中考专题复习-方程

合集下载

中考数学专题复习一元一次方程(含解析)

中考数学专题复习一元一次方程(含解析)

中考备考专题复习:一元一次方程一、单选题1、(2016•大连)方程2x+3=7的解是()A、x=5B、x=4C、x=3.5D、x=22、(2016•梧州)一元一次方程3x﹣3=0的解是()A、x=1B、x=﹣1C、x=D、x=03、若关于x的方程(k-1)x2+x-1=0是一元一次方程.则k=( )A、0B、1C、2D、34、(2016•泰安)当1≤x≤4时.mx﹣4<0.则m的取值范围是()A、m>1B、m<1C、m>4D、m<45、已知方程2x-3=+x的解满足|x|-1=0.则m的值是()A、-6B、-12C、-6与-12D、任何数6、若2(a+3)的值与4互为相反数.则a的值为()A、﹣1B、﹣C、﹣5D、7、下列各式中.是方程的个数为()(1)-3-3=-7 (2)3x-5=2x+1 (3)2x+6(4)x-y=0 (5)a+b>3 (6)a2+a-6=0A、1个B、2个C、3个D、4个8、如果等式ax=b成立.则下列等式恒成立的是().A、abx=abB、x=C、b-ax=a-bD、b+ax=b+b9、已知关于x的方程x2+bx+a=0有一个根是-a(a≠0) . 则a-b的值为().A、-1B、0C、1D、210、在如图的2016年6月份的月历表中.任意框出表中竖列上三个相邻的数.这三个数的和不可能是()A、27B、51C、69D、7211、互联网“微商”经营已成为大众创业新途径.某微信平台上一件商品标价为200元.按标价的五折销售.仍可获利20元.则这件商品的进价为()A、120元B、100元C、80元D、60元12、某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4:3.二楼售出与未售出的座位数比为3:2.且此场音乐会一、二楼未售出的座位数相等.则此场音乐会售出与未售出的座位数比为何?()A、2:1B、7:5C、17:12D、24:1713、某车间有26名工人.每人每天可以生产800个螺钉或1000个螺母.1个螺钉需要配2个螺母.为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉.则下面所列方程正确的是()A、2×1000(26﹣x)=800xB、1000(13﹣x)=800xC、1000(26﹣x)=2×800xD、1000(26﹣x)=800x14、8月份是新学期开学准备季.东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后.超出部分按50%收费.在百惠书店购买学习用品或工具书累计花费50元后.超出部分按60%收费.郝爱同学准备买价值300元的学习用品和工具书.她在哪家书店消费更优惠()A、东风B、百惠C、两家一样D、不能确定15、在解方程时.方程两边同时乘以6.去分母后.正确的是()A、2x﹣1+6x=3(3x+1)B、2(x﹣1)+6x=3(3x+1)C、2(x﹣1)+x=3(3x+1)D、(x﹣1)+x=3(x+1)二、填空题16、已知方程(a-2)x|a|-1=1是一元一次方程.则a=________.x=________ .17、如果关于x的方程x2﹣3x+k=0有两个相等的实数根.那么实数k的值是________.18、一件服装的标价为300元.打八折销售后可获利60元.则该件服装的成本价是________元.19、为了改善办学条件.学校购置了笔记本电脑和台式电脑共100台.已知笔记本电脑的台数比台式电脑的台数的还少5台.则购置的笔记本电脑有________台.20、书店举行购书优惠活动:①一次性购书不超过100元.不享受打折优惠.②一次性购书超过100元但不超过200元一律打九折.③一次性购书200元一律打七折.小丽在这次活动中.两次购书总共付款229.4元.第二次购书原价是第一次购书原价的3倍.那么小丽这两次购书原价的总和是________元.三、计算题21、先化简:÷ + .再求当x+1与x+6互为相反数时代数式的值.四、解答题22、在红城中学举行的“我爱祖国”征文活动中.七年级和八年级共收到征文118篇.且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇.求七年级收到的征文有多少篇?23、世界读书日.某书店举办“书香”图书展.已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元.《汉语成语大词典》按标价的50%出售.《中华上下五千年》按标价的60%出售.小明花80元买了这两本书.求这两本书的标价各多少元.五、综合题24、在纪念中国抗日战争胜利70周年之际.某公司决定组织员工观看抗日战争题材的影片.门票有甲乙两种.甲种票比乙种票每张贵6元.买甲种票10张.乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元.那么最多可购买多少张甲种票?25、如图是一根可伸缩的鱼竿.鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩.完全收缩后.鱼竿长度即为第1节套管的长度(如图1所示):使用时.可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm.第2节套管长46cm.以此类推.每一节套管均比前一节套管少4cm.完全拉伸时.为了使相邻两节套管连接并固定.每相邻两节套管间均有相同长度的重叠.设其长度为xcm.(1)请直接写出第5节套管的长度.(2)当这根鱼竿完全拉伸时.其长度为311cm.求x的值.26、随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进.拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率.(2)若该市某社区今年准备新建一养老中心.其中规划建造三类养老专用房间共100间.这三类养老专用房间分别为单人间(1个养老床位).双人间(2个养老床位).三人间(3个养老床位).因实际需要.单人间房间数在10至30之间(包括10和30).且双人间的房间数是单人间的2倍.设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个.求t的值.答案解析部分一、单选题1、【答案】 D【考点】一元一次方程的解【解析】【解答】解:2x+3=7. 移项合并得:2x=4.解得:x=2.故选D【分析】方程移项合并.把x系数化为1.即可求出解.此题考查了一元一次方程的解.方程的解即为能使方程左右两边相等的未知数的值.2、【答案】 A【考点】一元一次方程的解【解析】【解答】解:3x﹣3=0.3x=3.x=1.故选:A.【分析】直接移项.再两边同时除以3即可.此题主要考查了一元一次方程的解.关键是掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3、【答案】B【考点】一元一次方程的定义【解析】【解答】根据题意得:k-1=0.解得:k=1.故答案是:B.【分析】只含有一个未知数(元).并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a.b是常数且a≠0).高于一次的项系数是0.据此可得出关于k的方程.继而可求出k的值.4、【答案】 B【考点】一元一次方程的解【解析】【解答】解:设y=mx﹣4.由题意得.当x=1时.y<0.即m﹣4<0.解得m<4.当x=4时.y<0.即4m﹣4<0.解得.m<1.则m的取值范围是m<1.故选:B.【分析】设y=mx﹣4.根据题意列出一元一次不等式.解不等式即可.本题考查的是含字母系数的一元一次不等式的解法.正确利用函数思想、数形结合思想是解题的关键.5、【答案】 C【考点】一元一次方程的解.含绝对值符号的一元一次方程【解析】【解答】∵|x|-1=0∴x=±1当x=1时.把x=1代入方程2x-3=+x2-3=+1∴m=-6.当x=-1时.把x=-1代入方程2x-3=+x-2-3=-1∴m=-12∴m的值是-6与-12.【分析】根据方程的解满足|x|-1=0就可得到x=±1.即±1是方程的解.把x=±1分别代入方程2x-3= m 3 +x就得到关于m的方程.从而求出m的值.本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法.在以后的学习中.常用此法求函数解析式.6、【答案】C【考点】相反数.解一元一次方程【解析】【解答】解:∵2(a+3)的值与4互为相反数.∴2(a+3)+4=0.∴a=﹣5.故选C【分析】先根据相反数的意义列出方程.解方程即可.此题是解一元一次方程.主要考查了相反数的意义.一元一次方程的解法.掌握相反数的意义是解本题的关键.7、【答案】C【考点】一元一次方程的定义.二元一次方程的定义.一元二次方程的定义【解析】【解答】根据方程的定义依次分析即可。

中考数学易错题专题复习-一元二次方程组练习题及答案解析

中考数学易错题专题复习-一元二次方程组练习题及答案解析
∴ .
∴ .
(2)(y+2)2=12,
∴ 或 ,

2.解方程:(x+1)(x﹣3)=﹣1.
【答案】x1=1+ ,x2=1﹣
【解析】
试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.
试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,
解得:x1=1+ ,x2=1﹣ .
(1)解方程求两条线段的长。
(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。
(3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。
【答案】(1)2和6;(2) ;(3)
【解析】
【分析】
(1)求解该一元二次方程即可;
(2)先确定等腰三角形的边,然后求面积即可;
(3)设分为两段分别是 和 ,然后用勾股定理求出x,最后求面积即可.
【详解】
解:(1)由题意得 ,
即: 或 ,
∴两条线段长为2和6;
(2)由题意,可知分两段为分别为3、3,则等腰三角形三边长为2,3,3,
由勾股定理得:该等腰三角形底边上的高为:
∴此等腰三角形面积为 = .
(3)设分为 及 两段
∴ ,
∴ ,
∴面积为 .
【点睛】
本题考查了一元二次方程、等腰三角形、直角三角形等知识,考查知识点较多,灵活应用所学知识是解答本题的关键.
8.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.
【答案】1
【解析】试题分析:根据一元二次方程解的定义,把x=﹣1代入x2+2ax+a2=0得到关于a的一元二次方程1﹣2a+a2=0,然后解此一元二次方程即可.

2024年中考数学总复习专题05一元二次方程命题12一元二次方程的应用

2024年中考数学总复习专题05一元二次方程命题12一元二次方程的应用

第5页
返回目录
中考命题12 一元二次方程的应用
中考·数学
3.[2022 哈尔滨,8,3 分]某种商品原来每件售价为 150 元,经过连续两次降价后,该种商品每件售价为 96 元,设 平均每次降价的百分率为 x,根据题意,所列方程正确的是
C ( )
A.150(1-x2)=96 B.150(1-x)=96 C.150(1-x)2=96 D.150(1-2x)=96
A.43 903.89(1+x)=53 109.85 B.43__903.89(1+x)2=53 109.85 C.43 903.89x2=53 109.85 D.43 903.89(1+x2)=53 109.85
第4页
中考·数学
返回目录
中考命题12 一元二次方程的应用
中考·数学
答案:B 解析:设这两年福建省地区生产总值的年平均增长率为 x, 根据题意可列方程 43 903.89(1+x)2=53 109.85.故选 B.
元,2018 年的人均收入为 24 200 元.
(1)求 2016 年到 2018 年该村人均收入的年平均增长率;
解:(1)设 2016 年到 2018 年该村人均收入的年平均增
长率为 x,
由题意,得 20 000(1+x)2=24 200,
第12页
返回目录
中考命题12 一元二次方程的应用
中考·数学
A 的平均增长率为 x,下列方程正确的是( )
A.5.76(1+x)2=6.58
B.5.76(1+x2)=6.58
C.5.76(1+2x)=6.58 D.5.76x2=6.58
答案:A 解析:由题意,得 5.76(1+x)2=6.58.故选 A.
Байду номын сангаас

九年级数学中考复习专题——方程与不等式(附答案)

九年级数学中考复习专题——方程与不等式(附答案)

知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。

(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。

知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。

中考专题复习-一元一次方程(组)含答案

中考专题复习-一元一次方程(组)含答案

中考数学总复习-方程与不等式一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么a c =【名师提醒:①用等式性质进行等式变形,必须注意“都",不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。

2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意.】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b 。

c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程= × ②工作效率= 】 【重点考点例析】考点一:二元一次方程组的解法对应训练 1.(2016•湘西州)解方程组: 213211x y x y +=⎧⎨-=⎩①②. .x=a y=b 的形式考点二:一(二)元一次方程的应用例2 (2016•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例3 (2016•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2。

中考数学复习专题综合过关检测—分式方程及应用(含解析)

中考数学复习专题综合过关检测—分式方程及应用(含解析)

中考数学复习专题综合过关检测—分式方程及应用(含解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。

1.(2023•天涯区一模)把分式方程﹣=1化为整式方程正确的是()A.1﹣(1﹣x)=1B.1+(1﹣x)=1C.1﹣(1﹣x)=x﹣2D.1+(1﹣x)=x﹣2【答案】D【解答】解:方程变形得:+=1,去分母得:1+(1﹣x)=x﹣2,故选:D.2.(宝应县二模)初三(1)班在今年的植树节领有平均每人植树6棵的任务,如果只由女同学完成,每人应植树15棵,如果只由男同学完成,每人应植树的棵数为()A.9B.10C.12D.14【答案】B【解答】解:设单独由男生完成,每人应植树x棵.那么根据题意可得出方程:,解得:x=10.检验得x=10是方程的解.因此单独由男生完成,每人应植树10棵.故选:B.3.(2023•邵阳县一模)分式方程=的解是()A.x=3B.x=﹣1C.x=1D.x=﹣3【答案】D【解答】解:去分母得,3(x+1)=2x,去括号得,3x+3=2x,移项得,x=﹣3,检验:把x=﹣3代入x(x+1)=﹣3(﹣3+1)=6≠0,∴x=﹣3是原方程的解,故选:D.4.(2023•武威三模)在创建文明城市的进程中,某市为美化城市环境,计划种植树木50万棵,由于志愿者的加入,实际每天植树比原计划多30%,结果提前2天完成任务,设原计划每天植树x万棵,由题意得到的方程是()A.B.C.D.【答案】A【解答】解:由题意可得,=2,故选:A.5.(2023•龙江县校级三模)若关于x的分式方程无解,则a的值为()A.0B.1C.﹣1或0D.0或1【答案】D【解答】解:,方程两边同时乘以x﹣2,得1﹣a=2ax﹣4a,移项、合并同类项,得2ax =3a +1,∵方程无解,∴2a =0或=2,解得a =0或a =1.故选:D .6.(2023•环翠区一模)若关于x 的分式方程﹣1=有增根,则a 的值为()A .﹣3B .3C .2D .﹣【答案】A【解答】解:方程两边都乘以(x ﹣2)得:6﹣(x ﹣2)=﹣ax ,解得:x =,∵方程有增根,∴x ﹣2=0,∴x =2,∴=2,解得:a =﹣3.故选:A .7.(2023•东港区校级三模)某班级为做好疫情防控,班委会决定拿出班费中的a 元给同学们购买口罩,由于药店对学生购买口罩每包优惠2元,结果比原计划多买了5包口罩.设原计划购买口罩x 包,则依题意列方程为()A .B .C .D .【答案】B【解答】解:设原计划购买口罩x 包,则实际购买口罩(x +5)包,依题意得:=+2.故选:B.8.(2023•吴桥县校级模拟)“若关于x 的方程无解,求a的值.”尖尖和丹丹的做法如下:尖尖:去分母得:ax=12+3x﹣9,移项得:ax﹣3x=12﹣9,合并同类项得:(a﹣3)x=3,∵原方程无解,∴a﹣3=0,∴a=3.丹丹:去分母得:ax=12+3x﹣9,移项,合并同类项得:(a﹣3)x=3,解得:x=,∵原方程无解,∴x为增根,∴3x﹣9=0,解得x=3,∴=3,解得a=4.下列说法正确的是()A.尖尖对,丹丹错B.尖尖错,丹丹对C.两人都错D.两人的答案合起来才对【答案】D【解答】解:去分母得:ax=12+3x﹣9,移项,合并同类项得:(a﹣3)x=3,∵原方程无解,∴x为增根或a﹣3=0,当3x﹣9=0,解得x=3,此时=3,解得a=4;当a﹣3=0,解得a=3;综上所述:a的值为3或4,故选:D.9.(2023•义乌市模拟)若分式的值为1,则x的值是()A.5B.4C.3D.1【答案】A【解答】解:根据题意得:=1,去分母得:x﹣2=3,解得:x=5,检验:把x=5代入得:x﹣2≠0,∴分式方程的解为x=5.故选:A.10.(2023•黄埔区校级二模)在正数范围内定义一种运算“※”,其规定则为a※b=,如2※4=,根据这个规则,则方程3※(x+1)=1的解为()A.B.1C.﹣1D.﹣【答案】A【解答】解:由题意得:3※(x+1)=.∵3※(x+1)=1,∴.∴x+1+3=3(x+1).∴x+4=3x+3.∴﹣2x=﹣1.∴x=.当x=时,3(x+1)≠0.∴这个方程的解为x=.故选:A.二、填空题(本题共6题,每小题2分,共12分)11.(2023•柳州三模)分式方程的解是x=﹣2.【答案】x=﹣2.【解答】解:,方程两边都乘x(x﹣3),得2(x﹣3)=5x,解得:x=﹣2,检验:当x=﹣2时,x(x﹣3)≠0,所以x=﹣2是分式方程的解.故答案为:x=﹣2.12.(2023•梁山县模拟)“孔子周游列国”是流传很广的故事.有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院,设学生步行的速度为每小时x里,则可列方程为.【答案】.【解答】解:设学生步行的速度为每小时x里,则牛车的速度是每小时1.5x里,∵学生早出发1小时,孔子和学生们同时到达书院,∴,故答案为:.13.(2023•建湖县一模)关于x的分式方程=2的解为正数,则a的取值范围是a<4且a≠2.【答案】a<4且a≠2.【解答】解:去分母得:1﹣(a﹣1)=2(x﹣1),解得:x=2﹣a,由分式方程的解为正数,得到2﹣a>0,且2﹣a≠1,解得:a<4且a≠2,故答案为a<4且a≠2.14.(2023•盐田区二模)当x=﹣8时,分式的值为2.【答案】﹣8.【解答】解:根据题意得:=2,去分母得:x﹣2=2(x+3),解得:x=﹣8,检验:把x=﹣8代入得:x+3≠0,∴分式方程的解为x=﹣8,则当x=﹣8时,分式的值为2.故答案为:﹣8.15.(2023•市北区三模)甲、乙两人同时从学校出发,去距离学校15千米的农场参加劳动.甲的速度是乙的1.2倍,结果甲比乙早到10分钟,求甲和乙的速度各是多少?设乙的速度为x千米/小时,则根据题意可列方程为.【答案】.【解答】解:设乙的速度为x千米/小时,则甲的速度为1.2x千米/小时,根据题意得:.故答案为:.16.(2023•九龙坡区校级模拟)若关于x的不等式组有且仅有四个整数解,关于y的分式方程+=1有整数解,则符合条件的所有整数a的和是﹣10.【答案】﹣10,【解答】解:关于x的不等式组整理得,∵关于x的不等式组有且仅有四个整数解,∴1≤<2,∴﹣8<a≤﹣3,解分式方程得y=且≠2,∵关于y的分式方程有整数解,且a为整数,∴符合条件的所有整数a为﹣7,﹣3,∴符合条件的所有整数a的和为:﹣7﹣3=﹣10.故答案为:﹣10.三、解答题(本题共7题,共58分)。

中考数学复习重要知识点专项总结—方程和方程组

中考数学复习重要知识点专项总结—方程和方程组

中考数学复习重要知识点专项总结—方程和方程组一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)(2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

(4)一元一次方程有唯一的一个解。

2、一元二次方程(1)一元二次方程的一般形式:(其中x是未知数,a、b、c 是已知数,a≠0)(2)一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:当Δ>0时方程有两个不相等的实数根;当Δ=0时方程有两个相等的实数根;当Δ<0时方程没有实数根,无解;当Δ≥0时方程有两个实数根(5)一元二次方程根与系数的关系:若是一元二次方程的两个根,那么:,(6)以两个数为根的一元二次方程(二次项系数为1)是:三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。

(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

四、方程组1、方程组的解:方程组中各方程的公共解叫做方程组的解。

2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组3、一次方程组:(1)二元一次方程组:一般形式:(不全为0)解法:代入消远法和加减消元法解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。

中考数学专题复习题:一元二次方程

中考数学专题复习题:一元二次方程

1 / 3中考数学专题复习题:一元二次方程一、单项选择题(共10小题)1.已知方程260x x +−=的两个根是a b ,,则ab 的值为( )A .1B .1−C .6D .6−2.在下列方程中,不属于一元二次方程的是( )A.2152x −=xB .7x 2=0C .0.3x 2+0.2x =4D .x (1-2x 2)=2x 2 3.如果关于x 的方程240x x m −+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .4C .5D .64.关于x 的不等式x ﹣2a <1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是( ) A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定5.若关于的一元二次方程2210kx x +−=有两个不相等的实数根,则实数k 的取值范围是( )A .1k >−B .且0k ≠C .1k ≥−且D .1k <−且6.如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若每轮感染中平均一台电脑会感染x 台电脑,下列方程正确的是( )A .x (x +1)=81B .1+x +x 2=81C .1+x +x (x +1)=81D .1+(x +1)2=817.已知关于x 的方程220x kx +−=的一个解与方程131x x +=−的解相同,则方程的另一个解是( )A .B .2−C .1D .28.从4−,,,0,1,2,4,6这八个数中随机抽一个数,记为a ,数a 使关于xx 1k >−0k ≠0k ≠220x kx +−=1−2−1−2 / 3的一元二次方程()22240x a x a −−+=有实数解,关于y 的分式方程1311y a y y+−=−−有整数解,则符合条件的a 的值的和是( )A .B .C .D .29.已知ABC 的三边长为a ,b ,c ,且满足方程a 2x 2-(c 2-a 2-b 2)x +b 2=0,则方程根的情况是( )A .有两相等实根B .有两相异实根C .无实根D .不能确定10.三角形两边的长分别是6和8,第三边的长是一元二次方程216600x x −+=的一个实数根,则该三角形的面积是( )A .24B .24或 C .48或D .二、填空题(共5小题)11.已知x =-2是方程x 2+mx -6=0的一个根,则方程的另一个根是________.12.在国际象棋比赛中,若要求参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x 个参赛棋手,则可列方程为________.13.一元二次方程23670x x −−=的二次项系数是________,常数项是________. 14.把方程232x x −=用配方法化为2()x m n +=的形式,则m =______,n =______. 15.如图是一块矩形菜地ABCD ,AB=a (m ),AD=b (m ),面积为2()s m ,现将边AB 增加1m.(1)如图1,若a=5,边AD 减少1m ,得到的矩形面积不变,则b 的值是________. (2)如图2,边AD 增加2m ,有且只有一个a 的值,使得到的矩形面积为22()s m ,则s 的值是________.三、解答题(共7小题)16.解方程:(1)x 2-2x =1;(2)(x +3)2-2(x +3)=0 6−4−2−3 / 317.已知关于x 的方程x 2+9x +25+m =0,(1)若此方程有实数根,求m 的取值范围;(2)在(1)条件下m 取满足条件的最大整数时,求此时方程的解.18.一次函数5y x =−+与反比例函数k y x=的图象在第一象限交于A ,B 两点,其中()1,A a .(1)求反比例函数表达式;(2)若把一次函数的图象向下平移b 个单位,使之与反比例函数的图象只有一个交点,请求出b 的值.19.先化简再求值:2221(1)11m m m m m −−÷−−−+,其中m 是方程22016x x −=的解. 20.现有一块长20cm ,宽10cm 的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm 2的无盖长方体盒子,请求出剪去的小正方形的边长.21.已知关于x 的一元二次方程x 2-(2k +1)x +4k -3=0,当Rt △ABC 的斜边a且两直角边b 和c 恰好是这个方程的两个根时,求△ABC 的周长.22.已知关于的一元二次方程22(12)10k x k x +−+=有两个不相等的实数根.(1)求的取值范围;(2)若原方程的两个实数根为12x x ,,且满足121223x x x x +=−,求的值.5y x =−+k y x=x k k。

2023年广东中考数学二轮专题复习——方程(组)与不等式(组)(含答案)

2023年广东中考数学二轮专题复习——方程(组)与不等式(组)(含答案)

2023年广东中考数学专题复习——方程(组)与不等式(组)(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是( )A.{x+y=10y=3x+2B.{x+y=10y=3x-2C.{x+y=10x=3y+2 D.{x+y=10x=3y-22.若把不等式组{2-x≥-3,x-1≥-2的解集在数轴上表示出来,则其对应的图形为A.长方形 B.线段 C.射线 D.直线3.用配方法解方程x2-2x-1=0时,配方后所得的方程为( )A.(x-1)2=2 B.(x-1)2=0C.(x+1)2=2 D.(x+1)2=04.计算2x-2-xx-2的结果是( )A.0 B.1 C.x D.-15.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为( ) A.1 B.-1 C.2 D.-26.不等式x≥2的解集在数轴上表示为( )A BC D7.已知方程组{2x+y=4,x+2y=5,则x+y的值为( )A.-1 B.0 C.2 D.38.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是( )A.k>-1 B.k<1且k≠0C.k≥-1且k≠0D.k>-1且k≠09.小朱要到距家1 500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱的速度是x 米/分,则根据题意所列方程正确的是( )A .1 440x -100-1 440x =10B .1 440x =10+1 440x +100C .1 440x =1 440x -100+10D .1 440x +100-1 440x =1010.设x 1,x 2是方程x 2+3x -3=0的两个实数根,则x 2x 1+x 1x 2的值为( )A .5 B .-5 C .1 D .-1二、填空题(本大题共5小题,每小题3分,共15分)11.要使分式5x -1有意义,则x 的取值范围是 .12.一元二次方程x 2-3x =0的根是 .13.已知a|a |+b|b |=0,则ab|ab |的值为 .14.如果4x a +2b -5-2y 3a -b -3=8是二元一次方程,那么a -b = .15.对于实数a ,b ,定义运算“*”:a*b ={a 2-ab (a ≥b ),ab -b 2(a <b ).例如:4*2,因为4>2,所以4*2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2= .三、解答题(一)(本大题共3小题,每小题8分,共24分)16.解方程:x 2-10x +9=0.17.解不等式组:{9x +5<8x +7,43x +2>1-23x ,并写出其整数解.18.解方程:2xx-2=1-12-x.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.先化简,再求值:x-2x-1÷(x+1-3x-1),其中x=3-2.20.某条高速的建设正在紧张地进行,现有大量的沙石需要运输.某车队有载重为8吨和10吨的卡车共12辆,全部车辆一次能运输110吨沙石.(1)该车队载重为8吨和10吨的卡车各有多少辆?(2)随着工程的进展,该车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.21.已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:该方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.五、解答题(三)(本大题共2小题,每小题12分,共24分)22.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车的进价为1 000元/辆,售价为1 300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?23.关于x的一元二次方程(m-1)x2-2mx+m+1=0.(1)求方程的根;(2)m为何整数时,此方程的两个根都为正整数?2023年广东中考数学专题复习——方程(组)与不等式(组) 答案版(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是(C)A.{x+y=10y=3x+2B.{x+y=10y=3x-2C.{x+y=10x=3y+2 D.{x+y=10x=3y-22.若把不等式组{2-x≥-3,x-1≥-2的解集在数轴上表示出来,则其对应的图形为(B)A.长方形 B.线段 C.射线 D.直线3.用配方法解方程x2-2x-1=0时,配方后所得的方程为(A)A.(x-1)2=2 B.(x-1)2=0C.(x+1)2=2 D.(x+1)2=04.计算2x -2-xx -2的结果是(D )A .0B .1C .xD .-15.已知关于x 的方程x 2-kx -6=0的一个根为x =3,则实数k 的值为(A )A .1B .-1C .2D .-26.不等式x≥2的解集在数轴上表示为(C )AB CD 7.已知方程组{2x +y =4,x +2y =5,则x +y 的值为(D )A .-1 B .0 C .2 D .38.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则实数k 的取值范围是(D )A .k>-1B .k<1且k≠0C .k≥-1且k≠0D .k>-1且k≠09.小朱要到距家1 500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱的速度是x 米/分,则根据题意所列方程正确的是(B )A .1 440x -100-1 440x=10 B .1 440x =10+1 440x +100C .1 440x =1 440x -100+10 D .1 440x +100-1 440x =1010.设x 1,x 2是方程x 2+3x -3=0的两个实数根,则x 2x 1+x 1x 2的值为(B )A .5 B .-5 C .1 D .-1二、填空题(本大题共5小题,每小题3分,共15分)11.要使分式5x -1有意义,则x 的取值范围是x≠1.12.一元二次方程x 2-3x =0的根是x 1=0,x 2=3.13.已知a|a |+b|b |=0,则ab|ab |的值为-1.14.如果4x a +2b -5-2y 3a -b -3=8是二元一次方程,那么a -b =0.15.对于实数a ,b ,定义运算“*”:a*b ={a 2-ab (a ≥b ),ab -b 2(a <b ).例如:4*2,因为4>2,所以4*2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2=3或-3.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.解方程:x 2-10x +9=0.解:方法一(配方法):将方程x 2-10x +9=0变形为x 2-10x =-9,配方,得x 2-10x +25=-9+25,整理,得(x -5)2=16,解得x 1=1,x 2=9.方法二(求根公式法):因为a =1,b =-10,c =9,Δ=100-36=64>0,由求根公式解得x 1=1,x 2=9.方法三(因式分解法):将方程x 2-10x +9=0变形为(x -1)(x -9)=0,解得x 1=1,x 2=9.17.解不等式组:{9x +5<8x +7,43x +2>1-23x ,并写出其整数解.解:{9x +5<8x +7, ①43x +2>1-23x , ②解不等式①得x<2,解不等式②得x>-12.把①②的解集表示在数轴上,如图.故原不等式组的解集是-12<x<2.其整数解是0和1.18.解方程:2x x -2=1-12-x.解:方程的两边同时乘(x -2),得2x =x -2+1,解得x =-1.检验:当x =-1时,x -2≠0,故x =-1是原方程的解.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.先化简,再求值:x -2x -1÷(x +1-3x -1),其中x =3-2.解:原式=x -2x -1÷(x 2-1x -1-3x -1)=x -2x -1×x -1(x +2)(x -2)=1x +2.当x =3-2时,原式=33.20.某条高速的建设正在紧张地进行,现有大量的沙石需要运输.某车队有载重为8吨和10吨的卡车共12辆,全部车辆一次能运输110吨沙石.(1)该车队载重为8吨和10吨的卡车各有多少辆?(2)随着工程的进展,该车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.解:(1)设该车队载重为8吨和10吨的卡车分别有x 辆、y 辆,根据题意得{x +y =12,8x +10y =110,解得{x =5,y =7.故该车队载重为8吨的卡车有5辆,载重为10吨的卡车有7辆;(2)设载重为8吨的卡车增加了z 辆,依题意得8(5+z)+10(7+6-z)>165,解得z<52.∵z≥0且为整数,∴z =0,1,2;∴6-z =6,5,4,∴车队共有3种购车方案:①载重为8吨的卡车不购买,载重为10吨的卡车购买6辆;②载重为8吨的卡车购买1辆,载重为10吨的卡车购买5辆;③载重为8吨的卡车购买2辆,载重为10吨的卡车购买4辆.21.已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:该方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.(1)证明:∵Δ=[-(2k+1)]2-4×1×(k2+k)=1>0,∴方程有两个不相等的实数根;(2)解:∵由x2-(2k+1)x+k2+k=0,得(x-k)[x-(k+1)]=0,∴x1=k,x2=k+1.即AB,AC的长为k,k+1,当AB=BC时,即k=5,满足三角形构成条件;当AC=BC时,k+1=5,解得k=4,满足三角形构成条件.综上所述,k=4或k=5.五、解答题(三)(本大题共2小题,每小题12分,共24分)22.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车的进价为1 000元/辆,售价为1 300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?解:(1)设前4个月自行车销量的月平均增长率为x,根据题意列方程,得64(1+x)2=100,解得x1=-225%(不合题意,舍去),x2=25%,100×(1+25%)=125(辆).故该商城4月份卖出125辆自行车.(2)设购进B 型车x 辆,则购进A 型车30 000-1 000x 500辆,根据题意得不等式组2x≤30 000-1 000x 500≤2.8x ,解得12.5≤x≤15,因为自行车辆数为整数,所以13≤x≤15,销售利润W =(700-500)×30 000-1 000x 500+(1 300-1 000)x.整理得W =-100x +12 000,因为W 随着x 的增大而减小,所以当x =13时,销售利润W 有最大值,此时,30 000-1 000×13500=34,所以该商城应购进A 型车34辆,B 型车13辆.23.关于x 的一元二次方程(m -1)x 2-2mx +m +1=0.(1)求方程的根;(2)m 为何整数时,此方程的两个根都为正整数?解:(1)方法一:根据题意得m≠1.Δ=(-2m)2-4(m -1)(m +1)=4.∴x 1=2m +22(m -1)=m +1m -1,x 2=2m -22(m -1)=1.方法二:根据题意得m≠1.原方程可化为(x -1)[(m -1)x -(m +1)]=0,∴x 1=m +1m -1,x 2=1.(2)由(1)知x 1=m +1m -1=1+2m -1,∵方程的两个根都是正整数,∴2m -1是正整数,∴m -1=1或2.∴m =2或3.。

2025年中考数学核心考点复习_一元一次方程核心考点专题练习(无答案)

2025年中考数学核心考点复习_一元一次方程核心考点专题练习(无答案)

一元一次方程核心考点专题练习专题一一元一次方程核心考点一一元一次方程的定义01. 指出下列各式中哪些是一元一次方程,把序号填在横线上: .①x+3=2x-3;②x²-2x=0;③2x-3x+7;④3x-2y=6;⑤2y+5=3y-4;02.若((a-1)x|a|=6是关于x的一元一次方程,则a的值为 ( )A. ±lB. -1C. 1D. 203. 若方程是关于x的一元一次方程,则代数式|m-1||的值为 ( )A. 0B. 2C. 0或2D. -2核心考点二一元一次方程的解、根04. 若关于x的方程2(x-1)-a=0的解是3, 则a的值是 .05. 已知方程及两数 1,6,下列说法正确的是 ( )A. 仅1是此方程的根B. 1, 6都是方程的根C. 1,6都不是方程的根D. 仅6是方程的根06. 若关于x的方程( 是一元一次方程,则k= ,方程的解x= .核心考点三等式的性质07. 用适当的数或式子填空,使所得的结果仍是等式,并说明理由.(1) 如果7x-9=12, 那么7x=12+ , 根据 ;(2) 如果-4x=16, 那么x= , 根据 ;(3) 如果那么x= ,根据 ;(4) 如果那么x= ,根据 .08.下列各式进行的变形中,不正确的是 ( )A. 若a=b, 则2a=a+bB. 若a=b, 则C. 若3a=2b, 则D. 若a=b, 则09.下列各式运用等式的性质变形,正确的是 ( )A. 若-m=-n, 则m=nB. 若b=c, 则C. 若ab= ac, 则b=cD. 若|x|m=|x|n, 则m=n10. 以下等式的变形:①如果那么②如果 ax+b= ay+b,那么x=y;③如果那么x=y; ④如果x=y, 那么正确的有 ( )个.A. 1B. 2C. 3D. 411. 利用等式的性质解下列一元一次方程:(1) 2+x=2x-7; (2)-3(x+2)=-12.核心考点四根据题意列方程12. 长江上有A,B两个港口,一艘轮船从A到B顺水航行要用时2h,从B到A(航线相同) 逆水航行要用时3.5h.已知水流的速度为 15km/h,求轮船在静水中的航行速度是多少? 若设轮船在静水中的航行速度为 xkm/h,则可列方程为 ( )A. (x-15)×3.5=(x+15)×2B. (x+15)×3.5=(x-15)×213. 有一些相同的房间需要用地板装修地面,每一天4名熟练的装修工人可装修5间房,结果还剩未能装修;每一天6名初级装修工人除了能装修7间房以外,还可以多装修5m². 若一名熟练工人每天比一名初级工人多装修3m²,设每个房间地面面积xm²,一名初级工人每天装修. 下列方程中正确的有 ( )①5x+43=7x-5+3;②5x-34-7x+6=3;③4(y+5)+3 =6y-/⁷;④4(y+3)-3=⁶A. ①③B. ②④C. ①④D. ②③核心考点五一元一次方程的解小综合14. 下列命题: ①若a+b+c=0, 则②若a+b+c=0, 且则③若a+b+c=0,且a≠0,则x=1一定是关于x的方程( 的解;④若则 abc>0. 其中正确的是 ( )A. ①②③B. ①③④C. ②③④D. ①②③④专题二解一元一次方程核心考点一移项解方程01. 解方程:(1) 4a-7=6a+10; (2) 3x+7x=9x+8.核心考点二去括号解方程02. 解方程:(1) 4x-3(20-x)=6x-7(9-x); (2) 5x-3(2x+1)=6x-4(5-3x).核心考点三去分母解方程03. 解下列方程:核心考点四解含小数点的方程专题三解特殊方程与构造方程核心考点一解多层括号的一元一次方程01. 解方程:核心考点二裂项法解一元一次方程02. 方程的解是x= .核心考点三构造一元一次方程03. 在中,“…”代表按规律不断求和,设则有解得x=2, 故类似地的结果是= .04. 问题解决:0.9=1是小学大家都承认的事实,但你能推理说明其中的道理吗? 小明与小白有如下的探究:【小明的解答】解: ∵0.9=0.9999……, ∴可设0.9=x, 则10x=9.999……,∴10x-x=9, 解得x=1, ∴0.9=1.实践探究:请你仿照小明的方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程: ①0.7 3; ②0.432.拓展延伸:直接写出将0.432化成分数的结果为 .05把无限循环小数化为分数,可以按如下方法进行:以0.7为例,设0.7=x,由0.7=0.777…, 可知, 10x=7.777…, 所以10x-x=7, 解方程, 得于是仿照上述方法,无限循环小数0. i化成分数是 .专题四含参一元一次方程核心考点一等式的性质和参数01.小军同学在解关于x的方程去分母时,方程右边的-1没有乘2,因而求得方程的解为3,则m的值和方程的正确解为( )A. 2, 2B. 2, 3C. 3, 2D. 3, 3核心考点二解含参数的一元一次方程02. 解关于x的方程:(1) 2a+5x=7x-2b (a, b为已知数); (2) 解关于x的方程:核心考点三同解一元一次方程与参数03. 已知关于x的方程与的解相同,则m的值是 .04. 如果关于x的方程与的解相同,那么m的值是 ( )A. 1B. ±1C. 2D. ±205. 已知关于x的方程和有相同的解,求这个数.核心考点四换元法06.已知关于x的一元一次方程:的解为. ,则关于y的一元一次方程2023(5-y)-m=2028-y的解为y= ( )A. y=-11B. y=2C. y=10D. y=11核心考点五方程的解不变07. 如果a, b为常数, 关于x的方程无论k为何值时,它的解总是1,求a,b的值.核心考点六参数 (方程) 的应用08.一列火车长x米,以每秒a米的速度通过一个长为b米的大桥,用代数式表示它完全通过大桥(从车头进入大桥到车离开大桥) 所用的时为 ( )秒 B. b/a秒 C. x;a秒秒核心考点七整数解问题09.下表是某校七~九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同.课外小组活动总时间/h文艺小组活动次数科技小组活动次数七年级12.543八年级10.533九年级7a b表格中a,b的值正确的是 ( )A. a=2, b=3B. a=3, b=2C. a=3, b=4D. a=2, b=2核心考点八参数与最值分析10.如图所示的是2022年2月份的月历,2022年2月1日恰逢春节,也是农历壬寅虎年的开始. 月历中,“U型”、“十字型”两个阴影图形分别覆盖其中五个数字 (“U型”、“十字型”两个阴影图形可以重叠覆盖,也可以上下左右移动),设“U 型”覆盖的五个数字之和为S₁,“十字型”覆盖的五个数字之和为S₂.若则S₂-S₁的最大值为.日一二三四五六12345678910111213141516171819202122232425262728专题五一元一次方程的应用(1) ——配套、工程、数字与盈不足问题核心考点一配套问题01. 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉120个或螺母200个,两个螺母与一个螺钉配套,怎样安排工人使每天的产品刚好配套?核心考点二工程问题02. 一项工程,由一个人做要40小时完成. 现计划由一部分人先做4小时,再增加2人和他们一起做8小时完成任务. 若这些人的工作效率相同,应先安排多少人工作?核心考点三数字问题03. 有一个两位数,十位上的数是个位上的数的2倍,如果把十位上的数与个位上的数对调,那么所得的新的两位数比原来的两位数小27,求这个两位数.核心考点四盈不足问题04. 有一些相同的房间需要粉刷墙面. 一天3名一级技工粉刷8个房间,结果还有50平方米没有刷完;同样时间5名二级技工粉刷完10个房间外,还多刷了另外的40 平方米. 已知每名一级技工比二级技工一天多刷10平方米,求每个房间需要粉刷的墙面面积.专题六一元一次方程的应用 (2)——利润与盈亏核心考点一盈亏问题01. 已知某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店 ( )A. 不盈不亏B. 亏损10元C. 盈利10元D. 盈利20元02. 某药厂对售价为m元的药品进行了降价,现在有三种方案. 方案一:第一次降价10%,第二次降价30%;方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多 ( )A. 方案一B. 方案二C. 方案三D. 不能确定03. 某药店在甲工厂以每包a元的价格买进了41盒口罩,又在乙工厂以每包b元(a<b) 的价格买进了同样的59盒口罩. 如果以每包元的价格全部卖出这种口罩,那么这家药店 ( )A. 亏损了B. 盈利了C. 不盈不亏D. 盈亏不能确定核心考点二利润问题04. 某商店开张,为吸引顾客,所有商品一律按8折优惠出售. 已知某种皮鞋进价60元一双,8折优惠出售后商家获利40%.问:这种皮鞋标价多少元?核心考点三利率问题05.“盛中”商场为了促销新上市的新款 A 牌汽车,决定2023年“国庆节”期间购买该车者可以分两期付款:在购买时先付一笔款,余下部分及它的利息(年利率为8%)在2024年“国庆节”付清. 已知该汽车每辆售价为74074元,若购车者的两次付款恰好相同,则每次应付款多少元? (结果保留整数)专题七一元一次方程的应用(3) ——行程问题核心考点一顺水 (风) 逆水 (风)01.轮船在顺水中的速度为28千米/时,在逆水中的速度为24千米/时,则水流的速度是千米/时.02. 一艘轮船航行在A,B两个码头之间,已知水流的速度为3千米/时,轮船顺水航行需用5小时,逆水航行需用7小时,求轮船速度和A,B两地之间的距离.核心考点二过桥问题03. 一桥长1000米,一列火车从车头上桥到车尾离桥用了1分钟时间,整列火车完全在桥上的时间为40秒. 求火车的长度及行驶速度.04.一列火车匀速行驶,完全通过一条长450米的隧道需要25秒的时间,隧道顶上有一盏灯垂直向下发光,灯光照在火车上的时间是10秒,则火车的速度为米/秒.核心考点三时钟问题 (转化为追及问题)05.某人在下午五点多离开家时看了一下时钟,发现时针和分针的夹角是110°,不到下午6点时回家发现时针和分针的夹角还是110°,则他外出的时间是分钟.核心考点四年龄问题——相差不变问题06. 今年父亲的年龄与兄妹两人年龄之和相等,且哥哥比妹妹大4岁. 已知24年前,父亲的年龄是兄妹年龄之和的5倍. 那么今年父亲、兄妹各多少岁?核心考点五环形运动07. 甲、乙两人在400米环形跑道上练习长跑,两人速度分别为200米/分和160米/分. 两人同时从起点同向出发.当两人起跑后第一次并肩时经过了多少时间? 这时他们各跑了多少圈?核心考点六追及问题08. 甲、乙两人从A地同时出发去B地,速度为15千米/小时,走了3千米时,甲发现重要物品忘在A地,立即返回拿到物品并追赶乙,若返回和追赶速度都是原速的1.2倍,且两人同时到达B地,则A,B两地相距多少千米?核心考点七无长度相遇09. 甲、乙两汽车从A市出发,丙汽车从B市出发,甲车每小时行驶40千米,乙车每小时行驶45千米,丙车每小时行驶50千米,如果三辆汽车同时相向而行,丙车遇到乙车后10分钟才能遇到甲车,求A,B两市的距离.核心考点八有长度相遇10. 某校中学生郊游,沿着与笔直的铁路线并列的公路匀速前进,每小时行4500米,一列火车以每小时 120千米的速度迎面开来,测得从火车头与队伍首位学生相遇,到车尾与队伍末尾学生相遇共经历60秒,如果队伍长500米,那么火车长是多少米?01. 下表是某网约车公司的专车计价规则.计费项目起租价里程费时长费远途费单价15元 2.5元/公里 1.5 元/分1元/公里注:车费由起租价、里程费、时长费、远途费四部分构成,其中起租价15元含10分钟时长费和5公里里程费,远途费的收取方式为:行车里程10公里以内(含10公里) 不收远途费,超过10公里的,超出部分每公里收1元.(1) 若小李乘坐专车,行车里程为20公里,行车时间为30分,则需付车费元;(2)若小李乘坐专车,行车里程为x(7<x≤10)公里,平均时速为40km/h,则小李应付车费多少元? (用含x的代数式表示)(3)小李与小王各自乘坐专车,行车车费之和为76元,里程之和为15公里(其中小王的行车里程不超过5公里).如果行驶时间均为20分钟,那么这两辆专车此次的行驶路程各为多少公里?02. 某市居民使用自来水,每户每月水费按如下标准收费:月用水量不超过8立方米,按每立方米a元收取;月用水量超过8立方米但不超过14立方米的部分,按每立方米b元收取;月用水量超过14立方米的部分,按每立方米c元收取. 下表是某月部分居民的用水量及缴纳水费的数据.用水量(立方米) 2.51561210.3 4.791716水费 (元)533.41225.621.529.418.439.436.4(1) ①a= , b= , c= ;②若小明家七月份需缴水费31元,则小明家七月份用水米³;(2)该市某用户两个月共用水30立方米,设该用户在其中一个月用水x立方米,请列式表示这两个月该用户应缴纳的水费.01. 某牛奶加工厂现有鲜奶9吨,若直接在市场上销售鲜奶,每吨可获利润500元;制成酸奶销售,每吨可获利润1200元;制成奶片销售,每吨可获利润2000 元.该厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕. 为此,该厂设计了两种可行方案:方案 1:尽可能多地制成奶片,其余直接销售鲜牛奶.方案2:将一部分制成奶片,其余制成酸奶销售,并恰好四天完成,你认为选择哪种方案获利较多,为什么?02. 某超市开展“元旦”促销活动,出售A、B两种商品,活动方案有如下两种:A B标价(单位:元)100110每件商品返利按标价的30%按标价的15%方案1例: 买一件A商品, 只需付款100(1-30%)元方案2若所购商品达到或超过101件(不同商品可累计),则按标价的20%返利(同一种商品不可同时参与两种活动)(1) 某单位购买A商品30件,B商品90件,选用何种活动方案划算? 能便宜多少钱?(2)若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多2件,请问该单位该如何选择才能获得最大优惠? 请说明理由.专题十一元一次方程的应用(6)——答题得分类应用题01. 12月4日为全国法制宣传日,当天某初中组织4名学生参加法制知识竞赛,共设20道选择题,各题分值相同,每题必答,下表记录了其中2名参赛学生的得分情况.参赛者答对题数答错题数得分A200100B17379(1) 参赛学生C得72分,他答对了几道题? 答错了几道题?(2) 参赛学生D说他可以得88分,你认为可能吗? 为什么?02. 某学校组织四名学生参加知识竞赛,知识竞赛共设20道选择题,各题分值相同,每题必答,下表记录了其中2 名学生参赛后的得分情况.参赛者答对题数答错题数得分A18286B17379(1) 参赛学生C得72分,他答对了几道题? 答错了几道题? 为什么?(2) 参赛学生D说他可以得94分,你认为可能吗? 为什么?03. 某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下表记录了其中5名参赛者的得分情况,观察并完成下面的问题.(1) 由表可知,答对一题得分,答错一题得分(直接写出结果);(2) 某参赛者说他答完20道题共得70分,你认为可能吗? 请说明理由.参赛者答对题数答错题数得分A200100B19194C18288D14664E101040专题十一一元一次方程的应用(7) ——球赛积分类应用题01. 下表为某篮球比赛过程中部分球队的积分(篮球比赛没有平局).球队比赛场次胜场负场积分A1210222B129321C127519D116517E1113(1) 观察积分榜,请直接写出球队胜一场积分,负一场积分;(2) 根据积分规则,请求出E队已经进行了的11场比赛中胜、负各多少场?(3)若此次篮球比赛共18轮(每个球队各有18场比赛),D队希望最终积分达到32分,你认为有可能实现吗?请说明理由.02.下表是某赛季欧洲足球冠军杯第一阶段G组赛(G组共四个队,每个队分别与其它三个队进行主、客场比赛各一场,即每个队要进行6场比赛) 积分表的一部分.排名球队场次胜平负进球主场进球客场进球积分1切尔西6??11385132基辆迪纳摩6321835113波尔图63129x5104特拉维夫马卡比60061100备注积分=胜场积分+平场积分+负场积分(1)表格中波尔图队的主场进球数x的值为,本次足球小组赛胜一场积分,平一场积分,负一场积分;(2)欧洲冠军杯奖金分配方案为:参加第一阶段小组赛6场比赛每支球队可以获得参赛奖金1200万欧元,另外,小组赛中每获胜一场可以再获得150万欧元,平一场获得50万欧元. 请根据表格提供的信息,求出在第一阶段小组赛结束后,切尔西队一共能获得多少万欧元的奖金?01.下表是某校七、八年级某月课外兴趣小组活动时间统计表,其中七、八年级同一兴趣小组每次活动时间相同.年级课外小组活动总时间/h文艺小组活动次数科技小组活动次数七年级18.667八年级1555(1) 文艺小组和科技小组各活动1次,共用时 h;(2) 求文艺小组每次活动多少h?02.下表是某校四~九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同.课外小组活动总时间/h文艺小组活动次数科技小组活动次数活动总次数四年级18.57310五年级165a六年级9七年级12.5437八年级10.5336九年级7b(1)文艺小组每次活动 h,科技小组每次活动 h,(2) 该校六年级文艺小组活动总时间能等于科技小组活动的总时间吗?(3) 该校计划在四年级不改变总时间的前提下,增加活动的总次数,试通过计算设计符合条件的所有方案.01.“丰收1号”油菜籽的平均每公顷产量为2500kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点. A村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少5公顷,但是所产油菜籽的总产油量比去年提高了5000kg.(1) 分析:根据问题中的数量关系,用含x的式子填表:种植面积(公顷)每公顷产量( kg)含油率总产油量( kg)去年x250040%今年2500+30040%+10%求出:A村去年和今年种植油菜的面积各是多少公顷?(2)去年和今年A村将所产的油全部制作成压榨菜籽油,然后都以每千克 15元的价格卖给批发商,批发商将去年菜籽油按照每千克20元定价,且全部售出. 由于销售火爆,批发商今年比去年每千克提高了a元定价,也全部售出,且今年比去年多盈利130000元,求a的值.02.某钢铁厂每天可开采菱铁矿1920t,其中含铁率为50%,每天可开采的褐铁矿要比菱铁矿多330t,且褐铁矿的含铁率比菱铁矿提高了10个百分点. 钢铁厂一期开采某处菱铁矿,二期开采某处褐铁矿,虽然二期开采天数比一期减少3天,但总产铁量比一期提高了3750t.(1) 设一期菱铁矿开采了x天,根据题目中的数量关系,用含x的式子填表(结果需要化简):开采天数(天)每天开采量(t)含铁率总产铁量(t)一期x192050%二期1920+33050%+10%并分别求出一期和二期的开采天数;(2)该厂将全部开采的铁矿石炼制加工成钢铁,一期将钢铁按照每吨a万元定价,且全部售出.由于成本增加,该厂将二期的钢铁每吨定价提高了0.1万元,也全部售出,且二期的总售价比一期多4170万元,求a的值.核心考点一追及问题01. 我国元朝朱世杰所著的《算学启蒙》一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之. ”译文是:“跑得快的马每天走 240里,跑得慢的马每天走 150里. 慢马先走12天,快马几天可以追上慢马?”若慢马和快马从同一地点出发,设快马x天可以追上慢马,则可以列方程为 ( )A. (240-150)x=150×12B. 150(x-12)=240xC. 240x+150×12=150xD. 12x=(240-150)核心考点二盈不足问题02.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问物价几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问这个物品的价格是多少? 设这个物品的价格是x元,则可列方程为( )A. 8x-3=7x+4B. 8x+3=7x+403. 我国古代数学著作《孙子算经》卷中记载“多人共车”问题,原文如下:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是:今有若干人乘车,每3 人乘1车,最终剩余2辆车;若每2人共乘1车,最终剩余9个人无车可乘,问有多少人,多少辆车? 设有x个人,根据题意列方程正确的是 ( )04. 我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁”意思:有100个和尚分 100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人? 设大和尚有x人,依题意列方程得 ( )05.《九章算术》中“盈不足术”有这样的问题:“今有共买羊,人出六,不足四十五;人出八,不足三.问人数、羊价各几何?”题意是:若干人共同出资买羊,每人出6元,则差45元;每人出8元,则差3 元. 根据题意列一元一次方程可求出羊价为( )元.A. 211B. 195C. 189D. 171核心考点一行程问题与分类讨论01. 如图,某公司租用两种型号的货车各一辆,分别将产品运往甲市与乙市(运费收费标准如下表),已知该公司到乙市的距离比到甲市的距离远30km,B车的总运费比A 车的总运费少1080元.货车 A 车 B 车运费(元/千米)2418(1) 求这家公司分别到甲、乙两市的距离;(2)若A,B两车同时从公司出发,其中B 车以60km/h的速度匀速驶向乙市,而A 车根据路况需要,先以45km/h的速度行驶了3 小时,再以75km/h的速度行驶到达甲市.①在行驶的途中,经过多少时间,A,B两车到各自目的地的距离正好相等?②若公司希望B车能与A车同时到达目的地,B车必须在以60km/h的速度行驶一段时间后提速,若提速后的速度为70km/h,则B车应该在行驶小时后提速.核心考点二利润问题与分类讨论02. 武汉大洋百货经销甲、乙两种服装,甲种服装每件进价500元,售价800元;乙种服装每件售价1200元, 可盈利50%.(1) 每件甲种服装利润率为,乙种服装每件进价为元;(2) 若该商场同时购进甲、乙两种服装共40件,恰好总进价为27500元,求商场销售完这批服装,共盈利多少元?(3)在元旦当天,武汉大洋百货实行“满1000元减500元的优惠”(比如:某顾客购物1200元,他只需付款700元).到了晚上八点后,又推出“先打折”,再参与“满1000元减500元”的活动.张先生买了一件标价为3200元的羽绒服,张先生发现竟然比没打折前多付了20元钱. 问大洋百货商场晚上八点后推出的活动是先打多少折之后再参加活动?。

4【中考复习】第四章:等式方程(等量关系)

4【中考复习】第四章:等式方程(等量关系)

3.
解 一 元 二 次方程( 配 方法 、 因 式 分 解 法 、 公 式 法 )
4.
一元二次方程根与系数关系
三、分数方程结构和转换(解方程)
1.
分式方程(结构及转换)
2.
解 分 式 方 程及增根
四、方程组结构及转换
1.
方程组结构
2.
解方程组
3.
方 程 组 和 方程的相互 转换
五、中考真题(出题形式)
(合并同类项)
(去括号)
(去括号)
(合并同类项)
(系数化1)
(合并同类项)
中考复习
(系数化1)
9
3 、 解 一 元 二 次 方 程— — 配 方 法
解一元二次方程的方法——将一元二次方程转换为一元一次方程
将ax2+bx+c=0转换为(x+m)2=n(m、n是常数)
当n>0转换为两个一元一次方程 :x+m=√n、 x+m=-√n,有两个解(或有两个不同实数根)
中考复习
2
1、两个数量比较什么?有几种结果?
● 代数式中数量之间的关系是——运算(+-×÷)关系,新的数
量关系是什么?
● 比较(动作)两个数量(感知)大小的结果是什么?
● 相等和不相等
● 两个代数式的数量相等的关系是等量关系,是等式

● 两个代数式的数量不相Байду номын сангаас的关系是不等量关系,是不等式
✓ 表示数量相等的数学符号:
2)等式加(减)等式,结果仍然是等式
a
c
a=b,c=d → a+c=b+d ,a-c=b-d
b
d
例:5×4=20 ,6=(2×3)

苏科版数学中考复习专题练习—方程及其应用(含答案)

苏科版数学中考复习专题练习—方程及其应用(含答案)

方程及其应用一、学习目标1.能够识别一次方程(组)、分式方程、一元二次方程,并熟练掌握各类方程(组)的解法;2.理解方程(组)的解的意义,探究含字母参数的方程的解的问题;3.会列方程(组)求解实际问题、数学问题.二、典型例题题型一、方程(组)有关的概念及解法例题1.关于x 的方程(m +1)x |m |+1+(m -3)x -1=0.(1)m 取何值时,方程是一元二次方程,并求出此方程的解;(2)m 取何值时,方程是一元一次方程.例题2.解方程:x x -1=4 x 2-1 +1借题发挥:1.用加减消元法解二元一次方程组 ⎩⎨⎧ x +3y =4 ①, 2x -y =1 ②,时,下列方法中无法消元....的是( ) A . ①×2-② B .②×(-3) -① C . ①×(-2)+② D .①-②×32.用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( )A .(x - 3 4 )2= 17 16B .(x - 3 4 )2= 1 2C .(x - 3 2 )2= 13 4D .(x - 3 2 )2= 11 4题型二、方程的解的意义例题3.已知关于x 、y 的方程组⎩⎨⎧ a x +23y =-103 x +y =4与⎩⎨⎧ x -y =2 x +b y =15 的解相同.求a 、b 的值.例题4.已知关x 的一元一次方程 1 2021 x +3=2x +m 的解为x =2, 那么关于y 的一元一次方程 1 2021(y +1)+3=2 (y +1)+m 的解为 . 借题发挥:1.学校计划用200元钱购买A 、B 两种奖品,A 种每个15元,B 种每个25元,在钱全部用完的情况下,有多少种购买方案( )A .2种B .3种C .4种D .5种2.甲、乙二人同时解方程组⎩⎨⎧ a x +y =3 2x -b y =1 ,甲看错了a ,解得⎩⎨⎧ x =1 y =-1 ;乙看错了b ,解得⎩⎨⎧ x =-1 y =3.求a 、b 的值.题型三、含字母参数的方程的解的问题例题5.若关于x 的分式方程3x x -2=m 2-x+5的解为正数,则m 的取值范围为( ) A .m <-10 B .m ≤-10C .m ≥-10且m ≠-6D .m >-10且m ≠-6例题6.等腰三角形的一边长是3,另两边的长是关于x 的方程x 2-4x +k =0的两个根,则k 的值为( )A .3B .4C .3或4D .7借题发挥:关于x 的方程kx 2﹣6x +9=0有实数根,k 的取值范围是( )A .k <1且k ≠0B .k <1C .k ≤1且k ≠0D .k ≤1题型四、用方程思想解决问题例题7.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?。

中考数学复习:第二章:方程与不等式专题复习

中考数学复习:第二章:方程与不等式专题复习

分式方程及其应用
•中考预知 •1、分式方程的解法; •2、分式方程实际的应用。
考点1:分式方程的解法
• 1.分式方程:分母中含有字母的方程叫分式方程. • 2.解分式方程的一般步骤: • (1)去分母,在方程的两边都乘以分母的最小公倍数,约去分母,
化成整式方程;
• (2)解这个整式方程; • (3)验根,把整式方程的根代入最简公分母,看结果是不是零,使
一次方程,它们的解就是原一元二次方程的解.
典例精讲
• 1、下列方程是一元二次方程的是( )
• A.ax2 bx c 0
• B.x2 2x x2 1
• C.x 1x 3 0
• D. 1 x 2 x2
• 2、分别用下列方法解方程
• (1)(2x 1) 2 9(直接开平方法)
(2)4x2–8x+1=0(配方法)
2cx+a=0,cx2+2ax+b=0,不可能都有两个相等的实数根.
• 七、判定三角形的形状 • 例7 设a、b、c是△ABC的三边长,且关于x的方程c(x2+n)+b(x2-n)
-2ax=0(n>0)有两个相等的实数根,试判断△ABC的形状.
• 八、讨论方程有理根的问题 • 例8 m为有理数,讨论后为何值时,方程x2+4(1-m)x+3m2-2m+4k=0
典例精讲
• 1、已知a,b,c均为实数,若a>b,c≠0,下列结论不一定正确的 是( )
• A.a+c>b+c
B.c-a<c-b
• C.
D.a2>ab>b2
• 2、若a>b,则下列不等关系一定成立的是( )
• A. ac bc
B. a b cc
C. c a c b D. a c b c

中考一轮复习 数学专题05 一元二次方程(学生版)

中考一轮复习 数学专题05 一元二次方程(学生版)

专题05 一元二次方程一、单选题1.(2022·甘肃兰州)关于x 的一元二次方程2210kx x +-=有两个相等的实数根,则k =( ) A .-2B .-1C .0D .12.(2022·湖南郴州)一元二次方程2210x x +-=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根3.(2022·黑龙江哈尔滨)某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x ,根据随意,所列方程正确的是( )A .()2150196x -=B .150(1)96x -=C .2150(1)96x -=D .150(12)96x -=4.(2022·山东泰安)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株楼后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .()316210x x -= B .()316210x -= C .()316210x x -=D .36210x =5.(2022·浙江温州)若关于x 的方程260x x c ++=有两个相等的实数根,则c 的值是( ) A .36B .36-C .9D .9-6.(2021·辽宁丹东)若实数k 、b 是一元二次方程(3)(1)0x x +-=的两个根,且k b <,则一次函数y kx b =+的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限7.(2021·贵州毕节)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为( ) A .5B .6C .7D .88.(2021·贵州毕节)已知关于x 的一元二次方程2410ax x --=有两个不相等的实数根,则a 的取值范围是( )A .4a ≥-B .4a >-C .4a ≥-且0a ≠D .4a >-且0a ≠9.(2021·内蒙古赤峰)一元二次方程2820x x --=,配方后可形为( ) A .()2418x -= B .()2414x -= C .()2864x -=D .()241x -=10.(2020·内蒙古)下列命题正确的是( ) A .若分式242x x --的值为0,则x 的值为±2.B .一个正数的算术平方根一定比这个数小.C .若0b a >>,则11a ab b ++>.D .若2c ≥,则一元二次方程223x x c ++=有实数根.11.(2020·山东泰安)将一元二次方程2850x x --=化成2()x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是( ) A .4-,21B .4-,11C .4,21D .8-,6912.(2020·四川攀枝花)若关于x 的方程20x x m --=没有实数根,则m 的值可以为( ). A .1-B .14-C .0D .113.(2022·青海西宁)关于x 的一元二次方程220x x k +-=没有实数根,则k 的取值范围是( )A .18k <-B .18k ≤-C .18k >-D .18k ≥-14.(2022·贵州黔东南)已知关于x 的一元二次方程220x x a --=的两根分别记为1x ,2x ,若11x =-,则2212a x x --的值为( )A .7B .7-C .6D .6-15.(2022·辽宁大连)若关于x 的一元二次方程260x x c ++=有两个相等的实数根,则c 的值是( ) A .36B .9C .6D .9-16.(2022·山东聊城)用配方法解一元二次方程23610x x +-=时,将它化为()2x a b +=的形式,则a b +的值为( )A .103 B .73C .2D .4317.(2022·广西贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( ) A .0,2-B .0,0C .2-,2-D .2-,018.(2021·山东潍坊)若菱形两条对角线的长度是方程x 2﹣6x +8=0的两根,则该菱形的边长为( ) 本**号资料皆来源#于微信:数学A B .4 C .25 D .519.(2021·广西贵港)已知关于x 的一元二次方程x 2-kx +k -3=0的两个实数根分别为12,x x ,且22125x x +=,则k 的值是( ) A .-2B .2C .-1D .120.(2021·山东济宁)已知m ,n 是一元二次方程220210x x +-=的两个实数根,则代数式22m m n ++的值等于( ) A .2019B .2020C .2021D .202221.(2020·四川巴中)关于x 的一元二次方程x 2+(2a ﹣3)x +a 2+1=0有两个实数根,则a 的最大整数解是( ) A .1B .1-C .2-D .022.(2020·四川雅安)如果关于x 的一元二次方程2310kx x -+=有两个实数根,那么k 的取值范围是( ) A .94kB .94k -且0k ≠C .94k且0k ≠ D .94k -23.(2020·湖北省直辖县级单位)关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为( ) A .1-B .4-C .4-或1D .1-或424.(2022·湖北恩施)已知抛物线212y x bx c =-+,当1x =时,0y <;当2x =时,0y <.下列判断: ①22b c >;①若1c >,则32b >;①已知点()11,A m n ,()22,B m n 在抛物线212y x bx c =-+上,当12m m b <<时,12n n >;①若方程2102x bx c -+=的两实数根为1x ,2x ,则123x x +>.其中正确的有( )个.A .1B .2C .3D .425.(2022·湖北武汉)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =( )A .2或6B .2或8C .2D .626.(2022·天津)已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a c <<)经过点(1,0),有下列结论: 本号资料皆来源于微信:数*#学①20a b +<;①当1x >时,y 随x 的增大而增大;①关于x 的方程2()0ax bx b c +++=有两个不相等的实数根. 其中,正确结论的个数是( ) A .0B .1C .2D .327.(2021·四川绵阳)关于x 的方程20ax bx c ++=有两个不相等的实根1x 、2x ,若212x x =,则49b ac -的最大值是( )A .1BC D .228.(2021·山东枣庄)在平面直角坐标系xOy 中,直线AB 垂直于x 轴于点C (点C 在原点的右侧),并分别与直线y x =和双曲线2y x=相交于点A ,B ,且4AC BC +=,则OAB 的面积为( )A .22B .2或2C .2D .229.(2020·湖北随州)将关于x 的一元二次方程20x px q -+=变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如32()x x x x px q =⋅=-=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:210x x --=,且0x >,则4323x x x -+的值为( )A .1B .3C .1D .3二、填空题30.(2022·广西梧州)一元二次方程()()270x x -+=的根是_________.31.(2022·湖南娄底)已知实数12,x x 是方程210x x +-=的两根,则12x x =______.32.(2021·江苏泰州)关于x 的方程x 2﹣x ﹣1=0的两根分别为x 1、x 2则x 1+x 2﹣x 1•x 2的值为 ___. 33.(2021·江苏宿迁)若关于x 的一元二次方程x 2 +ax -6=0的一个根是3,则a =34.(2021·湖北黄冈)若关于x 的一元二次方程2x 2x m 0-+=有两个不相等的实数根,则m 的值可以是____.(写出一个即可)35.(2020·山东淄博)已知关于x 的一元二次方程x 2﹣x+2m =0有两个不相等的实数根,则实数m 的取值范围是_____.36.(2022·青海)如图,小明同学用一张长11cm ,宽7cm 的矩形纸板制作一个底面积为221cm 的无盖长方体纸盒,他将纸板的四个角各剪去一个同样大小的正方形,将四周向上折叠即可(损耗不计).设剪去的正方形边长为x cm ,则可列出关于x 的方程为______.37.(2022·上海)已知x -+m =0有两个不相等的实数根,则m 的取值范围是_____.38.(2022·黑龙江绥化)设1x 与2x 为一元二次方程213202x x ++=的两根,则()212x x -的值为________.39.(2022·湖南永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是25,小正方形的面积是1,则AE =______.40.(2021·贵州黔西)三角形两边的长分别为2和5,第三边的长是方程28150x x -+=的根,则该三角形的周长为 _____.41.(2021·江苏南通)若m ,n 是一元二次方程2310x x +-=的两个实数根,则3231m m n m +-的值为___________.42.(2020·山东枣庄)已知关于x 的一元二次方程(a ﹣1)x 2﹣2x +a 2﹣1=0有一个根为x =0,则a =___.43.(2020·内蒙古呼伦贝尔)已知关于x 的一元二次方程21(1)104m x x --+=有实数根,则m 的取值范围是___________.44.(2022·四川内江)已知x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,且2112x x x x +=x 12+2x 2﹣1,则k 的值为 _____.45.(2022·四川眉山)设1x ,2x 是方程2230x x +-=的两个实数根,则2212x x +的值为________.46.(2022·四川凉山)已知实数a 、b 满足a -b 2=4,则代数式a 2-3b 2+a -14的最小值是________.47.(2021·湖南娄底)已知2310t t -+=,则1t t+=________.48.(2020·山东济南)如图,在一块长15m 、宽10m 的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m 2,则修建的路宽应为_____米.49.(2020·贵州黔南)对于实数a ,b ,定义运算“*”,22()*()a ab a b a b ab b a b ⎧->=⎨-⎩例如4*2,因为42>,所以24*24428=-⨯=.若12,x x 是一元二次方程28160x x -+=的两个根,则12*x x =_________.50.(2020·江苏南通)若x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,则代数式x 12﹣2x 1+2x 2的值等于_____. 51.(2020·黑龙江大庆)已知关于x 的一元二次方程220x x a --=,有下列结论: ①当1a >-时,方程有两个不相等的实根; ①当0a >时,方程不可能有两个异号的实根; ①当1a >-时,方程的两个实根不可能都小于1;①当3a >时,方程的两个实根一个大于3,另一个小于3. 以上4个结论中,正确的个数为_________.52.(2020·辽宁辽宁)如图,在Rt ABC ∆中,90ACB ∠=︒,2AC BC =,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点M 和N ,作直线MN ,交AC 于点E ,连接BE ,若3CE =,则BE 的长为_________.53.(2020·湖北孝感)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为1S ,空白部分的面积为2S ,大正方形的边长为m ,小正方形的边长为n ,若12S S ,则nm的值为______.54.(2020·湖南)阅读理解:对于x 3﹣(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式: x 3﹣(n 2+1)x +n =x 3﹣n 2x ﹣x +n =x (x 2﹣n 2)﹣(x ﹣n )=x (x ﹣n )(x +n )﹣(x ﹣n )=(x ﹣n )(x 2+nx ﹣1).理解运用:如果x 3﹣(n 2+1)x +n =0,那么(x ﹣n )(x 2+nx ﹣1)=0,即有x ﹣n =0或x 2+nx ﹣1=0, 因此,方程x ﹣n =0和x 2+nx ﹣1=0的所有解就是方程x 3﹣(n 2+1)x +n =0的解. 解决问题:求方程x 3﹣5x +2=0的解为_____.三、解答题55.(2022·四川凉山)解方程:x 2-2x -3=056.(2020·黑龙江齐齐哈尔)解方程:x 2﹣5x +6=057.(2020·江苏南京)解方程:2230x x --=.58.(2022·广东广州)已知T =()()()2232323a b a b a b a +++-+ (1)化简T ;(2)若关于x 的方程2210x ax ab +-+=有两个相等的实数根,求T 的值.59.(2022·江苏常州)第十四届国际数学教育大会(ICME -14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3210387848582021⨯+⨯+⨯+⨯=,表示ICME -14的举办年份.(1)八进制数3746换算成十进制数是_______;(2)小华设计了一个n 进制数143,换算成十进制数是120,求n 的值.60.(2022·贵州贵阳)(1)a ,b 两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a _______b ,ab _______0;(2)在初中阶段我们已经学习了一元二次方程的三种解法,他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程. ①x 2+2x −1=0;①x 2−3x =0;①x 2−4x =4;①x 2−4=0.61.(2022·湖北随州)已知关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根1x ,2x .(1)求k 的取值范围; (2)若125x x =,求k 的值.62.(2021·山东淄博)为更好地发展低碳经济,建设美丽中国.某公司对其生产设备进行了升级改造,不仅提高了产能,而且大幅降低了碳排放量.已知该公司去年第三季度产值是2300万元,今年第一季度产值是3200万元,假设公司每个季度产值的平均增长率相同.(1)求该公司每个季度产值的平均增长率;(2)问该公司今年总产值能否超过1.6亿元?并说明理由.63.(2021·湖北黄石)已知关于x 的一元二次方程2220x mx m m +++=有实数根. 本号资料皆来源于@微信公*众号:数学(1)求m 的取值范围;(2)若该方程的两个实数根分别为1x 、2x ,且221212x x +=,求m 的值.64.(2021·山西)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答). 本号资料皆来源*于#微信:数#学65.(2021·山东菏泽)列方程(组)解应用题端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?66.(2021·浙江嘉兴)小敏与小霞两位同学解方程()()2333-=-的过程如下框:x x你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.67.(2020·河北)用承重指数W 衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当3x =时,3W =. (1)求W 与x 的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x (厘米),Q W W =-厚薄.①求Q 与x 的函数关系式; ①x 为何值时,Q 是W 薄的3倍?【注:(1)及(2)中的①不必写x 的取值范围】68.(2020·四川南充)已知1x ,2x 是一元二次方程2220x x k -++=的两个实数根.(1)求k 的取值范围; (2)是否存在实数k ,使得等式12112k x x +=-成立?如果存在,请求出k 的值,如果不存在,请说明理由.69.(2022·江苏无锡)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m ),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m ,设较小矩形的宽为x m (如图).(1)若矩形养殖场的总面积为362m ,求此时x 的值;(2)当x 为多少时,矩形养殖场的总面积最大?最大值为多少?70.(2022·贵州毕节)2022北京冬奥会期间,某网店直接从工厂购进A 、B 两款冰嫩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价-进货价)(1)网店第一次用850元购进A 、B 两款钥匙扣共30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩嫩钥匙扣售完后,该网店计划再次购进A 、B 两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B 款钥匙扣调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B 款钥匙扣平均每天销售利润为90元?71.(2022·湖北荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y (万件)与售价x (元/件)之间满足函数关系式y =24-x ,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w (万元)与售价x 之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;①若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?72.(2022·湖北十堰)已知关于x 的一元二次方程22230x x m --=. (1)求证:方程总有两个不相等的实数根; 本*号资料皆来源于微信:数学 (2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值.73.(2022·湖北宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨. (1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m,则5月份再生纸项目月利润达到66万元.求m 的值; (3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?74.(2021·山东日照)某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y (桶)与每桶降价x (元)(020x <<)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?75.(2021·辽宁盘锦)某工厂生产并销售A ,B 两种型号车床共14台,生产并销售1台A 型车床可以获利10万元;如果生产并销售不超过4台B 型车床,则每台B 型车床可以获利17万元,如果超出4台B 型车床,则每超出1台,每台B 型车床获利将均减少1万元.设生产并销售B 型车床x 台. (1)当4x >时,完成以下两个问题: ①请补全下面的表格:①若生产并销售B 型车床比生产并销售A 型车床获得的利润多70万元,问:生产并销售B 型车床多少台? (2)当0<x ≤14时,设生产并销售A ,B 两种型号车床获得的总利润为W 万元,如何分配生产并销售A ,B 两种车床的数量,使获得的总利润W 最大?并求出最大利润.76.(2021·湖北荆门)已知关于x 的一元二次方程26210x x m -+-=有1x ,2x 两实数根. (1)若11x =,求2x 及m 的值;(2)是否存在实数m ,满足()()126115x x m --=-?若存在,求出求实数m 的值;若不存在,请说明理由.77.(2021·辽宁本溪)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个. (1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?78.(2020·贵州黔南)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点12348A A A A ⋯、、分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x 与通电话次数y 之间的关系用如图模型表示:(1)填写上图中第四个图中y 的值为_______,第五个图中y 的值为_______.(2)通过探索发现,通电话次数y 与该班级人数x 之间的关系式为________,当48x =时,对应的y =________.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?79.(2020·内蒙古赤峰)阅读理解:材料一:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”. 本号资料皆来源于微信:@数学材料二:若关于x 的一元二次方程ax 2+bx +c = 0(a ≠0)的两根分别为1x ,2x ,则有12b x x a +=-,12c x x a⋅=. 问题解决:(1)请你写出三个能构成“和谐三数组”的实数 ;(2)若1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根,3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解.求证:x 1,x 2,x 3可以构成“和谐三数组”;(3)若A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值.80.(2022·辽宁锦州)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y (个)与销售单价x (元)之间满足如图所示的一次函数关系.(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w 元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?。

中考数学重点复习----二次方程题型专项练习(含答案解析)

中考数学重点复习----二次方程题型专项练习(含答案解析)

中考数学重点复习----二次方程题型专项练习(含答案解析)1.(2022·重庆)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A .2625(1)400x −=B .2400(1)625x +=C .2625400x =D .2400625x =【答案】B【分析】第一年共植树400棵,第二年植树400(1+x )棵,第三年植树400(1+x )²棵,再根据题意列出方程即可.【详解】第一年植树为400棵,第二年植树为400(1+x )棵,第三年400(1+x )²棵,根据题意列出方程:2400(1)625x +=.故选:B .【点睛】本题考查了一元二次方程的应用,属于增长率的常规应用题,解决此类题目要多理解、练习增长率相关问题.2.(2022·重庆)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是( )A .()22001242x +=B .()22001242x −= C .()20012242x += D .()20012242x −= 【答案】A【分析】平均增长率为x ,关系式为:第三天揽件量=第一天揽件量×(1+平均增长率)2,把相关数值代入即可.【详解】解:由题意得:第一天揽件200件,第三天揽件242件,∴可列方程为:()22001242x +=,故选:A . 【点睛】此题考查一元二次方程的应用,得到三天的揽件量关系式是解决本题的突破点,难度一般.3.(2022·新疆)临近春节的三个月,某干果店迎来了销售旺季,第一个月的销售额为8万元,第三个月的销售额为11.52万元,设这两个月销售额的月平均增长率为x ,则根据题意,可列方程为( )A .8(12)11.52x +=B .28(1)11.52x ⨯+=C .28(1)11.52x +=D .()28111.52x += 【答案】C【分析】设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,即可得.【详解】解:设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,∴28(1+)=11.52x 故选C .【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是能够求出第二个月的销售额和第三个月的销售额.4.(2022·山东泰安)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株楼后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A .()316210x x −=B .()316210x −=C .()316210x x −=D .36210x =【答案】A【分析】设这批椽的数量为x 株,则一株椽的价钱为3(x −1)文,利用总价=单价×数量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这批椽的数量为x 株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x −1)文,依题意得:3(x −1)x =6210,故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5.(2021·黑龙江鹤岗市·中考真题)有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是( )A .14B .11C .10D .9【答案】B【分析】设每轮传染中平均一个人传染了x 个人,由题意可得()11144x x x +++=,然后求解即可.【详解】解:设每轮传染中平均一个人传染了x 个人,由题意可得: ()11144x x x +++=,解得:1211,13x x ==−(舍去),故选B .【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.6.(2021·内蒙古通辽市·中考真题)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x ,则可列方程为( )A .()50712833.6x +=B .()50721833.6x ⨯+=C .()25071833.6x +=D .()()250750715071833.6x x ++++= 【答案】C【分析】根据题意,业务量由507亿件增加到833.6亿件,2020年快递业务量为833.6亿件,逐年分析即可列出方程.【详解】设从2018年到2020年快递业务量的年平均增长率为x ,2018年我国快递业务量为:507亿件,2019年我国快递业务量为:507507x +=507(1)x +亿件,2020年我国快递业务量为:507(1)x ++2507(1)=507(1)x x x ++, 根据题意,得:()25071833.6x += 故选C .【点睛】本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程.7.(2021·福建中考真题)某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x ,那么,符合题意的方程是( )A .()0.6310.68x +=B .()20.6310.68x +=C .()0.63120.68x +=D .()20.63120.68x += 【答案】B【分析】设年平均增长率为x ,根据2020年底森林覆盖率=2018年底森林覆盖率乘()21x +,据此即可列方程求解.【详解】解:设年平均增长率为x ,由题意得:()20.6310.68x +=,故选:B .【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,列出方程即可.8.(2021·湖北襄阳市·中考真题)随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为x ,下面所列方程正确的是( )A .()2500014050x +=B .()2405015000x +=C .()2500014050x −= D .()2405015000x −= 【答案】C【分析】根据题意找到对应的等量关系:2年前的生产成本×(1-下降率)²=现在的生产成本,把相关的数据带入计算即可.【详解】设这种药品的成本的年平均下降率为x ,根据题意得:()25000-x =40501故选:C.【点睛】本题考查一元二次方程的应用,解题的关键是能从题意中找到对应的等量关系.9.(2020·广西河池?中考真题)某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是( )A.6 B.7 C.8 D.9【答案】D【解析】【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x队,根据题意得:1x(x﹣1)=36,2化简,得x2﹣x﹣72=0,解得x1=9,x2=﹣8(舍去),答:参加此次比赛的球队数是9队.故选:D.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.10.(2022·浙江杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注x>),则x=_________(用百册用户数为169万,设新注册用户数的年平均增长率为x(0分数表示).【答案】30%【分析】由题意:2019年的新注册用户数为100万,2021年的新注册用户数为169万,即可列出关于x的一元二次方程,解方程即可.x>),则2020年新注册用户数为100【详解】解:设新注册用户数的年平均增长率为x(0(1+x)万,2021年的新注册用户数为100(1+x)2万户,依题意得100(1+x)2=169,解得:x1=0.3,x2=-2.3(不合题意舍去),∴x=0.3=30%,故答案为:30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.11.(2021·江苏盐城市·中考真题)劳动教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为x,则可列方程为________.【答案】2x+=300(1)363【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),结合本题,如果设平均每年增产的百分率为x,根据“粮食产量在两年内从300千克增加到363千克”,即可得出方程.【详解】解:设平均每年增产的百分率为x;第一年粮食的产量为:300(1+x);第二年粮食的产量为:300(1+x)(1+x)=300(1+x)2;依题意,可列方程:300(1+x)2=363;故答案为:300(1+x)2=363.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.12.(2021·四川宜宾市·中考真题)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程__________.【答案】()2+=6521960x【分析】⨯+平均增长率2)=第三季度地区生产总值,按照数量根据题意,第一季度地区生产总值(1关系列方程即可得解.【详解】⨯+平均增长率2)=第三季度地区生产总值解:根据题意,第一季度地区生产总值(1列方程得:()2+=,x6521960故答案为:()2+=.x6521960【点睛】本题主要考查了增长率的实际问题,熟练掌握相关基本等量关系是解决本题的关键.13.(2021·山东枣庄市·中考真题)若等腰三角形的一边长是4,另两边的长是关于x的方程260x x n−+=的两个根,则n的值为______.【答案】8或9【分析】分4为等腰三角形的腰长和4为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得.【详解】解:由题意,分以下两种情况:(1)当4为等腰三角形的腰长时,则4是关于x 的方程260x x n −+=的一个根, 因此有24640−⨯+=n ,解得8n =,则方程为2680x x −+=,解得另一个根为2x =,此时等腰三角形的三边长分别为2,4,4,满足三角形的三边关系定理;(2)当4为等腰三角形的底边长时,则关于x 的方程260x x n −+=有两个相等的实数根, 因此,根的判别式3640n ∆=−=,解得9n =,则方程为2690x x −+=,解得方程的根为123x x ==,此时等腰三角形的三边长分别为3,3,4,满足三角形的三边关系定理;综上,n 的值为8或9,故答案为:8或9.【点睛】本题考查了一元二次方程根的定义、根的判别式、等腰三角形的定义等知识点,正确分两种情况讨论是解题关键.需注意的是,要检验三边长是否满足三角形的三边关系定理.14.(2022·四川眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?【答案】(1)20% (2)18个【分析】(1)先设该市改造老旧小区投入资金的年平均增长率为x ,根据2019年投入资金2(1)x ⨯+=2021年投入的总资金,列出方程求解即可;(2)由(1)得出的资金年增长率求出2022年的投入资金,然后2022年改造老旧小区的总费用要小于等于2022年投入资金,列出不等式求解即可.【解析】(1)解:设该市改造老旧小区投入资金的年平均增长率为x ,根据题意得:21000(1)1440x +=,解这个方程得,10.2x =,2 2.2x =−,经检验,0.220%x ==符合本题要求.答:该市改造老旧小区投入资金的年平均增长率为20%.(2)设该市在2022年可以改造y 个老旧小区,由题意得:80(115%)1440(120%)y ⨯+≤⨯+,解得181823y ≤. ∵y 为正整数,∴最多可以改造18个小区.答:该市在2022年最多可以改造18个老旧小区.【点睛】此题考查了一元二次方程的应用,不等式的应用,解决此题的关键是找到相应的等量关系和相应的不等关系,列出正确的方程和不等式.15.(2022·湖北宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?【答案】(1)4月份再生纸的产量为500吨(2)m 的值20(3)6月份每吨再生纸的利润是1500元【分析】(1)设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x −吨,然后根据该厂3,4月份共生产再生纸800吨,列出方程求解即可;(2)根据总利润=每一吨再生纸的利润×数量列出方程求解即可;(3)设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,根据总利润=每一吨再生纸的利润×数量列出方程求解即可;【解析】(1)解:设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x −吨, 由题意得:()2100800x x +−=,解得:300x =,∴2100500x −=,答:4月份再生纸的产量为500吨;(2)解:由题意得:500(1%)10001%6600002m m ⎛⎫+⋅+= ⎪⎝⎭, 解得:%20%m =或% 3.2m =−(不合题意,舍去)∴20m =,∴m 的值20;(3)解:设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨, 21200(1)(1)(125%)1200(1)y a y y a +⋅+=+⨯+⋅∴()2120011500y += 答:6月份每吨再生纸的利润是1500元.【点睛】本题主要考查了一元一次方程的应用,一元二次方程的应用,正确理解题意,列出方程求解是解题的关键.16.(2021·湖南张家界市·中考真题)2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人.(1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计6月份的参观人数是多少?【答案】(1)10%;(2)13.31万【分析】(1)设这两个月参观人数的月平均增长率为x,根据题意列出等式解出x即可;(2)直接利用(1)中求出的月平均增长率计算即可.【详解】(1)解:设这两个月参观人数的月平均增长率为x,由题意得:210(1)12.1x+=,解得:110%x=,221 10x=−(不合题意,舍去),答:这两个月参观人数的月平均增长率为10%.(2)12.1(110%)13.31⨯+=(万人),答:六月份的参观人数为13.31万人.【点睛】本题考查了二次函数和增长率问题,解题的关键是:根据题目条件列出等式,求出增长率,再利用增长率来预测.17.(2021·山东东营市·中考真题)“杂交水稻之父”——袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水箱亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.【答案】(1)20%;(2)能【分析】(1)设亩产量的平均增长率为x ,依题意列出关于x 的一元二次方程,求解即可;(2)根据(1)求出的平均增长率计算第四阶段亩产量即可.【详解】解:(1)设亩产量的平均增长率为x ,根据题意得:()270011008x +=,解得:10.220%x ==,2 2.2x =−(舍去),答:亩产量的平均增长率为20%.(2)第四阶段的亩产量为()1008120%1209.6⨯+=(公斤),∵1209.61200>,∴他们的目标可以实现.【点睛】本题主要考查由实际问题抽象出一元二次方程,掌握2次变化的关系式是解决本题的关键.18.(2021·辽宁本溪市·中考真题)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?【答案】(1)y =-2x +220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【分析】(1)根据题意中销售量y (个)与售价x (元)之间的关系即可得到结论;(2)根据题意列出方程(-2x +220)(x -40)=2400,解方程即可求解;(3)设每星期利润为w 元,构建二次函数模型,利用二次函数性质即可解决问题.【详解】(1)由题意可得,y =100-2(x -60)=-2x +220;(2)由题意可得,(-2x +220)(x -40)=2400,解得,170x =,280x =,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w 元,由题意可得w =(-2x +220)(x -40)=223008800−+−x x , 当752b x a=−=时,w 有最大值,最大值为2450, ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【点睛】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题.19.(2020·重庆中考真题)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A 、B 两个玉米品种进行实验种植对比研究.去年A 、B 两个品种各种植了10亩.收获后A 、B 两个品种的售价均为2.4元/kg ,且B 品种的平均亩产量比A 品种高100千克,A 、B 两个品种全部售出后总收入为21600元.(1)求A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A 、B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a %,而A 品种的售价保持不变,A 、B 两个品种全部售出后总收人将增加20%9a ,求a 的值. 【答案】(1)A 品种去年平均亩产量是400、B 品种去年平均亩产量是500千克;(2)10.【解析】【分析】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,根据题意列出方程组,解方程组即可得到答案;(2)根据题意分别表示A 品种、B 品种今年的收入,利用总收入等于A 品种、B 品种今年的收入之和,列出一元二次方程求解即可得到答案.【详解】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,由题意得1002.410 2.41021600y x x y =+⎧⎨⨯+⨯=⎩, 解得400500x y =⎧⎨=⎩. 答:A .B 两个品种去年平均亩产量分别是400、500千克(2)根据题意得:()()()20244001%241%50012%216001%9a a a a ⎛⎫⨯+++⨯+=+ ⎪⎝⎭. 令a %=m ,则方程化为:()()()20244001241500122160019m m m m ⎛⎫⨯+++⨯+=+ ⎪⎝⎭. 整理得10m 2-m =0,解得:m 1=0(不合题意,舍去),m 2=0.1所以a %=0.1,所以a =10,答:a 的值为10.【点睛】本题考查的是二元一次方程组的应用,一元二次方程的应用,掌握列方程或方程组解应用题的方法与步骤是解题的关键.20.(2020·江苏宿迁?中考真题)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示: 销售单价x (元/千克) 5560 65 70 销售量y (千克) 70 60 50 40(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?【答案】(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【解析】【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得:55706060k b k b +=⎧⎨+=⎩, 解得:2180k b =−⎧⎨=⎩, ∴y 与x 之间的函数表达式为2180y x =−+;(2)由题意得:()()502180600x x −−+=,整理得214048000x x −+=:,解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w 元,则:()()502180w x x =−−+22(70)800x =−+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.21.(2019•广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【答案】(1)计划到2020年底,全省5G基站的数量是6万座.(2)2020年底到2022年底,全省5G基站数量的年平均增长率为70%.【解析】(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=–2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.【名师点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。

中考数学专题复习《方程与不等式》测试卷-附带答案

中考数学专题复习《方程与不等式》测试卷-附带答案

中考数学专题复习《方程与不等式》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.下列等式变形错误的是( )A .若 33x y -=- 则 0x y -=B .若112x x -= 则 12x x -= C .若 13x -= 则 4x =D .若 342x x += 则 324x x -=-2.用配方法解一元二次方程2870x x +-= 则方程可化为( )A .2(4)23x +=B .2(8)23x +=C .2(4)9x +=D .2(8)9x +=3.在解方程3157246x x -+-= 时 第一步去分母 去分母后结果正确的是( ) A .12(31)12212(57)x x --⨯=+ B .3(31)1222(57)x x --⨯=+ C .3(31)322(57)x x --⨯=+D .3(31)22(57)x x --⨯=+4.下列方程为一元一次方程的是( )A .+2=3 x yB .5y =C .22x x =D .12y y+= 5.《九章算术》中记载:“今有善田一亩 价三百 恶田七亩 价五百.今并买一顷 价钱一万.问善恶田各几何?”其大意是:今有好田1亩 价值300钱 坏田7亩 价值500钱.今共买好 坏田1顷(1顷=100亩) 价钱10000钱.问好 坏田各买了多少亩?设好田买了x 亩 坏田买了y 亩 则下面所列方程组正确的是( ) A .{x +y =100300x +7500y =10000 B .{x +y =100300x +5007y =10000 C .{x +y =1007500x +300y =10000D .{x +y =1005007x +300y =100006.已知方程组35ax by ax by +=-⎧⎨-=⎩的解是12x y =-⎧⎨=⎩则2a b -的值是( ) A .3B .-3C .5D .-57.如图 由矩形和三角形组合而成的广告牌紧贴在墙面上 重叠部分(阴影)的面积是4m 2 广告牌所占的面积是 30m 2(厚度忽略不计) 除重叠部分外 矩形剩余部分的面积比三角形剩余部分的面积多2m 2 设矩形面积是xm 2 三角形面积是ym 2 则根据题意 可列出二元一次方程组为( )A .{x +y −4=30(x −4)−(y −4)=2B .{x +y =26(x −4)−(y −4)=2C .{x +y −4=30(y −4)−(x −4)=2D .{x −y +4=30x −y =28.为了奖励学习认真的同学 班主任老师给班长拿了40元钱 让其购买奖品 现有单价为4元的A 种学习用品和单价为6元的B 种学习用品可供选择 若40元钱恰好花完 则班长的购买方案有( ) A .1种B .2种C .3种D .4种9.若x y < 则下列不等式中不成立的是( )A .22x y -<-B .22x y -<-C .22x y ->- D .22x y ->-10.已知公式12111R R R =+ ( 12R R ≠ ) 则表示 1R 的公式是( ) A .212R RR RR -=B .212RR R R R =-C .1212()R R R R R +=D .212RR R R R=-二 填空题11.已知2x =是方程230x x m -+=的解 则m 的值为 . 12. 已知a =120222023+ b =120232023+ c =120242023+ 则代数式 2(a 2+b 2+c 2-ab-bc-ac )的值是 .13.若一元二次方程 22(1)310k x x k -++-= 有一个根为 0x = 则k= .14.今年春节某超市组装了甲 乙两种礼品盆 他们都是由 ,,a b c 三种零食组成 其中甲礼品盒装有3千克 a 零食 1千克 b 零食 1千克 c 零食 乙礼品盒装有2千克 a 零食 2千克 b 零食 2千克 c 零食 甲 乙两种礼品盒的成本均为盆中 ,,a b c 三种零食的成本之和.已知每千克 a 的成本为10元 乙种礼品盒的售价为60元 每盒利润率为25%甲种每盒的利润率为50%当甲 乙两种礼盒的销售利润率为13时 该商场销售甲 乙两种礼盒的数量之比是 . 三 解答题15.计算:(1)解方程组:{y =2x −5 ①7x −3y =20 ② (2)解不等式:32523x x --> (3)解不等式组:523923x x ->⎧⎨-<⎩(4)解不等式组:{5x −12≤2(4x −3)x+42<3−6x−1616.解方程:241x - + 21x + = 1xx - 17.小红和小凤两人在解关于x y 的方程组 {ax +3y =5 ,bx +2y =8 .时 小红只因看错了系数a 得到方程组的解为 {x =−1 ,y =2 . 小凤只因看错了系数b 得到方程组的解为 {x =1 ,y =4 .求a b 的值和原方程组的解.18.阅读理解下列材料然后回答问题:解方程:x²-3|x|+2=0解:(1)当x≥0时 原方程化为x²-3x+2=0 解得: 1x =2 2x =1 ( 2 )当x <0时 原方程化为x²+3x+2=0 解得: 1x =1 2x =-2. ∴原方程的根是 1x =2 2x =1 3x =1 4x =-2. 请观察上述方程的求解过程 试解方程x²-2|x-1|-1=0.19.如图 在矩形ABCD 中剪去正方形ABFE 后 剩下的矩形EFCD 与原矩形ABCD 相似.求矩形ABCD 的宽和长的比.20.为了丰富市民的文化生活 我市某景点开放夜游项目.为吸引游客组团来此夜游 特推出了如下门票收费标准:标准一:如果人数不超过20人 门票价格为60元/人标准二:如果人数超过20人 每超过1人 门票价格降低2元 但门票价格不低于50元/人.(1)当夜游人数为15人时 人均门票价格为 元 当夜游人数为25人时 人均门票价格为 元(2)若某单位支付门票费用共1232元 则该单位这次共有多少名员工去此景点夜游?21.已知 422(2)50a a b y y+--+= 是关于y 的一元一次方程.(1)求 ,a b 的值. (2)若 2a x =-是 2211632x x x m--+-+= 的解 求 b m a m +-- 的值.22.新冠疫情以来 口罩成为了生活和工作的必需品.某口罩生产企业主要生产过滤式和供气式两种口罩.有过滤式口罩机和供气式口罩机各 10 台 统计发现 去年每台过滤式口罩机的产量比每台供气式口罩机多 60 万个 过滤式口罩的出厂价为 0.2 元/个 供气式口罩的出厂价为 4 元/个 两种口罩全部售出 总销售额为 10200 万元.(1)去年每台供气式口罩机的产量为多少万个?(2)今年 为了加大口罩供应量 该企业优化了生产方法 在保持口罩机数量不变的情况下 预计每台过滤式口罩机和供气式口罩机的产量将在去年基础上分别增加 2%a 和 %a .由于过滤式口罩更受市场欢迎 出厂价将在去年的基础上上涨 %a 而供气式口罩的出厂价保持不变 两种口罩全部售出后总销售额将增加20%17a 求 a 的值. 23.定义一种新运算“a ⊗ b”:当a≥b 时 a ⊗ b=a+2b 当a <b 时 a ⊗ b=a-2b.例如:3 ⊗ (-4)=3(8)(5)+-=- ()61262430-⊗=--=- .(1)填空:(-3) ⊗ (-2)=(2)若 (34)(5)(34)2(5)x x x x -⊗+=-++ 则x 的取值范围为 (3)已知 (57)(2)1x x -⊗-> 求x 的取值范围(4)利用以上新运算化简: ()()2235102m m m m ++⊗- .答案解析部分1.【答案】B【解析】【解答】A.若 33x y -=- 则 0x y -= 正确B.若112x x -= 两边同乘以2 则 22x x -= 故错误 C.若 13x -= 则 4x = 正确 D.若 342x x += 则 324x x -=- 正确 故答案为:B.【分析】等式的基本性质:(1)等式两边同加(或减)同一个数(或式子) 结果仍相等 (2)在不等式两边同乘一个数 或除以一个不为0的数 结果仍相等。

中考复习——方程(组)的应用——和差倍分问题(解析版)

中考复习——方程(组)的应用——和差倍分问题(解析版)

中考复习——方程(组)的应用——和差倍分问题一、选择题1、为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A 、B 两类玩具,其中A 类玩具的进价比B 类玩具的进价每个多3元,经调查:用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同.设A 类玩具的进价为m 元/个,根据题意可列分式方程为( ).A. 900m =7503m +B. 9003m +=750mC. 900m =7503m -D. 9003m -=750m 答案:C解答:设A 类玩具的进价为m 元/个,则B 类玩具的进价为(m -3)元/个, 由题意得,900m =7503m -. 2、岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( ).A. 200x =3503x -B. 200x =3503x +C. 2003x +=350xD. 2003x -=350x答案:B 解答:设每个笔记本的价格为x 元,则每个笔袋的价格为(x +3)元,根据题意得:200x =3503x +. 3、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x 只,兔有y 只,则根据题意,下列方程组中正确的是( ).A. 352494x y x y +=⎧⎨+=⎩B. 354294x y x y +=⎧⎨+=⎩C. 235494x y x y +=⎧⎨+=⎩D. 435294x y x y +=⎧⎨+=⎩ 答案:A解答:设鸡有x 只,兔有y 只,由题意得:352494x y x y +=⎧⎨+=⎩.4、《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是().A.8374y xy x-=⎧⎨-=⎩B.8374y xx y-=⎧⎨-=⎩C.8374x yy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩答案:C解答:设合伙人数为x人,物价为y钱,根据题意,可列方程组:8374 x yy x-=⎧⎨-=⎩,选C.5、今年我省荔枝喜获丰收,有甲、乙两块面积相同的荔枝园,分别收获8600 kg和9800 kg,甲荔枝园比乙荔枝园平均每亩少60 kg,问甲荔枝园平均每亩收获荔枝多少kg.设甲荔枝园平均每亩收获荔枝x kg,根据题意,可得方程().A. 8600x=980060x+B.8600x=980060x-C.860060x-=9800xD.860060x+=9800x答案:A解答:设甲荔枝园平均每亩收获荔枝x kg,根据题意,可得方程:8600x=980060x+.6、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是().A. 12x=(x-5)-5 B.12x=(x+5)+5C. 2x=(x-5)-5D. 2x=(x+5)+5答案:A解答:设索为x尺,杆子为(x-5)尺,根据题意得:12x=(x-5)-5.7、闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x公顷旱地改造为林地,则可列方程为().A. 60-x=20%(120+x)B. 60+x=20%×120C. 180-x=20%(60+x)D. 60-x=20%×120答案:A解答:设把x公顷旱地改为林地,根据题意可得方程:60-x=20%(120+x).8、《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是().A. x+2x+4x=34685B. x+2x+3x=34685C. x+2x+2x=34685D. x+12x+14x=34685答案:A解答:第一天读x个字,则第二天读2x个字,第三天读4x个字,共34685个字,所以x+2x+4x=34685,选A.9、朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,请问共有多少个小朋友?()A. 4个B. 5个C. 10个D. 12个答案:B解答:设有x个小朋友,由题意得,3x-3=2x+2,解得:x=5.10、程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x人,依题意列方程得( ).A. 3x +3(100-x )=100B.3x -3(100-x )=100 C. 3x +1003x -=100 D. 3x -1003x -=100 答案:C解答:设大和尚有x 人,则小和尚有(100-x )人,根据题意得:3x +1003x -=100. 二、填空题11、某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.请列出满足题意的方程组______.答案:3421x y x y +=⎧⎨=+⎩ 解答:设到井冈山的人数为x 人,到瑞金的人数为y 人,故答案为:3421x y x y +=⎧⎨=+⎩.12、小明上周三在超市恰好用10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多用了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x 袋牛奶,则根据题意列得方程为______. 答案:(x +2)(10x-0.5)=12 解答:设他上周三买了x 袋牛奶,则根据题意列得方程为:(x +2)(10x-0.5)=12. 13、某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有______名. 答案:23解答:设男生人数为x 人,女生人数为y 人.由此可得方程组52217x y x y +=⎧⎨=-⎩,解得:2923x y =⎧⎨=⎩. 所以,男生有29人,女生有23人.故答案为:23.14、某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是______.答案:608x+=45x解答:小李每小时分拣x个物件,则小王每小时分拣(x+8)个物件.根据题意得:608x+=45x.15、有两块面积相同的小麦试验田,分别收获小麦9000 kg和15000 kg.已知第一块试验田每公顷的产量比第二块少3000 kg,若设第一块试验田每公顷的产量为x kg,根据题意,可得方程______.答案:9000x=150003000x+解答:第一块试验田的面积为:9000x,第二块试验田的面积为:150003000x+.方程应该为:9000x=150003000x+.16、在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增.共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有______盏灯.答案:3解答:假设顶层的红灯有x盏,由题意得:x+2x+4x+8x+16x+32x+64x=381,127x=381,x=3.答:塔的顶层是3盏灯.17、公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为______.答案:133 8解答:设“它”的值为x,由题意可得x+17x=19,解得x=1338.则“它”的值为1338.三、解答题18、在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?答案:七年级收到的征文有38篇.解答:设七年级收到的征文有x篇,则八年级收到的征文有(118-x)篇,依题意得:(x+2)×2=118-x,解得:x=38.答:七年级收到的征文有38篇.19、有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中各有几只鸡和兔?答案:笼子里鸡有18只,兔有12只.解答:设这个笼中的鸡有x只,兔有y只,根据题意得302484x yx y+=⎧⎨+=⎩.,解得1812xy=⎧⎨=⎩..答:笼子里鸡有18只,兔有12只.20、我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.答案:1个大桶可以盛酒1324斛,1个小桶可以盛酒724斛.解答:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则5352 x yx y+=⎧⎨+=⎩,解得:1324724xy⎧=⎪⎪⎨⎪=⎪⎩,答:1个大桶可以盛酒1324斛,1个小桶可以盛酒724斛.21、列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五.人出七,不足三.问人数、羊價各幾何.”题意是:若干人共同出资买羊,每人出5元,则差45元.每人出7元,则差3元.求人数和羊价各是多少.答案:买羊人数为21人,羊价为150元.解答:设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150(元),∴买羊人数为21人,羊价为150元.22、北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?答案:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次.解答:设轨道交通日均客运量为x万人次,则地面公交日均客运量为(4x-69)万人次.依题意,得x+(4x-69)=1696.解得x=353.4x-69=4×353-69=1343(万人次).答:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次.23、“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?答案:省级自然保护区有22个,市县级自然保护区有17个.解答:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.24、文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)答案:(1)甲种图书售价每本28元,乙种图书售价每本20元.(2)甲种图书进货533本,乙种图书进货667本时利润最大.解答:(1)设乙种图书售价每本x元,则甲种图书售价为每本1.4x元由题意得:140016801.4x x-=10解得:x=20经检验,x=20是原方程的解∴甲种图书售价为每本1.4×20=28元答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货a本,总利润W元,则W=(28-20-3)a+(20-14-2)(1200-a)=a+4800,∵20a+14×(1200-a)≤20000,解得a≤16003,∵W随a的增大而增大,∴当a最大时W最大,∴当a=533本时,W最大,此时,乙种图书进货本数为1200-533=667(本),答:甲种图书进货533本,乙种图书进货667本时利润最大.25、某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?答案:甲、乙两种商品的单价分别为6元、12元.解答:设甲商品的单价为x元,乙商品的单价为2x元,根据题意,得:2403002x x-=15,解这个方程,得:x=6.经检验,x=6是所列方程的根.∴2x=2×6=12(元).答:甲、乙两种商品的单价分别为6元、12元.。

中考复习--方程--3

中考复习--方程--3
解:∵实数 a 是一元二次方程 x2-2 020x+1=0 的一个根, ∴a2-2 020a+1=0, ∴a2-2 019a=a-1,a2+1=2 020a, ∴a2-2 019a+a220+201=a-1+22002200a=a-1+1a=a2+a 1-1=2 020-1=2 019.
2.如果关于 x 的一元二次方程 kx2-3x-1=0 有两个不相等的实根,那么 k 的取值范 围是________.
半的平方
理,得x+2ba2=b2-4a42 ac
若方程右边是非负数,则直接开平 方降次求出方程的解
x=-2ba±
b22-a 4ac(b2-4ac≥0)
知识点 2 列一元二次方程解应用题的常见题型
常见题型 传播问题
平均增长(或 降低)率问题
几何图形面 积问题
数量关系或公式
特别提醒
传播源数+第一轮被传播数+第二轮
ቤተ መጻሕፍቲ ባይዱ
)
A.1
1 B.2
C.25
D.不能确定
A 把 x=m 代入方程得 m2-m-1=0,∵m≠0,
方程的两边同时除以 m 得 m-1-m1 =0,∴m-m1 =1.故选 A.
15.已知实数 a 是一元二次方程 x2-2 020x+1=0 的一个根,求代数式 a2-2 019a+ a220+201的值.
10.(2019·四川宜宾中考)若关于 x 的不等式组x-4 2<x-3 1, 有且只有两个整数 2x-m≤2-x
解,则 m 的取值范围是__-__2_≤_m_<__1___.
类型 3 根据含未知数的式子的范围确定待定字母的取值范围 11.(2019·湖北鄂州中考)若关于 x,y 的二元一次方程组xx-+35yy==45m+3,的解满 足 x+y≤0,则 m 的取值范围是___m_≤_-__2_____.

中考数学专题复习——方程与不等式

中考数学专题复习——方程与不等式

中考数学专题复习——方程与不等式本专题主要讲解方程和不等式两部分,其内容包括一元一次方程、一元二次方程、可化为一元一次方程(一元二次方程)的分式方程、二元一次方程组、一元一次不等式和一元一次不等式组的概念、解法及其应用。

在概念方面,一元一次方程中一次项系数不为零;一元二次方程中二次项系数也不为零。

方程的解法上,一元一次方程按其一般步骤求解;二元一次方程组中,解题的基本思想是“消元”,即代入消元法和加减消元法;一元二次方程的求解,直接开平方法、配方法、公式法、因式分解法是解一元二次方程的基本方法。

而因式分解法它体现方程“降次求解”的基本思想,公式法更具有一般性。

同学们在求解方程时应灵活选用,值得注意的是分式方程求解,要验根。

对于一元一次不等式(组)的求解,要熟练地掌握不等式的基本性质,它是不等式求解的基础,在解不等式(组)时,若不等式两边同时乘以或除以同一个负数时不等号方向要改变。

而不等式组的解是每个不等式解的公共部分,它常通过数轴这一步骤来得到不等式解的。

本专题的内容在初中知识结构上占较重要的位置,是各地市中考题中重要的考查内容。

一、典型例题导析例1、若关于x 的一元一次方程23132x k x k---=的解是x =-1,则k 的值是( )A 、27B 、1C 、1311- D 、0例2、方程242x x +=的正根为( )A.2B.2 C.2- D.2-+例3、解不等式组:302(1)33x x x+>⎧⎨-+≥⎩,并判断x =例4、若关于x 的不等式组3,3 1.x m x m >+⎧⎨<-⎩无解,试判断方程21(3)04m x x --+= 的根的情况。

例5、为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民月份用水8m3,则应收水费:2×6+4×(8-6)=20元.(1)若该户居民月份用水12.5m3,则应收水费______元;(2)若该户居民3、4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民,3、4月份各用水多少立方米?二、选讲题,两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援※例6、某公司在A B建设,其中甲地需要15台,乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.设从A地运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)请填写下表,并写出y与x之间的函数关系式;(2)公司应设计怎样的方案,能使运这批挖掘机的总费用最省?※例7、青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价 进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;(3)在“五·一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
的方程:
10
k(x3)k(x2)12x3x与方程52(x1)
543
的解相同,求
k
的值.
中考专题复习
方程
知识网络图
一元一次方程
【课前热身】
1.在等式3y67
的两边同时,得到3y13
.
2.方程
5x38
的根是.
3.x的5倍比x的2倍大12可列方程为.
4.写一个以
x2
为解的方程.
5.如果
x1是方程2x3m4的根,则m的值是.
6.如果方程x
2m1
30
是一元一次方程,则
m
.
【考点链接】
1.等式及其性质
知数的次数是1,系数不等于0的方程,像
1
x
2,2x22x1
等不是一元一次方程.
(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有
未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.
一元一次方程应用题的重要方法⒈认真审题(审题)
a0.
★只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,
通常形式是
做一元方程,一元方程的解也叫做Hale Waihona Puke .3.解一元一次方程的步骤:
①去;②去;③移;④合并;⑤系数化为1.
.◆我国古代称未知数为元,只含有一个未知数的方程叫
一般解法:
1去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);
(1)等式:用等号“=”来表示两个量或两个表达式相等关系的式子叫等式.
(2)性质:①如果ab,那么ac
②如果ab,那么ac

;如果abc0,那么
c
★等式的性质
(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.
(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.
2.方程、一元一次方程的概念
(1)方程:含有未知数的等式叫做方程;使方程左右两边的值相等的未知数的值,叫做方程的解;求方程解的过程叫做解方程.(方程的解与解方程不同.)
(2)一元一次方程:在一个方程中,只含有一个未知数(元),并且未知数的指数是1(次),这样的方程
叫做一元一次方程;它的一般形式为ax+b=0
考点2:一元一次方程的解
例1.(2011重庆江津,3,4分)已知3是关于的方程A.-5
的解,则的值是()
例2.
方程的解是
考点3:一元一次方程的解法
例1(2011山东滨州,20,7分)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.
例2解方程:2(x1)
x37x1
32
例3若关于
2分析已知和未知量
3找一个合适的等量关系

4设一个恰当的未知数
5列出合理的方程(列式)
6解出方程(解题)
7检验
8写出答案(作答)
一元一次方程中考考点:
考点1:一元一次方程的定义
例1.若是关于的一元一次方程,则的值是()A.
★举一反三:
【变式1】关于x
的一元一次方程.
的解为
【变式2】当为何值时,方程
是关于的一元一次方程?
2去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)③移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号
④合并同类项:把方程化成
的形式;
⑤系数为成1:在方程两边都除以未知数的系数,得到方程的解
.
4.易错知识辨析:
(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未
相关文档
最新文档