离散数学 图论 ppt课件
合集下载
离散数学教学课件-第8章 图论
![离散数学教学课件-第8章 图论](https://img.taocdn.com/s3/m/bd7dac11a4e9856a561252d380eb6294dd882228.png)
解:以a,b,c,d,e,f,g作为顶点,能讲同一语言作一边
b
d
f
连通
a
g
c
e
§8.5 图的矩阵表示
复习:
R
传递闭包 R R R2 Rn
8.5.1 图的矩阵表示
G V , E V {v1, v2 , v3 ,, vn }
E {e1, e2 , e3 ,, em }
邻接矩阵
A (aij ) nn
起点
P v0 , v1,, vq
回
终点
路
P e1, e2 ,, eq
长度
8.2.1通路与回路
1
4
2 (1,2),(2,3) 1,2,3 (1,4),(4,3) 1,4,3
3
(1,2),(2,4),(4,1)
回路
8.2.1通路与回路
1
2 P:1,2,4,1,4,3
4
3 Q:1,2,4,3 复杂通路
8.5.1 图的矩阵表示
1
3
0 1 0 0 0
2
4
1 0 1 0 0
A 0 1 0 0 0
图1
5
0 0 0 0 1
0 0 0 1 0
1 0 1 0 0
0 2 0
0
0
A2 1 0 1 0 0
0 0 0
1
0
0 0 0 0 1
8.5.1 图的矩阵表示
1
3
1 0 1 0 0
2
4
0 2 0
cij 表示从 vi 到 v j 长度为 l 的通路数目
8.5.1 图的矩阵表示
定理 设邻接矩阵为A的无向简单图,则 Ak (k 1,2,....) 的元素
《离散数学图论》课件
![《离散数学图论》课件](https://img.taocdn.com/s3/m/b31299a90875f46527d3240c844769eae009a39c.png)
最短路径问题
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径
离散数学图论路与连通PPT课件
![离散数学图论路与连通PPT课件](https://img.taocdn.com/s3/m/253676059b89680202d82594.png)
第18页/共26页
7.2.3 图的连通度
定义7-2.4 设无向图G =<V,E>是连通图,若有结点集V1V,使图 G中删除了 V1的所有结点后,所得到的子图是不连通图,而删除了V1的任何真子集后,所
得到的子图仍是连通图,则称V1是G的一个点割集(cut-set of nodes) 。
k(G)=min{|V1|| 是G的点割集} 称为图G的点连通度(nodeconnectivity) 。
现对G的每一条边e=(u1,u2),若u1,u2都在 V1上 ,则存 在两条 路P1与P2分别 连接u与 u1和u与u2, 且P1、 P2的长 度均为 偶数, 闭路P1∪P2∪ {e}的 长度为 奇数, 则不难 看出G中 有一条 长为奇 数的圈 ,矛盾 。同样 u1和u2不能同 时含在 V2中。 故e的 两个端 点分别 在V1和 V2中。 因此G是二分 图。
G 定理7.2.1 非平凡图 是二分图当且仅当 中不含长为奇数的回路。
G
证明 必要性是明显的。
充分性:不妨设G中每一对顶点之间有路连接(否则
只需考虑G的每个每一对顶点之间有路连接的极大子
图)。任取G的一个顶点u,由G的假设,对G的每个顶
点v,在G中存在u-v路。现利用u对G的顶点进行分类。
设
第24页/共26页
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路 简单通路 复杂通路
7.2.1 路
例1、(2)
图(2)中过 v2 的回路 (从 v2 到 v2 )有:
第7页/共26页
1 v2e4v4e3v3e2v2
长度3
2 v2e5v5e6v4e3v3e2v2
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7
7.2.3 图的连通度
定义7-2.4 设无向图G =<V,E>是连通图,若有结点集V1V,使图 G中删除了 V1的所有结点后,所得到的子图是不连通图,而删除了V1的任何真子集后,所
得到的子图仍是连通图,则称V1是G的一个点割集(cut-set of nodes) 。
k(G)=min{|V1|| 是G的点割集} 称为图G的点连通度(nodeconnectivity) 。
现对G的每一条边e=(u1,u2),若u1,u2都在 V1上 ,则存 在两条 路P1与P2分别 连接u与 u1和u与u2, 且P1、 P2的长 度均为 偶数, 闭路P1∪P2∪ {e}的 长度为 奇数, 则不难 看出G中 有一条 长为奇 数的圈 ,矛盾 。同样 u1和u2不能同 时含在 V2中。 故e的 两个端 点分别 在V1和 V2中。 因此G是二分 图。
G 定理7.2.1 非平凡图 是二分图当且仅当 中不含长为奇数的回路。
G
证明 必要性是明显的。
充分性:不妨设G中每一对顶点之间有路连接(否则
只需考虑G的每个每一对顶点之间有路连接的极大子
图)。任取G的一个顶点u,由G的假设,对G的每个顶
点v,在G中存在u-v路。现利用u对G的顶点进行分类。
设
第24页/共26页
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路 简单通路 复杂通路
7.2.1 路
例1、(2)
图(2)中过 v2 的回路 (从 v2 到 v2 )有:
第7页/共26页
1 v2e4v4e3v3e2v2
长度3
2 v2e5v5e6v4e3v3e2v2
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7
《离散数学课件图论》PPT课件
![《离散数学课件图论》PPT课件](https://img.taocdn.com/s3/m/08568169ba1aa8114431d9ec.png)
,m3n6为真. 否则G中含圈,每个面至少由l(l3)条边围成
,又
l 1 2
l 2 l 2
在l=3达到最大值,由定理17.11可知m3n6.
定理17.13 设G为n(n3)阶m条边的极大平面图,则m=3n6. 证明:由定理17.4, 欧拉公式及定理17.7所证。
定理17.14 设G 为简单平面图,则 (G)5. 证明: 阶数 n6,结论为真。 当n7 时,用反证法。否则会 推出2m6n m3n,这与定理17.12矛盾.
如上面的例子。
18
精选PPT
平面图与对偶图之间的关系
定理17.17 设G*是连通平面图G的对偶图,n*, m*, r*和n, m, r分别为G*和G的顶点数、边数和面数,则 (1) n*= r (2) m*=m (3) r*=n (4) 设G*的顶点v*i位于G的面Ri中,则d(v*i)=deg(Ri) 证明: (1)、(2)平凡 (3) 应用欧拉公式 (4) 的证明中注意,桥只能在某个面的边界中,非桥边在两
20
精选PPT
自对偶图
定义:设G*是平面图G的对偶图,若G*G,则称G为自 对偶图. 概念: n阶轮图( Wn )、奇阶轮图、偶阶轮图 轮图都是自对偶图。 画出W6和W7的对偶图,并说明它们都是自对偶图。
21
精选PPT
第十七章 小结
❖ 主要内容 ▪ 平面图的基本概念 ▪ 欧拉公式 ▪ 平面图的判断 ▪ 平面图的对偶图
22
精选PPT
练习1
1. 设G是连通的简单的平面图,面数r<12,(G)3. (1) 证明G中存在次数4的面 (2) 举例说明当r=12时,(1) 中结论不真.
解 设G的阶数、边数、面数分别为n, m, r.
图论离散数学离散数学第四版清华出版社PPT课件
![图论离散数学离散数学第四版清华出版社PPT课件](https://img.taocdn.com/s3/m/64fe8fb33186bceb19e8bba5.png)
12/19/2020
28
b
e1
e4
a
e2
d
e5
e3
c
e5, e1, e2, e3, e4是简单通路,不是基本通路, 因为c, a, b, c, d, b中b, c均出现了两次。但c,
d, b, c是基本通路,也是基本回路。
12/19/2020
29
[定理] 在一个n阶图中,若从顶点u到v (uv)
❖ 起始状态是“人狼羊菜”,结束状态是“空”。
❖ 问题的解:找到一条从起始状态到结束状态的 尽可能短的通路。
12/19/2020
26
“巧渡河”问题的解
❖ 注意:在“人狼羊菜”的16种组合中允 许出现的只有10种。
人羊狼菜 人狼菜 人羊狼 人羊菜 人羊
狼菜
狼
12/19/2020
菜
羊
空(成功)
27
[定义] 简单通路(Simple Path)
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。
在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
12/19/2020
30
[定义] 连通性(connectivity)
设G=<V,E>,若从vi到vj存在一条通 路,则称vi到vj连通(connective)或可达。
说明:对无向图而言,若vi到vj可达,则 vj到vi也可达。对有向图而言则未必。
离散数学教学图论【共58张PPT】
![离散数学教学图论【共58张PPT】](https://img.taocdn.com/s3/m/1597b801c950ad02de80d4d8d15abe23482f03d0.png)
一 、图的基本概念
• 邻接和关联 • 无向图和有向图 • 零图和平凡图 • 简单图 • 完全图(无向完全图和有向完全图) • 有环图
一 、图的基本概念
• 有限图和无限图 设图G为< V,E,Ψ>
(l)当V和E为有限集时,称G为有限图,否则称G为无限图。 (2)当ΨG为单射时,称G为单图;当ΨG为非单射时,称G为重图,又称满足
二、生成树
1、生成树定义:
若无向图的一个生成子图T是树,则称T 为G的生 成树,T中的边称为树枝,E(G)-E(T)称为树T 的补,其中的每一边称为树T 的弦。
在任何图中,结点v的度(degree)d(v)是v所关联边的数目。
第三节 生成树、最短路径和关键路径 由结点a和它所有的后代导的子图,称为T的子树.
∴ T连通且具有m=n-1的图
{e5,e4,e8} , {e7,e6,e5,e2,e4} 第四节 欧拉图和哈密顿图
第四节 特殊图(欧拉图和哈密顿图等)
第五节 树、二叉树和哈夫曼树
离散数学教学图论
(优选 欧拉图和哈密顿图
(3)2=>3 ∴W(T)≤W(T1) ∴W(ei+1)≥W(f) 二. 哈密顿图的由来—周游世界问题:
第二节 图的矩阵表示 第四节 欧拉图和哈密顿图
证明:若G中一个边割集和一生成 树无公共边,则表示该边割集所分离的结点不在生成树中,这导致与生成树的定义矛盾。 哈密顿图的由来—周游世界问题: c)对新图向下旋转45度。 ei之后将取f而不是ei+1
为该顶点的度,列之和一定为2. • 有向图的关联矩阵 ----- 以节点数为行,边数为列.节点与边无关系,为0,有关系,则起点为1,
终点为-1;列之和一定为0,每行绝对值之和等于该节点的度数;其 中1的个数为该节点的出度,-1的个数为对应节点的入度;所有元 素的和为0,1的个数等于-1的个数,都等于边数m.
离散数学——图论 ppt课件
![离散数学——图论 ppt课件](https://img.taocdn.com/s3/m/c292105a7e21af45b207a802.png)
ppt课件
11
哥尼斯堡七桥问题
把四块陆地用点来表示,桥用点与点连线表 示。
ppt课件
12
欧拉将问题转化为:任何一点出发,是否存在通过 每条边一次且仅一次又回到出发点的路?欧拉的结 论是不存在这样的路。显然,问题的结果并不重要, 最为重要的是欧拉解决这个问题的中间步骤,即抽 象为图的形式来分析这个问题 。
因此,尽管本教材介绍的是较为基础的图论内容, 但阅读理解与完成习题是学习图论必不可少的步骤。
ppt课件
8
图是人们日常生活中常见的一种信息载体, 其突出的特点是直观、形象。图论,顾名思 义是运用数学手段研究图的性质的理论,但 这里的图不是平面坐标系中的函数,而是由 一些点和连接这些点的线组成的结构 。
P(G)表示连通分支的个数。连通图的连通 分支只有一个。
ppt课件
40
练习题---图的连通性问题
1.若图G是不连通的,则补图是连通的。 提示:直接证法。
根据图的不连通,假设至少有两个连通分 支;任取G中两点,证明这两点是可达的。
ppt课件
41
2.设G是有n个结点的简单图,且 |E|>(n-1)(n-2)/2,则G是连通图。
33
§8.2通路、回路与连通性
定义:通路与回路 设有向图G=<V,E>,考虑G中一条边的序列
(vi1,vi2,…, vik),称这种边的序列为图的通路。 Vi1、vik分别为起点、终点。通路中边的条数称
为通路的长度。 若通路的起点和终点相同,则称为回路。
ppt课件
34
简单通路、基本通路
简单通路:通路中没有重复的边。 基本通路:通路中没有重复的点。 简单回路和基本回路。 基本通路一定是简单通路,但反之简单通路
离散数学PPT【共34张PPT】
![离散数学PPT【共34张PPT】](https://img.taocdn.com/s3/m/cc3f16c36429647d27284b73f242336c1eb9302f.png)
15
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
【最新】离散数学之图论ppt模版课件
![【最新】离散数学之图论ppt模版课件](https://img.taocdn.com/s3/m/d73d29d65acfa1c7ab00cc18.png)
第四部分:图论(授课教师:向胜军)
31
[定义] 无向图的连通性
若G=<V,E>中任意两个顶点都连通,则称 此无向图是连通的(connected)。
[定理] 任意一个连通无向图的任意两个不同顶
点都存在一条简单通路。
[定义] 连通分图(connected components)
图G可分为几个不相连通的子图,每一子 图本身都是连通的。称这几个子图为G的连通 分图。
[定义] 通路(path)
给定图G=<V, E>,设图G中顶点和边的交替 序列为T=v0e1v1e2…ekvk,若T满足如下条件:vi-1 和vi是ei的端点(当G为有向图时,vi-1是ei的始点, vi是ei的终点),i=1,2,…,k,则称T为顶点v0到vk的 通路。此通路的长度为k。也可以用v0, v1, …, vk 表示通路,v0为始点,vk为终点。
8/13/2020 5:06 PM
第四部分:图论(授课教师:向胜军)
2
§1 无向图及有向图
❖ 本节介绍图的一些最常用的概念,主要有: 无向图,有向图,边,顶点(或结点,点),
弧(或有向边),顶点集,边集,n阶图,有限 图,关联,多重图,简单图,完全图,母图, 子图, 生成子图,导出子图,补图,图的同构, 入度,出度,度,孤立点等。
8/13/2020 5:06 PM
第四部分:图论(授课教师:向胜军)
10
一些特殊的简单图:
(1) 无向完全图Kn(Complete Graphs) (2) 有向完全图 (3) 零图:E=. (4) 平凡图:E=且|V|=1. (5) 正则图:若图G=<V, E>中每个顶点 的度均为n,称此图G是n-正则图(n-regular graph)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
了表示4个队之间比赛的情况, 我们作出图10.1.1的图形。 在图中4个小圆圈分别表示这4个篮球队, 称之为结点。 如果两队进行过比赛,则在表示该队的两个结点之间用一 条线连接起来,称之为边。这样利用一个图形使各队之间 的比赛情况一目了然。
第10章 图论(Graph Theory )
离散数学 图论
第10章 图论(Graph Theory )
离散数学 图论
10.1 图的基本概念(Graph) 10.2 路与图的连通性(Walks & Connectivity of
Graphs) 10.3 图的矩阵表示(Matrix Notation of Graph) 10.4 最短链与关键路(Minimal ) 10.5 欧拉图与哈密尔顿图(Eulerian Graph &
第10章 图论(Graph Theory )
离散数学 图论
图 10.1.2
第10章 图论(Graph Theory )
离散数学 图论
图 10.1.2
第10章 图论(Graph Theory )
离散数学 图论
2. 图G的结点与边之间的关系 邻接点: 同一条边的两个端点。 孤立点: 没有边与之关联的结点。 邻接边: 关联同一个结点的两条边。 孤立边: 不与任何边相邻接的边。 自回路(环):关联同一个结点的一条边((v,
e5=(v2,v3)。
图 10 .1. 3
在这个图中,e3是关联同一个结点的一条边,即 自回路;边e4和e5都与结点v2、 v3关联,即它们 是平行边。
第10章 图论(Graph Theory )
离散数学 图论
3. 图G的分类 (1) 按G的结点个数和边数分为(n,m)图,即n个结点, m
条边的图; (2) 特别地, (n,0)称为零图, (1,0) 图称为平凡图 。 (2) 按G中关联于同一对结点的边数分为多重图和简
单图; 多重图:含有平行边的图(如图 10 .1. 3) ; 线 图: 非多重图称为线图; 简单图:不含平行边和自环的图。
第10章 图论(Graph Theory )
G1、G2是多重图
G3是线图
G4是简单图
第10章 图论(Graph Theory )
离散数学 图论
(3)按G的边有序、无序分为有向图、无向图和混合图; 有向图:每条边都是有向边的图称为有向图 (图 10 .1.4 (b)); 无向图:每条边都是无向边的图称为无向图; 混合图:既有无向边, 又有有向边的图称为混合图。
v)或〈v,v〉)。 平行边(多重边):关联同一对结点的多条边。
第10章 图论(Graph Theory )
离散数学 图论
如例10.1.1中的图,结点集V={a,b,c,d}, 边集 E ={e1, e2, e3, e4, e5}, 其中 e1=(a,b),e2=(a, c),e3=(a,d), e4=(b, c), e5=(c, d)。 d与a、 d与c是邻接的, 但d与b不 邻接, 边e3与e5是邻接的。
若边e所对应的结点对是有序偶〈a,b〉,则称e 是有向边。a叫边e的始点,b叫边e的终点,统称为e的 端点。若边e所对应的结点对是无序偶(a,b) ,则称e是 无向边。这时统称e与两个结点a和b互相关联。
第10章 图论(Graph Theory )
离散数学 图论
我们将结点a、b的无序结点对记为(a,b), 有序 结点对记为〈a,b〉。 一个图G可用一个图形来表示且表示是不唯一的。
Hamilton-ian Graph ) 10.6 平面图(Planar Graph) 10.7树与生成树(Trees and Spanning Trees) 10.8 二部图(bipartite graph)
第10章 图论(Graph Theory )
离散数学 图论
10.1.1 图的基本概念 10.1.2 图的结点的度数及其计算 10.1.3 子图和图的同构
如果图 10.1.1中的4个 结点a, b, c, d分别 表示4个人,当某两 个人互相认识时, 则 将其对应点之间用边 连接起来。 这时的图 又反映了这4个人之 间的认识关系。
图 10.1.1
第10章 图论(Graph Theory )
离散数学 图论
定义10.1.1一个图G是一个序偶〈V(G), E(G)〉, 记 为G=〈V(G), E(G)〉。 其中V(G)是非空结点集合, E(G)是边集合, 对E(G)中的每条边, 有V(G)中的 结点的有序偶或无序偶与之对应。
【例10.1.2】 设G=〈V(G),E(G)〉,其中
V(G)={a,b,c,d},E(G)={e1,e2,e3,e4,e5,e6,e7},e1=(a,b), e2=(a,c),e3=(b,d),e4=(b,c),e5=(d,c),e6=(a,d),e7=(b,b) 。 则图G可用图10.1.2(a)或(b)表示。
(4)按G的边旁有无数量特征分为加权图、无权图(如图 10.1.4);
第10章 图论(Graph Theory )
离散数学 图论
(5)按G的任意两个结点间是否有边分为完全图Kn (如图 10.1.5)和不完全图(如图 10.1.6)。
图 10 .1. 4
第10章 图论(Graph Theory )
第10章 图论(Graph Theory )
离散数学 图论
图 10.1.1哥尼斯堡七桥问题
第10章 图论(Graph Theory )
10.1 图的基本概念 离散数学 图论
1.图的定义 现实世界中许多现象能用某种图形表示,这种图形 是由一些点和一些连接两点间的连线所组成。
【例10.1.1】a, b, c, d 4个篮球队进行友谊比赛。 为
离散数学 图论
完全图:任意两个不同的结点都邻接的简单图称为
完全图。n 个结点的无向完全图记为Kn。
第10章 图论(Graph Theory )
离散数学 图论
【例10.1.3】设图G=〈V ,E〉 如图10.1.3所示。
这里V={v1,v2,v3}, E={e1,e2,e3,e4,e5},
其中e1 =(v1, v2) ,e2=(v1,v3) ,
e3 =(v3, v3), e4 =(v2, v3),
第10章 图论(Graph Theory )
离散数学 图论
第10章 图论(Graph Theory )
离散数学 图论
10.1 图的基本概念(Graph) 10.2 路与图的连通性(Walks & Connectivity of
Graphs) 10.3 图的矩阵表示(Matrix Notation of Graph) 10.4 最短链与关键路(Minimal ) 10.5 欧拉图与哈密尔顿图(Eulerian Graph &
第10章 图论(Graph Theory )
离散数学 图论
图 10.1.2
第10章 图论(Graph Theory )
离散数学 图论
图 10.1.2
第10章 图论(Graph Theory )
离散数学 图论
2. 图G的结点与边之间的关系 邻接点: 同一条边的两个端点。 孤立点: 没有边与之关联的结点。 邻接边: 关联同一个结点的两条边。 孤立边: 不与任何边相邻接的边。 自回路(环):关联同一个结点的一条边((v,
e5=(v2,v3)。
图 10 .1. 3
在这个图中,e3是关联同一个结点的一条边,即 自回路;边e4和e5都与结点v2、 v3关联,即它们 是平行边。
第10章 图论(Graph Theory )
离散数学 图论
3. 图G的分类 (1) 按G的结点个数和边数分为(n,m)图,即n个结点, m
条边的图; (2) 特别地, (n,0)称为零图, (1,0) 图称为平凡图 。 (2) 按G中关联于同一对结点的边数分为多重图和简
单图; 多重图:含有平行边的图(如图 10 .1. 3) ; 线 图: 非多重图称为线图; 简单图:不含平行边和自环的图。
第10章 图论(Graph Theory )
G1、G2是多重图
G3是线图
G4是简单图
第10章 图论(Graph Theory )
离散数学 图论
(3)按G的边有序、无序分为有向图、无向图和混合图; 有向图:每条边都是有向边的图称为有向图 (图 10 .1.4 (b)); 无向图:每条边都是无向边的图称为无向图; 混合图:既有无向边, 又有有向边的图称为混合图。
v)或〈v,v〉)。 平行边(多重边):关联同一对结点的多条边。
第10章 图论(Graph Theory )
离散数学 图论
如例10.1.1中的图,结点集V={a,b,c,d}, 边集 E ={e1, e2, e3, e4, e5}, 其中 e1=(a,b),e2=(a, c),e3=(a,d), e4=(b, c), e5=(c, d)。 d与a、 d与c是邻接的, 但d与b不 邻接, 边e3与e5是邻接的。
若边e所对应的结点对是有序偶〈a,b〉,则称e 是有向边。a叫边e的始点,b叫边e的终点,统称为e的 端点。若边e所对应的结点对是无序偶(a,b) ,则称e是 无向边。这时统称e与两个结点a和b互相关联。
第10章 图论(Graph Theory )
离散数学 图论
我们将结点a、b的无序结点对记为(a,b), 有序 结点对记为〈a,b〉。 一个图G可用一个图形来表示且表示是不唯一的。
Hamilton-ian Graph ) 10.6 平面图(Planar Graph) 10.7树与生成树(Trees and Spanning Trees) 10.8 二部图(bipartite graph)
第10章 图论(Graph Theory )
离散数学 图论
10.1.1 图的基本概念 10.1.2 图的结点的度数及其计算 10.1.3 子图和图的同构
如果图 10.1.1中的4个 结点a, b, c, d分别 表示4个人,当某两 个人互相认识时, 则 将其对应点之间用边 连接起来。 这时的图 又反映了这4个人之 间的认识关系。
图 10.1.1
第10章 图论(Graph Theory )
离散数学 图论
定义10.1.1一个图G是一个序偶〈V(G), E(G)〉, 记 为G=〈V(G), E(G)〉。 其中V(G)是非空结点集合, E(G)是边集合, 对E(G)中的每条边, 有V(G)中的 结点的有序偶或无序偶与之对应。
【例10.1.2】 设G=〈V(G),E(G)〉,其中
V(G)={a,b,c,d},E(G)={e1,e2,e3,e4,e5,e6,e7},e1=(a,b), e2=(a,c),e3=(b,d),e4=(b,c),e5=(d,c),e6=(a,d),e7=(b,b) 。 则图G可用图10.1.2(a)或(b)表示。
(4)按G的边旁有无数量特征分为加权图、无权图(如图 10.1.4);
第10章 图论(Graph Theory )
离散数学 图论
(5)按G的任意两个结点间是否有边分为完全图Kn (如图 10.1.5)和不完全图(如图 10.1.6)。
图 10 .1. 4
第10章 图论(Graph Theory )
第10章 图论(Graph Theory )
离散数学 图论
图 10.1.1哥尼斯堡七桥问题
第10章 图论(Graph Theory )
10.1 图的基本概念 离散数学 图论
1.图的定义 现实世界中许多现象能用某种图形表示,这种图形 是由一些点和一些连接两点间的连线所组成。
【例10.1.1】a, b, c, d 4个篮球队进行友谊比赛。 为
离散数学 图论
完全图:任意两个不同的结点都邻接的简单图称为
完全图。n 个结点的无向完全图记为Kn。
第10章 图论(Graph Theory )
离散数学 图论
【例10.1.3】设图G=〈V ,E〉 如图10.1.3所示。
这里V={v1,v2,v3}, E={e1,e2,e3,e4,e5},
其中e1 =(v1, v2) ,e2=(v1,v3) ,
e3 =(v3, v3), e4 =(v2, v3),