βα=︒-(2)()6.6米【分析】本题考查了解直角三角形−仰角俯角问题,列代数式,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.(1)延长OD 交PK 于L ,根据题意可得:OL PK ⊥,从而可得:90OLP ∠=︒,然后利用直角三角形的两个锐角互余进行计算,即可解答;(2)延长GQ 交EF 于点M ,根据题意可得: 1.6GM EF GH QR MF ⊥===,米,10GQ HR ==米,然后设EM x =米,分别在Rt EGM 和Rt EQM 中,利用锐角三角函数的定义求出GM 和QM 的长,从而列出关于x 的方程,进行计算即可解答.【小问1详解】解:如图:延长OD 交PK 于L ,由题意得:OL PK ⊥,∴90OLP ∠=︒,∵POD α∠=,∴9090OPL POD α∠=︒-∠=︒-,∴90βα=︒-;【小问2详解】解:延长GQ 交EF 于点M ,由题意得: 1.610GM EF GH QR MF GQ HR ⊥=====,m,m ,设EM x =米,在Rt EGM 中,60GEM ∠=︒,∴tan60GM EM =⋅︒=(米),在Rt EQM 中,45QEM ∠=︒,∴45QM EM tan x =⋅︒=(米),∵GM QM GQ -=,10x -=解得:5x =∴()5EM =米,∴()5 1.6 6.6EF EM FM =+=+=米,∴大楼EF 的高度为()6.6+米.23.如图,在ABC 中,点,D E 分别是,BC AD 的中点,且AD AC =,连接CE 并延长交AB 于点F .(1)证明:ABC ECD ∽;(2)证明:4BF EF =.【答案】(1)见解析(2)见解析【分析】本题主要考查相似三角形的判定和性质,等腰三角形的判定和性质:(1)根据等边对等角可得EDC ACB ∠=∠,再证这组夹角的两边成比例即可;(2)作DH CF ∥交AB 于点H ,可证BHD BFC ∽,AFE AHD ∽,推出12HD BD FC BC ==,12FE AE HD AD ==,进而可得4FC EF =,再根据ABC DCE ∽得出FBC FCB ∠=∠,推出CF BF =,等量代换可证4BF EF =.【小问1详解】证明: AD AC =,∴ADC ACD ∠=∠,即EDC ACB ∠=∠,又 点,D E 分别是,BC AD 的中点,∴12DC CB =,1122ED AD AC ==,∴12DC ED CB AC ==,∴AC ED CB DC=,∴ABC ECD ∽;【小问2详解】证明:如图,作DH CF ∥交AB 于点H ,DH CF ∥,∴BHD BFC ∠=∠,BDH BCF ∠=∠;AFE AHD ∠=∠,AEF ADH ∠=∠,∴BHD BFC ∽,AFE AHD ∽,又 点,D E 分别是,BC AD 的中点,∴12HD BD FC BC ==,12FE AE HD AD ==,∴2FC HD =,2HD FE =,∴4FC EF =,由(1)得ABC ECD ∽,∴ABC ECD ∠=∠,即FBC FCB ∠=∠,∴CF BF =,∴4BF EF =.24.已知抛物线212y x bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,直线6y x =--经过点A 与点C .(1)求抛物线的表达式;(2)点P 在线段AC 下方的抛物线上,过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .①如果C F 、两点关于抛物线的对称轴对称,联结DF ,当DF CF ⊥时,求PDF ∠的正切值;②如果:3:5PD DE =,求点P 的坐标.【答案】(1)21262y x x =+-(2)①13②1532⎛⎫- ⎪⎝⎭,【分析】(1)先由一次函数求出()()6060A C --,,,,再运用待定系数法求二次函数解析式,即可作答.(2)①依题意,得DF CF ⊥,PE BC PDF ACB ∠=∠ ,,根据角的等量代换,即PDF OCB ∠=∠,先求出点B 的坐标.PDF ∠的正切值等于21tan 63OB OCB OC ∠===;②先表达出21062E p p ⎛⎫-- ⎪⎝⎭,,22111168484D p p p p ⎛⎫-+-- ⎪⎝⎭,,21262P p p p ⎛⎫+- ⎪⎝⎭,,23438EN p p -=,3EM p =-再根据相似三角形的性质与判定,列式化简计算,即可作答.【小问1详解】解:∵直线6y x =--经过点A 与点C则当06x y ==-,;06y x ==-,∴()()6060A C --,,,∴60186c b c =-⎧⎨=-+⎩,,解得62c b =-⎧⎨=⎩21262y x x =+-;【小问2详解】解:①如图:∵()()6060A C --,,,,且C F 、两点关于抛物线21262y x x =+-的对称轴对称,∴6F c y y ==-,221222b x a =-=-=-⨯则4F x =-∵DF CF⊥∴DF y ∥轴则FDC OCA∠=∠∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .∴PE BC PDF ACB∠=∠ ,则PDF OCB∠=∠∵21262y x x =+-x 轴交于A B 、两点(点A 在点B 的左侧),∴210262x x =+-∴6x =-,2x =∴()20B ,∵PDF OCB∠=∠则PDF ∠的正切值等于21tan 63OB OCB OC ∠===;②设21262P p p p ⎛⎫+- ⎪⎝⎭,,BC 的解析式为y mx n =+∴把()()0620C B -,,,代入y mx n =+得602n m n=-⎧⎨=+⎩解得63n m =-⎧⎨=⎩∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E∴设PE 的解析式为3y x b=+把21262P p p p ⎛⎫+- ⎪⎝⎭,代入3y x b =+得2162p p b =--∴21623y x p p =--+令0x =,2162p p y =--即21062E p p ⎛⎫-- ⎪⎝⎭,当261362y x y x p p =--⎧⎪⎨=+--⎪⎩解得21184x p p +=-则把21184x p p +=-代入21623y x p p =--+得211684y p p =--∴22111168484D p p p p ⎛⎫-+-- ⎪⎝⎭,∵过点P 作PM y ⊥轴,过点D 作DN y ⊥轴,∴EDN EPM∽∴EN DE EM EP=∵:3:5PD DE =∴58EN EM =∶∶∵21062E p p ⎛⎫-- ⎪⎝⎭,,22111168484D p p p p ⎛⎫-+-- ⎪⎝⎭,,21262P p p p ⎛⎫+- ⎪⎝⎭,∴222111336628484EN p p p p p p ⎛⎫=-----=- ⎪⎝⎭,2211626322EM p p p p p ⎛⎫=---+-=- ⎪⎝⎭∴23358348p p p --=∶∶解得1103p p ==-,∵点P 在线段AC 下方的抛物线上,∴10p =(舍去)∴3p =-.把3p =-代入21262y p p =+-∴19241592362222y =⨯-⨯-=-=∴点P 的坐标1532⎛⎫- ⎪⎝⎭,【点睛】本题考查了二次函数的几何综合,相似三角形的判定与性质,解直角三角形,勾股定理等,综合性强,难度较大,正确掌握相关性质内容是解题的关键.25.已知ABC 中,2ABC C ∠=∠,BG 平分ABC ∠,8AB =,163AG =,点D ,E 分别是边BC ,AC 上的点(点D 不与点B ,C 重合),且ADE ABC =∠∠,AD ,BG 相交于点F .(1)求BC 的长;(2)如图1,如果2BF CE =,求:BF GF 的值;(3)如果ADE V 是以AD 为腰的等腰三角形,求BD 长.【答案】(1)10(2)278(3)325【分析】(1)证明ABG CAB ∽ ,再根据相似三角形的性质,等腰三角形的判定与性质,即可得到答案;(2)过点F 作FM AB ⊥于点M ,FN BD ⊥于点N ,先证明ABF DCE ∽ ,进一步求得6BD =,接着利用面积法证明4=3AF DF ,设4AF x =,证明FAG EAD ∽ ,求得3221FG =,即可进一步求得答案;(3)先证明CDE CBG ∽ ,可得32CD CE =,再利用等腰三角形的判定与性质以及平行线的性质逐步求得43FG =,最后证明AFG ADE ∽ ,进一步求出125CE =,即可得到答案.【小问1详解】BG 平分ABC ∠,22ABC ABG GBC ∴∠=∠=∠,2ABC C ∠=∠ ,ABG C GBC ∴∠=∠=∠,BAG CAB ∠=∠ ,ABG ACB ∴∽ ,AB AG BG AC AB CB ∴==,16838BG AC CB ∴==,12AC ∴=,32BC BG =,16201233CG AC AG ∴=-=-=,C GBC ∠=∠ ,203BG CG ∴==,3102BC BG ∴==;【小问2详解】过点F 作FM AB ⊥于点M ,FN BD ⊥于点N ,ADE ABC ∠=∠ ,ADE CDE ABC FAB ∠+∠=∠+∠,FAB EDC ∴∠=∠,又ABG C ∠=∠ ,ABF DCE ∴∽ ,AB AF BF CD DE CE∴==,2BF CE = ,142CD AB ∴==,2AF DE =,1046BD BC CD ∴=-=-=,BG 平分ABC ∠,FM FN ∴=,142132ABF DBF AB FM S AF S DF BD FN ⋅∴===⋅ ,设4AF x =,则3DF x =,7AD x =,2DE x =,2AGF GBC C C ABC ∠=∠+∠=∠=∠ ,ADE ABC =∠∠,AGF ADE ∴∠=∠,又FAG EAD ∠=∠ ,FAG EAD ∴∽ ,AG FG AD ED ∴=,16372FG x x ∴=,3221FG ∴=,367BF BG FG ∴=-=,3627732821BF GF ∴==;【小问3详解】ADE 是以AD 为腰的等腰三角形,AD AE ∴=,ADE AED ∴∠=∠,AGF ADE ∠=∠ ,AGF AED ∴∠=∠,BG DE ∴∥,CDE CBG ∴∽ ,CE CD CG CB ∴=,20103CE CD ∴=,32CD CE ∴=,BG DE ∥ ,AFG ADE ∴∠=∠,GBC EDC ∠=∠,AFG AGF ∴∠=∠,163AF AG ∴==,FAB EDC ∠=∠ ,ABG GBC C ∠=∠=∠,FAB ABG ∴∠=∠,EDC C ∠=∠,163BF AF ∴==,CE DE =,43FG BG BF ∴=-=,BG DE ∥ ,AFG ADE ∴∽ ,AG FG AE DE ∴=,1643312CE CE ∴=-,解得125CE =,3321225BD BC CD CE ∴=-=-=.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的判定与性质,平行线的判定与性质,利用面积比求线段比等知识与方法,灵活运用相关知识与方法是解答本题的关键.。
2023-2024学年上海市金山区九年级(上)期末数学试卷(一模)(含解析)
2023-2024学年上海市金山区九年级(上)期末数学试卷(一模)一、选择题:本题共6小题,每小题4分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.把抛物线y=2x2向左平移1个单位后得到的新抛物线的表达式是( )A. y=2x2−1B. y=2x2+1C. y=2(x−1)2D. y=2(x+1)22.已知点E是平行四边形ABCD的边AD上一点,联结CE和BD相交于点F,如果AE:ED=1:2,那么DF:FB为( )A. 1:2B. 1:3C. 2:3D. 2:53.在直角坐标平面的第一象限内有一点A(a,b),如果射线OA与x轴正半轴的夹角为α,那么下列各式正确的是( )A. b=a⋅tanαB. b=a⋅cotαC. b=a⋅sinαD. b=a⋅cosα4.抛物线y=ax2+bx+c的图象如图所示,下列判断中不正确的是( )A. a<0B. b<0C. c>0D. a+b+c<05.将一张矩形纸片沿较长边的中点对折,如果得到的两个矩形都和原来的矩形相似,那么原来矩形较长边和较短边的比是( )A. 2:1B. 2:1C. 3:1D. 3:16.如图在4×1的方格中,每一个小正方形的顶点叫做格点,以其中三个格点为顶点的三角形称为格点三角形,△ABC就是一个格点三角形,现从△ABC的三个顶点中选取两个格点,再从余下的格点中选取一个格点联结成格点三角形,其中与△ABC相似的有( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共12小题,每小题4分,共48分。
7.如果a5=b3(b≠0),那么a−bb=______ .8.化简:2(−a+3b)−6b=______ .9.已知两个相似三角形的相似比为2:3,那么这两个三角形的周长比为______ .10.点P是线段AB的黄金分割点(AP>BP),AB=2,那么线段AP的长是______ .11.抛物线y=2x2−3的顶点坐标是______ .312.如果点A(2,a)、B(3,b)在二次函数y=x2−3x的图象上,那么a______ b(填“>”“<”或“=”).13.如果α是直角三角形的一个锐角,sinα=4,那么tanα=______ .514.如图,已知D、E、F分别是△ABC的边AB、AC、BC上的点,DE//BC,EF//AB,△ADE、△EFC的面积分别为1、4,四边形BFED的面积为______ .15.如图,在山坡上种树,要求株距(相邻两树间的水平距离)是4米,斜坡的坡度i=1:2,那么相邻两树间的坡面距离为______ 米.16.如图,为了绕开岛礁区,一艘船从A处向北偏东60°的方向行驶8海里到B处,再从B处向南偏东45°方向行驶到发点A正东方向上的C处,此时这艘船距离出发点A处______ 海里.17.把矩形ABCD绕点C按顺时针旋转90°得到矩形A′B′CD′,其中点A的对应点A′在BD的延长线上,如果AB=1,那么BC=______ .18.在△ABC中,AC=6,P是AB边上的一点,Q为AC边上一点,直线PQ把△ABC分成面积相等的两部分,且△APQ和△ABC相似,如果这样的直线PQ有两条,那么边AB长度的取值范围是______ .三、解答题:本题共7小题,共78分。
2024届上海市崇明区初三一模数学试题及答案
上海市崇明区2024届初三一模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.如果两个相似三角形的周长之比为1:4,那么它们对应边之比为().A 1:2;.B 1:4;.C 1:8;.D 1:16.2.在直角坐标平面内有一点 5,12A ,点A 与原点O 的连线与x 轴正半轴的夹角为 ,那么tan 的值为().A 5;12;5;12.3..A 23x .4..A .2a c ,//b c .5.在).A .C 6.).A 7.8.计算:53222a b a b.9.如果点P 是线段AB 的黄金分割点(AP BP ),那么APAB的值是.10.在Rt ABC 中,90C ,8AC ,4sin 5B,那么AB 的长为.11.如果抛物线 21y m x m 经过原点,那么该抛物线的开口方向为.(填“向上”或“向下”)12.已知一条抛物线的对称轴是直线1x ,且在对称轴右侧的部分是上升的,那么该抛物线的表达式可以是.(只要写出一个符合条件的即可)第13题图第14题图13.如图,已知////AD BE CF ,它们与直线1l 、2l 依次交于点A 、B 、C 和点D 、E 、F ,如果35EF DF ,10AB ,那么线段BC 的长是.14.19AEF BFC S S,AD 15.16.,如果3AP ,BP 17.AD 上的点G 18.定义:与 90ACB ,CD 是的余切值为.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:2sin 60cos 45cot 303tan 30.第15题图第20题图如图,已知在ABC 中,18BC ,点D 在边BC 上,//DE AB ,94DE AB .(1)求BD 的长;(2)联结AD ,设AB a ,AC b ,试用a 、b 表示AD.21.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数2246y x x .(1)用配方法把二次函数2246y x x 化为 2y a x m k 的形式,并指出这个函数图像的对称轴和顶点坐标;(2)如果该函数图像与x 轴负半轴交于点A ,与y 轴交于点C ,顶点为D ,O 为坐标原点,求四边形ADCO 的面积.第21题图第23题图如图,某校九年级兴趣小组在学习了解直角三角形知识后,开展了测量山坡上某棵大树高度的活动.已知小山的斜坡BM的坡度i D 处有一棵树AD (假设树AD 垂直水平线BN ),在坡底B 处测得树梢A 的仰角为45 ,沿坡面BM 方向前行30米到达C 处,测得树梢A 的仰角ACQ 为60 (点B 、C 、D 在一直线上).(1)求A 、C 两点的距离;(2)求树AD 的高度(结果精确到0.11.732 )23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,已知在梯形ABCD 中,//AD BC ,E 是边BC 上一点,AE 与对角线BD 相交于点F ,且2BEEF AE .(1)求证:DAB AFB ∽;(2)联结AC ,与BD 相交于点O ,若AB OB BC AF ,求证:2AF OD BF .第22题图第24题图备用图24.(本题满分12分,第(1)小题4分,第(2)①小题4分,第(2)②小题4分)已知在直角坐标平面xOy 中,抛物线2y ax bx c (0a )经过点 1,0A 、 3,0B 、 0,3C 三点.(1)求该抛物线的表达式;(2)点D 是点C 关于抛物线对称轴对称的点,联结AD 、BD ,将抛物线向下平移m (0m )个单位后,点D 落在点E 处,过B 、E 两点的直线与线段AD 交于点F (F 不与点A 、D 重合).①如果2m ,求tan DBF 的值;②如果BDF 与ABD 相似,求m 的值.第25题图2备用图第25题图125.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知Rt ABC 中,90ACB ,3AC ,5AB ,点D 是AB 边上的一个动点(不与点A 、B 重合),点F 是边BC 上的一点,且满足CDF A ,过点C 作CE CD 交DF 的延长线于E .(1)如图1,当//CE AB 时,求AD 的长;(2)如图2,联结BE ,设AD x ,BE y ,求y 关于x 的函数解析式并写出定义域;(3)过点C 作射线BE 的垂线,垂足为H ,射线CH 与射线DE 交于点Q ,当CQE 是等腰三角形时,求AD 的长.九年级数学共6页第1页崇明区2023学年第一学期期末质量调研九年级数学参考答案及评分标准一、选择题(本大题共6题,每题4分,满分24分)1.B ;2.D 3.C 4.A 5.C6.B二、填空题(本大题共12题,每题4分,满分48分)7.47;8.3a b ;9.12;10.10;11.向下;12.21y x ()(答案不唯一);13.15;14.5;15.16.163;17.;18.三、解答题(本大题共7题,满分78分)19.(本题满分10分)解:原式=2()2………………………………………………………(8分).……………………………………………………………………………(2分)20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵DE AB ∥,94DE AB ∴49DE CD AB BC ……………………………………………………………………(2分)∵18BC ,∴4189CD ,解得:10CD ,……………………………………………………(1分)∴18810BD BC CD .……………………………………………………(2分)(2)∵AB a ,b AC,∴-BC AC AB b a.………………………………………………………………(2分)又∵49CD BC ,DC 与BC 同向,九年级数学共6页第2页∴444999DC BC b a,…………………………………………………………(1分)∴.4445()9999AD AC CD AC DC b b a a b…………………(2分)21.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)2246y x x 2226x x ()……………………………………………………………(1分)22218x x ()…………………………………………………………(1分)2218x ()……………………………………………………………(1分)∴对称轴为直线1x ,顶点坐标为1,8 (-).………………………………(2分)(2)由(1)得18D (,).令0y ,则22460x x ,解得:13x ,21x ,∴0A (-3,),则AO=3.……(1分)令0x ,则6y ,∴06C (,),则OC=6.……(1分)联结OD .,则:1122AOD DOC ABDC D D S S S AO y OC x△△四边形………………………………(1分)1138611522…………………………………(2分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)根据题意可知:∠ABN=45°,∠ACQ=60°,BC =30米.∵小山的斜坡BM的坡度tan i MBN ,∴∠MBN=30°=∠MCQ ,………(1分)∴∠ABC=15ABN MBN ∠∠,∠ACM=30ACQ MCQ ∠∠…………………(2分)∵∠ABC +∠BAC=∠ACM ,∴∠BAC=30°-15°=15°=∠ABC …………………………(1分)∴AC=BC=30米,即A 、C 两点的距离为30米.………………………………………(1分)(2)延长AD 交CQ 于点H ,则∠AHC=90°.在t R ACH △中,30AC ,∠ACQ=60°,∴sin 6030AH AC ,1cos6030152CH AC.……………(2分)在Rt DCH △中,9CH ,∠DCH=30°,BN九年级数学共6页第3页∴tan 3015DH CH …………………………………………………(1分)∴17.3AD AH DH (米)………………………………………………(2分)答:A 、C 两点的距离为18米,树AD 的高度约为17.3米.23.(本题满分12分,第(1)小题6分,第(2)小题6分)证明:(1)∵2BE EF AE ,∴BE AE EF BE ,又∵BEF AEB ,∴BEF AEB △∽△,…………………………………………………………(2分)∴EBF BAE .……………………………………………………………(1分)∵AD ∥BC ,∴ADB EBF ,……………………………………………………………(1分)∴BAE ADB ,……………………………………………………………(1分)又∵ABF ABD ,∴DAB AFB △∽△.……………………………………………………………(1分)(2)∵AB OB BC AF ,∴AB AFBC OB,又∵BAF OBC ,∴ABF BCO △∽△,……………………………………………………………(2分)∴AFB BOC =,∴AFO AOF =,∴AF AO .………………………………………………………………………(1分)∵BOC AOD =,∴AFB AOD =,又∵BAF ADO =,∴BAF ADO △∽△,………………………………………………………………(1分)∴AO ODBF AF,即AO AF OD BF ,………………………………………(1分)∵AF AO ,∴2AF OD BF .…………………………………………………(1分)24.(本题满分12分,第(1)小题4分,第(2)小题的①满分4分,第(2)小题的②满分4分)解:(1)∵抛物线2y ax bx c (0a )经过点A (-1,0),3,0B (),0,3C (),九年级数学共6页第4页∴-09303a b c a b c c ,解方程组得:123a b c.………………………………………(3分)∴抛物线的表达式为:223y x x ………………………………………………(1分)(2)由222314y x x x (),得抛物线对称轴为直线1x .∵点D 是点0,3C ()关于抛物线对称轴对称的点,∴2,3D ()…………………………(1分)过点D 作DH x 轴,垂足为点H ,则H (2,0)∴DH=AH=3,BH=1,∴45ADH DAH .当DE=m=2时,EH=1=BH ,∴Rt EBH BE 在中,,45EBH BEH ,∴90DFB FAB FBA ∠…………………………(1分)在t R DEF △中,DE=2,45ADH ∴EF=sin 45DE =DF ,∴BF=EF+BE=在t R DBF △中,1tan 2DF DBF BF .……………………………(2分)(3)如果BDF △与ABD △相似∵ADB 是公共角,1方法一:若DBF DAB ,则DFB DBA△∽△∴DF BD BD AD,则,解得:DF (1分)过点F 作FG DH ,垂足为点G ,则FG AB ∥.∴FG EGBH EH……………………………………(1分)在t R DFG △中,45ADH ,∴53DG FG,∴53EG m ,又3EH m ,∴553313m m,解得:52m .……(1分);方法二:若DBF DAB ,则DFB DBA △∽△,可得∠DBF =∠DAB=45°九年级数学共6页第5页利用上一题结论,可证明1tan 2EBH ………………………(1分),在t R EHB △中,1tan 2EH EBH BH ,得12EH ………………………(1分)解得52m………………………(1分);②若DFB DAB ,此时F 与A 重合,即△BDF 和△ABD 全等,即3m ……(1分).25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)解:在t R ABC △中,3AC ,5AB ,∴4BC ,3cos 5AC A AB .……………(1分)(1)∵CE CD ,∴90DCE .………(1分)∵CE ∥AB ,∴90ADC DCE …(1分)在t R ADC △中,39cos 355AD AC A……(1分)(2)∵90ACB DCE ,∴ACD BCE∵A ACD CDB ,即A ACD CDF FDB ∵CDF A ,∴ACD FDB ,∴FDB BCE ,又∵DFB CFE ,∴△DFB ∽△CFE ,………………………(1分)∴DF BFCF EF,∴DF CFBF EF,又∵CFD EFB ,∴△DFC ∽△BFE ,………………………………………………………………(1分)∴CDF EBF ,∵CDF A ∴A EBF ,∵ACD BCE ,∴△ACD ∽△CBE ,………………………………………………………………(1分)∴AC ADBC BE∵AD=x ,BE=y ,∴34x y,得:43y x.……………………………………………………………………(1分)EABE AB九年级数学共6页第6页定义域:05x .……………………………………………………………(1分)(3)∵A EBF ,∴90A ABC EBF ABC ∠∠,即90DBE ∠.∵CH ⊥BE ,∴∠CHB=90°.在t R CHB △中,4BC ,312cos cos 455BH BC CBE BC A ,165CH.若△CQE 是等腰三角形,①点Q 在线段DE 的延长线上时∵在t R CDE △中,∠CED <90°,∴∠CEQ>90°,∴只有EC=EQ 一种情况.∵CH ⊥BE ,∴165QH CH .∵90DBE CHB ∠∠,∴CQ ∥AB ,∴QH EHBD BE,∴1612555y x y ,即16124553453xx x,解得:x=1或x=9(舍去),∴AD=1………………………………………………(2分)②点Q 在线段DE 上时∵∠CQE>90°,∴只有QC=QE 一种情况.∴∠QCE=∠QEC ,∵在t R CDE △中,90CDE DEC ∠,90ECQ DCQ ∠∴∠QCD=∠QDC ,∴QC=QD ,∴QE=QD ,∵CH ∥AB ,∴EH=BH=125,∴BE =245,即42435x ,解得:185x ,…………………………………………(2分)∴185AD.以上分类讨论的情况正确,有判断过程…………………(1分)综上所述:当△CQE 是等腰三角形时,AD 的长为1或185.。
2023-2024学年上海市奉贤区九年级(上)期末数学试卷(一模)及答案解析
2023-2024学年上海市奉贤区九年级(上)期末数学试卷(一模)一、选择题(本大题共6题,每题4分,满分24分)1.(4分)下列函数中是二次函数的是()A.y=2x+1B.C.y=x2+2D.2.(4分)将抛物线y=x2向右平移3个单位,那么平移后抛物线的表达式是()A.y=x2+3B.y=x2﹣3C.y=(x+3)2D.y=(x﹣3)2 3.(4分)在Rt△ABC中,∠C=90°,AC=5,∠A=α,那么BC的长是()A.5tanαB.5cotαC.5sinαD.5cosα4.(4分)如图,在△ABC中,点D、E分别在AB、AC的反向延长线上,已知AB=2AD,下列条件中能判定DE∥BC的是()A.B.C.D.5.(4分)已知,,且与的方向相反,下列各式正确的是()A.B.C.D.6.(4分)如图,将△ABC绕点B顺时针旋转,使得点A落在边AC上,点A、C的对应点分别为D、E,边DE交BC于点F,联结CE.下列两个三角形不一定相似的是()A.△BAD与△BCE B.△BDF与△ECFC.△DCF与△BEF D.△DBF与△DEB二、填空题(本大题共12题,每题4分,满分48分)7.(4分)如果,那么=.8.(4分)计算:3(2+)﹣4=.9.(4分)已知抛物线y=(a﹣2)x2﹣x开口向上,那么a的取值范围是.10.(4分)已知抛物线y=﹣2x2+1在对称轴左侧部分是的.(填“上升”或“下降”)11.(4分)如果P是线段AB的黄金分割点,AB=2cm,那么较长线段AP的长是cm.12.(4分)某人顺着坡度为的斜坡滑雪,下滑了120米,那么高度下降了______米.13.(4分)如图,已知AD∥BE∥CF,它们依次交直线l1于点A、B、C,交直线l2于点D、E、F,已知AB:AC=3:5,DF=10,那么EF的长为.14.(4分)如图,已知△ABC的周长为15,点E、F是边BC的三等分点,DE∥AB,DF ∥AC,那么△DEF的周长是.15.(4分)如图,已知△ABC在边长为1个单位的方格纸中,三角形的顶点在小正方形顶点位置,那么∠ABC的正切值为.16.(4分)在△ABC中,∠A=45°,(∠B是锐角),,那么AB的长为.17.(4分)如图是某幢房屋及其屋外遮阳篷,已知遮阳篷的固定点A距离地面4米(即AB=4米),遮阳篷的宽度AC为2.6米,遮阳篷与房屋墙壁的夹角α的余弦值为,当太阳光与地面的夹角为60°时,遮阳篷在地面上的阴影宽度BD为米.18.(4分)如图,在梯形ABCD中,AD∥BC,BC=3AD,点E是AB中点,如果点F在DC上,线段EF把梯形分成面积相等的两个部分,那么=.三、解答题(本大题共7题,满分78分)19.(10分)计算:|cot30°﹣1|.20.(10分)已知抛物线y=x2+bx+c经过点A(3,0),B(0,﹣3).(1)求抛物线表达式并写出顶点坐标;(2)联结AB,与该抛物线的对称轴交于点P,求点P的坐标.21.(10分)如图,在△ABC中,G是△ABC的重心,联结AG并延长交BC于点D.(1)如果,,那么=(用向量、表示);(2)已知AD=6,AC=8,点E在边AC上,且∠AGE=∠C,求AE的长.22.(10分)如图1,某小组通过实验探究凸透镜成像的规律,他们依次在光具座上垂直放置发光物箭头、凸透镜和光屏,并调整到合适的高度.如图2,主光轴l垂直于凸透镜MN,且经过凸透镜光心O,将长度为8厘米的发光物箭头AB进行移动,使物距OC为32厘米,光线AO、BO传播方向不变,移动光屏,直到光屏上呈现一个清晰的像A′B′,此时测得像距OD为12.8厘米.(1)求像A′B′的长度.(2)已知光线AP平行于主光轴l,经过凸透镜MN折射后通过焦点F,求凸透镜焦距OF的长.23.(12分)如图,在△ABC中,AB=AC,点D在边BC上,已知∠AFD=∠B,边DF交AC于点E.(1)求证:AF•CE=CD•FE;(2)联结AD,如果,求证:AD2=AE•AC.24.(12分)在平面直角坐标系中,如果两条抛物线关于直线x=m对称,那么我们把一条抛物线称为另一条抛物线关于直线x=m的镜像抛物线.(1)如图,已知抛物线y=x2﹣2x顶点为A.①求该抛物线关于y轴的镜像抛物线的表达式;②已知该抛物线关于直线x=m的镜像抛物线的顶点为B,如果tan∠OBA=(∠OBA是锐角),求m的值.(2)已知抛物线y=x2+bx+c(b>0)的顶点为C,它的一条镜像抛物线的顶点为D,这两条抛物线的交点为E(2,1).如果△CDE是直角三角形,求该抛物线的表达式.25.(14分)在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,AB=4,BC>AD,∠ADC的平分线交边BC于点E,点F在线段DE上,射线CF与梯形ABCD的边相交于点G.(1)如图1,如果点G与A重合,当时,求BE的长;(2)如图2,如果点G在边AD上,联结BG,当DG=4,且△CGB∽△BAG时,求sin ∠BCD的值;(3)当F是DE中点,且AG=1时,求CD的长.2023-2024学年上海市奉贤区九年级(上)期末数学试卷(一模)参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)下列函数中是二次函数的是()A.y=2x+1B.C.y=x2+2D.【分析】根据二次函数的定义逐项分析即可.【解答】解:A.y=2x+1是一次函数,故不符合题意;B.y=是反比例函数,故不符合题意;C.y=x2+2是二次函数,故符合题意;D.y=不是二次函数,故不符合题意;故选:C.【点评】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a ≠0)的函数叫做二次函数.2.(4分)将抛物线y=x2向右平移3个单位,那么平移后抛物线的表达式是()A.y=x2+3B.y=x2﹣3C.y=(x+3)2D.y=(x﹣3)2【分析】根据函数图象左加右减,可得答案.【解答】解:将抛物线y=x2向右平移3个单位得到的抛物线表达式是y=(x﹣3)2,故选:D.【点评】本题考查了二次函数图象与几何变换,掌握抛物线的平移原则:上加下减左加右减是解题的关键.3.(4分)在Rt△ABC中,∠C=90°,AC=5,∠A=α,那么BC的长是()A.5tanαB.5cotαC.5sinαD.5cosα【分析】根据题意,画出图形,借助三角函数即可解决问题.【解答】解:由题知,在Rt△ABC中,tanα=,又因为AC=5,所以BC=5tanα.故选:A.【点评】本题考查解直角三角形,熟知正切的定义是解题的关键.4.(4分)如图,在△ABC中,点D、E分别在AB、AC的反向延长线上,已知AB=2AD,下列条件中能判定DE∥BC的是()A.B.C.D.【分析】利用如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边进行判断.【解答】解:∵AB=2AD,∴=2,当=时,DE∥BC,∴==2,即=.故选:C.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.5.(4分)已知,,且与的方向相反,下列各式正确的是()A.B.C.D.【分析】先表示出两个向量的模的关系,再根据方向相反可得答案.【解答】解:∵,,∴,∵与的方向相反,∴.故选:B.【点评】本题考查平面向量,解题的关键是掌握相反向量的概念.6.(4分)如图,将△ABC绕点B顺时针旋转,使得点A落在边AC上,点A、C的对应点分别为D、E,边DE交BC于点F,联结CE.下列两个三角形不一定相似的是()A.△BAD与△BCE B.△BDF与△ECFC.△DCF与△BEF D.△DBF与△DEB【分析】根据旋转的性质得到AB=DB,∠ABC=∠DBE,BC=BE,∠A=∠BDD,∠ACB=∠DEB,再根据相似三角形的判定定理判断求解即可.【解答】解:如图,根据旋转的性质得,△ABC≌△DBE,∴AB=DB,∠ABC=∠DBE,BC=BE,∠A=∠BDD,∠ACB=∠DEB,∴∠ABD=∠CBE,=,∴△BAD∽△BCE,故A不符合题意;∵∠ABD=∠CBE,AB=AD,BC=BE,∴∠A=∠BDA=∠BCE=∠BEC,∴∠BDF=∠ECF,又∵∠BFD=∠EFC,∴△BDF∽△ECF,故B不符合题意;∵∠DCF=∠BEF,∠DFC=∠BFE,∴△DCF∽△BEF,故C不符合题意;根据题意,无法求解△DBF与△DEB相似,故D符合题意;故选:D.【点评】此题考查了相似三角形的判定、旋转的性质等知识,熟练掌握相似三角形的判定、旋转的性质是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)如果,那么=.【分析】先把化成﹣1,再代值计算即可.【解答】解:∵x:y=5:3,∴=﹣1=﹣1=;故答案为:.【点评】此题考查了比例的性质,熟练掌握比例的性质是解题的关键,是一道基础题.8.(4分)计算:3(2+)﹣4=2+3.【分析】利用平面向量的定义与运算性质解答即可.【解答】解:原式=3(2+)﹣4=6+3﹣4=2+3.故答案为:2+3.【点评】本题主要考查了平面向量,熟练掌握平面向量的运算性质是解题的关键.9.(4分)已知抛物线y=(a﹣2)x2﹣x开口向上,那么a的取值范围是a>2.【分析】利用二次函数y=ax2+bx+c的性质:a>0时,抛物线开口向上,列出不等式解答即可.【解答】解:∵抛物线y=(a﹣2)x2﹣x开口向上,∴a﹣2>0,∴a>2.∴a的取值范围是:a>2.故答案为:a>2.【点评】本题主要考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.10.(4分)已知抛物线y=﹣2x2+1在对称轴左侧部分是上升的.(填“上升”或“下降”)【分析】利用二次函数的图象与性质解答即可.【解答】解:抛物线y=﹣2x2+1中,∵﹣2<0,∴抛物线y=﹣2x2+1的开口方向向下,在对称轴的左侧y随x的增大而增大,∴抛物线y=﹣2x2+1在对称轴左侧部分是上升的.故答案为:上升.【点评】本题主要考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.11.(4分)如果P是线段AB的黄金分割点,AB=2cm,那么较长线段AP的长是(﹣1+)cm.【分析】根据黄金分割的定义解答.【解答】解:设AP=x cm,根据题意列方程得,x2=2(2﹣x),即x2+2x﹣4=0,解得x1=﹣1+,x2=﹣1﹣(负值舍去).故答案为:(﹣1+).【点评】本题考查了黄金分割的定义,关键是明确黄金分割所涉及的线段的比.12.(4分)某人顺着坡度为的斜坡滑雪,下滑了120米,那么高度下降了60米.【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可.【解答】解:∵坡度i=1:,∴设垂直高度下降了x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=1202.解得x=60(负值舍去),即它距离地面的垂直高度下降了60米.故答案为:60.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,解决本题的关键是掌握坡度坡角定义.13.(4分)如图,已知AD∥BE∥CF,它们依次交直线l1于点A、B、C,交直线l2于点D、E、F,已知AB:AC=3:5,DF=10,那么EF的长为4.【分析】根据平行线分线段成比例定理列出比例式,代入已知数据计算即可.【解答】解:∵AD∥BE∥CF,AB:AC=3:5,∴==,∵DF=10,∴=,∴DE=6,∴EF=10﹣6=4.故答案为:4.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.14.(4分)如图,已知△ABC的周长为15,点E、F是边BC的三等分点,DE∥AB,DF ∥AC,那么△DEF的周长是5.【分析】利用平行线的性质和相似三角形的判定与性质解答即可.【解答】解:∵点E、F是边BC的三等分点,∴EF=BC.∵DE∥AB,DF∥AC,∴∠DEF=∠B,∠DFE=∠C,∴△DEF∽△ABC,∴△DEF的周长:△ABC的周长=,∴△DEF的周长=×15=5.故答案为:5.【点评】本题主要考查了相似三角形的判定与性质,平行线的性质,熟练掌握相似三角形的判定与性质是解题的关键.15.(4分)如图,已知△ABC在边长为1个单位的方格纸中,三角形的顶点在小正方形顶点位置,那么∠ABC的正切值为.【分析】构建合适的直角三角形即可解决问题.【解答】解:连接CD,如图所示,易得△BCD是直角三角形,由勾股定理得,CD=,BD=,在Rt△BCD中,tan∠ABC=.故答案为:.【点评】本题考查解直角三角形,构造出合适的直角三角形是解题的关键.16.(4分)在△ABC中,∠A=45°,(∠B是锐角),,那么AB的长为3.【分析】根据题意,画出图形即可解决问题.【解答】解:根据题意,画出图形,如图所示,过点C作AB的垂线,垂足为D,在Rt△BCD中,cos∠B=,又因为BC=,所以BD=1.由勾股定理得,CD=.在Rt△ACD中,tan∠A=,则,解得AD=2,所以AB=AD+BD=2+1=3.故答案为:3.【点评】本题考查解直角三角形,根据题意作出图形是解题的关键.17.(4分)如图是某幢房屋及其屋外遮阳篷,已知遮阳篷的固定点A距离地面4米(即AB=4米),遮阳篷的宽度AC为2.6米,遮阳篷与房屋墙壁的夹角α的余弦值为,当太阳光与地面的夹角为60°时,遮阳篷在地面上的阴影宽度BD为(2.4﹣)米.【分析】先作CF⊥AB于点F,作CE⊥BD,交BD的延长线于点E,然后根据锐角三角函数和勾股定理,可以求得BE和DE的值,从而可以求得BD的值.【解答】解:作CF⊥AB于点F,作CE⊥BD,交BD的延长线于点E,如图,由已知可得,AC=2.6米,cosα=,∠AFC=90°,AB=4米,∴AF=AC•cosα=2.6×=1(米),∴CF===2.4(米),BF=AB﹣AF=4﹣1=3(米),∴CE=BF=3米,CF=BE=2.4米,∵∠CDE=60°,∠CED=90°,∴DE===(米),∴BD=BE﹣DE=(2.4﹣)米,故答案为:(2.4﹣).【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.(4分)如图,在梯形ABCD中,AD∥BC,BC=3AD,点E是AB中点,如果点F在DC上,线段EF把梯形分成面积相等的两个部分,那么=.【分析】连接AF,BF,过F作MN⊥BC交BC于N,交AD延长线于M,由AD∥BC,得到MN⊥AD,由点E是AB中点,得到△FAE的面积=△FBE的面积,由线段EF把梯形分成面积相等的两个部分,得到△ADF的面积=△BCF的面积,由三角形面积公式得到FM=3FN,由△FDM∽△FCN,得到==3,即可求出=.【解答】解:连接AF,BF,过F作MN⊥BC交BC于N,交AD延长线于M,∵AD∥BC,∴MN⊥AD,∵点E是AB中点,∴△FAE的面积=△FBE的面积,∵线段EF把梯形分成面积相等的两个部分,∴△ADF的面积=△BCF的面积,∴AD•FM=BC•FN,∵BC=3AD,∴FM=3FN,∵DM∥CN,∴△FDM∽△FCN,∴==3,∴=.故答案为:.【点评】本题考查梯形,相似三角形的判定和性质,三角形的面积,关键是由三角形的面积公式得到FM=3FN,证明△FDM∽△FCN,即可求解.三、解答题(本大题共7题,满分78分)19.(10分)计算:|cot30°﹣1|.【分析】把各特殊角度的三角函数值代入进行计算即可.【解答】解:原式=﹣|﹣1|=﹣+1=﹣+1=+﹣+1=﹣+.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.20.(10分)已知抛物线y=x2+bx+c经过点A(3,0),B(0,﹣3).(1)求抛物线表达式并写出顶点坐标;(2)联结AB,与该抛物线的对称轴交于点P,求点P的坐标.【分析】(1)利用待定系数法和配方法解答即可;(2)利用待定系数法求得直线AB的解析式,令x=1,求得y值,则结论可得.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(3,0),B(0,﹣3),∴,∴,∴抛物线表达式为y=x2﹣2x﹣3;∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4).(2)设直线AB的解析式为y=kx+n,∴,∴,∴直线AB的解析式为y=x﹣3.∵AB与该抛物线的对称轴交于点P,抛物线的对称轴为直线x=1,∴当x=1时,y=1﹣3=﹣2.∴P(1,﹣2).【点评】本题主要考查了二次函数的图象与性质,一次函数的图象与性质,待定系数法,配方法,熟练掌握待定系数法是解题的关键.21.(10分)如图,在△ABC中,G是△ABC的重心,联结AG并延长交BC于点D.(1)如果,,那么=(用向量、表示);(2)已知AD=6,AC=8,点E在边AC上,且∠AGE=∠C,求AE的长.【分析】(1)利用平面向量的定义解答即可;(2)利用三角形的重心的定义和相似三角形的判定与性质解答即可.【解答】解:(1)∵,,∴=﹣,∵G是△ABC的重心,联结AG并延长交BC于点D,∴AD为△ABC的BC边上的中线,即点D为BC的中点,∴.∴===.故答案为:.(2)∵G是△ABC的重心,∴AG=AD=×6=4.∵∠AGE=∠C,∠GAE=∠CAD,∴△GAE∽△CAD,∴,∴,∴AE=3.【点评】本题主要考查了平面向量,三角形的重心,相似三角形的判定与性质,熟练掌握上述法则与性质是解题的关键.22.(10分)如图1,某小组通过实验探究凸透镜成像的规律,他们依次在光具座上垂直放置发光物箭头、凸透镜和光屏,并调整到合适的高度.如图2,主光轴l垂直于凸透镜MN,且经过凸透镜光心O,将长度为8厘米的发光物箭头AB进行移动,使物距OC为32厘米,光线AO、BO传播方向不变,移动光屏,直到光屏上呈现一个清晰的像A′B′,此时测得像距OD为12.8厘米.(1)求像A′B′的长度.(2)已知光线AP平行于主光轴l,经过凸透镜MN折射后通过焦点F,求凸透镜焦距OF的长.【分析】(1)利用相似三角形的判定与性质,通过证明△OAB∽△OA′B′与△OAC∽△OA′D解答即可;(2)过点A′作A′E∥OD交MN于点E,利用平行四边形的判定与性质和相似三角形的判定与性质解答即可.【解答】解:(1)由题意得:AB∥MN∥A′B′,OC=32cm,OD=12.8cm,AB=8cm,∵AB∥A′B′,∴△OAB∽△OA′B′,∴.∵AB∥A′B′,∴△OAC∽△OA′D,∴,∴,∴,∴A′B′=3.2.答:像A′B′的长度3.2厘米.(2)过点A′作A′E∥OD交MN于点E,如图,∵A′E∥OD,MN∥A′B′,∴四边形A′EOD为平行四边形,∴A′E=OD=12.8cm,OE=A′D.同理:四边形ACOP为平行四边形,∴AP=OC=32cm,∵AP∥CD,A′E∥OD,∴AP∥A′E,∴△APO∽△A′EO,∴,∴.∵MN∥A′B′,∴△POF∽△A′DF,∴=,∴OF=OD=(厘米).答:凸透镜焦距OF的长为厘米.【点评】本题主要考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.23.(12分)如图,在△ABC中,AB=AC,点D在边BC上,已知∠AFD=∠B,边DF交AC于点E.(1)求证:AF•CE=CD•FE;(2)联结AD,如果,求证:AD2=AE•AC.【分析】(1)利用等腰三角形的性质和相似三角形的判定与性质解答即可;(2)利用相似三角形的判定与性质解答即可.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠AFD=∠B,∴∠AFD=∠ACB.∵∠AEF=∠DEC,∴△AEF∽△DEC,∴,∴AF•CE=CD•FE;(2)∵,∠AFD=∠B,∴△ABC∽△AFD,∴∠ACB=∠ADF,∵∠DAC=∠EAD,∴△ADC∽△AED,∴,∴AD2=AE•AC.【点评】本题主要考查了等腰三角形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.24.(12分)在平面直角坐标系中,如果两条抛物线关于直线x=m对称,那么我们把一条抛物线称为另一条抛物线关于直线x=m的镜像抛物线.(1)如图,已知抛物线y=x2﹣2x顶点为A.①求该抛物线关于y轴的镜像抛物线的表达式;②已知该抛物线关于直线x=m的镜像抛物线的顶点为B,如果tan∠OBA=(∠OBA是锐角),求m的值.(2)已知抛物线y=x2+bx+c(b>0)的顶点为C,它的一条镜像抛物线的顶点为D,这两条抛物线的交点为E(2,1).如果△CDE是直角三角形,求该抛物线的表达式.【分析】(1)①由镜像抛物线的定义即可求解;②当x=m在点A的左侧时,通过画图求出点B(﹣4,﹣1),即可求解;当x=m在点A的右侧时,同理可解;(2)如果△CDE是直角三角形,则△CDE为等腰直角三角形,得到点C(2﹣t,1﹣t),即可求解.【解答】解:(1)①∵y=x2﹣2x=(x﹣1)2﹣1,∴A(1,﹣1).∴该抛物线关于y轴的镜像抛物线的顶点为(﹣1,﹣1),∴该抛物线关于y轴的镜像抛物线的表达式为y=(x+1)2﹣1,即y=x2+2x;②当x=m在点A的左侧时,∵该抛物线关于直线x=m的镜像抛物线的顶点为B,该抛物线的顶点A(1,﹣1),∴点B的纵坐标为﹣1,连接AB交y轴于点E,如图,则OE=1,∵tan∠OBA=,则BE=4,则点B(﹣4,﹣1);在x=m=(﹣4+1)=﹣;当x=m在点A的右侧时,同理可得:m=;综上,m=﹣或;(2)如下图,如果△CDE是直角三角形,则△CDE为等腰直角三角形,则EH=CH=DH,设EH=CH=DH=t,则点C(2﹣t,1﹣t),则抛物线的表达式为:y=(x﹣2+t)2+1﹣t,将点E的坐标代入上式得:1=(2﹣2+t)2+1﹣t,解得:t=4或0(舍去),则抛物线的表达式为:y=(x+2)2﹣3.【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、新定义、图象的对称等,理解新定义和分类求解是解题的关键.25.(14分)在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,AB=4,BC>AD,∠ADC的平分线交边BC于点E,点F在线段DE上,射线CF与梯形ABCD的边相交于点G.(1)如图1,如果点G与A重合,当时,求BE的长;(2)如图2,如果点G在边AD上,联结BG,当DG=4,且△CGB∽△BAG时,求sin ∠BCD的值;(3)当F是DE中点,且AG=1时,求CD的长.【分析】(1)过点D作DH⊥BC于点H,利用直角梯形的性质,矩形的判定与性质求得DH,利用直角三角形的边角关系定理求得CH,利用勾股定理求得CD,利用角平分线的定义和平行线的性质得到CD=CE,则BE=BC﹣CE;(2)过点D作DM⊥BC于点M,利用(1)的结论,勾股定理和相似三角形的判定与性质求得BC,CM,再利用等腰直角三角形的判定与特殊角的三角函数值解答即可;(3)利用分类讨论的方法分两种情况讨论解答:①当点G在AD上时,利用等腰三角形的三线合一的性质,全等三角形的判定与性质解答即可;②当点G在AB上时,连接DG,GE,延长DG,CG交于点N,利用勾股定理求得BE,利用相似三角形的判定与性质求得AN,再利用全等三角形的判定与性质解答即可.【解答】解:(1)过点D作DH⊥BC于点H,如图,∵AD∥BC,∠B=90°,∴∠BAD=90°,∵DH⊥BC,∴四边形ABHD为矩形,∴DH=AB=4,BH=AD=6.∵,∴,∴CH=3,∴CD==5.∵AD∥BC,∴∠ADE=∠DEC,∵∠ADE=∠CDE,∴∠CDE=∠CED,∴CE=CD=5.∴BC=BH+CH=9,∴BE=BC﹣CE=9﹣5=4.(2)过点D作DM⊥BC于点M,如图,由(1)知:AD=BM=6,DM=AB=4,CD=CE.∵DG=4,AD=6,∴AG=2.∴BG==2.∵△CGB∽△BAG,∴∠BAG=∠CGB=90°,,∴,∴BC=10,∴CM=BC﹣BM=4,∴DM=CM=4,∴△DMC为等腰直角三角形,∴∠BCD=∠CDM=45°,∴sin∠BCD=sin45°=;(3)①当点G在AD上时,如图,由(1)知:CD=CE,∵F是DE中点,∴CF⊥DE,在△DGF和△DCF中,,∴△DGF≌△DCF(ASA),∴DG=DC.∵AG=1,AD=6,∴DG=5,∴CD=DG=5;②当点G在AB上时,连接DG,GE,延长DG,CG交于点N,如图,由(1)知:CD=CE,∵F是DE中点,∴CF⊥DE,∴CG为DE的垂直平分线,∴GD=GE.∴GD2=GE2,∴AG2+AD2=BG2+BE2,∴12+62=32+BE2,∴BE=2.∵AD∥BC,∴△ANG∽△BCG,∴,∴,在△DNF和△DCF中,,∴△DNF≌△DCF(AAS),∴CD=ND.设CD=x,则BC=CE+BE=x+2,AN=DN﹣DA=CD﹣DA=x﹣6,∴,∴x=9+,∴CD=9+综上,CD的长为5或9+.【点评】本题主要考查了直角梯形的性质,平行线的性质,矩形的判定与性质,直角三角形的性质,直角三角形的边角关系定理,勾股定理,全等三角形的判定与性质,相似三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,过梯形的上底的一点作高线是解决此类问题常添加的辅助线.。
2023-2024学年上海市闵行区九年级(上)期末数学试卷(一模)(含解析)
2023-2024学年上海市闵行区九年级(上)期末数学试卷(一模)一、选择题:本题共6小题,每小题4分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列命题中,真命题是( )A. 两个直角三角形一定相似B. 两个等腰三角形一定相似C. 两个钝角三角形一定相似D. 两个等边三角形一定相似2.在Rt △ABC 中,∠C =90°,AB =3,AC =2,那么cosA 的值是( )A. 13B. 23C. 53 D. 523.下列说法错误的是( )A. 如果a 与b 都是单位向量,那么|a |=|b |B. 如果ka =0,那么k =0或a =0C. 如果a =−3b (b 为非零向量),那么a +3b =0D. 如果a +b =2c ,a−b =3c (c 为非零向量),那么a 与b 平行4.如图,已知l 1//l 2//l 3,直线l 1,l 2,l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、E 、F ,那么下列比例式正确的是( )A. AC BC =DF EFB. AB DE =BE ADC. ABBC=DF EF D. DFEF =CFBE 5.已知二次函数的解析式为y =−x 2+2x ,下列关于函数图象的说法正确的是( )A. 对称轴是直线x =−1B. 图象经过原点C. 开口向上D. 图象有最低点6.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过(1,0),(−3,0),如果实数P表示9a−3b+c的值,实数Q表示−a−b的值,那么P、Q的大小关系为( )A. P>QB. P=QC. P<QD. 无法确定二、填空题:本题共12小题,每小题4分,共48分。
7.计算:10×2−1=______ .8.已知ab =13,那么a+bb=______ .9.计算:(a+b)−(72a−2b)=______ .10.在Rt△ABC中,∠C=90°,如果tanB=2,BC=2,那么AC=______ .11.如图,在△ABC中,点D在边AC上,点E在边BC上,DE//AB,AD:AC=2:3,那么S△DECS梯形ABED的值为______ .12.将抛物线y=x2+4x向上平移2个单位,平移后的抛物线的顶点坐标是______ .13.抛物线y=x2+bx+c的对称轴是直线x=−4,如果点A(0,y1)、B(1,y2)在此抛物线上,那么y1______ y2.(填“>”、“=”或“<”)14.小明沿斜坡坡面向上前进了5米,垂直高度上升了1米,那么这个斜坡的坡比是______ .15.已知反比例函数y=kx(k≠0),如果x1<x2<0,0<y1<y2,那么k______ 0.(填“>”或“<”) 16.“二鸟饮泉”问题中记载:“两塔高分别为30步和20步.两塔之间有喷泉,两鸟从两塔顶同时出发,以相同速度沿直线飞往喷泉中心,同时抵达.喷泉与两塔在同一平面内,求两塔之间的距离.”如图,已知AC⊥AB,BD⊥AB,M是AB上一点,CM=DM,在C处测得点M的俯角为60°,AC=30,BD=20,那么AB=______ .17.新定义:如果等腰三角形腰上的中线与腰的比值为黄金分割数(黄金数),那么称这个等腰三角形为“精准三角形”.如图,△ABC是“精准三角形”,AB=AC=2,CD⊥AB,垂足为点D,那么BD的长度为______ .18.如图,在△ABC中,AB=AC,tanC=3,点D为边BC上的点,4联结AD,将△ABD沿AD翻折,点B落在平面内点E处,边AE交边BC于点F,联结CE,如果AF=3FE,那么tan∠BCE的值为______ .三、解答题:本题共7小题,共78分。
上海市徐汇区2022-2023学年九年级上学期数学期末(中考一模)试卷(解析版)
C、 ,故该选项错误,不符合题意;
D、单位向量 与单位向量 方向相同时,该等式才成立,故该选项错误,不符合题意;
故选:A.
【点睛】本题主要考查了平面向量,注意:平面向量既有大小,又有方向.
4.已知P,Q是线段AB的两个黄金分割点,且AB=10,则PQ长为()
【详解】解:如图:过点C作 于点M,交 于点N,
中, , , ,
,
,
∴ ,
∵正方形 内接于 ,
, ,
,
, ,
解得: ,
故答案为: .
【点睛】本题考查的是相似三角形的判定和性质、正方形的性质、勾股定理等知识;正确作出辅助线、灵活运用相似三角形的判定定理和性质定理是解题的关键.
17.在 中, , , ,以 为边在 外作等边 ,设点 、 分别是 和 的重心,则两重心 与 之间的距离是______.
15.如图,△ABC为等边三角形,点D、E分别在边BC、AC上,∠ADE=60°,如果BD:DC=1:2,AD=2,那么DE的长等于________.
【答案】
【分析】根据一线三等角证明 ,列出比例式代入数值计算即可.
【详解】 △ABC为等边三角形,
,
∠ADE=60°,
,
BD:DC=1:2,AD=2,
【详解】解: ,
该二次函数的顶点坐标为 ,
又 ,
该二次函数图像的开口向上,
该二次函数图像上的最低点的纵坐标为 ,
故答案为: .
【点睛】本题考查了求二次函数的顶点坐标及二次函数的性质,熟练掌握和运用二次函数的性质是解决本题的关键.
11.如果两个相似三角形的面积之比为 ,这两个三角形的周长的和是 ,那么较小的三角形的周长为______ .
2022-2023学年上海市杨浦区九年级(上)期末数学试卷(一模)+答案解析(附后)
2022-2023学年上海市杨浦区九年级(上)期末数学试卷(一模)1. 下列各组图形一定相似的是( )A. 两个菱形 B. 两个矩形C. 两个直角梯形D. 两个正方形2. 在中,,如果,,那么的余切值为( )A. B. C.D.3. 抛物线的顶点坐标是( )A. B.C. D.4. 已知为非零向量,,,那么下列结论中错误的是( )A.B. C.与方向相同D.与方向相反5. 单板滑雪大跳台是北京冬奥会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度单位:与水平距离单位:近似满足函数关系某运动员进行了两次训练.第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如图.根据上述数据,该运动员竖直高度的最大值为( )第一次训练数据水平距离02581114竖直高度A.B. C. D. 23cm6. 如图,在中,点D 、E 分别在AB 和AC 边上且,点M 为BC 边上一点不与点B 、C 重合,联结AM交DE 于点N ,下列比例式一定成立的是( )A.B.C.D.7. 已知,则的值为______.8. 已知线段,点C在线段AB上,且,那么线段AC的长______9. 若两个相似三角形的面积比为3:4,则它们的相似比为______.10. 小杰沿坡比为1:的山坡向上走了130米.那么他沿着垂直方向升高了______米.11. 若点、是二次函数图象上的两点,那么与的大小关系是______ 填、或12. 如果将抛物线先向右平移1个单位,再向上平移2个单位,那么所得的新抛物线的顶点坐标为______.13. 如图,中,,点G是的重心,如果,那么BC的长为______ .14. 如图,在梯形ABCD中,,AC平分,,若,,则______ .15. 如图,已知,,,,那么______.16.如图,在中,,,,,则的值______ .17.如图,已知,点P在边OA上,,点M、N在边OB上,,如果,那么______ .18. 如图,已知在中,,,点D将沿直线AD翻折,使点C落在点处,联结,在边BC上,直线与边CB的延长线相交于点如果,那么______ .19. 计算:20. 如图,在梯形ABCD中,,,对角线AC、BD相交于点O,设,,试用、的式子表示向量21. 如图,已知是等边三角形,,点D在AC上,,CM是的外角平分线,连接BD并延长与CM交于点求CE的长;求的正切值.22. 如图,高压电线杆AB垂直地面,测得电线杆AB的底部A到斜坡C的水平距离AC 长为米,落在斜坡上的电线杆的影长CD为米,在D点处测得电线杆顶B的仰角为已知斜坡CD的坡比:,求该电线杆AB的高.参考数据:23. 如图,中,,D是斜边AB上的中点,E是边BC上的点,AE 与CD交于点F,且求证:;连接BF,如果点E是BC中点,求证:24. 如图,在平面直角坐标系xOy中,抛物线过点、三点,且与y轴交于点求该抛物线的表达式,并写出该抛物线的对称轴;分别联结AD、DC,CB,直线与线段DC交于点E,当此直线将四边形ABCD 的面积平分时,求m的值;设点F为该抛物线对称轴上的一点,当以点A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.25. 如图,在中,,,点E为射线CD上一动点不与点C重合,联结AE,交边BC于点F,的角平分线交BC于点当时,求:的值;设,,当时,求y与x之间的函数关系式;当时,联结EG,若为直角三角形,求BG的长.答案和解析1.【答案】D【解析】解:任意两个菱形,边的比相等、对应角不一定相等,不一定相似,本选项不合题意;B.任意两个矩形,对应角对应相等、边的比不一定相等,不一定相似,本选项不合题意;C.任意两个直角梯形,形状不一定相同,不一定相似,本选项不合题意;D.任意两个正方形的对应角对应相等、边的比相等,一定相似,本选项符合题意;故选:形状相同的图形称为相似图形.结合图形,对选项一一分析,排除错误答案即可.本题考查的是相似形的定义,相似图形的形状必须完全相同;相似图形的大小不一定相同.2.【答案】A【解析】解:如图,在中,,,,,故选:根据余切函数的定义解答即可.本题考查解直角三角形,解题的关键是熟练掌握基本知识,属于中考常考题型.3.【答案】C【解析】解:,顶点为,故选:由函数解析式直接可得顶点坐标.本题考查二次函数的性质;熟练掌握二次函数由解析式求顶点坐标的方法是解题的关键.4.【答案】C【解析】【分析】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.根据平面向量的性质一一判断即可.【解答】解:,,,,,与方向相反,,B,D正确,C错误.5.【答案】A【解析】解:根据表格中的数据可知,抛物线的顶点坐标为:,,即该运动员竖直高度的最大值为,故选:根据表格中数据求出顶点坐标即可.本题考查二次函数的应用,关键是根据表格中数据求出顶点坐标.6.【答案】B【解析】解:,∽,∽,,,,即,故选:根据相似三角形的判定和性质分析即可.此题考查了相似三角形的判定和性质,牢记定理是解决此题的关键.7.【答案】【解析】解:,,故答案为:用a表示出b,然后代入比例式进行计算即可得解.本题考查了比例的性质,用a表示出b是解题的关键.8.【答案】【解析】解:,点C是线段AB的黄金分割点,,,故答案为:根据黄金分割的定义得到点C是线段AB的黄金分割点,根据黄金比值计算得到答案.本题考查的是黄金分割的概念和性质,掌握黄金比值为是解题的关键.9.【答案】:2【解析】【分析】根据相似三角形面积的比等于相似比的平方计算.本题考查的是相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.【解答】解:两个相似三角形的面积比为3:4,它们的相似比为:2,故答案为::10.【答案】50【解析】解:设他沿着垂直方向升高了x米,坡比为1:,他行走的水平宽度为米,由勾股定理得,,解得,,即他沿着垂直方向升高了50米,故答案为:设他沿着垂直方向升高了x米,根据坡度的概念用x表示出他行走的水平宽度,根据勾股定理计算即可.本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.11.【答案】【解析】解:点、是二次函数图象上的两点,;,故答案为分别计算出自变量为和0所对应的函数值,然后比较函数值的大小即可.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.12.【答案】【解析】解:,抛物线的顶点坐标为,把点先向右平移1个单位,再向上平移2个单位得到点的坐标为,即新抛物线的顶点坐标为故答案为:先求出抛物线的顶点坐标,再根据平移的规律得出平移后抛物线顶点坐标即可.本题考查了二次函数图象与几何变换,利用平移规律:左加右减,上加下减是解题关键.13.【答案】12【解析】解:如图,延长AG交BC于点点G是的重心,,点D为BC的中点,且,,,中,,AD是斜边的中线,故答案为延长AG交BC于点D,根据重心的性质可知点D为BC的中点,且,则,再根据直角三角形斜边的中线等于斜边的一半即可求解.本题考查了三角形重心的定义及性质,三角形的重心是三角形三边中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:同时考查了直角三角形的性质.14.【答案】【解析】解:,,,∽,,,解得:故答案为:根据平行线的性质得出,根据相似三角形的判定得出∽,得出比例式,代入求出即可.本题考查了相似三角形的性质和判定,平行线的性质的应用,能求出∽是解此题的关键.15.【答案】【解析】解:延长BA与CD,相交于点G,,∽,∽,,,,,,解得:,,,解得:故答案为:首先延长BA与CD,相交于点G,由,可得∽,∽,又由,,根据相似三角形的对应边成比例,即可求得BC的长.此题考查了相似三角形的判定与性质以及平行线分线段成比例定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.【答案】3【解析】解:,,,,解得,,,故答案为:先在中利用三角函数求出AB,再根据勾股定理求出BD,进而可得出DC的值,即可求出的值.本题主要考查了解直角三角形,解题的关键是利用勾股定理求出BD的值.17.【答案】【解析】【分析】过P作于点D,在直角中,利用锐角三角函数定义及勾股定理求出PD的长,再由,利用三线合一得到D为MN中点,根据MN求出MD的长,然后由勾股定理可求PM的值.本题考查了直角三角形的性质,锐角三角函数,等腰三角形的性质及勾股定理,熟练应用锐角三角函数的定义及勾股定理是解本题的关键.【解答】解:过P作于点D,在中,,设,则,,由勾股定理得:,,,,,,在中,由勾股定理得:,故答案为:18.【答案】【解析】解:在中,,,,是将沿直线AD翻折得到的,,,,,,,,故答案为:在中,,,得到,由是将沿直线AD翻折得到的,求出,于是得到,求得,根据直角三角形的性质即可得到结果.本题考查了翻折变换-折叠问题,等腰直角三角形的性质,锐角三角函数,正确的作出图形是解题的关键.19.【答案】解:原式【解析】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.直接将特殊角的三角函数值代入求出答案20.【答案】解:,,,即,,与同向,【解析】根据平面向量定理即可表示.本题考查了梯形、平面向量定理,解决本题的关键是掌握三角形法则.21.【答案】解:在BC延长线上取一点F,是等边三角形,,,,是的外角平分线,,,,,又,,,过点E作于点,,,,,又,,,【解析】首先证明,则∽,根据相似三角形的对应边的比相等即可求解;过点E作于点H,在直角中,利用三角函数求得CH和EH的长度,即可求得BH的大小,即可求得三角函数值.本题考查了相似三角形的判定与性质,以及三角函数值的求法,求三角函数值的问题常用的方法是转化为求直角三角形的边的问题.22.【答案】解:过点D作DE垂直AC的延长线于点E,DF垂直AB于点F,则四边形AEDF为矩形,,,斜坡CD的坡比:,米,设,,米,解得:,则,,米,在中,,米,,,米,米答:该电线杆AB的高为17米.【解析】过点D作DE垂直AC的延长线于点E,DF垂直AB于点F,根据斜坡CD的坡比:,米,求出CE、DE的长度,然后求出AE和DF的长度,在中,求出BF的长度,即可求出AB的长度.本题考查了解直角三角形的应用,解答本题的关键是根据坡度和仰角构造直角三角形,利用三角函数的知识求解,难度一般.23.【答案】证明:,又∽,点D是AB的中点,,,,;,,又,∽点E是BC的中点,,,,∽【解析】先根据题意得出∽,再由直角三角形的性质得出,由可得出,进而可得出;根据可得出,,故可得出∽,再由点E是BC的中点可知,故,根据得出∽,进而可得出结论.本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.24.【答案】解:抛物线过点,,三点,解得:,所求抛物线的表达式为,其对称轴是直线,由题意,得:,,,,直线与线段DC交于点E,且将四边形ABCD的面积平分,直线与边AB相交,设交点为点G,点E的纵坐标是3,点G的纵坐标是0,可求得,,由题意,得:,,解得:当时,点F在线段CD上,,当时,直线BC的解析式为;,直线AF的解析式为,当时,,,当时,直线AC的解析式为;,直线BF的解析式为;,当时,,;综上所述;点F的坐标:,,【解析】抛物线过点、三点,列方程组可求得.由梯形的面积公式列方程即可求得m的值.由以A、B、C、F为顶点的四边形是梯形,分类讨论当时,点F在线段CD上,求得,当时,直线BC的解析式为;,直线AF的解析式为,求得,当时,直线AC的解析式为;,直线BF的解析式为;,求得此题考查了抛物线解析式的确定、梯形的判定、梯形的面积的求法重要知识点,小题中,都用到了分类讨论的数学思想,难点在于考虑问题要全面,做到不重不漏.25.【答案】解:过点C作于H,,,,,,,;延长AG交射线CD于点K,,,平分,,,,,,,,,,,,;由勾股定理得得,①当时,则,,,,②当时,则∽,,,∽,,又,,,,过点G作于N,,,综上所述,BG的长为6或【解析】过点C作于H,根据等高的两个三角形面积之比等于底的比,求出EF:AF 即可;延长AG交射线CD于点K,根据相似三角形对应边成比例求出y与x之间的函数关系式;本题考查相似三角形的综合应用,角平分线的性质,以及勾股定理.。
2023-2024学年上海市黄浦区九年级(上)期末数学试卷(一模)及答案解析
2023-2024学年上海市黄浦区九年级(上)期末数学试卷(一模)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.(4分)下列命题中,真命题是()A.如果一个直角三角形的一个锐角等于另一个直角三角形的锐角,那么这两个三角形相似B.如果一个等腰三角形的一个内角等于另一个等腰三角形的内角,那么这两个三角形相似C.如果一个直角梯形的一个锐角等于另一个直角梯形的锐角,那么这两个梯形相似D.如果一个等腰梯形的一个内角等于另一个等腰梯形的内角,那么这两个梯形相似2.(4分)已知:△A1B1C1~△A2B2C2~△A3B3C3,如果△A1B1C1与△A2B2C2的相似比为2,△A2B2C2与△A3B3C3相似比为4,那么△A1B1C1与△A3B3C3的相似比为()A.2B.4C.6D.83.(4分)如图,△ABC三边上点D、E、F,满足DE∥BC,EF∥AB,那么下列等式中,成立的是()A.B.C.D.4.(4分)已知G是△ABC的重心,记,,那么下列等式中,成立的是()A.B.C.D.5.(4分)将二次函数y=x2+2x+3和y=﹣x2+2x﹣3的图象画在同一平面直角坐标系中,那么这两个图象都是上升的部分,所对应自变量x的取值范围是()A.x≥1B.x≤﹣1C.﹣1≤x≤1D.x≥1或x≤﹣16.(4分)如图,过矩形ABCD的顶点分别作对角线的垂线,垂足分别为E、F、G、H,依次联结四个垂足,可得到矩形EFGH.设对角线AC与BD的夹角为α(0<α<90°),那么矩形EFGH与矩形ABCD面积的比值为()A.sin2αB.cos2αC.tan2αD.cot2α二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知,那么=.8.(4分)已知向量与是互不平行的非零向量,如果=2+3,,那么向量与是否平行?答:.9.(4分)已知抛物线y=ax2+bx+c顶点位于第三象限内,且其开口向上,请写出一个满足上述特征的抛物线的表达式.10.(4分)已知抛物线y=ax2+bx+c开口向上,且经过点(3,4)和(﹣2,4),如果点(1,y1)与(2,y2)在此抛物线上,那么y1y2.(填“>”、“<”或“=”)11.(4分)已知点A(1,4)、B(﹣2,0),那么直线AB与x轴夹角的正弦值是.12.(4分)如图,在△ABC中,∠ACB=90°,AC=3,BC=6,CO是边AB上的中线,G 为△ABC的重心,过点G作GN∥BC交AB于点N,那么△OGN的面积是.13.(4分)已知等腰三角形的腰与底边之比为3:2,那么这个等腰三角形底角的余弦值为.14.(4分)如图,N是线段AB上一点,AC⊥AB,BD⊥AB,NM⊥AB,联结CM并延长交AB于点P,联结DM并延长交AB于点Q.已知AB=4,AC=3,BD=2,MN=1,PN =1.2,那么QN=.15.(4分)在一块等腰直角三角形铁皮上截一块矩形铁皮.如图,已有的铁皮是等腰直角三角形ABC,它的底边AB长20厘米.要截得的矩形DEMN的边MN在AB上,顶点D、E分别在边AC、BC上,设DE的长为x厘米,矩形DEMN的面积为y平方厘米,那么y 关于x的函数解析式是.(不必写定义域)16.(4分)如图,点D、E分别位于△ABC边BC、AB上,AD与CE交于点F.已知AF:FD=1:1,EF:FC=1:4,则BD:CD=.17.(4分)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点B旋转到△DBE的位置,其中点D与点A对应,点E与点C对应.如果图中阴影部分的面积为4.5,那么∠CBE的正切值是.18.(4分)为了研究抛物线L1:y=ax2+bx+c与在同一平面直角坐标系中的位置特征,我们可以先取字母常数a、b、c的一些特殊值,试着画出相应的抛物线,通过观察来发现L1与L2的位置特征,你的发现是:;我们知道由观察得到的特征,其可靠性是需要加以论证才能成为一个结论的,那么请你就你所发现的特征,简述一下理由吧.理由是:.三、解答题:(本大题共7题,满分78分)19.(10分)计算:.20.(10分)已知抛物线y=x2+2x+3的顶点为A,它与y轴的交点为B.(1)求线段AB的长;(2)平移该抛物线,使其顶点在y轴上,且与x轴两交点间的距离为4,求平移后所得抛物线的表达式.21.(10分)如图,在四边形ABCD中,AD∥BC,AD=1,BC=3,对角线AC、BD交于点E.(1)设,,试用、的线性组合表示向量.(2)如果∠ABC=90°,AC⊥BD,求四边形ABCD的面积.22.(10分)在世纪公园的小山坡上有一棵松树,初三(3)班的雏鹰小队带着工具对这棵松树进行测量,并试图利用所学的数学知识与方法推算出这棵松树的高度.他们选好位置架设测角仪先测出了这棵松树的根部与顶端的仰角,并绘制了如下示意图:测角仪为MN,树根部为B、树顶端为A,其中MN=1.5m,视线MB的仰角为α(已知tanα=),视线MA的仰角为β(已知tanβ=).(1)测得这两个数据后,小明说:“我可以算出这棵松树的高度了.”小聪接着说:“不对吧,只知道这两个角度,这个示意图显然是可以进行放大或缩小的,高度一定是确定不了的.如果还能测出测角仪到松树的垂直距离,即图示中NH的长度,就可以了.”设NH=a,请你用含有a的代数式表示松树(AB)的高度.(2)小明又反问道:“虽然我们带了尺,是一把刻度精确到1分米,长为2米的直尺,但也没有办法量出NH的长度,我们总不能把坡给挖平了吧?”请你想一个测量办法,利用现有的工具,测量出有关数据(数据可以用字母常数表示),并用含有这些字母常数的表达式表示出松树(AB)的高度.23.(12分)如图,在平行四边形ABCD中,AC⊥AD,过点A作AE⊥BD,垂足为E,再过点C作CF⊥CD交直线AE于点F.(1)求证:CA•CD=CB•CF;(2)联结CE,求证:∠ACE=∠F.24.(12分)如图,直线y=﹣x+3与x轴、y轴分别交于点A、B.对称轴为直线x=1的抛物线y=ax2+bx+c经过点A、B,其与x轴的另一交点为C.(1)求该抛物线的表达式;(2)将该抛物线平移,使其顶点在线段AB上点P处,得到新抛物线L,其与直线y=﹣x+3的另一个交点为Q.①如果抛物线L经过点A,且与x轴的另一交点为D,求线段CD的长;②试问:△CPQ的面积是否随点P在线段AB上的位置变化而变化?如果变化,请说明理由;如果不变,请求出△CPQ面积.25.(14分)如图,O是Rt△ABC斜边AB的中点,BH⊥CO交AC于D,垂足为H,连接OD.(1)求证:BC2=AC•CD;(2)如果△ODH与△ABC相似,求其相似比;(3)如果BH:DH=4:1,求∠ADO的大小.2023-2024学年上海市黄浦区九年级(上)期末数学试卷(一模)参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.(4分)下列命题中,真命题是()A.如果一个直角三角形的一个锐角等于另一个直角三角形的锐角,那么这两个三角形相似B.如果一个等腰三角形的一个内角等于另一个等腰三角形的内角,那么这两个三角形相似C.如果一个直角梯形的一个锐角等于另一个直角梯形的锐角,那么这两个梯形相似D.如果一个等腰梯形的一个内角等于另一个等腰梯形的内角,那么这两个梯形相似【分析】根据相似三角形和相似多边形的判定方法分别判断后即可确定正确的选项.【解答】解:A、如果一个直角三角形的一个锐角等于另一个直角三角形的锐角,由于两个直角三角形的两个直角相等,那么这两个三角形相似,正确,是真命题,符合题意;B、如果一个等腰三角形的一个底角等于另一个等腰三角形的顶角,那么这两个三角形不一定相似,故原命题错误,是假命题,不符合题意;C、如果一个直角梯形的一个锐角等于另一个直角梯形的直角梯形的四个角分别相等,但四条边不一定成比例,则这两个那么这两个梯形不一定相似,故原命题错误,是假命题,不符合题意;D、如果一个等腰梯形的一个内角等于另一个等腰梯形的内角,但其它三个角不一定对应相等,则这两个那么这两个梯形不一定相似,故原命题错误,是假命题,不符合题意.故选:A.【点评】考查了命题与定理的知识,解题的关键是掌握相似三角形和相似多边形的判定方法.2.(4分)已知:△A1B1C1~△A2B2C2~△A3B3C3,如果△A1B1C1与△A2B2C2的相似比为2,△A2B2C2与△A3B3C3相似比为4,那么△A1B1C1与△A3B3C3的相似比为()A.2B.4C.6D.8【分析】根据相似三角形的相似比写出对应边的比,计算出A1B1与A3B3的比值,也就是两三角形的相似比.【解答】解:∵△A1B1C1~△A2B2C2~△A3B3C3,如果△A1B1C1与△A2B2C2的相似比为2,△A2B2C2与△A3B3C3相似比为4∴A1B1:A2B2=2:1,A2B2:A3B3=4:1,设A3B3=x,则A2B2=4xA1B1=8x,∴A1B1:A3B3=8:1,∴△A1B1C1与△A3B3C3的相似比为8.故选:D.【点评】根据相似三角形的相似比写出对应边的比,计算出A1B1与A3B3的比值,也就是两三角形的相似比.3.(4分)如图,△ABC三边上点D、E、F,满足DE∥BC,EF∥AB,那么下列等式中,成立的是()A.B.C.D.【分析】由题意可证四边形BDEF是平行四边形,可得BD=EF,DE=BF,由相似三角形的性质和平行线分线段成比例依次判断可求解.【解答】解:∵DE∥BC、EF∥AB,∴∠ADE=∠B=∠EFC,∠AED=∠C,∴△ADE∽△EFC,∴,故A错误;,∵DE∥BC、EF∥AB,∴四边形BDEF是平行四边形,∴BD=EF,DE=BF,∴,故B正确;∴,故C错误;,故C错误,故选:B.【点评】本题考查了相似三角形的判定和性质,灵活运用相似三角形的性质是本题的关键.4.(4分)已知G是△ABC的重心,记,,那么下列等式中,成立的是()A.B.C.D.【分析】连接AG并延长交BC于点D,利用平面向量的公式和三角形的重心的性质解答即可.【解答】解:连接AG并延长交BC于点D,如图,∵G是△ABC的重心,∴AG=2GD,∴=3,∵,,∴,∵,,∴,∴=3.故选:C.【点评】本题主要考查了平面向量,三角形的重心,熟练掌握平面向量的公式是解题的关键.5.(4分)将二次函数y=x2+2x+3和y=﹣x2+2x﹣3的图象画在同一平面直角坐标系中,那么这两个图象都是上升的部分,所对应自变量x的取值范围是()A.x≥1B.x≤﹣1C.﹣1≤x≤1D.x≥1或x≤﹣1【分析】根据题意画出函数的图象,然后根据函数的图象即可得到结论.【解答】解:列表:…﹣2﹣10123……3236718……﹣11﹣6﹣3﹣2﹣36…描点、连线,可得到这两个函数的图象,如图:由图象知,这两个图象都是上升的部分,所对应自变量x的取值范围是﹣1≤x≤1,故选:C.【点评】本题主要考查二次函数的图象与性质,解题时要熟练掌握并理解函数的图象的意义是关键.6.(4分)如图,过矩形ABCD的顶点分别作对角线的垂线,垂足分别为E、F、G、H,依次联结四个垂足,可得到矩形EFGH.设对角线AC与BD的夹角为α(0<α<90°),那么矩形EFGH与矩形ABCD面积的比值为()A.sin2αB.cos2αC.tan2αD.cot2α【分析】利用矩形的性质得到矩形EFGH与矩形ABCD面积的比值=,再利用相似三角形的判定与性质和直角三角形的边角关系定理解答即可得出结论.【解答】解:设矩形ABCD的对角线交于点O,如图,∵四边形ABCD和四边形EFGH为矩形,∴OA=OB=OC=OD,OE=OF=OG=OH,=4S△OAB,S矩形EFGH=4S△OEF,∴S矩形ABCD∴矩形EFGH与矩形ABCD面积的比值=,∵EF∥AB,∴△OEF∽△OAB,∴.∵BF⊥OA,OE=OF,∴cosα=,∴矩形EFGH与矩形ABCD面积的比值=cos2α.故选:B.【点评】本题主要考查了矩形的性质,相似三角形的判定与性质,直角三角形的边角关系定理,熟练掌握相似三角形的判定与性质和矩形的性质是解题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知,那么=.【分析】根据题意将a,b用含有一个未知数的式子表示出来,化简即可.【解答】解:设a=2x,则b=5x,∴.故答案为:.【点评】本题主要考查分式的化简,掌握分式的化简方法是关键.8.(4分)已知向量与是互不平行的非零向量,如果=2+3,,那么向量与是否平行?答:不平行.【分析】根据向量平行的条件判断即可.【解答】解:假设向量与平行,则(λ≠0),∴==,∴,无解,∴向量与不平行.故答案为:不平行.【点评】本题考查平面向量,熟练掌握向量平行的条件是解答本题的关键.9.(4分)已知抛物线y=ax2+bx+c顶点位于第三象限内,且其开口向上,请写出一个满足上述特征的抛物线的表达式y=2(x+1)2﹣2(答案不唯一).【分析】由开口向下可知二次项系数大于0,由顶点位于第三象限内可设其为顶点式,可求得答案.【解答】解:∵二次函数的图象开口向上,且其图象顶点位于第三象限内,∴满足上述条件的二次函数解析式为y=2(x+1)2﹣2等.故答案为:y=2(x+1)2﹣2(答案不唯一).【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).10.(4分)已知抛物线y=ax2+bx+c开口向上,且经过点(3,4)和(﹣2,4),如果点(1,y1)与(2,y2)在此抛物线上,那么y1<y2.(填“>”、“<”或“=”)【分析】利用抛物线的对称性求得对称轴,然后利用二次函数的性质即可判断.【解答】解:∵抛物线y=ax2+bx+c图象经过点(3,4)和(﹣2,4),∴抛物线的对称轴为直线x==,∵抛物线y=ax2+bx+c开口向上,点(1,y1)与(2,y2)在此抛物线上,∴y1<y2.故答案为:<.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.11.(4分)已知点A(1,4)、B(﹣2,0),那么直线AB与x轴夹角的正弦值是.【分析】在直角坐标系中,过A作AC⊥x轴,构造直角三角形,可得直线AB与x轴夹角的正弦值.【解答】解:,过A作AC⊥x轴,交x轴于点C,则C(1,0),在Rt△ABC中,AB==5,直线AB与x轴夹角的正弦值=sin∠ABC==,故答案为:.【点评】本题考查了正弦,关键是掌握正弦的定义.12.(4分)如图,在△ABC中,∠ACB=90°,AC=3,BC=6,CO是边AB上的中线,G 为△ABC的重心,过点G作GN∥BC交AB于点N,那么△OGN的面积是0.5.【分析】先证△ABC∽△OBE,由CO是边AB上的中线,可得OE的长,再证△ONG∽△OBC,根据G为△ABC的重心,可得△ONG与△OBC的面积比,可得△OGN的面积.【解答】解:过O作OE⊥BC,交BC于E,∴∠ACB=∠OEB=90°,∵∠ABC=∠OBE,∴△ABC∽△OBE,∴==,∵CO是边AB上的中线,∴=,∵AC=3,BC=6,∴OE=1.5,BE=3,=4.5,∵GN∥BC,∴∠ONG=∠OBC,∠OGN=∠OCB,∴△ONG∽△OBC,∴()2=,∵G为△ABC的重心,∴=,∴=,=0.5,∴S△ONG故答案为:0.5.【点评】本题考查了三角形的中线、重心,关键是掌握三角形中线、重心的性质.13.(4分)已知等腰三角形的腰与底边之比为3:2,那么这个等腰三角形底角的余弦值为.【分析】从顶点向底边作高,构造直角三角形,可得底角的余弦值.【解答】解:设等腰三角形的腰为3a,底边为2a,如图,即AB=AC=3a,BC=2a,过A作AD⊥BC,交BC于点D,∴∠ADB=∠ADC=90°,∵AD=AD,AB=AC,∴△ABD≌△ACD(HL),∴BD=CD=a,∠B=∠C,在Rt△ABD中,cos∠B=cos∠C==,故答案为:.【点评】本题考查了等腰三角形、余弦,关键是掌握余弦的定义.14.(4分)如图,N是线段AB上一点,AC⊥AB,BD⊥AB,NM⊥AB,联结CM并延长交AB于点P,联结DM并延长交AB于点Q.已知AB=4,AC=3,BD=2,MN=1,PN =1.2,那么QN= 1.6.【分析】先证△MNP∽△CAP,求得PN、NB,再证△MNQ∽△DBQ,可得QN.【解答】解:∵AC⊥AB,NM⊥AB,∴∠CAP=∠MNP=90°,∵∠MPN=∠CPA,∴△MNP∽△CAP,∴=,∵AC=3,MN=1,PN=1.2,∴PA=3.6,PB=AB﹣PA=0.4,NB=NP+PB=1.6,设QN=x,则QB=x+1.6,∵BD⊥AB,NM⊥AB,∴∠MNQ=∠DBQ=90°,∵∠DQB=∠MQN,∴△MNQ∽△DBQ,∴=,∵BD=2,MN=1,∴,解得:x=1.6,即QN=1.6,故答案为:1.6.【点评】本题考查了相似三角形,关键是掌握相似三角形的性质.15.(4分)在一块等腰直角三角形铁皮上截一块矩形铁皮.如图,已有的铁皮是等腰直角三角形ABC,它的底边AB长20厘米.要截得的矩形DEMN的边MN在AB上,顶点D、E分别在边AC、BC上,设DE的长为x厘米,矩形DEMN的面积为y平方厘米,那么y 关于x的函数解析式是y=﹣x2+10x.(不必写定义域)【分析】根据图中的几何关系先把EM表示出来,再利用矩形面积公式得到y与x的表达式.【解答】解:∵△ABC是等腰直角三角形,四边形是DEMN矩形,∴△BME、△AND是等腰直角三角形,∴MN=DE=x厘米,BM=EM=DN=AN=(20﹣x),∴y=x•(20﹣x)=﹣x2+10x.故答案为:y=﹣x2+10x.【点评】本题考查等腰直角三角形、矩形的性质和函数表达式,解题关键是熟知等腰直角三角形和矩形的性质.16.(4分)如图,点D、E分别位于△ABC边BC、AB上,AD与CE交于点F.已知AF:FD=1:1,EF:FC=1:4,则BD:CD=.【分析】过点D作DH∥EF,交AB于点H,利用相似三角形的判定与性质,设EF=k,则DH=2k,由已知条件求得FC=4k,EC=5k,再利用相似三角形的判定与性质和比例的性质解答即可得出结论.【解答】解:过点D作DH∥EF,交AB于点H,如图,∴AF:FD=1:1,∴AF:AD=1:2.∵DH∥EF,∴△AEF∽△AHD,∴,设EF=k,则DH=2k.∵EF:FC=1:4,∴FC=4k.∴EC=EF+FC=5k.∵DH∥EF,∴△BDH∽△BCE,∴,∴.故答案为:.【点评】本题主要考查了相似三角形的判定与性质,比例的性质,过点D作DH∥EF构造相似三角形是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点B旋转到△DBE的位置,其中点D与点A对应,点E与点C对应.如果图中阴影部分的面积为4.5,那么∠CBE的正切值是.【分析】设AB 与CD 的交点为M ,作MN ⊥BD 于N ,根据旋转的性质BD =AB ,∠CBE =∠MBN ,利用勾股定理求得AB ,由图中阴影部分的面积为4.5求得MN ,然后通过证得△BED ∽△MND ,求得DN ,进一步求得BN ,从而求得tan ∠MBN =,得到tan ∠CBE =.【解答】解:设AB 与CD 的交点为M ,作MN ⊥BD 于N ,在△ABC 中,∠ACB =90°,AC =4,BC =3,∴AB ==5,S △ABC ==6,∵图中阴影部分的面积为4.5,∴S △BMD =4.5,∵BD =AB =5,∴S △BMD ==4.5,即,∴MN =,∵∠BED =∠MND =90°,∠BDE =∠MDN ,∴△BED ∽△MND ,∴,即,∴DN =,∴BN =5﹣=,∴tan ∠MBN ===,∵∠ABC =∠DBE ,∴∠ABC ﹣∠ABE =∠DBE ﹣∠ABE ,即∠CBE =∠MBN ,∴tan ∠CBE =.故答案为:.【点评】本题考查了旋转的性质,勾股定理的应用,三角形相似的判定和旋转,解直角三角形等,熟知旋转的性质是解题的关键.18.(4分)为了研究抛物线L1:y=ax2+bx+c与在同一平面直角坐标系中的位置特征,我们可以先取字母常数a、b、c的一些特殊值,试着画出相应的抛物线,通过观察来发现L1与L2的位置特征,你的发现是:关于原点对称;我们知道由观察得到的特征,其可靠性是需要加以论证才能成为一个结论的,那么请你就你所发现的特征,简述一下理由吧.理由是:设任意一点坐标为(x,y),其关于原点的对称点(﹣x,﹣y)在抛物线L1:y=ax2+bx+c上,∴﹣y=ax2﹣bx+c.∴y=﹣ax2+bx﹣c.∴点(x,y)在抛物线L2:y=﹣ax2+bx﹣c上.∵点(x,y)的任意性,∴L1与L2的位置特征是关于原点对称.【分析】依据题意,令a=1,b=2,c=1,从而L1:y=x2+2x+1,L2:y=﹣x2+2x﹣1画出图象即可判断得解;设任意一点坐标为(x,y),其关于原点的对称点(﹣x,﹣y)在抛物线L1:y=ax2+bx+c上,代入可得y=﹣ax2+bx﹣c,结合点(x,y)的任意性进行计算可以得解.【解答】解:由题意,令a=1,b=2,c=1,∴L1:y=x2+2x+1,L2:y=﹣x2+2x﹣1.作图如下.通过观察可以发现L1与L2的位置特征是关于原点对称.设任意一点坐标为(x,y),其关于原点的对称点(﹣x,﹣y)在抛物线L1:y=ax2+bx+c 上,∴﹣y=ax2﹣bx+c.∴y=﹣ax2+bx﹣c.∴点(x,y)在抛物线L2:y=﹣ax2+bx﹣c上.∵点(x,y)的任意性,∴L1与L2的位置特征是关于原点对称.故答案为:关于原点对称;答案见解析.【点评】本题主要考查了二次函数的图象与性质,解题时要熟练掌握并能灵活运用是关键.三、解答题:(本大题共7题,满分78分)19.(10分)计算:.【分析】原式利用特殊角的三角函数值计算即可求出值.【解答】解:原式=2×+﹣()2=﹣﹣1﹣=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)已知抛物线y=x2+2x+3的顶点为A,它与y轴的交点为B.(1)求线段AB的长;(2)平移该抛物线,使其顶点在y轴上,且与x轴两交点间的距离为4,求平移后所得抛物线的表达式.【分析】(1)根据抛物线的解析式求得A点的坐标为(1,2),B点的坐标为(0,3),根据勾股定理即可得到结论;(2)设平移后的抛物线为y=x2+k,待定系数法即可得到结论.【解答】解:(1)∵y=x2+2x+3=(x+1)2+2,当x=0时,y=x2+2x+3=3,∴A点的坐标为(1,2),B点的坐标为(0,3),∴AB==;(2)设平移后的抛物线为y=x2+k.∵抛物线的对称轴是直线x=0,平移后与x轴的两个交点之间的距离是4,∴平移后的抛物线与x轴的交点交点为(﹣2,0),(2,0),∴22+k=0,即k=﹣4,∴平移后抛物线的解析式为:y=x2﹣4.【点评】本题考查了抛物线与x轴的交点,勾股定理,二次函数的性质,熟练掌握二次函数的性质是解题的关键.21.(10分)如图,在四边形ABCD中,AD∥BC,AD=1,BC=3,对角线AC、BD交于点E.(1)设,,试用、的线性组合表示向量.(2)如果∠ABC=90°,AC⊥BD,求四边形ABCD的面积.【分析】(1)根据已知条件得到AD=BC,推出与同向,求得=,于是得到=﹣=﹣;(2)根据相似三角形的性质得到=,设DE=x,BE=3x,求得BD=4x,根据相似三角形的性质得到BD=2,根据勾股定理得到AB==,根据梯形的面积公式即可得到结论.【解答】解:(1)∵AD=1,BC=3,∴AD=BC,∵AD∥BC,∴与同向,∵,∴=,∴=﹣=﹣;(2)∵AD∥BC,∴△ADE∽△CBE,∴=,∴设DE=x,BE=3x,∴BD=4x,∵∠ABC=90°,∴∠DAB=90°,∵AC⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠ADE+∠ABD=90°,∴∠DAE=∠ABD,∴△ADE∽△BDA,∴,∴,∴x=(负值舍去),∴DE=,BD=2,∴AB==,∴四边形ABCD的面积=(AD+BC)•AB=(1+3)×=2.【点评】本题考查了相似三角形的判定和性质,平面向量,梯形的面积,勾股定理,熟练掌握相似三角形的判定和性质定理是解题的关键.22.(10分)在世纪公园的小山坡上有一棵松树,初三(3)班的雏鹰小队带着工具对这棵松树进行测量,并试图利用所学的数学知识与方法推算出这棵松树的高度.他们选好位置架设测角仪先测出了这棵松树的根部与顶端的仰角,并绘制了如下示意图:测角仪为MN,树根部为B、树顶端为A,其中MN=1.5m,视线MB的仰角为α(已知tanα=),视线MA的仰角为β(已知tanβ=).(1)测得这两个数据后,小明说:“我可以算出这棵松树的高度了.”小聪接着说:“不对吧,只知道这两个角度,这个示意图显然是可以进行放大或缩小的,高度一定是确定不了的.如果还能测出测角仪到松树的垂直距离,即图示中NH的长度,就可以了.”设NH=a,请你用含有a的代数式表示松树(AB)的高度.(2)小明又反问道:“虽然我们带了尺,是一把刻度精确到1分米,长为2米的直尺,但也没有办法量出NH的长度,我们总不能把坡给挖平了吧?”请你想一个测量办法,利用现有的工具,测量出有关数据(数据可以用字母常数表示),并用含有这些字母常数的表达式表示出松树(AB)的高度.【分析】(1)过点M作MC⊥AH,垂足为C,根据题意可得:∠AMC=β,∠BMC=α,MN=CH=1.5米,NH=MC=a米,然后分别在Rt△AMC和Rt△BMC中,利用锐角三角函数的定义求出AC和BC的长,从而利用线段的和差关系进行计算,即可解答;(2)利用现有的工具制定测量方案,然后利用锐角三角函数的定义进行计算,即可解答.【解答】解:(1)过点M作MC⊥AH,垂足为C,由题意得:∠AMC=β,∠BMC=α,MN=CH=1.5米,NH=MC=a米,在Rt△AMC中,MC=a,∠AMC=β,∵tanβ==,∴AC=tanβ•MC=a(米),在Rt△BMC中,MC=a,∠BMC=α,∵tanα==,∴BC=tanα•MC=a(米),∴AB=AC﹣BC=a﹣a=a(米),答:松树AB的高度为a米;(2)我想的测量办法是:在水平地面上的点C处测得小树顶端A的仰角为α,再从C点向前走a米到达点D处,在点D处测得小树顶端A的仰角为γ,测得小树底端B的仰角为β,即可通过计算求得松树(AB)的高度.如图:连接EF并延长交AH于点G,由题意得:EC=DF=GH=1.5米,EF=CD=a米,FG=DH,∠AEG=α,∠AFG=γ,∠BFG=β,设FG=DH=x米,∴EG=EF+FG=(x+a)米,在Rt△AEG中,∠AEG=α,∴AG=EG•tanα=tanα(x+a)米,在Rt△AFG中,∠AFG=γ,∴AG=FG•tanγ=tanγx(米),∴tanα(x+a)=tanγx,解得:x=,∴FG=米,∴AG=tanγx=(米),在Rt△BFG中,∠BFG=β,∴BG=FG•tanβ=(米),∴AB=AG﹣BG=﹣=(米),∴松树AB的高度为米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.23.(12分)如图,在平行四边形ABCD中,AC⊥AD,过点A作AE⊥BD,垂足为E,再过点C作CF⊥CD交直线AE于点F.(1)求证:CA•CD=CB•CF;(2)联结CE,求证:∠ACE=∠F.【分析】(1)利用平行四边形的性质,垂直的定义,直角三角形的性质和相似三角形的判定与性质解答即可;(2)利用(1)的结论,相似三角形的判定与性质得到AG2=EG•DG,利用平行四边形的对角线互相平分得到AG=GC,则CG2=EG•DG,利用相似三角形的判定与性质得到∠ACE=∠CDB,利用等量代换即可得出结论.【解答】证明:(1)设AC与BD交于点G,如图,∵四边形ABCD为平行四边形,∴BC∥AD,∴∠CBD=∠ADB.∵AC⊥AD,∴∠CAE+∠DAE=90°,∵AE⊥BD,∴∠DAE+∠ADE=90°,∴∠ADE=∠CAE,∴∠CAE=∠CBD.∵BC∥AD,AC⊥AD,∴AC⊥BC,∵CF⊥CD,∴∠ACB=∠DCF=90°,∴∠ACB+∠ACD=∠DCF+∠ACD,∴∠BCD=∠ACF,∴△BCD∽△ACF,∴,∴CA•CD=CB•CF;(2)由(1)知:∠CAE=∠ADE,∵∠AGE=∠DGA,∴△AGE∽△DGA,∴,∴AG2=EG•DG.∵四边形ABCD为平行四边形,∴AG=GC,∴CG2=EG•DG.∴,∵∠EGC=∠CGD,∴△EGC∽△CGD,∴∠ACE=∠CDB.由(1)知:△BCD∽△ACF,∴∠CDB=∠F,∴∠ACE=∠F.【点评】本题主要考查了平行四边形的性质,垂直的定义,直角三角形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.24.(12分)如图,直线y=﹣x+3与x轴、y轴分别交于点A、B.对称轴为直线x=1的抛物线y=ax2+bx+c经过点A、B,其与x轴的另一交点为C.(1)求该抛物线的表达式;(2)将该抛物线平移,使其顶点在线段AB上点P处,得到新抛物线L,其与直线y=﹣x+3的另一个交点为Q.①如果抛物线L经过点A,且与x轴的另一交点为D,求线段CD的长;②试问:△CPQ的面积是否随点P在线段AB上的位置变化而变化?如果变化,请说明理由;如果不变,请求出△CPQ面积.【分析】(1)先由直线y=﹣x+3与x轴,y轴分别相交于点A,点B,求出A(3,0),B(0,3),再根据抛物线y=ax2+bx+c的对称轴是直线x=1,求出与x轴的另一交点A 的坐标为(﹣1,0),然后将A(3,0),B(0,3),C(﹣1,0)代入y=ax2+bx+c,运用待定系数法即可求出该抛物线的函数表达式;(2)①先利用配方法将二次函数写成顶点式y=﹣x2+2x+3=﹣(x﹣1)2+4,设新抛物线L的函数表达式为y=﹣(x﹣1﹣m)2+4﹣n,则P(m+1,4﹣n),由顶点在线段AB 上点P处可得﹣(m+1)+3=4﹣n,n=m+2,根据抛物线L经过点A,可得m=1,可得新抛物线L的函数表达式为y=﹣(x﹣2)2+1,则D(1,0),即可求解;②设抛物线y=﹣x2+2x+3顶点为P′,P′(1,4),过P′作直线y=﹣x+3的平行线交抛物线于点Q′,由平移得当点P′平移到P点时Q′平移到Q点,则PQ=P′Q′,PQ为定值,所以△CPQ的面积不随点P在线段AB上的位置变化而变化,根据①的结果得点P(2,1)、Q(3,0),即可求出△CPQ的面积.【解答】解:(1)∵直线y=﹣x+3与x轴,y轴分别相交于点A、B,∴A(3,0),B(0,3),又∵对称轴为直线x=1的抛物线y=ax2+bx+c经过点A、B,其与x轴的另一交点为C.∴点C的坐标为(﹣1,0).将A(3,0),B(0,3),C(﹣1,0)代入y=ax2+bx+c,得,解得,∴该抛物线的函数表达式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,设新抛物线L的函数表达式为y=﹣(x﹣1﹣m)2+4﹣n,∴P(m+1,4﹣n),∵新抛物线L的顶点在线段AB:y=﹣x+3上点P处,∴﹣(m+1)+3=4﹣n,∴n=m+2,∵抛物线L经过点A(3,0),∴﹣(3﹣1﹣m)2+4﹣(m+2)=0,解得m=1或m=2(此时,点P与点A重合,抛物线L与x轴只有一个交点,舍去),∴n=m+2=3,∴新抛物线L的函数表达式为y=﹣(x﹣2)2+1,对称轴为直线x=2,∵A(3,0),∴D(1,0),∵点C的坐标为(﹣1,0).∴CD=2;②△CPQ的面积不随点P在线段AB上的位置变化而变化,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,设抛物线y=﹣x2+2x+3顶点为P′,∴P′(1,4),过P′作直线y=﹣x+3的平行线交抛物线于点Q′,由平移得当点P′平移到P点时Q′平移到Q点,则PQ=P′Q′,PQ为定值,∴△CPQ的面积不随点P在线段AB上的位置变化而变化,根据①得点P(2,1)、Q(3,0),=×(3+1)×1=2.∴S△CPQ。
2024年上海市杨浦区九年级上学期期末数学中考一模试卷含详解
C. D.
【答案】A
【分析】本题考查黄金分割点,根据黄金分割点的定义得出线段比例关系,选出正确选项,解题的关键是掌握黄金分割点的性质.
【详解】解:如图.
∵点 是线段 的黄金分割点,且 .
∴ .
故选:A.
4.如果两个非零向量 与 的方向相反,且 ,那么下列说法错误的是()
A. 与 是平行向量B. 的方向与 的方向相同
【详解】解:因为锐角三角形三边的长都扩大为原来的两倍,所得的三角形与原三角形相似.
所以锐角 的大小没改变.
所以锐角 的正切函数值也不变.
故选:C.
【点睛】本题考查了正切的定义,解题的关键是掌握在直角三角形中,一个锐角的正切等于它的对边与邻边的比值.
3.已知 是线段 的黄金分割点,且 ,那么下列等式能成立的是( )
【详解】如图.
∵ .
∴ .
∴ .
∵ .
∴ .
∴ .
∵ .
∴ .
故答案为: .
13.小华沿着坡度 的斜坡向上行走了 米,那么他距离地面的垂直高度上升了_____米.
【答案】
【分析】本题考查了坡度,根据题意画图,过点 作 于点 ,由坡度 得到 ,再利用勾股定理即可求解,熟练掌握坡度及勾股定理.
【详解】如图,过点 作 于点 ,则由题意得 米.
C.若 ,则 D.若 ,则
【答案】B
【分析】设 ,m,n都是正数, ,c,d都是负数,根据向量运算法则计算判断即可.
【详解】设 ,m,n都是正数, ,c,d都是负数.
则 .
故A正确,不符合题意.
的方向与 的方向相反.
故B错误,符合题意.
若 ,则 正确,不符合题意.
若 ,则 正确,不符合题意.
2023-2024学年上海市徐汇区九年级(上)期末数学试卷(一模)及答案解析
2023-2024学年上海市徐汇区九年级(上)期末数学试卷(一模)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.(4分)下列抛物线中,对称轴为直线x=1的抛物线的表达式是()A.y=x2+1B.y=x2﹣1C.y=x2+2x D.y=x2﹣2x 2.(4分)如图,在直角坐标系xOy中,已知点A(4,3),直线OA与x轴正半轴的夹角为α,那么sinα的值是()A.B.C.D.3.(4分)下列两个三角形一定相似的是()A.两个直角三角形B.两个等腰三角形C.两个等边三角形D.两个面积相等的三角形4.(4分)如图,已知平行四边形ABCD的对角线AC和BD交于点O,设,,那么向量、、、关于、的分解式中,下列结论正确的是()A.B.=﹣C.﹣D.5.(4分)世博会期间,从一架离地200米的无人机A上,测得地面监测点B的俯角是60°,那么此时无人机A与地面监测点B的距离是()A.米B.米C.200米D.米6.(4分)如图,点D是△ABC内一点,点E在线段BD的延长线上,BE与AC交于点O,分别联结AD、AE、CE,如果,那么下列结论正确的是()A.CE∥AD B.BD=ADC.∠ABE=∠CBE D.BO•AE=AO•BC.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)求值:2sin60°﹣cot30°=.8.(4分)已知点P是线段AB的黄金分割点(AP>BP),AB=2,那么BP =.9.(4分)已知△ABC∽△DEF,如果它们对应高的比AM:,那么△ABC和△DEF的面积比是.10.(4分)在△ABC中,点D、E分别在边AB、AC上,如果AD:AB=2:3,AE=4,CE =2,DE=3,那么BC的长是.11.(4分)如图,AB∥CD∥EF,如果AD=2,DF=1.5,CE=1.8,那么BE的长是.12.(4分)如图,在Rt△ABC中,∠ABC=90°,BD⊥AC于D,如果△BCD和△ABD的面积比为9:16,CD=12,那么AB的长是.13.(4分)如图,一段东西向的限速公路MN长500米,在此公路的南面有一监测点P,从监测点P观察,限速公路MN的端点M在监测点P的北偏西60°方向,端点N在监测点P的东北方向,那么监测点P到限速公路MN的距离是米(结果保留根号).14.(4分)将抛物线y=﹣x2向右平移后,所得新抛物线的顶点是B,新抛物线与原抛物线交于点A(如图所示),联结OA、AB,如果△AOB是等边三角形,那么点B的坐标是.15.(4分)如图,在△ABC中,AD和BE是△ABC的高,且交于点F,已知AB=13,BC =14,AC=15,那么∠AFE的正切值是.16.(4分)中国古代数学书《御制数理精蕴》中有一道题大意如下:如图,从前有一座方城,四面城墙的中间都有城门,出南门后往前直走8里到宝塔A处(即EA=8里),出西门往前直走2里到B处(即DB=2里),此时,视线刚好能紧靠城墙角C看见宝塔A,如果设正方形的中心为O,点O、D、B在一直线上,点O、E、A在一直线上,那么这座方城每一面的城墙长是里.17.(4分)在△ABC中,AB=AC=6,BC=4,如果将△ABC绕着点B旋转,使得点C落在边AC上,此时,点A落在点A′处,联结AA′,那么AA′的长是.18.(4分)如图,在△ABC中,∠BAC=90°,,如果点P在△ABC的内部,且满足∠APC=∠BPC=135°,那么CP的长是.三、(本大题共7题,第19-22题每题10分:第23、24题每题12分;第25题14分;满分78分)19.(10分)已知:.(1)求代数式的值;(2)当2a+3b﹣3=35时,求a、b的值.20.(10分)已知抛物线y=﹣x2+bx+3与y轴交于点C,与x轴交于点A(﹣1,0)和点B,顶点为D.(1)求此抛物线的表达式及顶点D坐标;(2)联结CD、BD,求∠CDB的余弦值.21.(10分)如图,在梯形ABCD中,AD∥BC,BD平分∠ABC,CD=BD=8,AB=5.(1)求BC的长;(2)设,,求向量(用向量,表示).22.(10分)小杰在学习了“仰角、俯角、坡比”后,他在自己居住的小区设计了如下测量方案:小杰利用小区中的一个斜坡CD,首先在斜坡CD的底端C测得高楼顶端A的仰角是60°,然后沿斜坡CD向上走到D处,再测得高楼顶端A的仰角是37°,已知斜坡CD的坡比是i=1:6,斜坡CD的底端C到高楼AB底端B的距离是20米,且B、C、E三点在一直线上(如图所示).假设测角仪器的高度忽略不计,请根据小杰的方案,完成下列问题:(1)求高楼AB的高度;(2)求点D离地面的距离(结果精确到0.1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73)23.(12分)如图,在▱ABCD中,点E在边AB上,DE2=AE•CD.(1)求证:AD•CD=CE•DE;(2)当点E是边AB的中点时,分别延长DE、CB交于点F,求证:AB2=2EF2.24.(12分)如图,在平面直角坐标系xOy中,第二象限的点M在抛物线y=ax2(a>0)上,点M到两坐标轴的距离都是2.(1)求该抛物线的表达式;(2)将抛物线y=ax2(a>0)先向右平移个单位,再向下平移k(k>0)个单位后,所得新抛物线与x轴交于点A(m,0)和点B(n,0),已知m<n,且mn=﹣4,与y 轴负半轴交于点C.①求k的值;②设直线与上述新抛物线的对称轴的交点为D,点P是直线上位于点D下方的一点,分别联结CD、CP,如果,求点P的坐标.25.(14分)如图,在Rt△ABC中,∠BAC=90°,,点D是边AB上的动点(点D不与点B重合),以CD为斜边在直线BC上方作等腰直角三角形DEC.(1)当点D是边AB的中点时,求sin∠DCB的值;(2)联结AE,点D在边AB上运动的过程中,∠EAC的大小是否变化?如果变化,请说明理由;如果不变,请求出∠EAC的大小;(3)设DE与AC的交点为G,点P是边BC上的一点,且∠CPD=∠CGD,如果点P 到直线CD的距离等于线段GE的长度,求△CDE的面积.2023-2024学年上海市徐汇区九年级(上)期末数学试卷(一模)参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.(4分)下列抛物线中,对称轴为直线x=1的抛物线的表达式是()A.y=x2+1B.y=x2﹣1C.y=x2+2x D.y=x2﹣2x【分析】分别求出题目中四个选项中所给出的抛物线的对称轴即可.【解答】解:∵抛物线y=x2+1的对称轴为y轴;∴选项A不符合题意;∵抛物线y=x2﹣1的对称轴为y轴;、∴选项A不符合题意;∵抛物线y=x2+2x=(x+1)2﹣1,∴该抛物线的对称轴为x=﹣1;∴选项C不符合题意;∵抛物线y=x2﹣2x=(x﹣1)2﹣1,∴该抛物线的对称轴为x=1,∴选项D符合题意.故选:D.【点评】此题主要考查了二次函数的对称轴,熟练掌握求二次函数对称轴的方法与技巧是解决问题的关键.2.(4分)如图,在直角坐标系xOy中,已知点A(4,3),直线OA与x轴正半轴的夹角为α,那么sinα的值是()A.B.C.D.【分析】过点A作x轴的垂线,构造出直角三角形即可解决问题.【解答】解:过点A作x轴的垂线,垂足为B,由点A的坐标为(4,3)可知,OB=4,AB=3,所以AO=.在Rt△AOB中,sinα=.故选:A.【点评】本题考查解直角三角形,能构造出直角三角形是解题的关键.3.(4分)下列两个三角形一定相似的是()A.两个直角三角形B.两个等腰三角形C.两个等边三角形D.两个面积相等的三角形【分析】由相似三角形的判定,即可判断.【解答】解:A、B、D中的两个三角形不一定相似,故A、B、D不符合题意;C、两个等边三角形相似,故C符合题意.故选:C.【点评】本题考查相似三角形的判定,等边三角形、等腰三角形的性质,关键是掌握相似三角形的判定方法.4.(4分)如图,已知平行四边形ABCD的对角线AC和BD交于点O,设,,那么向量、、、关于、的分解式中,下列结论正确的是()A.B.=﹣C.﹣D.【分析】根据平行四边形对角线互相平分结合平面向量的运算法则逐一判断即可.【解答】解:∵平行四边形ABCD的对角线AC和BD交于点O,,,∴,,=,=,故选项A、C、D错误,选项B正确,故选:B.【点评】本题考查了平面向量的运算法则,平行四边形的性质,熟记平面向量的运算法则是解题的关键.5.(4分)世博会期间,从一架离地200米的无人机A上,测得地面监测点B的俯角是60°,那么此时无人机A与地面监测点B的距离是()A.米B.米C.200米D.米【分析】根据正切的定义求出AB,得到答案.【解答】解:在Rt△ABC中,AC=200米,∠ABC=60°,∵sin B=,∴AB===(米),故选:B.【点评】本题考查的是解直角三角形﹣仰角俯角问题,掌握锐角三角函数的定义是解题的关键.6.(4分)如图,点D是△ABC内一点,点E在线段BD的延长线上,BE与AC交于点O,分别联结AD、AE、CE,如果,那么下列结论正确的是()A.CE∥AD B.BD=ADC.∠ABE=∠CBE D.BO•AE=AO•BC.【分析】利用相似三角形的判定与性质解答即可.【解答】解:∵,∴△ADE∽△ABC,∴∠ACB=∠AED,∠BAC=∠DAE,∴∠BAD=∠CAE,∵∠AOE=∠BOC,∴△AOE∽△BOC,∴,∴BO•AE=AO•BC.∴D选项的结论正确.∵,∴△BAD∽△CAE,∴∠ABE=∠ACE,显然OE与OC不一定相等,∴∠ACE与∠BEC不一定相等,∴CE与BD不一定平行,∴A,C不一定正确,∵BD与AD不一定相等,∴B不一定正确.故选:D.【点评】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)求值:2sin60°﹣cot30°=0.【分析】把sin60=,cot30°=代入原式得到2×﹣,然后进行二次根式的运算即可.【解答】解:原式=2×﹣=﹣=0.故答案为0.【点评】本题考查了特殊角的三角函数值:sin60°=,cot30°=.8.(4分)已知点P是线段AB的黄金分割点(AP>BP),AB=2,那么BP=3﹣.【分析】根据黄金分割点的定义,知AP是较长线段;所以AP=AB,代入数据即可得出AP的长度,进而得出BP.【解答】解:由于P为线段AB=2的黄金分割点,且AP>BP,则AP=a==﹣1.BP=2﹣(﹣1)=;故答案为:3﹣【点评】此题考查黄金分割问题,理解黄金分割点的概念.要求熟记黄金比的值.9.(4分)已知△ABC∽△DEF,如果它们对应高的比AM:,那么△ABC和△DEF的面积比是2:9.【分析】相似三角形面积的比等于相似比的平方,由此即可计算.【解答】解:∵△ABC∽△DEF,它们对应高的比是AM:,∴△ABC和△DEF的相似比是:3,∴△ABC和△DEF的面积比是:32=2:9.故答案为:2:9.【点评】本题考查相似三角形的性质,关键是掌握相似三角形面积的比等于相似比的平方.10.(4分)在△ABC中,点D、E分别在边AB、AC上,如果AD:AB=2:3,AE=4,CE=2,DE=3,那么BC的长是.【分析】根据题意推出=,结合∠A=∠A,即可推出△ADE∽△ABC,根据相似三角形的性质求解即可.【解答】解:如图,∵AE=4,EC=2,∴AC=AE+EC=6,∴==,∵AD:AB=2:3,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴==,∵DE=3,∴BC=,故答案为:.【点评】本题考查了相似三角形的性质和判定等知识,熟练掌握相似三角形的判定与性质是解此题的关键.11.(4分)如图,AB∥CD∥EF,如果AD=2,DF=1.5,CE=1.8,那么BE的长是 4.2.【分析】根据平行线分线段成比例定理求解即可.【解答】解:∵AB∥CD∥EF,∴=,∵AD=2,DF=1.5,CE=1.8,∴=,解得BE=4.2.故答案为:4.2.【点评】本题考查平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解答的关键,注意比例线段要对应.12.(4分)如图,在Rt△ABC中,∠ABC=90°,BD⊥AC于D,如果△BCD和△ABD的面积比为9:16,CD=12,那么AB的长是.【分析】先证明△ABD∽△BCD,根据相似三角形的性质求出AD和BD,进而求出AB 即可.【解答】解:∵∠ABC=90°,∴∠ABD+∠CBD=90°,∵BD⊥AC,∴∠ABD+∠A=90°,∠ADB=∠BDC=90°,∴∠CBD=∠A,∴△ABD∽△BCD,∴,∵△BCD和△ABD的面积比为9:16,∴=,∵CD=12,∴BD=16,AD=,∴AB==.故答案为:.【点评】本题考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定方法.13.(4分)如图,一段东西向的限速公路MN长500米,在此公路的南面有一监测点P,从监测点P观察,限速公路MN的端点M在监测点P的北偏西60°方向,端点N在监测点P的东北方向,那么监测点P到限速公路MN的距离是(250﹣250)米(结果保留根号).【分析】过点P作PA⊥MN于点A,则∠PAM=∠PAN=90°,设PA=x米,证△PAN是等腰直角三角形,得NA=PA=x米,再由锐角三角函数定义得MA=x米,然后由MA+NA=MN,求出x=250﹣250,即可得出结论.【解答】解:如图,过点P作PA⊥MN于点A,则∠PAM=∠PAN=90°,设PA=x米,由题意可知,∠MPA=60°,∠NPA=45°,∴△PAN是等腰直角三角形,∴NA=PA=x米,∵tan∠MPA==tan60°=,∴MA=PA=x(米),∵MA+NA=MN=500,∴x+x=500,解得:x=250﹣250,即监测点P到限速公路MN的距离是(250﹣250)米,故答案为:(250﹣250).【点评】本题考查了解直角三角形的应用—方向角问题,正确作出辅助线构造直角三角形是解题的关键.14.(4分)将抛物线y=﹣x2向右平移后,所得新抛物线的顶点是B,新抛物线与原抛物线交于点A(如图所示),联结OA、AB,如果△AOB是等边三角形,那么点B的坐标是(2,0).【分析】由题意设A点的坐标为(m,﹣m2),然后根据等边三角形的性质得到B(2m,0),m=m2,解得m=,从而求得B(2,0).【解答】解:∵点A抛物线y=﹣x2上,∴设A点的坐标为(m,﹣m2),∵△AOB是等边三角形,∴B(2m,0),m=m2,∴m=或m=0(舍去),∴B(2,0),故答案为:(2,0).【点评】本题考查了二次函数图象与几何变换,等边三角形的性质,二次函数图象上点的坐标特征,根据题意得到关于m的方程是解题的关键.15.(4分)如图,在△ABC中,AD和BE是△ABC的高,且交于点F,已知AB=13,BC=14,AC=15,那么∠AFE的正切值是.【分析】利用勾股定理求出BE的长,再将∠AFE转化成∠C即可解决问题.【解答】解:令AE=x,在Rt△ABE中,BE2=132﹣x2.在Rt△BCE中,BE2=152﹣(14﹣x)2.则132﹣x2=152﹣(14﹣x)2,解得x=5,所以BE=,CE=14﹣5=9.又因为∠AFE+∠CAD=90°,∠C+∠CAD=90°,所以∠AFE=∠C.在Rt△BCE中,tan C=,所以tan∠AFE=tan C=.故答案为:.【点评】本题考查解直角三角形,利用勾股定理求出BE的长是解题的关键.16.(4分)中国古代数学书《御制数理精蕴》中有一道题大意如下:如图,从前有一座方城,四面城墙的中间都有城门,出南门后往前直走8里到宝塔A处(即EA=8里),出西门往前直走2里到B处(即DB=2里),此时,视线刚好能紧靠城墙角C看见宝塔A,如果设正方形的中心为O,点O、D、B在一直线上,点O、E、A在一直线上,那么这座方城每一面的城墙长是8里.【分析】先根据正方形的性质得出OB∥CE,再根据相似三角形的性质列方程求解.【解答】解:设正方形是灭一面城墙的长度为2x里,∵正方形的中心为O,∴OD=CD=OE=CE=x里,OB∥CE,∴△ACE∽△ABO,∴,即:,解得:x=4,或x=﹣4(不合题意,舍去),∴2x=8,故答案为:8.【点评】本题考查了正方形的性质,掌握正方形的性质和相似三角形的性质是解题的关键.17.(4分)在△ABC中,AB=AC=6,BC=4,如果将△ABC绕着点B旋转,使得点C落在边AC上,此时,点A落在点A′处,联结AA′,那么AA′的长是4.【分析】作出图形,可以利用SAS证明△BA'A≌△ABC,从而得到AA'=BC,进而得到AA'的长.【解答】解:作出符合题意的图形如下:由题意,知△A'BC'≌△ABC,∴∠A'BC'=∠ABC,∴∠A'BC'﹣∠ABC'=∠ABC﹣∠ABC′,即∠A'BA=∠C'BC,∵AB=AC,BC=BC',∴∠ABC=∠C=∠BC'C,∴∠C'BC=∠BAC,∴∠A'BA=∠BAC,∵A'B=AB=AC,∴△BA'A≌△ABC(SAS),∴AA'=BC=4,故答案为:4.【点评】本题考查旋转的性质,等腰三角形的性质,全等三角形的判定和性质,理解题意,准确画出图形是解题的关键.18.(4分)如图,在△ABC中,∠BAC=90°,,如果点P在△ABC的内部,且满足∠APC=∠BPC=135°,那么CP的长是.【分析】通过证明△ACP∽△CBP,可得CP=AP,BP=CP,由勾股定理可求解.【解答】解:∵∠BAC=90°,AB=AC=,∴BC=AC=,∠ACB=45°,∵∠APC=∠BPC=135°,∴∠ACP+∠CAP=45°=∠ACP+∠BCP,∠APB=90°,∴∠BCP=∠CAP,∴△ACP∽△CBP,∴,∴CP=AP,BP=CP,∴BP=2AP,∵BP2+AP2=AB2,∴5AP2=5,∴AP=1,∴CP=,故答案为:.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,证明△ACP∽△CBP是解题的关键.三、(本大题共7题,第19-22题每题10分:第23、24题每题12分;第25题14分;满分78分)19.(10分)已知:.(1)求代数式的值;(2)当2a+3b﹣3=35时,求a、b的值.【分析】令a=2k,b=5k,(1)把a=2k,b=5k,代入即可求值;(2)把a=2k,b=5k,代入2a+3b﹣3=35,求出k=2,即可得到a=4,b=10.【解答】解:∵,∴令a=2k,b=5k,(1)===﹣2;(2)∵2a+3b﹣3=35时,∴2×2k+3×5k﹣3=35,∴k=2,∴a=2k=4,b=5k=10.【点评】本题考查比例的性质,关键是令a=2k,b=5k,即可求解.20.(10分)已知抛物线y=﹣x2+bx+3与y轴交于点C,与x轴交于点A(﹣1,0)和点B,(1)求此抛物线的表达式及顶点D坐标;(2)联结CD、BD,求∠CDB的余弦值.【分析】(1)依据题意,将(﹣1,0)代入y=﹣x2+bx+3求出b进而的表达式,再化成顶点式可得D的坐标;(2)依据题意,令y=0,可求得B的坐标,令x=0,求得C的坐标,再分别求出BC,BD,CD的长,由勾股定理逆定理可得∠DCB=90°,进而求出cos∠CDB的值.【解答】解:(1)由题意,将(﹣1,0)代入y=﹣x2+bx+3得,﹣1﹣b+3=0,∴b=2.∴抛物线为y=﹣x2+2x+3.又y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D为(1,4).(2)如图,由题意,令y=0,即﹣x2+2x+3=0.∴x=3或x=﹣1.∴B(3,0).又令x=0,∴y=3.∴CD==,DB==2,BC==3.∴BC2+CD2=BD2.∴∠BCD=90°.∴cos∠CDB===.【点评】本题主要考查了抛物线的图象与性质、解直角三角形,解题时要熟练掌握并能灵活运用是关键.21.(10分)如图,在梯形ABCD中,AD∥BC,BD平分∠ABC,CD=BD=8,AB=5.(1)求BC的长;(2)设,,求向量(用向量,表示).【分析】(1)证明△ABD∽△DBC,得出比例式求出BC的长即可;(2)过点D作DE∥AB,求出,再根据平行四边形法则求出即可.【解答】解:(1)∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD=5,∵CD=BD=8,∴∠DBC=∠C,∴∠ABD=∠DBC,∠ADB=∠C,∴△ABD∽△DBC,∴,∴,∴BC=;(2)如图,过点D作DE∥AB,则四边形ABED是菱形,∴BE=AD=5,∴BE=BC,∴,∵,∴=.【点评】本题考查了平面向量,相似三角形的判定与性质,证明△ABD∽△DBC,是解(1)的关键.22.(10分)小杰在学习了“仰角、俯角、坡比”后,他在自己居住的小区设计了如下测量方案:小杰利用小区中的一个斜坡CD,首先在斜坡CD的底端C测得高楼顶端A的仰角是60°,然后沿斜坡CD向上走到D处,再测得高楼顶端A的仰角是37°,已知斜坡CD的坡比是i=1:6,斜坡CD的底端C到高楼AB底端B的距离是20米,且B、C、E三点在一直线上(如图所示).假设测角仪器的高度忽略不计,请根据小杰的方案,完成下列问题:(1)求高楼AB的高度;(2)求点D离地面的距离(结果精确到0.1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73)【分析】(1)根据正切的定义求出AB;(2)过点D作DG⊥BE于点G,DH⊥AB于点H,设DG=x米,根据坡度的概念用x 表示出DH,根据正切的定义列出方程,解方程得到答案.【解答】解:(1)在Rt△ABC中,BC=20米,∠ACB=60°,∵tan∠ACB=,∴AB=BC•tan∠ACB=20×=60(米),答:高楼AB的高度为60米;(2)过点D作DG⊥BE于点G,DH⊥AB于点H,则四边形HBGD为矩形,∴BH=DG,DH=BG,设DG=x米,∴AH=AB﹣BH=(60﹣x)米,∵斜坡CD的坡比是i=1:6,∴CG=6x米,∴BG=(20+6x)米,在Rt△AHD中,tan∠ADH=,∴≈0.75,解得:x=≈6.2,经检验,x是原方程的解,答:点D离地面的距离约为6.2米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,熟记锐角三角函数的定义是解题的关键.23.(12分)如图,在▱ABCD中,点E在边AB上,DE2=AE•CD.(1)求证:AD•CD=CE•DE;(2)当点E是边AB的中点时,分别延长DE、CB交于点F,求证:AB2=2EF2.【分析】(1)根据相似三角形的判定与性质求解即可;(2)结合平行四边形的性质利用AAS证明△ADE≌△BFE,根据全等三角形的性质得出DE=EF,等量代换即可得解.【解答】证明:(1)在▱ABCD中,AB∥CD,∴∠AED=∠CDE,∵DE2=AE•CD,∴=,∴△ADE∽△ECD,∴=,∴AD•CD=CE•DE;(2)如图,在▱ABCD中,AB=CD,AD∥BC,∴∠A=∠FBE,∠ADE=∠F,∵点E是边AB的中点,∴AE=BE,∴△ADE≌△BFE(AAS),∴DE=EF,∵DE2=AE•CD,∴EF2=AB•AB,∴AB2=2EF2.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质、平行四边形的性质,熟记相似三角形的判定与性质、全等三角形的判定与性质是解题的关键.24.(12分)如图,在平面直角坐标系xOy中,第二象限的点M在抛物线y=ax2(a>0)上,点M到两坐标轴的距离都是2.(1)求该抛物线的表达式;(2)将抛物线y=ax2(a>0)先向右平移个单位,再向下平移k(k>0)个单位后,所得新抛物线与x轴交于点A(m,0)和点B(n,0),已知m<n,且mn=﹣4,与y 轴负半轴交于点C.①求k的值;②设直线与上述新抛物线的对称轴的交点为D,点P是直线上位于点D下方的一点,分别联结CD 、CP ,如果,求点P 的坐标.【分析】(1)由待定系数法即可求解;(2)①令y =(x ﹣)2﹣k =0,解得:x =±,即可求解;②由直线OD 的表达式知,tan ∠CPH =,则tan ∠POH =,在Rt △OPH 中,tan ∠POH===,即可求解.【解答】解:(1)由题意得,点M (﹣2,2),将点M 的坐标代入抛物线表达式得:2=4a ,解得:a =,则抛物线的表达式为:y =x 2;(2)①平移后的抛物线表达式为:y =(x ﹣)2﹣k ,令y =(x ﹣)2﹣k =0,解得:x =±,∵mn =﹣4,则(+)(﹣)=﹣4,解得:k =;②由①抛物线的表达式为:y =(x ﹣)2﹣k =x 2﹣x ﹣2,其对称轴为直线x =,则点C (0,﹣2),当x =时,=﹣2,即点D (,﹣2),∵点C 、D 的纵坐标相同,则CD∥x轴,由直线OD的表达式知,tan∠CPH=,则tan∠POH=,∵=tan∠CPH,设CH=3x,则PH=4x,在Rt△OPH中,tan∠POH===,解得:x=,则点P的坐标为:(,﹣).【点评】本题考查了二次函数综合题,考查了二次函数的性质,待定系数法求解析式,直角三角形的性质,灵活运用这些性质解决问题是解题的关键.25.(14分)如图,在Rt△ABC中,∠BAC=90°,,点D是边AB上的动点(点D不与点B重合),以CD为斜边在直线BC上方作等腰直角三角形DEC.(1)当点D是边AB的中点时,求sin∠DCB的值;(2)联结AE,点D在边AB上运动的过程中,∠EAC的大小是否变化?如果变化,请说明理由;如果不变,请求出∠EAC的大小;(3)设DE与AC的交点为G,点P是边BC上的一点,且∠CPD=∠CGD,如果点P 到直线CD的距离等于线段GE的长度,求△CDE的面积.【分析】(1)作DH⊥CB于点H,由勾股定理求出CD的长,则可得出答案;(2)连接AE,证出A,D,C,E四点共圆,得出∠EAC=∠EDC,由等腰直角三角形的性质可得出答案;(3)过点D作DN⊥BC于点N,PM⊥CD于点M,连接PG,证明△CEG≌△CMP(AAS),由全等三角形的性质得出CP=CG,证明△CGD≌△CPD(SSS),由全等三角形的性质得出∠DCG=∠PCD,DA=DN=BN,设DA=a,则BD=a,求出a的值,则可得出答案.【解答】解:(1)作DH⊥CB于点H,∵∠BAC=90°,,∴BC=AB=4,∵点D是边AB的中点,∴BD=,∴DH=BH=1,∴CH=BC﹣BH=3,∴CD===,∴sin∠DCB=;(2)∠EAC的大小不变化.连接AE,∵∠DAC=∠DEC=90°,∴A,D,C,E四点共圆,∴∠EAC=∠EDC,∵△DEC为等腰直角三角形,∴∠EDC=45°,∴∠EAC=45°.(3)过点D作DN⊥BC于点N,PM⊥CD于点M,连接PG,∵点P到直线CD的距离等于线段GE的长度,∴PM=EG,∵∠DCE=∠ACB=45°,∴∠ACE=∠BCD,∵∠E=∠PMC=90°,∴△CEG≌△CMP(AAS),∴CP=CG,∴∠CGP=∠CPG,又∵∠CGD=∠CPD,∴∠DGP=∠DPG,∴DG=DP,∴△CGD≌△CPD(SSS),∴∠DCG=∠PCD,∵DN⊥BC,DA⊥AC,∴DA=DN=BN,设DA=a,则BD=a,∴a+a=2,∴CD2=AD2+AC2==32﹣16,===8﹣4.∴S△CDE【点评】本题是三角形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定与性质,三角形的面积,熟练掌握全等三角形的判定与性质是解题的关键。
2023年上海市闵行区九年级上学期期末(中考一模)数学卷含详解
九年级数学练习一、选择题:1.下列图形中一定是相似形是()A.两个等边三角形B.两个菱形C.两个矩形D.两个直角三角形2.如图,已知AB CD EF ∥∥,它们依次交直线l 1、l 2于点A 、D 、F 和点B 、C 、E ,如果AD :DF =3:1,BE=10,那么CE 等于()A.103B.203C.52D.1523.如图,己知在Rt ABC △中,90,,ACB B CD AB β∠=︒∠=⊥,垂足为点D ,那么下列线段的比值不一定等于sin β的是()A.AD BDB.AC ABC.AD ACD.CD BC4.下列说法正确的是()A.如果e为单位向量,那么||a a e=B.如果a b =-,那么abC.如果a b、都是单位向量,那么a b=D.如果||||a b = ,那么a b= 5.抛物线22y x =向下平移3个单位长度后所得新抛物线的顶点坐标为()A.(3,0)- B.(3,0)C.(0,3)- D.(0,3)6.如图,某零件的外径为10cm ,用一个交叉卡钳(两条尺长AC 和BD 相等)可测量零件的内孔直径AB .如果3AC BDOC OD==,且量得4cm CD =,则零件的厚度x 为()A.2cmB.1.5cmC.0.5cmD.1cm二、填空题:7.如果3(0)a b b =≠,那么a bb+=___________.8.化简:22(3)33a b b -+-=___________.9.已知2()2f x x x =+,那么(1)f 的值为___________.10.抛物线22y x =在对称轴的左侧部分是_________的(填“上升”或“下降”).11.已知两个相似三角形的相似比为2:3,那么这两个三角形的面积之比为___________.12.设点P 是线段AB 的黄金分割点(),2AP BP AB >=,那么线段AP 的长是___________.13.在直角坐标平面内有一点(512)A ,,点A 与原点O 的连线与x 轴的正半轴的夹角为θ,那么sin θ的值为___________.14.己知D 、E 分别是ABC 的边AB 、AC 上的点(不与端点重合),要使得ADE V 与ABC 相似,那么添加一个条件可以为___________(只填一个).15.已知一斜坡的坡角为30︒,则它坡度i=___________.16.如图,一艘船从A 处向北偏西30︒的方向行驶5海里到B 处,再从B 处向正东方向行驶8千米到C 处,此时这艘船与出发点A 处相距___________海里.17.如图,在Rt ABC △中,90ACB ∠=︒,9AB =,cot 2A =,点D 在边AB 上,点E 在边AC 上,将ABC 沿着折痕DE 翻折后,点A 恰好落在线段BC 的延长线上的点P 处,如果BPD A ∠=∠,那么折痕DE 的长为___________.18.阅读:对于线段MN 与点O (点O 与MN 不在同一直线上),如果同一平面内点P 满足:射线OP 与线段MN 交于点Q ,且12OQ OP =,那么称点P 为点O 关于线段MN 的“准射点”.问题:如图,矩形ABCD 中,4,5AB AD ==,点E 在边AD 上,且2AE =,联结BE .设点F 是点A 关于线段BE 的“准射点”,且点F 在矩形ABCD 的内部或边上,如果点C 与点F 之间距离为d ,那么d 的取值范围为___________.三、解答题:19.)11311+cos308-⎛⎫-︒ ⎪⎝⎭.20.如图,已知ABC 中,点D 、E 分别在边AB 和AC 上,DE BC ∥,且DE 经过ABC 的重心,设,AB a AC b ==uu u r r uuu r r .(1)DE =___________(用向量,a b表示);(2)求作:13a b +r r .(不要求写作法,但要指出所作图中表示结论的向量)21.己知在平面直角坐标系xOy 中,抛物线223y x x =-++与y 轴交于点A ,其顶点坐标为B .(1)求直线AB 的表达式;(2)将抛物线223y x x =-++沿x 轴正方向平移(0)m m >个单位后得到的新抛物线的顶点C 恰好落在反比例函数16y x=的图像上,求ACB ∠的余切值.22.2022年11月12日10时03分,搭载天舟五号货运飞船的长征七号遥六运载火箭,在海南文昌航天发射场成功发射.天舟五号货运飞船重约13.6吨,长度10.6BD =米,货物仓的直径可达3.35米,是世界现役货物运输能力最大、在轨支持能力最全面的货运飞船,堪称“在职最强快递小哥”.己知飞船发射塔垂直于地面,某人在地面A 处测得飞船底部D 处的仰角45︒,顶部B 处的仰角为53︒,求此时观测点A 到发射塔CD 的水平距离(结果精确到0.1米).(参考数据:sin530.80,cos530.60,tan53 1.33︒≈︒≈︒≈)23.己知:如图,在ABC 中,AB AC =,点D 、E 分别是边AC AB 、的中点,DF AC ⊥,DF 与CE 相交于点F ,AF的延长线与BD 相交于点G .(1)求证:ABD ACE ∠=∠;(2)求证:2CD DG BD =⋅.24.在平面直角坐标系xOy 中,抛物线线2y ax bx =+经过(1,3)(2,0)A B -、,点C 是该抛物线上的一个动点,连接AC ,与y 轴的正半轴交于点D .设点C 的横坐标为m .(1)求该抛物线的表达式;(2)当32DC AD =时,求点C 到x 轴的距离;(3)如果过点C 作x 轴的垂线,垂足为点E ,连接DE ,当23m <<时,在CDE 中是否存在大小保持不变的角?如果存在,请指出并求其度数;如果不存在,请说明理由.25.如图1,点D 为ABC 内一点,联结,BD CBD BAC ∠=∠,以BD BC 、为邻边作平行四边形,DBCE DE 与边AC 交于点F ,90ADE ∠=︒.(1)求证:ABC ECF ∽;(2)延长BD ,交边AC 于点G ,如果CE FE =,且ABC 的面积与平行四边形DBCE 面积相等,求AGGF的值;(3)如图2,联结AE ,若DE 平分,5,2AEC AB CE ∠==,求线段AE 的长.九年级数学练习一、选择题:1.下列图形中一定是相似形的是()A.两个等边三角形B.两个菱形C.两个矩形D.两个直角三角形【答案】A【分析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【详解】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:A .【点睛】本题主要考查了相似多边形的性质,相似多边形的性质为:①对应角相等;②对应边的比相等.2.如图,已知AB CD EF ∥∥,它们依次交直线l 1、l 2于点A 、D 、F 和点B 、C 、E ,如果AD :DF =3:1,BE =10,那么CE 等于()A.103B.203C.52D.152【答案】C【分析】根据平行线分线段成比例定理即可完成.【详解】∵AB CD EF ∥∥∴3BC ADCE DF==∴BC =3CE ∵BC +CE =10∴3CE +CE =10∴52CE =故选:C【点睛】本题考查了平行线分线段成比例定理,掌握此定理是关键.3.如图,己知在Rt ABC △中,90,,ACB B CD AB β∠=︒∠=⊥,垂足为点D ,那么下列线段的比值不一定等于sin β的是()A.AD BDB.AC ABC.AD ACD.CD BC【答案】A【分析】根据正弦定义解答即可.【详解】在Rt ABC △中,sin sin ACB ABβ==,故B 正确,不符合题意;在Rt BCD 中,sin sin CDB BCβ==,故D 正确,不符合题意;∵90,90ACD A B A ∠+∠=︒∠+∠=︒,∴ACD B ∠=∠,在Rt ACD △中,sin sin ADACD ACβ=∠=,故C 正确,不符合题意;无法说明sin ADBDβ=,故A 不一定正确,符合题意.故选:A .【点睛】本题考查了锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt ABC ∆中,若90︒∠=C ,则∠A 的正弦等于∠A 的对边比斜边,∠A 的余弦等于∠A 的邻边比斜边,∠A 的正切等于∠A 的对边比邻边.4.下列说法正确的是()A.如果e为单位向量,那么||a a e= B.如果a b =- ,那么a bC.如果a b 、都是单位向量,那么a b= D.如果||||a b = ,那么a b= 【答案】B【分析】向量有方向,大小,加减运算,根据相关的概念和运算方法即可求解.【详解】解:A 选项,如果e 为单位向量,且e 与a的方向相同,那么||a a e =,故不符合题意;B 选项,如果a b =-,大小相同,方向相反,那么ab,故符合题意;C 选项,如果a b 、都是单位向量,那么a b= ,方向不确定,故不符合题意;D 选项,如果||||a b = ,那么a b =,模相等,方向不确定,故不符题意.故选:B .【点睛】本题主要考查向量的基本知识,掌握向量的大小,方向,模的基础知识是解题的关键.5.抛物线22y x =向下平移3个单位长度后所得新抛物线的顶点坐标为()A.(3,0)-B.(3,0)C.(0,3)-D.(0,3)【答案】C【分析】根据平移的性质,求出新抛物线的解析式,再求顶点坐标即可求解.【详解】解:抛物线22y x =向下平移3个单位得,223y x =-,∴根据顶点坐标公式得,00222b x a =-=-=⨯,把0x =代入223y x =-得,=3y -,∴顶点坐标为:(0,3)-.故选:C .【点睛】本题主要考查函数的平移的性质,顶点坐标的计算方法,掌握平移的性质,顶点坐标的计算公式是解题的关键.6.如图,某零件的外径为10cm ,用一个交叉卡钳(两条尺长AC 和BD 相等)可测量零件的内孔直径AB .如果3AC BDOC OD==,且量得4cm CD =,则零件的厚度x 为()A.2cmB.1.5cmC.0.5cmD.1cm【答案】D【分析】求出AOB 和COD 相似,利用相似三角形对应边成比例列式计算求出AB ,再根据外径的长度解答.【详解】解:∵3AC BDOC OD==,∴2AO BOOC OD==,∵AOB COD ∠∠=,∴AOB COD ∽,∴2ABCD=,∵4cm CD =,∴8AB =cm ,∵外经为10cm ,∴8210x +=,∴1x =.故选:D .【点睛】本题考查相似三角形的应用,解题的关键是利用相似三角形的性质求出AB 的长.二、填空题:7.如果3(0)a b b =≠,那么a bb+=___________.【答案】4【分析】将3(0)a b b =≠代入a bb+,约分化简即可求解.【详解】解:∵3(0)a b b =≠,∴344a b b b bb b b++===,故答案为:4.【点睛】本题主要考查代入求值,掌握整体代入的方法,化简求值的方法是解题的关键.8.化简:22(3)33a b b -+-=___________.【答案】2a-【分析】根据有理数的混合运算,结合向量的加减运算即可求解.【详解】解:22222(3)(3)233333a b b a b b a -+-=⨯-+⨯-=-,故答案为:2a -.【点睛】本题主要考查向量的加减运算,理解和掌握向量的加减运算方法,有理数的混合运算是解题的关键.9.已知2()2f x x x =+,那么(1)f 的值为___________.【答案】3【分析】把1x =代入2()2f x x x =+计算即可求解.【详解】解:2(1)1213f =+⨯=,故答案为:3.【点睛】本题主要考查的函数的代入求值,掌握函数的代入求值的计算方法是解题的关键.10.抛物线22y x =在对称轴的左侧部分是_________的(填“上升”或“下降”).【答案】下降【分析】根据二次函数的性质解答.【详解】解:∵20a =>,∴抛物线的开口向上,对称轴为直线0x =,∴在对称轴左侧部分y 随着x 的增大而减小.故答案为:下降.【点睛】本题主要考查抛物线的性质,熟记抛物线的性质是解题的关键.11.已知两个相似三角形的相似比为2:3,那么这两个三角形的面积之比为___________.【答案】4:9##49【分析】根据面积比等于相似比的平方,由此即可求解.【详解】解:根据面积比等于相似比的平方,得:这两个三角形的面积之比为4:9,故答案为:4:9.【点睛】本题主要考查相似三角形的性质,掌握相似三角形中面积比等于相似比的平方是解题的关键.12.设点P 是线段AB 的黄金分割点(),2AP BP AB >=,那么线段AP 的长是___________.1-##1-【分析】黄金分割点的值是12,根据黄金分割点的定义即可求解.【详解】解:∵点P 是线段AB 的黄金分割点(),2AP BP AB >=,∴12AP AB -=,∴1AP =,1.【点睛】本题主要考查黄金分割点的定义,掌握黄金分割点的定义,比值是解题的关键.13.在直角坐标平面内有一点(512)A ,,点A 与原点O 的连线与x 轴的正半轴的夹角为θ,那么sin θ的值为___________.【答案】1213【分析】根据锐角三角函数的定义、坐标与图形性质以及勾股定理的知识求解即可.【详解】解:∵在直角坐标平面内有一点(512)A ,,∴13OA ==,∴12sin 13θ=.故答案为:1213.【点睛】本题主要考查了解直角三角形、锐角三角函数的定义、坐标与图形性质以及勾股定理等知识点,掌握锐角三角函数的定义成为解答本题的关键.14.己知D 、E 分别是ABC 的边AB 、AC 上的点(不与端点重合),要使得ADE V 与ABC 相似,那么添加一个条件可以为___________(只填一个).【答案】ADE B ∠=∠或ADE B ∠=∠或DE BC∥【分析】判断ADE V 与ABC 相似,根据相似的判断条件即可求解.【详解】解:判断两个三角形相似的条件有:有两个角对应相等,则两个三角形相似;两边对应成比例,夹角相等,则两个三角形相似;过三角形两边的点的线段平行与第三边,则两个三角形相似,∵BAC DAE ∠=∠,∴当ADE B ∠=∠时,ADE V 与ABC 相似;当ADE B ∠=∠时,ADE V 与ABC 相似;当DE BC ∥时,ADE V 与ABC 相似.故答案为:ADE B ∠=∠或ADE B ∠=∠或DE BC ∥.【点睛】本题主要考查三角形相似的判定,理解和掌握三角形相似的判定的条件是解题的关键.15.已知一斜坡的坡角为30︒,则它坡度i=___________.【答案】33【分析】由于斜坡的坡角为30︒,而坡度为坡角的正切,由此即可确定个斜坡的坡度i .【详解】解:∵斜坡的坡角为30︒,∴这个斜坡的坡度3303i tan =︒=故答案为:3【点睛】此题主要考查了解直角三角形应用-坡度的问题,解题的关键是根据题意正确画出图形,然后利用三角函数即可解决问题.16.如图,一艘船从A 处向北偏西30︒的方向行驶5海里到B 处,再从B 处向正东方向行驶8千米到C 处,此时这艘船与出发点A 处相距___________海里.【答案】7【分析】从A 处向北偏西30︒的方向行驶5海里到B 处,可知30BAD ∠=︒,5AB =,从B 处向正东方向行驶8千米,可知8BC =,且=60B ∠︒,如图所示(见详解),根据直角三角形的勾股定理即可求解.【详解】解:如图所示,∴30BAD ∠=︒,5AB =,∴1522BD AB ==,532AD =,∵8BC =,90ADC ∠=︒,∴511822DC =-=,∴7AC ==,故答案为:7.【点睛】本题主要考查方位角与直角三角形的勾股定理的综合,掌握方位角的表示,角度的关系,勾股定理是解题的关键.17.如图,在Rt ABC △中,90ACB ∠=︒,9AB =,cot 2A =,点D 在边AB 上,点E 在边AC 上,将ABC 沿着折痕DE 翻折后,点A 恰好落在线段BC 的延长线上的点P 处,如果BPD A ∠=∠,那么折痕DE 的长为___________.【答案】【分析】过点D 作DF AC ⊥于点F ,首先根据题意可证得DF BC ∥,90BDP ∠=︒,1tan tan 2BC BD A BPD AC PD =∠===,根据勾股定理即可求得5BC =,5AC =,再由折叠的性质可知:AE PE =,AD PD =,即可求得3BD =,6AD PD ==,再根据勾股定理即可求得BP =,5CP =,由DF BC ∥,可证得ADE ABC △△∽,23DF AF AD BC AC AB ===,据此即可求得5DF =,1255AF =,5FC =,再根据勾股定理即可求得5EC =,255EF =,据此根据勾股定理即可求得结果.【详解】解:如图:过点D 作DF AC ⊥于点F ,90AFD C \Ð=Ð=°,DF BC ∴∥,A B ∠∠=︒+90,BPD A ∠=∠ ,90BPD B ∴∠+∠=︒,90BDP ∴∠=︒,在Rt ABC △中,90ACB ∠=︒,cot 2A =,11tan cot 2A A ∴==,1tan tan 2BC BD A BPD AC PD ∴=∠=== 在Rt ABC △中,222AC BC AB +=,22249BC BC ∴+=,解得955BC =,1855AC ∴=,由折叠的性质可知:AE PE =,AD PD =,91tan 2PD BPD PD -∴∠==,解得6PD =,3BD ∴=,6AD PD ==在Rt BPD △中,222BD PD BP +=,BP ∴=,956555CP BP BC ∴=-==,D F B C ∥ ,ADF ABC ∴ ∽,6293DF AF AD BC AC AB ∴====,239518555=解得5DF =,5AF =,185********FC AC AF ∴=-==,在Rt ECP △中,222EC CP PE +=,2226518555EC EC ⎛⎫⎛⎫∴+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得5EC =,555EF EC FC ∴=-==,在Rt DEF △中,222DE DF EF =+,DE ∴==,故答案为:【点睛】本题考查了折叠的性质,勾股定理,相似三角形的判定与性质,正切的定义,作出辅助线及准确找到各线段之间的关系是解决本题的关键.18.阅读:对于线段MN 与点O (点O 与MN 不在同一直线上),如果同一平面内点P 满足:射线OP 与线段MN 交于点Q ,且12OQ OP =,那么称点P 为点O 关于线段MN 的“准射点”.问题:如图,矩形ABCD 中,4,5AB AD ==,点E 在边AD 上,且2AE =,联结BE .设点F 是点A 关于线段BE 的“准射点”,且点F 在矩形ABCD 的内部或边上,如果点C 与点F 之间距离为d ,那么d 的取值范围为___________.【答案】d ≤≤【分析】设AF 交BE 于点Q ,由点F 是点A 关于线段BE 的“准射点”可得AQ QF =,过点F 作GH BE ∥交AD 于点G ,交BC 于点H ,由平行线分线段成比例定理得2AE EG ==,AQ Q F '''=,连接CG ,求出CG 的长,作CM GH ⊥于M ,求出CM 的长即可.【详解】如图,设AF 交BE 于点Q ,∵点F 是点A 关于线段BE 的“准射点”,∴12AQ AF =,∴Q 是AF 的中点,即AQ QF =,过点F 作GH BE ∥交AD 于点G ,交BC 于点H ,∴1AQ AE AQ QF EG Q F '==='',∴2AE EG ==,AQ Q F '''=,∴点F 在线段GH 上,连接CG ,则CG ===.作CM GH ⊥于M ,∵,GH BE AD BC ∥∥,∴四边形BEGH 是平行四边形,∴GH BE ===,2BH EG ==,∴3CH =.∵1122CGH S GH CM CH CD ∆=⋅=⋅,∴CH CD CM GH ⋅==∴d 的取值范围是d ≤≤.【点睛】本题考查了新定义,矩形的性质,勾股定理,垂线段最短,三角形的面积公式,平行线分线段成比例定理,以及平行四边形的判定与性质,判断出点F 的位置是解答本题的关键.三、解答题:19.)11311+cos308-⎛⎫-︒ ⎪⎝⎭.【答案】【分析】根据算术平方根的性质,负整数指数幂的性质,立方根的性质,特殊角的三角函数值分别化简后再计算加减法.)11311+cos308-⎛⎫--︒ ⎪⎝⎭)111222=+-+,=.【点睛】此题考查计算能力,掌握算术平方根的性质,负整数指数幂的性质,立方根的性质,特殊角的三角函数值是解题的关键.20.如图,已知ABC 中,点D 、E 分别在边AB 和AC 上,DE BC ∥,且DE 经过ABC 的重心,设,AB a AC b ==uu u r r uuu r r .(1)DE = ___________(用向量,a b 表示);(2)求作:13a b +r r.(不要求写作法,但要指出所作图中表示结论的向量)【答案】(1)2233b a -r r (2)见解析【分析】(1)由DE BC ∥,DE 经过ABC 的重心,可得::2:3AD AB DE BC ==,即可求得DE ;(2)过点B 作BD AC ∥,在BD 上截取13BE AC =,连接AE ,AE 即为所求.【小问1详解】解:∵DE BC ∥,DE 经过ABC 的重心,∴::2:3AD AB DE BC ==,∵,AB a AC b ==uu u r r uuu r r,∴22,33AD a AC b ==uuu r r uuu r r,∴2233DE b a =-uuu r r r ,故答案为:2233b a -r r .【小问2详解】如图:过点B 作BD AC ∥,在BD 上截取13BE AC =,连接AE ,AE 即为所求.【点睛】本题主要考查了平面向量,解题的关键是熟练掌握平面向量的运算法则.21.己知在平面直角坐标系xOy 中,抛物线223y x x =-++与y 轴交于点A ,其顶点坐标为B .(1)求直线AB 的表达式;(2)将抛物线223y x x =-++沿x 轴正方向平移(0)m m >个单位后得到的新抛物线的顶点C 恰好落在反比例函数16y x=的图像上,求ACB ∠的余切值.【答案】(1)3y x =+(2)4【分析】(1)根据题意可知(0,3)A ,(1,4)B ,用待定系数法即可求解;(2)由(1,4)B 沿x 轴正方向平移m 个单位,得(1,4)C m +,顶点C 恰好落在反比例函数的图像16y x =上,可求出3m =,延长CB 交y 轴的正半轴于点D ,在Rt ADC 中,即可求解.【小问1详解】解:∵抛物线223y x x =-++与y 轴交于点A ,∴(0,3)A ,由223y x x =-++,得2(1)4y x =--+,∴(1,4)B ,设直线AB 的表达式为(0)y kx b k =+≠,∴34b k b =⎧⎨+=⎩,∴1,3k b ==,∴直线AB 的表达式为3y x =+.【小问2详解】解:由(1,4)B 沿x 轴正方向平移m 个单位,得(1,4)C m +,又∵顶点C 恰好落在反比例函数的图像16y x=上,∴4(1)16m +=.∴3m =,即(4,4)C ,如图所示,延长CB 交y 轴的正半轴于点D ,得4,1CD AD ==,在Rt ADC 中,90ADC ∠=︒,∴cot 4CD ACB AD∠==.【点睛】本题主要考查二次函数与一次函数,反比例函数的综合,掌握待定系数法求函数解析式,函数图像交点坐标的计算及余切值的计算方法是解题的关键.22.2022年11月12日10时03分,搭载天舟五号货运飞船的长征七号遥六运载火箭,在海南文昌航天发射场成功发射.天舟五号货运飞船重约13.6吨,长度10.6BD =米,货物仓的直径可达3.35米,是世界现役货物运输能力最大、在轨支持能力最全面的货运飞船,堪称“在职最强快递小哥”.己知飞船发射塔垂直于地面,某人在地面A 处测得飞船底部D 处的仰角45︒,顶部B 处的仰角为53︒,求此时观测点A 到发射塔CD 的水平距离(结果精确到0.1米).(参考数据:sin530.80,cos530.60,tan53 1.33︒≈︒≈︒≈)【答案】此时观测点A 到发射塔CD 的水平距离为32.1米【分析】设此时观测点A 到发射塔CD 的水平距离为x 米,在Rt ACD 中根据tan DAC CD AC ∠=得到CD x =,之后在Rt ACB 中根据tan BC BAC AC∠=得到 1.33BC x =,根据10.6BC CD -=进而得到答案.【详解】解:设此时观测点A 到发射塔CD 的水平距离为x 米.由题意,得10.6,45,53,90,BD DAC BAC C AC x =∠=︒∠=︒∠=︒=.在Rt ACD 中,90C ∠=︒,∵tan DAC CDAC∠=∴tan tan 45CD AC DAC x x=⨯∠=︒=在Rt ACB 中,90C ∠=︒,∵tan BCBAC AC∠=∴tan tan 53 1.33BC AC BAC x x=⨯∠==︒∵10.6BD =∴10.6BC CD -=,即1.3310.6x x -=;32.1x ≈(米).答:此时观测点A 到发射塔CD 的水平距离为32.1米.【点睛】本题主要考查解直角三角形,掌握解直角三角形的方法是解题的关键.23.己知:如图,在ABC 中,AB AC =,点D 、E 分别是边AC AB 、的中点,DFAC ⊥,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .(1)求证:ABD ACE ∠=∠;(2)求证:2CD DG BD =⋅.【答案】(1)详见解析(2)详见解析【分析】(1)点D 、E 分别是边AC AB 、的中点,AB AC =,可知AD AE =,可证BAD CAE ≌,由此即可求解;(2)根据题意可证BAD AGD ∽△△,则2AD DG BD =⋅,AD CD =,由此即可求解.【小问1详解】证明:∵点D 、E 分别是边AC AB 、的中点,∴11,22AD AC AE AB ==,∵AB AC =,∴AD AE =,∵,,AD AE DAB EAC AB AC =∠=∠=;∴BAD CAE ≌,∴ABD ACE ∠=∠.【小问2详解】证明:∵点D 是边AC 的中点,DFAC ⊥,∴,FA FC AD CD ==,∴FAD ACE ∠=∠,∵ABD ACE ∠=∠,∴ABD FAD ∠=∠,∵ADB GDA ∠=∠,∴BAD AGD ∽△△,∴BD AD AD GD=,∴2AD DG BD =⋅.∵AD CD =,∴2CD DG BD =⋅.【点睛】本题主要考查三角形全等的判定和性质,三角形相似的性质,掌握三角形全等的判定和性质,三角形相似的判定和性质是解题的关键.24.在平面直角坐标系xOy 中,抛物线线2y ax bx =+经过(1,3)(2,0)A B -、,点C 是该抛物线上的一个动点,连接AC ,与y 轴的正半轴交于点D .设点C 的横坐标为m .(1)求该抛物线的表达式;(2)当32DC AD =时,求点C 到x 轴的距离;(3)如果过点C 作x 轴的垂线,垂足为点E ,连接DE ,当23m <<时,在CDE 中是否存在大小保持不变的角?如果存在,请指出并求其度数;如果不存在,请说明理由.【答案】(1)22y x x=-(2)34(3)存在;45︒【分析】(1)用待定系数法求函数解析式即可;(2)过点C 作y 轴的垂线,垂足为点N ,过点A 作y 的垂线,垂足为点M ,设点()22,2C m m m -,证明AMD CND ∽,求出132m =-,232m =,然后分两种情况进行讨论,求出结果即可;(3)过点C 作y 轴的垂线,垂足为点P ,过点A 作CP 的垂线,垂足为点Q ,设点C 的坐标为()2,2m m m -,求出23DP m m =-+,得出EO DO =,在Rt DOE △中,根据90DOE ∠=︒,tan 1EO EDO DO∠==,得出45EDO ∠=︒,即可得出答案.【小问1详解】解:∵抛物线2y ax bx =+经过(1,3)A -和(2,0)B ,∴3420a b a b -=⎧⎨+=⎩,∴1,2a b ==-,∴该抛物线的表达式为22y x x =-.【小问2详解】解:过点C 作y 轴的垂线,垂足为点N ,过点A 作y 的垂线,垂足为点M,如图所示:设点()22,2C m m m -,∵()1,3A -,∴1AM =,CN m =,∵AM y ⊥轴,CN y ⊥轴,即90AMD CND ∠=∠=︒,∵MDA CDN ∠=∠,∴AMD CND ∽,∴CN DC AM AD=,即312m=,解得:132m =-,232m =,①当32m =-时,点321,24C ⎛⎫- ⎪⎝⎭,设直线AC 的解析式为()1110y k x b k =+≠,将()1,3A -,321,24C ⎛⎫- ⎪⎝⎭代入得:1111321342k b k b =-+⎧⎪⎨=-+⎪⎩,解得:119232k b ⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线AC 的解析式为9322y x =--,令0x =代入得:32y =-,则30,2D ⎛⎫- ⎪⎝⎭,此时点D 在y 轴的负半轴,不符合题意,舍去;②当32m =时,点33,24C ⎛⎫- ⎪⎝⎭,设直线AC 的解析式为()2220y k x b k =+≠,将()1,3A -,33,24C ⎛⎫- ⎪⎝⎭代入得:222233342k b k b =-+⎧⎪⎨-=+⎪⎩,解得:223232k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AC 的解析式为3322y x =-+,令0x =代入得:32y =,则30,2D ⎛⎫ ⎪⎝⎭,符合题意,则点C 到x 轴的距离为34.【小问3详解】解:存在,45DEC ∠=︒.过点C 作y 轴的垂线,垂足为点P ,过点A 作CP 的垂线,垂足为点Q,如图所示:由题意得1PQ =,点C 的坐标为()2,2m m m -,∵AQ y ∥轴,得CP DP CQ AQ=,∴()2132m DP m m m =+--,∴23DP m m =-+,∵DO DP PO =+,22PO m m =-,∴DO m =,∵EO m =,∴EO DO =,在Rt DOE △中,90DOE ∠=︒,tan 1EO EDO DO∠==,∴45EDO ∠=︒∵CE y ∥轴,∴45DEC EDO ∠=∠=︒.【点睛】本题主要考查了二次函数的综合应用,求一次函数解析式,三角形相似的判定和性质,平行线的性质,特殊角的三角函数值,等腰三角形的判定和性质,解题的关键是作出辅助线,数形结合,注意分类讨论.25.如图1,点D 为ABC 内一点,联结,BD CBD BAC ∠=∠,以BD BC 、为邻边作平行四边形,DBCE DE 与边AC 交于点F ,90ADE ∠=︒.(1)求证:ABC ECF ∽;(2)延长BD ,交边AC 于点G ,如果CE FE =,且ABC 的面积与平行四边形DBCE 面积相等,求AG GF 的值;(3)如图2,联结AE ,若DE 平分,5,2AEC AB CE ∠==,求线段AE 的长.【答案】(1)详见解析(2)2(3)2AE =-【分析】(1)平行四边形DBCE 中,BC DE ∥,CBD E ∠=∠,可求出BAC E ∠=∠,BC DE ∥,由此即可求证;(2)延长AD 交BC 于点H ,过点A 作AQ BC ∥,交射线BG 于点Q ,ABC CEF △∽△,由ABC 的面积与平行四边形的面积相等,可知2AH DH =,由AQ BC ∥,得AQ AD BH DH =,由DE BC ∥,得DF AD CH AH =,设2BH x =,则2HC x =,进一步得2,AQ x DF x ==,由此即可求解;(3)延长BD ,交AC 于点M ,交边AE 于点P ,由ABC CEF △∽△,可得52AB AC BC CE EF CF ===,设5,5BC m AC n ==,得2,2CF m EF n ==,根据BD CE ∥,得1,2DM FM DF AM PM AP CE CF EF AC CE AE =====,得2,1CE PM ==,52,522FM n m DF m n =-=-,由此即可求解.【小问1详解】解:在平行四边形DBCE 中,BC DE ∥,CBD E ∠=∠,又∵CBD BAC =∠∠,∴BAC E ∠=∠,∵BC DE ∥,∴BCA EFC ∠=∠,∴ABC ECF △∽△.【小问2详解】解:如图所示,延长BD 交AC 于点G ,过点A 作AQ BC ∥,交射线BG 于点Q ,∵ABC ECF △∽△,∴AB AC EC EF=,又∵CE FE =,∴AB AC =,如图所示,延长AD 交BC 于H ,由BC DE ∥,得90ADE AHC ∠=∠=︒,即AH BC ⊥,∵ABC 的面积与平行四边形的面积相等,∴12BC AH BC DH ⋅=⋅,即2AH DH =,∴AD DH =,∵,AB AC AH BC =⊥,∴BH CH =,∵AQ BC ∥,得AQ AD BH DH=,∵DE BC ∥,得DF AD CH AH=,设2BH x =,则2HC x =,则2,AQ x DF x ==,AQ BC ∥,DE BC ∥,得DE AQ ∥,∴2AG AQ GF DF==.【小问3详解】解:如图所示,延长BD ,交AC 于点M ,交边AE 于点P,由ABC ECF △∽△,∴52AB AC BC EC EF CF ===,设5,5BC m AC n ==,得2,2CF m EF n ==,由BD CE ∥,得PDE DEC ∠=∠,又AED DEC ∠=∠,∴PDE AED ∠=∠,∴PD PE =,在Rt ADE △中,90,90ADP PDE DAE AED ∠+∠=︒∠+∠=︒,∴DAE ADP ∠=∠,∴PD PA =,∴,2PE PA AE DP ==.由BD CE ∥,得1,2DM FM DF AM PM AP CE CF EF AC CE AE =====,由2,1CE PM ==,由52,522FM n m DF m n =-=-,∴52522222n m m n DM m n --==,∴n =,∴2DM =-,由21DP =-+,得2AE =-.【点睛】本题主要考查三角形相似的判定和性质,掌握三角形相似的判断和性质,根据题意列出方程是关键.。
上海市虹口区2023-2024学年九年级上学期期末数学试题(一模)(解析版)
2023-2024学年度初三年级第一次学生学习能力诊断练习数学练习卷(一模)(满分150分,时间100分钟)注意:1.本练习卷含三个大题,共25题;2.答题时,务必按答题要求在答题纸规定的位置上作答,在草稿纸、本练习卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1. 下列函数中,y 是关于x 的二次函数的是( )A. 21y x =−B. 21y x =C. 221y x =−D. 321y x =−【答案】C【解析】【分析】本题考查了二次函数的定义,形如2(y ax bx c a =++、b 、c 为常数, 0)a ≠ 的函数,叫二次函数,对照函数的解析式,根据函数的定义逐一判断即可.【详解】A .21y x =−是一次函数,不是二次函数,故选项A 不符合题意;B .21y x =不是二次函数,故选项B 不符合题意; C .221y x =−是二次函数,故选项C 符合题意;D .321y x =−不是二次函数,故选项D 不符合题意.2. 将抛物线23y x =−向左平移4个单位长度,所得到抛物线的表达式是( )A. ()234y x =−+B. ()234y x =−−C. 234y x =−+D. 234y x =−−【答案】A【解析】【分析】本题考查的是二次函数的图象与几何变换,根据“左加右减,上加下减”的法则解答即可.【详解】解:将抛物线23y x =−向左平移4个单位长度,得到抛物线是23(4)y x =−+.3. 如图,在Rt ABC △中,已知90C ∠=︒,3cos 4A =,3AC =,那么BC 的长为( )A. 7B. 7C. 4D. 5【答案】A【解析】【分析】本题考查了解直角三角形,勾股定理,正确理解锐角三角函数的定义是解决问题的关键.先根据余弦的定义计算出4AB =,然后利用勾股定理计算出BC 的长.【详解】解:∵90C ∠=︒, ∴3cos 4AC A AB ==, ∵3AC =,∴4AB =, ∴2222437BC AB AC ,故选:A .4. 如图,一条细绳系着一个小球在平面内摆动.已知细绳从悬挂点O 到球心的长度为50厘米,小球在左、右两个最高位置时,细绳相应所成的角∠AOB 为40°,那么小球在最高位置和最低位置时的高度差为( )A. ()5050sin 40−︒厘米B. ()5050cos 40−︒厘米C. ()5050sin 20−︒厘米D. ()5050cos 20−︒厘米【答案】D【解析】【分析】此题考查了解直角三角形的应用,三角函数的基本概念,当小球在最高位置时,过小球作小球位置最低时细绳的垂线,在构建的直角三角形中,可根据偏转角的度数和细绳的长度,求出小球最低位置时的铅直高度,进而可求出小球在最高位置与最低位置时的高度差.【详解】解:如图:过A 作AC OB ⊥于C ,Rt OAC 中,50OA =厘米,40220AOC ∠=︒÷=︒,cos2050cos20OC OA ∴=⋅︒=⨯︒.5050cos2050(1cos20)CD OA OC ∴=−=−⨯︒=−︒(厘米).故选:D .5. 如图,点G 是ABC 的重心,GE AC ∥交BC 于点E .如果12AC =,那么GE 的长为( )A. 3B. 4C. 6D. 8【答案】B【解析】 【分析】本题考查的是重心的概念和性质、相似三角形的判定和性质,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.连接BG 并延长交AC 于D ,根据点G 是ABC 的重心,得到1112622CD AC ==⨯=,23BG BD =,根据相似三角形的判定和性质即可得到结论.【详解】解:连接BG 并延长交AC 于D ,∵点G是ABC的重心,∴1112622CD AC==⨯=,23BGBD=,∵GE AC∥,∴BEG BCD∽,∴BG EG BD CD=,∴236EG =,∴4GE=,故选:B.6. 如图,四边形的顶点在方格纸的格点上,下列方格纸中的四边形与已知四边形相似的是()A. B. C. D.【答案】D【解析】【分析】本题考查了相似多边形的性质,相似三角形的判定与性质,勾股定理,如果两个四边形的四条边对应成比例,且四个角对应相等,那么这两个四边形相似,据此求解即可.【详解】解:设每个小正方形的边长为1,则已知四边形的四条边分别为12,25.选项A2,2,210,两个四边形的四条边对应不成比例,不符合题意;选项B中的四边形的四条边分别为25134,两个四边形的四条边不是对应成比例,故选项B中的四边形与已知四边形不相似,不符合题意;选项C中的四边形的四条边分别为25134,两个四边形的四条边不是对应成比例,故选项C 中的四边形与已知四边形不相似,不符合题意;选项D 中的四边形的四条边分别为2,2,4,25将已知四边形表示为四边形ABCD ,将选项D 中的四边形表示为EFGH .如图,连接AC 、EG ,则5AC =25EG =.在ABC 与EFG 中,12AB BC AC EF FG EG ===, ABC EFG ∴∽,BAC FEG ∴∠=∠,B F ∠=∠,ACB EGF ∠=∠.在ADC △与EHG 中,12AD DC AC EH HG EG ===, ADC EHG ∴∽,DAC HEG ∴∠=∠,D H ∠=∠,ACD EGH ∠=∠,BAD FEH ∴∠=∠,B F ∠=∠,DCB HGF ∠=∠,D H ∠=∠, 又12AB BC AD DC EF FG EH HG ====, ∴四边形ABCD ∽四边形EFGH .故选:D .二、填空题(本大题共12题,每题4分,满分48分)7. 已知:3:2x y =,那么():x y x −=____.【答案】1:3【解析】【分析】本题考查了比例的性质,表示出y 是解题的关键.先用x 表示出y ,再代入比例式进行计算即可得【详解】解:∵:3:2x y =, ∴23y x =, ∴()211:333x y x x x x x x ⎛⎫−=−== ⎪⎝⎭:::,故答案为:1:3.8. 如果向量a 、b 和x 满足()2a x a b −=−,那么x =____.【答案】2a b −+##2b a −【解析】【分析】本题考查的是平面向量,正确利用等式的性质是解题的关键.根据等式的性质变形,得到答案.【详解】解:()2a x a b −=−,∴2x a b −=−,∴2x a b =−+,故答案为:2a b −+.9. 已知抛物线()213y a x =−+开口向下,那么a 的取值范围是____. 【答案】1a >##1a <【解析】【分析】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当0a >时,抛物线开口向上;当a<0时,抛物线开口向下.根据二次函数的性质可知,当抛物线开口向下时,二次项系数10a −<. 【详解】解:抛物线2(1)3y a x =−+的开口向下,10a ∴−<,解得,1a >.故答案为:1a >.10. 如果点()2,1A 在抛物线()21y x m =−+上,那么m 的值是____. 【答案】0【解析】【分析】本题考查了二次函数图象上点的坐标特征,根据次函数图象上点的坐标满足二次函数解析式,把点(2,1)A 代入2(1)=−+y x m 即可求出m . 【详解】解:点(2,1)A 在抛物线2(1)=−+y x m 上,21(21)m ∴=−+, 解得0m =,11. 将抛物线y =2x 2平移,使顶点移动到点P (﹣3,1)位置,那么平移后所得新抛物线的表达式是_____.【答案】y =2(x +3)2+1【解析】【分析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【详解】抛物线y =2x 2平移,使顶点移到点P (﹣3,1)的位置,所得新抛物线的表达式为y =2(x+3)2+1. 故答案为y =2(x+3)2+1【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12. 已知点()13,A y −和()21,B y 都在抛物线()2212y x =−−上,那么1y 和2y 的大小关系为1y ____2y (填“>”或“<”或“=”).【答案】>【解析】【分析】本题考查二次函数图象上点的坐标特征,根据图象上点的坐标适合解析式将点A ,B 坐标代入解析式求解.【详解】解:将1(3,)A y −,2(1,)B y 代入22(1)2y x =−−得130y =,22y =−,12y y ∴>.故答案为:>.13. 已知抛物线2y x bx c =−++如图所示,那么点(),P b c 在第____象限.【答案】二【分析】本题主要考查了二次函数的性质,根据抛物线的开口方向和对称轴位置确定b 的符号,抛物线与y 轴的交点确定c 的符号,即可确定点(,)P b c 所在的象限. 【详解】解:由抛物线的图象得,022b b a −=<,0c >, 0b ∴<,的(,)P b c ∴在第二象限.故答案为:二.14. 一个三角形框架模型的边长分别为3分米、4分米和5分米,木工要以一根长6分米的木条为一边,做与模型相似的三角形,那么做出的三角形中,面积最大的是____平方分米.【答案】24【解析】【分析】本题考查相似三角形的性质,勾股定理的逆定理,由相似三角形的判定:三组对应边的比相等的两个三角形相似求出三角形最大的三边,根据勾股定理的逆定理判断新三角形是直角三角形,根据三角形的面积公式计算即可.【详解】解:当长是6分米的木条与三角形框架模型的边长最短的3分米一条边是对应边时,做出的三角形的三边最大,面积最大,设长是4分米,5分米的边的对应边的长分别是a 分米,b 分米,3:64:5:a b ∴==,8a ∴=,10b =,∴其他两条边的长分别是8分米,10分米,2226810+=,∴做出的三角形是直角三角形,直角边分别是6分米,8分米,∴做出的三角形的面积为168242⨯⨯=(平方分米).15. 如图,已知AD EF BC ∥∥,2BC AD =,2BE AE =,AD a =,那么用a 表示EF =____.【答案】43a 【解析】 【分析】本题考查了向量的运算、相似三角形的判定与性质,连接BD ,交EF 于点G ,先根据AD EF BC ∥∥求得12AE DF BE CF ==,EGB ADB ∽,DGF DBC ∽,根据相似三角形的性质可得23EG AD =,13GF BC =,即可得出43EF EG GF AD =+=,由此即可得.【详解】解:连接BD ,交EF 于点G ,∵AD EF BC ∥∥,2BE AE =, ∴12AE DF BE CF ==,EGB ADB ∽,DGF DBC ∽, 32EG BE AD AB ∴==,31GF DF BC DC ==, ∴23EG AD =,13GF BC =, 2BC AD =, ∴1233GF BC AD == ∴43EF EG GF AD =+= 4433EF AD a ∴==, 故答案为:43a . 16. 如图,在平行四边形ABCD 中,点F 是AD 上的点,2AF FD =,直线BF 与AC 相交于点E ,交CD 的延长线于点G ,若2BE =,则EG 的值为________.【答案】3【解析】【分析】本题考查了平行四边形的性质,平行线分线段成比例,设FD x =,则2AF x =,3AD x =,根据平行四边形的性质可得AD BC ∥,AB CD ∥,3AD BC x ==,根据平行线分线段成比例即可解决问题.【详解】解:设FD x =,由2AF FD =,则2AF x =,3AD x =,四边形ABCD 平行四边形,∴AD BC ∥,AB CD ∥,3AD BC x ==,2233AE AF x EC BC x ∴===, 23BE AE EG EC ∴==, 2BE =,223EG ∴=, 3EG ∴=,故答案为:3.17. 定义:如果以一条线段为对角线作正方形,那么称该正方形为这条线段的“对角线正方形”.例如,图①中正方形ABCD 即为线段AC 的“对角线正方形”.如图②,在Rt ABC △中,90C ∠=︒,3AC =,4BC =,点P 在边AB 上,如果线段PC 的“对角线正方形”有两边同时落在ABC 的边上,那么AP 的长是____.【答案】157【分析】本题考查了正方形的性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.根据正方形的性质和相似三角形的判定和性质定理即可得到结论.【详解】解:当线段PC 的“对角线正方形”有两边同时落在ABC 的边上时,设正方形的边长为x ,则4PE CE PD CD x BE x =====−,,∵PE AC ∥,∴BPE BAC ∽, ∴PE BE AC BC=, ∴434x x −=, 解得:127x =, ∴127PD =,129377AD AC CD =−=−=, ∴22157AP AD PD =+=,故答案为:157. 18. 如图,在ABC 中,5AB AC ==,3tan 4B =,点M 在边BC 上,3BM =,点N 是射线BA 上一动点,连接MN ,将BMN 沿直线MN 翻折,点B 落在点B '处,联结B C ',如果B C AB '∥,那么BN 的长是____.【答案】6【分析】本题主要考查了三角形折叠与解直角三角形,过M 点作MG B C '⊥,FM AB ⊥,AH BC ⊥垂足分别为F 、G 、H ,由5AB AC ==,3tan 4B =,求出3AH =,4BH CH ==,9sin 5FM BM B =⋅∠=,sin 3MG CM BCB '=⋅∠=,得出F 、M 、B '三点在同一直线上,进而可得18tan 5FN FB FB N ''=⋅∠=,再求出12tan 5FM BF B ==∠,由6BN BF FN =+=解题. 【详解】解:过M 点作MG B C '⊥,FM AB ⊥,AH BC ⊥垂足分别为F 、G 、H ,设3AH x =, ∵3tan 4B =,AH BC ⊥ ∴4BH CH x ==∵5AB AC ==,222AH BH AB +=,∴222(3)(4)5x x +=,解得1x =,∴3AH =,4BH CH ==,∴3sin 5B =, ∵BC AB '∥,∴B BCB '∠=∠,∵3BM =,∴5CM =, ∴39sin 355FM BM B =⋅∠=⨯=, 3sin 535MG CM BCB '=⋅∠=⨯=, ∵3MB MB '==,∴MG MB '=,即B '与G 点重合,∴F 、M 、B '三点在同一直线上, ∴924355FB FM MG '=+=+=, 由折叠可知:FB N B '∠=∠, ∴24318tan 545FN FB FB N ''=⋅∠=⨯=, ∵9312tan 545FM BF B ==÷=∠, ∴1218655BN BF FN =+=+=, 故答案为6【点睛】本题涉及了解三角形、折叠性质、等腰三角形性质、勾股定理等,解题关键是通过计算点M 到B C '的距离等于BM 得出F 、M 、B '三点在同一直线上.三、解答题(本大题共7题,满分78分)19. 计算:2tan 454sin 30cos30cos60︒︒−︒−︒【答案】3【解析】【分析】直接利用特殊角的三角函数值代入进而计算得出答案.【详解】解:2tan 454sin 30cos30cos60︒︒−︒−︒ 214()231=⨯− 131=− 131)=−+3=−【点睛】本题主要考查了特殊角的三角函数值,解题的关键是熟记特殊角三角函数值.20. 画二次函数2y ax bx =+的图像时,在“列表”的步骤中,小明列出如下表格(不完整).请补全表格,并求该二次函数的解析式. x …1− 0 2 4 5 … y …5− 4 5− …【答案】见解析,24y x x =−+【解析】【分析】此题主要考查了待定系数法求二次函数的解析式,求二次函数的值,熟练掌握待定系数法求二次函数的解析式是解决问题的关键.由表格中的对应值得当=1x −时,5y =−,当2x =时,4y =,然后将其代入二次函数2y ax bx =+中求出a ,b 的值可得该二次函数的解析式,然后再分别求出当0x =时,4x =时对应的y 的值即可. 【详解】解:由表格中的对应值可知:当=1x −时,5y =−,当2x =时,4y =,∴5424a b a b −=−⎧⎨+=⎩, 解得:14a b =−⎧⎨=⎩, ∴该二次函数的解析式为:24y x x =−+,∴当0x =时,0y =,当4x =时,0y =,填表如下: x …1− 0 2 4 5 … y …5− 0 4 0 5− …21. 如图①是某款智能磁吸键盘,如图②是平板吸附在该款设备上的照片,图③是图②的示意图.已知8cm BC =,20cm CD =,63BCD ∠=︒.当AE 与BC 形成的ABC ∠为116︒时,求DE 的长.(参考数据:sin630.90︒≈,cos630.45︒≈,cot 630.50︒≈;sin530.80︒≈,cos530.60︒≈,cot530.75︒≈)【答案】11cm【解析】【分析】本题考查了解直角三角形的应用,过B 作BH CE ⊥于H ,解直角三角形即可得到结论.【详解】解:过B 作BH CE ⊥于H ,在Rt BCH △中,sin 630.908BH BH BC ︒==≈,cos630.458CH CH BC ︒==≈, 7.2cm BH ∴=, 3.6cm CH =,在Rt BEH △中,53BEH ABC BCE ∠=∠−∠=︒,cot 530.757.2HE HE BH ∴︒==≈, 5.4cm HE ∴=,3.6 5.49(cm)CE CH EH ∴=+=+=,20911(cm)DE CD CE ∴=−=−=,答:DE长为11cm .22. 如图①,已知线段a 、b 和MON ∠.如图②,小明在射线OM 上顺次截取2OA a =,3AB a =,在射线ON 上顺次截取2OC b =,3CD b =.连接AC 、BC 和BD ,4AC =,6BC =.(1)求BD 的长;(2)小明继续作图,如图③,分别以点B 、D 为圆心,以大于12BD 的长为半径作弧,两弧分别相交于点P 、Q ,连接PQ ,分别交BD 、OD 于点E 、F .如果BC OD ⊥,求EF 的长.【答案】(1)10BD =(2)154EF =【解析】【分析】本题主要考查了相似三角形的判定和性质以及基本作图.(1)由两边对应成比例及夹角相等,两三角形相似证明OCA ODB ∽,在相似三角形性质即可求解; (2)在Rt BCD 由勾股定理求出228CD BD BC =−=,再根据作法可知PQ 是BD 的垂直平分线,证明∽BCD EFD ,由相似三角形性质即可求解.【小问1详解】解:∵2OA a =,3AB a =,2OC b =,3CD b = ∴25OA OC OB OD ==, 又∵O O ∠=∠,∴OCA ODB ∽, ∴25AC OA BD OB ==, ∵4AC =, ∴425BD = ∴10BD =,【小问2详解】∵6BC =,10BD =,BC OD ⊥, ∴2222C 1068CD BD B =−=−=,由作法可知,PQ 是BD 的垂直平分线,即EF BD ⊥,152DE BE BD ===, ∵CDB EDF ∠=∠,BCD FED ∠=∠,∴BCD FED ∽, ∴BC CD EF ED =,即685EF =, ∴154EF = 23. 如图,在ABC 中,已知点D 、E 分别在边BC AB ,上,EC 和AD 相交于点F ,EDB ADC ∠=∠,2DE DF DA =⋅.(1)求证:ABD ECD ∽;(2)如果90ACB ∠=︒,求证:12FC EC =. 【答案】(1)见解析;(2)见解析【解析】【分析】本题考查了相似三角形的判定和性质,直角三角形的性质,熟练掌握相似三角形的判定和性质定理是解题的关键.(1)根据相似三角形的判定和性质定理即可得到结论;(2)根据相似三角形的判定和性质以及直角三角形的性质即可得到结论.【小问1详解】证明:∵2·DE DF DA =, ∴DE DF AD DE=, ∵FDE EDA ∠=∠,∴DEF DAE ∽,∴DAE DEF ∠=∠,∵EDB ADC ∠=∠,∴ADB CDE ∠=∠,∴ABD ECD ∽;【小问2详解】由(1)知,ABD ECD ∽,∴B ECD ∠=∠,∴BE CE =,∵90ACB ∠=︒,∴BAC B BCE ACE ∠+∠=∠+∠,∴BAC ACE =∠∠,∴AE BE CE ==,取AD 的中点G ,连接CG ,∵=90ACD ∠︒, ∴12DG CG AD ==,∴GDC GCD ∠=∠,∴1802DGC ADC ∠=︒−∠,∵BDE ADC ∠=∠,∴1802ADE ADC ∠=︒−∠,∴ADE CGF ∠=∠,由(1)知,DEF DAE ∽,∴AED DFE ∠=∠,∵DFE CFG ∠=∠,∴AED CFG ∠=∠,∴CGF ADE ∽,∴12CG CF AD AE ==, ∴12CF AE =, ∴12FC EC =. 24. 如图,在平面直角坐标系xOy 中.已知抛物线22y x x m =++经过点()3,0A −,与y 轴交于点C ,连接AC 交该抛物线的对称轴于点E .(1)求m 的值和点E 的坐标;(2)点M 是抛物线的对称轴上一点且在直线AC 的上方.①连接AM 、CM ,如果AME MCA ∠=∠,求点M 的坐标;②点N 是抛物线上一点,连接MN ,当直线AC 垂直平分MN 时,求点N 的坐标.【答案】(1)3m =−,点E (1,2)−−(2)①点M (1−,22),②点N (12−,2)−【解析】【分析】(1)把(3,0)A −代入22y x x m =++,求出m ,求出抛物线的对称轴,在用待定系数法求出直线AC 的解析式,可得点E 的坐标.(2)①设(1,)M n −,证明AME ACM ∽,得到2AM AE AC =⋅,利用勾股定理得出AE ,AC ,AM 的长,列方程求n ,可求M 的坐标.②连接NE ,求出90MEN ∠=︒,N 的纵坐标为2−,在代入二次函数解析式求横坐标.【小问1详解】解: 抛物线22y x x m =++经过点(3,0)A −, 960m ∴−+=,解得3m =−,(0,3)C ∴−,抛物线的解析式为223y x x =+−,2223(1)4y x x x =+−=+−,∴抛物线的对称轴为直线=1x −,设直线AC 的解析式为y kx b =+,∴303k b b −+=⎧⎨=−⎩,∴13k b =−⎧⎨=−⎩,∴直线AC 的解析式为3y x =−−,当=1x −时,=2y −,∴点E 的坐标为(1,2)−−;【小问2详解】①如图,设(1,)M n −,(3,0)A −,(0,3)C −,(1,2)E −−,22(31)222AE ∴−++,22(3)332AC =−+222(31)4AM n n =−+++AME MCA ∠=∠,MAE CAM ∠=∠,AME ACM ∴∽, ∴AEAMAM AC =,2AM AE AC ∴=⋅,242232n ∴+=122n ∴=−,222n =.∴点M 的坐标为(1−,22);②连接NE .3OA OC ==,=90AOC ∠︒,45OAC OCA ∴∠=∠=︒,45AEM ∴∠=︒,直线AC 垂直平分MN ,ME NE ∴=,45AEM AEN ∠=∠=︒,90NEM ∴∠=︒.∵点E 纵坐标为2−,∴点N 的纵坐标为2−,2232x x ∴+−=−,2210x x +−=,112x =−212x =−.所以点N 的坐标为(12−−,2)−.【点睛】本题考查了二次函数的性质和应用,待定系数法求一次函式的解析式,相似三角形的判定和性质,垂直平分线的性质,关键是二次函数和三角形知识的综合运用.25. 如图①,在Rt ABC △中,90ACB ∠=︒,4tan 3ABC ∠=,点D 在边BC 的延长线上,连接AD ,点E 在线段AD 上,EBD DAC ∠=∠.的(1)求证:DBA DEC ∽△△;(2)点F 在边CA 的延长线上,DF 与BE 的延长线交于点M (如图②).①如果2AC AF =,且DEC 是以DC 为腰的等腰三角形,求tan FDC ∠的值; ②如果52DE =,3EM =,:5:3FM DM =,求AF 的长. 【答案】(1)证明见解析(2)①36tan 7FDC ∠=或2;②85AF = 【解析】【分析】(1)证明ACD BED △∽△,从而得出AD CD BD DE=,进而得出DBA DEC ∽; (2)①由两种情形:当DC CD =时,可推出AD BD =,可设CD x =,3BC a =,4AC a =,则3AD BD a x ==+,在Rt ΔACD 中勾股定理得:222(4)(3)x a a x +=+,从而76x a =,进而得出76CD a =,6CF AF AC a =+=,从而求得36tan 7CF FDC CD ∠==;当CE CD =时,根据DBA DEC ∽得出AB CE AD CD=,从而AB AD =,进一步得出结果; ②根据(1)可设5BD t =,2AD t =,设3BC a =,4AC a =,5AB a =,先由条件52DE =,确定AB BD =,进而表示出EX 和AX ,作DN CF ∥,交BE 的延长线于点N ,设AC 与BE 的交点为X ,可得出DMN FMX ∽,从而35DN MN DM FX MX FM ===,从而得出53FX DN =,可证得DNE AXE ∆≅∆,从而得出5EN EX ==,52DN AX a ==,从而表示出5NX EN EX a =+=,52536FX DN a ==,进而得出53AF FX AX a =−=,根据35MN MX =得出3358a MN NX =EN MN ME −=列出方程535328a −=,从而求得a 的值,进一步得出结果. 【小问1详解】证明:EBD DAC ∠=∠,D D ∠=∠,ACD BED ∴∽, ∴AD CD BD DE=, DBA DEC ∴∽;【小问2详解】解:①当DC CD =时,由(1)知:AD CD BD DE=, AD BD ∴=,设CD x =,3BC a =,4AC a =,则3AD BD a x ==+,则Rt ACD △中,3AD a x =+,4AC a =,CD x =,由勾股定理得:222(4)(3)x a a x +=+,76x a ∴=, 76CD a ∴=, 2AC AF =,2AF a ∴=,6CF AF AC a ∴=+=,36tan 7CF FDC CD ∴∠==, 当CE CD =时,由(1)知:DBA DEC ∽, ∴AB CE AD CD=, AB AD ∴=,AC BD ,3CD CB a ∴==,6CF a =,tan 2CF FDC CD∴∠==, 综上所述:36tan 7FDC ∠=或2; ②如图,由(1)知:BD DE AD CD=, 52DE CD =, ∴52BD AD=, 设5BD t =,2AD t =,设3BC a =,4AC a =,5AB a =,53CD BD CD t a ∴=−=−,在Rt ACD △中,由勾股定理得,222CD AC AD +=,222(53)(4)(2)t a a t ∴−+=,15t a ∴=,255t a =(舍去),55BD t a ∴==,532CD t a a =−=,55DE a ==, AB BD ∴=,由(1)知: ACD BED △∽△,90BED ACD ∴∠=∠=︒,BE AD ∴⊥,5AE DE a ∴==,21tan 42EX CD a DAC AE AC a ∠====, 152EX AE ∴==, 2252AX AE EX a ∴+=,作DN CF ∥,交BE 的延长线于点N ,设AC 与BE 的交点为X ,N AXE ∴∠=∠,DMN FMX ∽, ∴35DN MN DM FX MX FM ===, 53FX DN ∴=, AEX DEN ∠=∠,(AAS)DNE AXE ∴≌,5EN EX ∴==,52DN AX a ==, 5NX EN EX a ∴=+=,52536FX DN a ==, 2555623AF FX AX a a a ∴=−=−=, 35MN MX =, 3358a MN NX ∴==, 由EN MN ME −=得,5353=, 245a ∴=5853AF a ∴==. 【点睛】本题考查了相似三角形的判定和性质,解直角三角形,等腰三角形的判定和性质等知识,解决问题的关键是作辅助线,构造相似三角形.。
初三数学一模试题及答案
初三数学一模试题及答案一、选择题(每题3分,共30分)1. 下列各数中,是无理数的是()。
A. 0.1010010001…(每两个1之间依次多一个0)B. 0.1010010001…(每两个1之间依次多一个1)C. πD. 0.33333(3无限循环)2. 已知一个等腰三角形的两边长分别为3和4,那么这个三角形的周长是()。
A. 7B. 10C. 11D. 143. 如果一个数的平方根是它本身,那么这个数是()。
A. 0B. 1C. -1D. 0或14. 函数y=2x+1的图象不经过第几象限()。
A. 第一象限B. 第二象限C. 第三象限D. 第四象限A. 0B. 1C. -1D. 任意数6. 已知一个角的余角是30°,那么这个角的补角是()。
A. 60°B. 90°C. 120°D. 150°7. 一个数的绝对值是它本身,这个数是()。
A. 正数B. 负数C. 非负数D. 非正数8. 一个二次函数的顶点坐标是(2,3),那么这个函数的解析式可以是()。
A. y=(x-2)^2+3B. y=-(x-2)^2+3C. y=(x+2)^2-3D. y=-(x+2)^2-39. 一个数的立方根是它本身,这个数是()。
A. 0B. 1C. -1D. 0或1或-1A. 0B. 1C. -1D. 1或-1二、填空题(每题3分,共30分)1. 一个数的绝对值是5,这个数可以是______。
2. 一个数的相反数是-2,这个数是______。
3. 一个数的平方是25,这个数可以是______。
4. 一个数的立方是-8,这个数是______。
5. 一个角的补角是120°,这个角的度数是______。
6. 一个角的余角是60°,这个角的度数是______。
7. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是______。
8. 函数y=3x-2与x轴的交点坐标是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学第一学期期末质量评估试卷(满分:150分考试时间:100分钟)考生注意:l .本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答 题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证 明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答 题纸的相应位置上,】(闸北2012一模1)三角形的重心是三角形的( )A .三条角平分线的交点;B .三条中线的交点;C .三条高的交点;D .三条中位线的交点. 【正确答案】B .(闸北2012一模2)如图,在△PMN 中,点Q 、R 分别在PN 、MN 边上,若QR ∥PM ,则下列比例式中,一定正确的是( )A .::QN PQ MR RN =;B .::PM PN QR QN =;C .::QR PM NR RM =;D .::MR MN QN PN =.【正确答案】B .(闸北2012一模3)在Rt △ABC 中,90C ︒∠=,12AC =,5BC =,那么sinA 等于( )A .513; B .1213; C .512; D .125【正确答案】A .(闸北2012一模4)在Rt △ABC 中,90B ︒∠=,A α∠=,BD 是斜边AC 上的高,那么( )A .AC BC sin α=⋅;B .AC AB cos α=⋅;C .BC AC tan α=⋅;D .BD CD cot α=⋅. 【正确答案】D .(闸北2012一模5)下列二次函数中,图象的开口向上的是( )A .216y x x =--;B .281y x x =-++;C .()()15y x x =-+;D .()225y x =--.【正确答案】B .(闸北2012一模6)下列说法中,错误的是( )A .二次函数()20y ax bx c a =++>的图象是开口向上的抛物线;B .二次函数()210y ax a =+≠的图象必在x 轴上方;C .二次函数图象的对称轴是y 轴或与y 轴平行的直线;D .二次函数图象的顶点必在图象的对称轴上. 【正确答案】B .二、填空题:(本大题共12题,每题4分,满分48分)(闸北2012一模7)若:7:3x y =,则():x y y +的值为 .【正确答案】10:3.(闸北2012一模8)己知:线段MN 的长为20厘米,点P 是线段MN 的黄金分割点,则较长线段MP 的长是 厘米.【正确答案】10.(闸北2012一模9)在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,9AB =,3BD =,5AE =,则AC = . 【正确答案】7.5.(闸北2012一模10)如图,在直角梯形ABCD 中,AD ∥BC ,90A ︒∠=,BD DC ⊥,如果2AD =,8BC =,那么BD = .【正确答案】4.(闸北2012一模11)如果0k =,而0a ≠ ,那么ka= . 【正确答案】0.(闸北2012一模12)计算:6045cos cot +=. 【正确答案】23.(闸北2012一模13)如图三,直升飞机在离水平地面600米的上空A 处测得地面目标点B 的俯角为60︒,此时A 处与目标点B 之间的距离是 米.【正确答案】(闸北2012一模14)若一段斜坡的坡度为,则这段斜坡的坡角等于 (度). 【正确答案】30°.(闸北2012一模15)已知二次函数()2211y m x x m =-++-的图像经过原点,则m = .【正确答案】-114.(闸北2012一模16)将抛物线23y x =向下平移6个单位,所得到的抛物线的表达式是 . 【正确答案】236y x =-.(闸北2012一模17)广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠与喷头的水平距离x (米)的函数解析式是()2510042y x x x =-+≤≤.水珠可以达到 的最大高度是 (米). 【正确答案】10.(闸北2012一模18)在△ABC 中,AD BC ⊥于点D ,20AB cm =,15AC cm =;12AD cm =,点 E 在AB 边上,点F 、G 在BC 边上,点H 不在△ABC 外.如果四边形EFGH 是符合要求的最大的正 方形,那么它的边长是 cm . 【正确答案】3或37300.三、解答题:(本大题共12题,满分78分)19.(本题满分10分,第(1)小题满分4分,第(2)小题满分3分,第(3)小题满分3分)已知:二次函数2y a x b x c =++的图像经过点()1,0、()2,10、()2,6--.(1)求这个抛物线的解析式;(2)运用配方法,把这个抛物线的解析式化为()2y a x m k =++的形式,并指出它的顶点坐标; (3)把这个抛物线先向右平移4个单位,再向上平移6个单位,求平移后得到的抛物线与y 轴交点的坐标.【正确答案】解:(1)根据题意得:04210426a b c a b c a b c ++=⎧⎪++=⎨⎪-+=-⎩,可以解得246a b c =⎧⎪=⎨⎪=-⎩. (2+1分)∴这个抛物线的解析式是2246y x x =+-. (1分)解:(2)222462(2)6y x x x x =+-=+-, 22(21)26y x x =++--, ∴22(1)8y x =+-. (2分) ∴顶点坐标是(1,8)--. (1分)解:(3)平移后得到的抛物线的解析式是22(3)2y x =--. (2分)令0x =,则16y =,∴它与y 轴的交点的坐标是(0,16). (1分)20.(本题满分10分)已知:如图,在△ABC 中,A D B C ⊥于点D ,点E 是AB 边的中点.△ABC 的面积为126, 21BC =,20AC =.求: (1)sinC 的值;(2)cot ADE ∠的值. 【正确答案】解:(1)由条件得12ABC S AD BC ∆=⋅, ∴1126212AD =⨯. ∴12AD =. (2分) ∵20AC =,∴35AD sinC AC ==. (2分)解:(2)在Rt ADC ∆中,∵20AC =,12AD =,∴16CD =. (2分) ∵21BC =,∴5BD =. (1分) 在Rt △ADB 中,∵点E 是边AB 的中点,∴E D E A =, (1分)125AD cot ADE cot BAD BD ∠=∠==. (2分)21.(本题满分10分)已知:如图,在平行四边形A B C D 中,点E 、F 在AD 边上,且A E E F F D ==,BE 与AC交于点G ,设GB a = ,GC b = ,试用a 、b 的线性组合表示向量BC 、AB 、FC.【正确答案】解:(1)∵GB a = ,GC b =∴BC GC GB b a =-=-. (2分)解:(2)∵在平行四边形ABCD 中,AD BC =,AD ∥BC , ∵AE EF FD ==,∴::1:3AG CG AE BC ==. (1分)∴13AG CG =. ∴1133AG GC b ==. (1分)∴13AB AG GB b a =+=+. (2分)解:(3)∵2233AF AD BC ==,∴()2233AF BC b a ==- . (1分)∵1133AG GC b == .∴34AC AG GC b =+=. (1分)∴()()322433FC AC AF b b a b a =-=--=+ . (2分)22.(木题满分10分)已知:如图,在坡度为1:2.4i =的斜坡BQ 上有一棵香樟树PQ ,柳明在A 处测得树顶点P 的仰角为α,并且测得水平的8AB =米,另外13BQ =米,0.75tan α=.点A 、B 、P 、Q 在同一平面上,PQ AB ⊥.求:香樟树PQ 的高度.【正确答案】解:延长PQ 交直线DB 于点H . (1分)∵在Rt △QBH 中,:1:2.4QH BH =. (2分) ∴设 2.4QH xBH x ==,∵13BQ =米,∴()2222.413x x +=. (1分)∴5x =.∴5QH =(米),12BH =(米). (2分) ∵8AB =(米), ∴20AH =(米). ∵0.75tan α=,∴0.75PHAH =. (2分) 即0.7520PH =,∴15PH =(米).∴15510PQ PH QH =-=-= (米) (2分)23.(本题满分12分,第(1)小题4分,第(2)小题8分)已知:如图,在四边形ABCD 中,BD 平分ABC ∠,与AC 交于点E ,2AD BD ED =⋅.(1)求证:△ADE ∽△BDA(2)如果10BA =,12BC =,15BD =,求BE 的长.【正确答案】(1)证明:∵2AD BD ED =⋅,∴ADBDED AD =. (2分) ∵ADE BDA ∠=∠,∴△AED ∽△BDA . (2分)(2)解:∵△AED ∽△BDA ,∴B A D A E D ∠=∠. (2分) ∵AED BEC ∠=∠,∴BAD BEC ∠=∠. (1分) ∵BD 平分ABC ∠,即EBC ABD ∠=∠,∴△EBC ∽△ABD . (2分) ∴BABEBD BC =. (1分) ∵10BA =,12BC =,15BD =, ∴101512BE =, ∴8BE =. (2分)24.(本题满分12分,每小题满分各4分)已知:如图,直线15y x =-与x 轴、y 轴分别相交于点A 和点B .抛物线213y x b x c =-++ 经过A 、B 两点.(1)求这个抛物线的解析式;(2)若这抛物线的顶点为点D ,与x 轴的另一个交点为点C .对称轴与x 轴交于点H ,求△DAC 的面积;(3)若点E 是线段AD 的中点.CE 与DH 交于点G ,点P 在y 轴的正半轴上,△POH 是否能够与 △CGH 相似?如果能,请求出点P 的坐标;如果不能,请说明理由.【正确答案】解:(1)直线15y x =-与x 轴、y 轴的交点()15,0A 和点()0,15B - (1分)由已知,得2115150315b c c ⎧-⨯++=⎪⎨⎪=-⎩,可以解得615b c =⎧⎨=-⎩. (2分) ∴抛物线的解析式为1516312-+-=x x y . (1分)解:(2)抛物线的解析式可变形为()129312+--=x y , (1分)所以顶点坐标为(9,12). (1分) 设0y =,则()2191203x --+=, ∴()2936x -=. ∴123,15x x ==,所以点C 的坐标为(3,0). (1分)所以7212122121=⨯⨯=⋅=AC DH S DAC △. (1分) 解:(3)因为点E 是线段AD 的中点,点H 是线段AC 的中点,∴点G 是△DAC 的重心.如图,∴143GH DH ==,∴9HO =,6CH =. (1分) 设△POH ∽△GHC 时,::PO GH HO CH =, 即:49:6PO =∴()10,6P . (2分) △POH ∽△CHG 时,::PO CH HO GH =, 即:69:4PO =, ∴272PO =. ∴2270,2P ⎛⎫⎪⎝⎭. (1分) ∴△POH 能够与△CHG 相似,相似时点P 的坐标为()10,6P 或2270,2P ⎛⎫ ⎪⎝⎭.25.(本题满分l4分,第(l )小题满分4分,第(2)小题满分4分,第(3)小题满分6分) 已知:如图1,在Rt △OAC 中,AO OC ⊥,点B 在OC 边上,6OB =,12BC =,90ABO C ︒∠+∠=.动点M 和N 分别在线段AB 和AC 边上.(l )求证△AOB ∽△COA ,并求cosC 的值;(2)当4AM =时,△AMN 与△ABC 相似,求△AMN 与△ABC 的面积之比;(3)如图2,当MN ∥BC 时,将△AMN 沿MN 折叠,点A 落在四边形BCNM 所在平面的点为点E .设=MN x ,△EMN 与四边形BCNM 重叠部分的面积为y ,试写出y 关于x 的函数关系式,并写出自变量x 的取值范围.图一 图二 【正确答案】 解:(1)∵AO ⊥OC ,∴∠ABO +∠BAO =90°. ∵∠ABO +∠C =90°,∴∠BAO =∠C . (1分) ∵∠ABO =∠COA ,∴△AOB ∽△COA . (1分) ∵6OB =,12BC =, ∴6::18OA OA =.∴OA =(1分)∴AC ===.∴OC cosC AC ===. (1分)解:(2)∵OC cosC AC ===, ∴︒=∠30C .∵6OA tan ABO OB ∠=== ∴︒=∠60ABO , (1分) ∴︒=∠30BAC .∴12AB BC ==. (1分)①当∠AMN =∠B 时,(如图)△AMN ∽△ABC .∵4AM =,∴2222::4:121:9AMN ABC S S AM AB ===△△. (1分) ②当∠AMN =∠C 时,(如图)△AMN ∽△ACB . ∵4AM =,∴2222::4:121:9AMN ABC S S AM AB ===△△. ∵4AM =,∴(2222::4:1:27AMN ABC S S AM AC ===△△.(1分)解:(3)可以求得:33612362121=⨯⨯=⋅=∆BC AO S ABC . ∵MN ∥BC ,∴△AMN ∽△ABC . ∴22:AMN ABC S S MN BC ∆∆=:.∴22::12AMN S x ∆=.∴2AMN S ∆=. (1分) ①当EN 与线段AB 相交时,设EN 与AB 交于点F (如图), ∵MN ∥BC ,∴o30ANM C ∠=∠=. ∴ANM BAC ∠=∠. ∴AM MN x ==.∵将△AMN 沿MN 折叠, ∴o 30ENM ANM ∠=∠=. ∴o90AFN ∠=.∴111222MF MN AM x ===. (1分) ∴::FMN AMN S S MF AM ∆∆=.∴21:1:22y x x ==.∴2(08)y x =<≤. (解析式1+定义域1分)②当EN 与线段AB 不相交时,设EN 于BC 交于点G (如图), ∵MN ∥BC∴::CN AC BM AB =.∴(12):12CN x =-.∴CN =. (1分) ∵CNG CBA ∆∆∽,∴22:CNG ABC S S CN BC ∆∆=:.∴22:):12CNG S ∆=.∴2)CNG S ∆=.∴22)ABC AMN CNG S S S S ∆∆∆=--=阴.即212)y x =+-<<. (1分)说明:①当EN 与线段AB 相交时,用计算MN 边上高的方法求y 时,求出高为x 341,得1分;当EN 与线段AB 不相交时,用梯形面积公式求y 时,求出梯形上底为()324x -,得1分.②定义域错一个,不扣分;两个全错,扣1分.。