初中数学位似变换知识点总结
位似
位似一、目标认知学习目标1.了解图形的位似,知道位似变换是特殊的相似变换,能利用相似的方法,将一个图形放大或缩小.2.观察分析现实生活中确定位置的现象,经历探索图形坐标的变化与图形形状的变化之间的关系,进一步发展数形结合的意识、形象思维能力和数学应用能力.3.在同一直角坐标系中,感受图形变化后点的坐标的变化与各点坐标变化后图形发生的变化.重点难点1.重点:位似图形的有关概念、性质与作图.用图形的坐标的变化来表示图形的位似变换.2.难点:利用位似将一个图形放大或缩小及在同一直角坐标系中,图形变化后点的坐标的变化规律.二、知识要点梳理:1.位似图形的概念如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.2.位似图形的性质位似图形的对应点和位似中心在同一条直线上;位似图形的对应点到位似中心的距离之比等于相似比;位似图形中不经过位似中心的对应线段平行。
3.位似图形与相似图形的区别位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形。
4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接截取点。
5.位似变换中对应点的坐标变化规律在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k。
6.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而图形放大或缩小(位似变换)之后是相似的.三、规律方法指导1.判断位似图形的方法,紧抓两个要点:①是相似图形;②每组对应点所在的直线经过同一点(即位似中心).2.位似图形的画法可归结为:一确定、二连结、三关键.一确定,即确定位似中心;二连结,即连结位似中心和顶点;三关键,即根据相似比,确定关键点.3.位似图形是相似图形的特例.因此,位似比可通过相似三角形对应边的比得到,根据位似中心和位似比就可以把一个图形放大或缩小.4.列表总结如下:图形相似变换若与是位似图形,则位似中心O为位似中心,位似中心可以在两图形的同侧,或两图形之间,或图形内,或边上,或图形的顶点相似图形与位似图形的关系位似图形一定是相似图形;相似图形不一定是位似图形图形放大与缩小的原理射线法测量原理位似图形的性质(1);(2);(3);(4)(为相似比)经典例题讲解类型一、位似图形的有关概念1.(1)(2011广东东莞)将左下图中的箭头缩小到原来的,得到的图形是()思路点拨:根据形状相同,大小不一定相等的两个图形相似的定义,A符合将图中的箭头缩小到原来的的条件;B与原图相同;C将图中的箭头扩大到原来的2倍;D只将图中的箭头长度缩小到原来的,宽度没有改变,故选A.答案:A.(2)如图,矩形ABCD的对角线AC与BD相交于点O,E、F、G、H分别是OA、OB、OC、OD的中点,那么矩形ABCD与四边形EFGH是否是位似图形?若是,指出位似中心并求出位似比.思路点拨:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,根据定义,题目中的所述图形符合条件,显然是位似图形,它们的位似中心即AC与BD的交点O,又因为E、F、G、H分别是中点,所以位似比为2.解:∵E、F、G、H分别是OA、OB、OC、OD的中点,∴∴∴同理:∴四边形ABCD与四边形EFGH相似因为两个图形的对应点所在直线都经过点O所以它们是位似图形,位似中心为点O,位似比为2:1.总结升华:判断两个图形是否是位似图形,只要看两个图形是否是相似图形,并且对应点的连线是否经过同一个点,若经过同一点,则是位似图形,否则不是位似图形;求位似比,也就是求相似图形的相似比,对于此类问题,只要认真观察图形,就能解决.举一反三【变式1】如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.思路点拨:位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可.解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P和图(4)中的点O.(图(3)中的点O不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)2.如图,D、E分别AB、AC上的点.(1)如果DE∥BC,那么△ADE和△ABC是位似图形吗?为什么?(2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么?解:(1)△ADE和△ABC是位似图形.理由是:DE∥BC,所以∠ADE=∠B,∠AED=∠C.所以△ADE∽△ABC,所以.又因为点A是△ADE和△ABC的公共点,点D和点B是对应点,点E和点C 是对应点,直线BD与CE交于点A,所以△ADE和△ABC是位似图形.(2)DE∥BC.理由是:因为△ADE和△ABC是位似图形,所以△ADE∽△ABC所以∠ADE=∠B所以DE∥BC.类型二、位似图形的作法3.把图1中的四边形ABCD缩小到原来的.思路点拨:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:(1)在四边形ABCD外任取一点O;(2)过点O分别作射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得;(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.作法二:(1)在四边形ABCD外任取一点O;(2)过点O分别作射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD的反向延长线上取点A′、B′、C′、D′,使得;(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图3.作法三:(1)在四边形ABCD内任取一点O;(2)过点O分别作射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得;(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略)举一反三【变式1】已知五边形ABCDE,利用位似,将图形放大2倍。
初中数学《位似》知识全解
《位似》知识全解
课标要求
理解位似图形的概念及性质,并会利用位似将一个图形放大或缩小。
知识结构
(1)位似图形:对应顶点的连线相交于一点,对应边互相平行的两个相似图形叫做位似图形,这个点叫做位似中心.位似形的有关性质:①两个位似形一定是相似形;②各对对应顶点所在的直线都经过同一点;③各对对应顶点到位似中心的距离的比等于相似比.(2)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应的坐标的比等于k或-k.
内容解析
位似变换是一种特殊的相似变换,此时对应顶点的连线交于一点,对应边也是互相平行的.教科书在本节重点研究了这种变换,教科书在给出位似变换概念的基础上,重点研究了如何利用位似变换将一个图形放大或缩小,以及在平面直角坐标系下位似图形的对应点坐标的变化.最后教科书简单对学生学过的四种变换进行了总结,要求学生在一个图形中辨析这些变换,并能综合利用这些变换进行一些图案设计.
重点难点
利用位似变换将一个图形放大或缩小.
教法导引
教师要引导学生亲自动手按要求画已知图形的位似图形,观察总结规律.教师可以利用《几何画板》等教学软件进行直观演示,培养学生应用数学变换进行绘图的意识.学法建议
注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质.。
专题19 图形的相似与位似的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮
专题19 图形的相似与位似的核心知识点精讲1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质.2.探索并掌握三角形相似的性质及条件,并能利用相似三角形的性质解决简单的实际问题.3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小.4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,会根据坐标描出点的位置或由点的位置写出 它的坐标,灵活运用不同方式确定物体的位置。
考点1:比例线段1. 比例线段的相关概念 如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n.在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项.在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.若四条a ,b ,c ,d 满足或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项.如果作为比例内项的是两条相同的线段,即或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项. 2.比例的基本性质:①a :b=c :d ad=bc ②a :b=b :c .3.黄金分割把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=AB ≈0.618AB. 考点2:相似图形1. 相似图形:我们把形状相同的图形叫做相似图形.也就是说:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的.(全等是特殊的相似图形).2.相似多边形:对应角相等,对应边的比相等的两个多边形叫做相似多边形.n m b a =cb b a =⇔ac b =⇔2215-3.相似多边形的性质:相似多边形的对应角相等,对应边成的比相等.相似多边形的周长的比等于相似比,相似多边形的面积的比等于相似比的平方.4.相似三角形的定义:形状相同的三角形是相似三角形.5.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等.(2)相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比.(3)相似三角形的周长的比等于相似比,面积的比等于相似比的平方.6.相似三角形的判定:(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;(2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.(5)如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个三角形相似.考点3:位似图形1.位似图形的定义两个多边形不仅相似,而且对应顶点的连线相交于一点,不经过交点的对应边互相平行,像这样的两个图形叫做位似图形,这个点叫位似中心.2.位似图形的分类(1)外位似:位似中心在连接两个对应点的线段之外.(2)内位似:位似中心在连接两个对应点的线段上.3.位似图形的性质位似图形的对应点和位似中心在同一条直线上;位似图形的对应点到位似中心的距离之比等于相似比;位似图形中不经过位似中心的对应线段平行.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接截取点.【注意】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.【题型1:相似三角形的相关计算】【典例1】(2023•雅安)如图,在▱ABCD中,F是AD上一点,CF交BD于点E,CF的延长线交BA的延长线于点G,EF=1,EC=3,则GF的长为()A.4B.6C.8D.101.(2023•吉林)如图,在△ABC中,点D在边AB上,过点D作DE∥BC,交AC于点E.若AD=2,BD =3,则的值是()A.B.C.D.2.(2023•内江)如图,在△ABC中,点D、E为边AB的三等分点,点F、G在边BC上,AC∥DG∥EF,点H为AF与DG的交点.若AC=12,则DH的长为()A.1B.C.2D.33.(2023•东营)如图,△ABC为等边三角形,点D,E分别在边BC,AB上,∠ADE=60°.若BD=4D C,DE=2.4,则AD的长为()A.1.8B.2.4C.3D.3.24.(2023•绵阳)黄金分割由于其美学性质,受到摄影爱好者和艺术家的喜爱,摄影中有一种拍摄手法叫黄金构图法.其原理是:如图,将正方形ABCD的底边BC取中点E,以E为圆心,线段DE为半径作圆,其与底边BC的延长线交于点F,这样就把正方形ABCD延伸为矩形ABFG,称其为黄金矩形.若CF=4 a,则AB=()A.(﹣1)a B.(﹣2)a C.(+1)a D.(+2)a5.(2023•哈尔滨)如图,AC,BD相交于点O,AB∥DC,M是AB的中点,MN∥AC,交BD于点N,若DO:OB=1:2,AC=12,则MN的长为()A.2B.4C.6D.8【题型2:相似三角形的实际应用】【典例2】(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是米.1.(2023•南充)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m,同时量得小菲与镜子的水平距离为2m,镜子与旗杆的水平距离为10m,则旗杆高度为()A.6.4m B.8m C.9.6m D.12.5m2.(2023•达州)如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则支撑点C,D之间的距离为cm.(结果保留根号)3.(2023•潍坊)在《数书九章》(宋•秦九韶)中记载了一个测量塔高的问题:如图所示,AB表示塔的高度,CD表示竹竿顶端到地面的高度,EF表示人眼到地面的高度,AB、CD、EF在同一平面内,点A、C、E在一条水平直线上.已知AC=20米,CE=10米,CD=7米,EF=1.4米,人从点F远眺塔顶B,视线恰好经过竹竿的顶端D,可求出塔的高度.根据以上信息,塔的高度为米.【题型3:位似】【典例3】(2023•朝阳)如图,在平面直角坐标系中,已知点A(2,2),B(4,1),以原点O为位似中心,相似比为2,把△OAB放大,则点A的对应点A′的坐标是()A.(1,1)B.(4,4)或(8,2)C.(4,4)D.(4,4)或(﹣4,﹣4)1.(2023•浙江)如图,在直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,2),现以原点O为位似中心,在第一象限内作与△ABC的位似比为2的位似图形△A′B′C′,则顶点C′的坐标是()A.(2,4)B.(4,2)C.(6,4)D.(5,4)2.(2023•长春)如图,△ABC和△A'B'C'是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC与△A'B'C'的周长之比为.3.(2023•烟台)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形P A1A2A3,正方形P A4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形P A1A2A3的顶点坐标分别为P(﹣3,0),A1(﹣2,1),A2(﹣1,0),A3(﹣2,﹣1),则顶点A100的坐标为()A.(31,34)B.(31,﹣34)C.(32,35)D.(32,0)一.选择题(共10小题)1.已知,则的值是()A.B.C.3D.2.如图,△ABC∽△ADE,若∠A=60°,∠ABC=45°,那么∠E=()A.75°B.105°C.60°D.45°3.如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段BC=4cm,则线段AC的长是()A.4cm B.5cm C.6cm D.7cm4.下列各组中的四条线段成比例的是()A.1cm,2cm,3cm,4cm B.2cm,3cm,4cm,5cmC.2cm,3cm,4cm,6cm D.3cm,4cm,6cm,9cm5.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高16 5cm,下半身长x与身高l的比值是0.60,为尽可能达到美的效果,她应穿的高跟鞋的高度大约为()A.4cm B.6cm C.8cm D.10cm6.如图,在△ABC中,DE∥BC,DF∥AC,则下列比例式中正确的是()A.=B.=C.=D.=7.如图,直线l1∥l2∥l3,分别交直线m、n于点A、B、C、D、E、F.若AB:BC=5:3,DE=15,则E F的长为()A.6B.9C.10D.258.△ABO三个顶点的坐标分别为A(2,4),B(6,0),C(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A'B'O,则点A′的坐标是()A.(1,2)B.(1,2)或(﹣1,﹣2)C.(2,1)或(﹣2,﹣1)D.(﹣2,﹣1)9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.3:1C.9:1D.9:1610.小明用地理中所学的等高线的知识在某地进行野外考察,他根据当地地形画出了“等高线示意图”,如图所示(注:若某地在等高线上,则其海拔就是其所在等高线的数值;若不在等高线上,则其海拔在相邻两条等高线的数值范围内),若A,B,C三点均在相应的等高线上,且三点在同一直线上,则的值为()A.B.C.D.2二.填空题(共5小题)11.如果两个相似三角形的周长比为2:3,那么它们的对应高的比为.12.如图,利用标杆BE测量建筑物的高度.若标杆BE的高为1.2m,测得AB=1.6m,BC=12.4m,则楼高CD为m.13.如图,在某校的2022年新年晚会中,舞台AB的长为20米,主持人站在点C处自然得体,已知点C 是线段AB上靠近点B的黄金分割点,则此时主持人与点A的距离为米.14.《九章算术》是中国古代的数学专著,书中记载了这样一个问题:“今有勾五步,股十二步.问勾中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为.15.如图,在边长为1的正方形网格中,A、B、C、D为格点,连接AB、CD相交于点E,则AE的长为.三.解答题(共5小题)16.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣1),C(4,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后点P在△A2B2C2内的对应点P2的坐标是.17.如图,在△ABC中,D为BC上一点,∠BAD=∠C.(1)求证:△ABD∽△CBA;(2)若AB=6,BD=3,求CD的长.18.如图,矩形ABCD中,M为BC上一点,EM⊥AM交AD的延长线于点E.(1)求证:△ABM∽△EMA;(2)若AB=4,BM=3,求ME的长.19.某数学兴趣小组要完成一个项目学习,测量凌霄塔的高度AB.如图,塔前有一棵高4米的小树CD,发现水平地面上点E、树顶C和塔顶A恰好在一条直线上,测得BD=57米,D、E之间有一个花圃距离无法测量;然后,在E处放置一平面镜,沿BE后退,退到G处恰好在平面镜中看到树顶C的像,EG =2.4米,测量者眼睛到地面的距离FG为1.6米;已知AB⊥BG,CD⊥BG,FG⊥BG,点B、D、E、G 在同一水平线上.请你求出凌霄塔的高度AB.(平面镜的大小厚度忽略不计)20.如图,已知AD,BC相交于点E,且△AEB∽△DEC,CD=2AB,延长DC到点G,使CG=CD,连接AG.(1)求证:四边形ABCG是平行四边形;(2)若∠GAD=90°,AE=2,CG=3,求AG的长.一.选择题(共10小题)1.如图,在等边△ABC中,点D,E分别是BC,AC上的点,∠ADE=60°,AB=4,CD=1,AE=()A.3B.C.D.2.如图,在等边△ABC中,点D,E分别在边BC,AC上,∠ADE=60°,若AD=4,=,则DE的长度为()A.1B.C.2D.3.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.4.如图,在Rt△ABC中,∠BAC=90°,AB=AC,D为线段BC上一点,以AD为一边构造Rt△ADE,∠DAE=90°,AD=AE,下列说法正确的是()①∠BAD=∠EDC;②△ADO∽△ACD;③;④2AD2=BD2+CD2.A.仅有①②B.仅有①②③C.仅有②③④D.①②③④5.凸透镜成像的原理如图所示,AD∥l∥BC.若物体到焦点的距离与焦点到凸透镜中心线DB的距离之比为5:4,则物体被缩小到原来的()A.B.C.D.6.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E,F,连接BD、DP,BD与CF相交于点H,给出下列结论:①∠DPC=75°;②CF=2AE;③;④△FPD∽△P HB.其中正确结论的个数是()A.4B.3C.2D.17.如图,在边长为5的正方形ABCD中,点E在AD边上,AE=2,CE交BD于点F,则DF的长为()A.B.C.D.8.如图,在Rt△ABC中,∠ABC=90°,AB=4,AC=5,AE平分∠BAC,点D是AC的中点,AE与BD 交于点O,则的值为()A.2B.C.D.9.如图,有一块直角边AB=4cm,BC=3cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.B.C.D.10.如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.点P 的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,BP的长为()A.B.C.D.二.填空题(共6小题)11.如图,△ABC中,AB=4,BC=5,AC=6,点D、E分别是AC、AB边上的动点,折叠△ADE得到△A′DE,且点A′落在BC边上,若△A′DC恰好与△ABC相似,AD的长为.12.如图,△ABC和△ADE都是等边三角形,点D在BC上,DE交AC于点F,若DF=2,EF=4,则C D的长是.13.如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,BD=1,CD=4,则AD的长为.14.如图,一张矩形纸片ABCD中,(m为常数),将矩形纸片ABCD沿EF折叠,使点A落在BC边上的点H处,点D的对应点为点M,CD与HM交于点P.当点H落在BC的中点时,且,则m=.15.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,AE平分∠BAC交BC于点E,连接CD交AE 于点F.若AC=5,BC=12,则EF的长是.16.如图,在平面直角坐标系中,已知A(1,0),B(2,0),C(0,1),在坐标轴上有一点P,它与A、C两点形成的三角形与△ABC相似,则P点的坐标是.三.解答题(共3小题)17.如图,点P在△ABC的外部,连结AP、BP,在△ABC的外部分别作∠1=∠BAC,∠2=∠ABP,连结PQ.(1)求证:AC•AP=AB•AQ;(2)判断∠PQA与∠ACB的数量关系,并说明理由.18.如图,在△ABC中,点D,E分别在边BC,AC上,AD与BE相交于点O,且AB=AD,AE2=OE•B E.(1)求证:①∠EAD=∠ABE;②BE=EC;(2)若BD:CD=4:3,CE=8,求线段AE的长.19.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【观察与猜想】(1)如图①,在正方形ABCD中,点E,F分别是AB、AD上的两点,连接DE,CF,DE⊥CF,求证△AED≌△DFC.【类比探究】(2)如图②,在矩形ABCD中,AD=7,CD=4,点E是边AD上一点,连接CE,BD,且CE⊥BD,求的值.【拓展延伸】(3)如图③,在Rt△ABC中,∠ACB=90°,点D在BC边上,连结AD,过点C作CE⊥AD于点E,CE的延长线交AB边于点F.若AC=3,BC=4,,求CD的值.20.(2023•武汉)问题提出如图(1),E是菱形ABCD边BC上一点,△AEF是等腰三角形,AE=EF,∠AEF=∠ABC=α(α≥90°),AF交CD于点G,探究∠GCF与α的数量关系.问题探究(1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF的大小;(2)再探究一般情形,如图(1),求∠GCF与α的数量关系.问题拓展将图(1)特殊化,如图(3),当α=120°时,若,求的值.1.(2023•徐州)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC 上,且,则AE的长为()A.1B.2C.1或D.1或22.(2023•济南)如图,在△ABC中,AB=AC,∠BAC=36°,以点C为圆心,以BC为半径作弧交AC于点D,再分别以B,D为圆心,以大于BD的长为半径作弧,两弧相交于点P,作射线CP交AB于点E,连接DE.以下结论不正确的是()A.∠BCE=36°B.BC=AEC.D.3.(2023•阜新)如图,△ABC和△DEF是以点O为位似中心的位似图形,相似比为2:3,则△ABC和△DEF的面积比是.4.(2023•乐山)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE交于点F.若,则=.5.(2023•北京)如图,直线AD,BC交于点O,AB∥EF∥CD,若AO=2,OF=1,FD=2,则的值为.6.(2023•大庆)在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片ABCD如图所示,点N在边AD上,现将矩形折叠,折痕为BN,点A对应的点记为点M,若点M 恰好落在边DC上,则图中与△NDM一定相似的三角形是.7.(2023•辽宁)如图,平行四边形ABCD的对角线AC,BD相交于点O,过点B作BE∥AC,交DA的延长线于点E,连接OE,交AB于点F,则四边形BCOF的面积与△AEF的面积的比值为.8.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为.9.(2023•湘潭)在Rt△ABC中,∠BAC=90°,AD是斜边BC上的高.(1)证明:△ABD∽△CBA;(2)若AB=6,BC=10,求BD的长.10.(2023•攀枝花)拜寺口双塔,分为东西两塔,位于宁夏回族自治区银川市贺兰县拜寺口内,是保存最为完整的西夏佛塔,已有近1000年历史,是中国佛塔建筑史上不可多得的艺术珍品.某数学兴趣小组决定采用我国古代数学家赵爽利用影子对物体进行测量的原理,来测量东塔的高度.东塔的高度为AB,选取与塔底B在同一水平地面上的E、G两点,分别垂直地面竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为46m,并且东塔AB、标杆EF和GH在同一竖直平面内.从标杆EF后退2m到D处(即E D=2m),从D处观察A点,A、F、D在一直线上;从标杆GH后退4m到C处(即CG=4m),从C处观察A点,A、H、C三点也在一直线上,且B、E、D、G、C在同一直线上,请你根据以上测量数据,帮助兴趣小组求出东塔AB的高度.11.(2023•上海)如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠F AC=∠ADE,AC=AD.(1)求证:DE=AF;(2)若∠ABC=∠CDE,求证:AF2=BF•CE.12.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.。
九年级数学上册知识点---- 平面直角坐标系中的位似变换
归纳:
1. 在平面直角坐标系中,以原点为位似中心作一个 图形的位似图形可以作两个.
2. 当位似图形在原点同侧时,其对应顶点的坐标的 比为 k;当位似图形在原点两侧时,其对应顶点的 坐标的比为-k.
3. 当 k>1 时,图形扩大为原来的 k 倍;当 0<k<1 时,图形缩小为原来的 k 倍.
练一练
可以确定其他顶点的 坐标.
自己试一试.
解:利用位似中对应点的坐标的变化规律,分别取 点 A′ (-3,6),B′ (-3,0),O (0,0). 顺次连接 点 A′ ,B′ ,O,所得的 △A′ B′ O 就是要画的一个 图形.
练一练 在平面直角坐标系中,四边形 OABC 的顶点坐标
分别为 O (0,0),A (6,0),B (3,6),C (-3,3). 以 原点 O 为位似中心,画出四边形 OABC 的位似图形, 使它与四边形 OABC 的相似是 2 : 3.
标都乘 2 ;在平面 3
4 C
2
直角坐标系中描点
A″
A
O (0,0),A″ (-4, -4 0),B″ (-2,-4), C″ (2,-2),用线 段顺次连接O,A″,
O -2
B″ -4
6x 4 C″
B″,C″.
平面直角坐标系中的图形变换
至此,我们已经学 习了四种变换:平移、 轴对称、旋转和位似, 你能说出它们之间的异 同吗?在右图所示的图 案中,你能找到这些变 换吗?
B" (-2 ,0 ).
2. △ABC 三个顶点坐标分别为 A (2,3),B (2,1),
C (5,2),以点 O 为位似中心,相似比为 2,将
△ABC 放大,观察对应顶点坐标的变化.
y 6
位似变换知识点总结
位似变换知识点总结1. 几何变换几何变换是指在平面上或者空间中进行的图形的移动、翻转、旋转等操作。
其中最常见的几何变换有平移、旋转、翻转和对称。
平移:平移是指一个图形在平面上按照某种规律移动,移动的距离和方向保持不变。
平移是一个保距离和方向的变换,它可以将原图形平行地移动到另外一个位置,而原图形和新图形之间的距离和方向保持不变。
旋转:旋转是指一个图形绕着某个点或某条直线进行旋转。
旋转可以分为顺时针旋转和逆时针旋转两种。
旋转变换可以改变图形的朝向和位置,但不改变图形的大小和形状。
翻转:翻转是指一个图形绕着某条直线进行翻转。
翻转可以分为关于横轴、纵轴和原点三种翻转。
翻转变换改变图形的朝向和位置,同时也改变图形的左右对称、上下对称或原点对称性。
对称:对称是指一个图形在某条直线、某个点或者某个平面上镜像对称。
对称变换是一种特殊的翻转变换,它可以将原图形与镜像对称的图形重合。
对称变换可以改变图形的朝向和位置,同时也改变图形的对称性。
2. 代数变换代数变换是指在数值和式子中进行的各种变换操作。
代数变换包括了方程的变形、函数的转换、数值的运算等。
方程的变形:方程的变形是指通过一系列变化将原方程转化为另一个等价的方程。
方程的变形包括了加减法、乘除法、移项、通分、合并同类项、配方法等操作。
函数的转换:函数的转换是指通过一些操作将原函数转化为另一个函数。
函数的转换包括了平移、伸缩、翻转、复合函数等操作。
函数的转换可以改变函数的图像、定义域、值域等性质。
数值的运算:数值的运算是指在数值之间进行的各种变换操作。
数值的运算包括了加减法、乘除法、开方、幂运算、对数运算等操作。
数值的运算可以改变数值的大小、正负、大小关系等性质。
3. 变换的性质变换具有一些重要的性质,包括了保持距离、保持方向、保持角度、保持面积、保持体积等性质。
保持距离:平移和旋转变换都是保持距离的变换,它们可以使原图形和变换后的图形之间的距离保持不变。
保持方向:平移、旋转和翻转变换都是保持方向的变换,它们可以使原图形和变换后的图形之间的方向保持不变。
初中数学知识点精讲精析 位似图形
23.5 位似图形学习目标1. 会用位似法把一个多边形按比例放大或缩小。
2. 理解位似法画相似图形的原理,能正确选择位似中心画相似的图形。
知识详解1. 两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的相似叫做位似。
这点O叫做位似中心。
利用位似的方法,可以把一个多边形放大或缩小。
2. 如果把位似中心取在多边形内,那么也可以把一个多边形放大或缩小,而且较为简便。
【典型例题】例1:在下列图形中,不是位似图形的是()A.B.C.D.【答案】D【解析】对应顶点的连线相交于一点的两个相似多边形叫位似图形,根据位似图形的概念,A、B、C三个图形中的两个图形都是位似图形;D中的两个图形不符合位似图形的概念,对应顶点不能相交于一点,故不是位似图形。
例2:下列说法中正确的是()A.位似图形一定是相似图形B.相似图形一定是位似图形C.两个位似图形一定在位似中心的同侧D.位似图形中每对对应点所在的直线必互相平行【答案】A【解析】根据位似图形的定义可知:A、位似图形一定是相似图形,故本选项正确;B、相似图形不一定是位似图形,故本选项错误;C、两个位似图形可以在位似中心的同侧或异侧,故本选项错误;D、位似图形中每对对应点所在的直线必交于一点,故本选项错误。
例3:如图,五边形ABCDE与五边形A′B′C′D′E′是位似图形,O为位似中心,OD=12 OD′,则A′B′:AB为()A.2:3B.3:2C.1:2D.2:1【答案】D【解析】位似图形上任意一对对应点,到位似中心的距离之比都等于相似比.∴A′B′:AB=OD′:OD=2:1【误区警示】易错点1:位似变换1. 如图:已知点M、N、P、Q分别为菱形ABCD四边上的中点,下列说法正确的是()A.四边形MNPQ是菱形B.四边形MNPQ与菱形ABCD相位似C.四边形MNPQ与菱形ABCD周长之比为1:2D.四边形MNPQ与菱形ABCD面积之比为1:2【答案】D【解析】A、顺次连接菱形四边中点得到的四边形是矩形,故本选项错误;B、矩形不可能和菱形位似,故本选项错误;C、利用中位线的性质可知矩形的周长等于对角线的和,而菱形的周长不等于其两条对角线的和,故本选项错误;D、利用菱形和矩形的面积计算方法可知:设对角线长分别为a、b,菱形的面积为12ab,矩形的面积等于111224a b ab⨯=,所以两图形的比为1:2,故本选项正确.易错点2:位似图形2. 如图,三个正六边形全等,其中成位似图形关系的有()A.0对B.1对C.2对D.3对【答案】D【解析】∵将任意两个正六边形的对应顶点连接起来都相交于他们的交点∴三个正六边形彼此位似∴成位似图形关系的有3对.【综合提升】针对训练1. “标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形()A.左上B.左下C.右上D.右下2. 如图,已知△EFH和△MNK是位似图形,那么其位似中心是点()A.AB.BC.CD.D3. 关于对位似图形的表述,下列命题正确的是.(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.1.【答案】B【解析】开口向上的两个“E”形状相似,但大小不同,因此它们之间的变换属于位似变换,故最上面较大的“E”与左下较小的“E“是位似图形。
初中数学知识点精讲精析 位似图形
第五节 位似图形要点精讲(1)位似图形的定义:如果两个多边形相似,而且对应顶点的连线相交于一点,那么这两个多边形叫做位似图形,这个点叫做位似中心。
(2)位似图形的性质:如果两图形F 与是位似图形,它们的位似中心是点O ,相似比为k ,那么:①设A 与是一双对应点,则直线过位似中心O 点,并且.②设A 与,B 与是任意两双对应点,则;若直线AB 、不通过位似中心O ,则.(3)位似图形是相似图形的一种特殊情况,利用位似,可以将一个图形放大或缩小。
(4)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或。
典型例题【例1】如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.【答案】解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P 和图(4)中的点O .(图(3)中的点O 不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)【解析】未似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可.【例1】 把下图中的四边形ABCD 缩小到原来的21.【答案】(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如下图。
【解析】:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .。
初三数学位似知识点
初三数学位似知识点
1、位似图形:
如果两个图形不仅是相似的图形,而且每组对应点的连接线在一个点相交,则这两个图形称为位置图形。
连接类位置图中相应点的直线的交点就是类位置中心。
此时,相似性比率也称为类位置比率。
2、位似图形的性质:
段落的任何一对对应点与段落中心在同一条线上,它们与段落中心的距离之比等于相似比。
1.位似图形对应线段的比等于相似比。
2.位置图形的相应角度相等。
3.位似图形对应点连线的交点是位似中心。
4.拟图形的面积比等于相似比的平方。
5.位似图形高、周长的比都等于相似比。
6.位置图形的相应边相互平行或在同一条直线上。
3、利用位似,可以将一个图形放大或缩小,作图时要注意:①首先确定位似中心,位似中心的位置可随意选择;②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位
似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形.
4、位似变换:
把一个几何图形转换变成与之位似的图形,叫作位似变换。
物理中的透镜成像就是一种位似变换,位似中心为光心。
位似变换应用领域极为广为,特别就是可以证明三点共线等问题。
图形的位似—知识讲解
图形的位似—知识讲解本文介绍了图形的位似变换,旨在帮助读者了解位似多边形的概念,知道位似变换是特殊的相似变换,并能利用位似的方法,将一个图形放大或缩小。
文章首先介绍了位似多边形的定义和性质,包括对应点相交于同一点、对应点到位似中心的距离之比等于相似比、不经过位似中心的对应线段平行等。
其次,文章比较了平移、轴对称、旋转和位似四种变换的异同,指出位似变换之后图形是放大或缩小的,是相似的。
最后,文章介绍了在平面直角坐标系中的位似图形,并给出了典型例题供读者练。
要点梳理:1.位似多边形的定义和性质;2.平移、轴对称、旋转和位似四种变换的异同;3.在平面直角坐标系中的位似图形。
典型例题:下列每组的两个图形不是位似图形的是()。
答案:D解析:对应顶点的连线相交于一点的两个相似多边形叫位似图形。
1.删除明显有问题的段落,得到如下文章:据此可得A、B、C三个图形中的两个图形都是位似图形;而D的对应顶点的连线不能相交于一点,故不是位似图形.故选D.位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.利用位似图形的方法把五边形ABCDE放大1.5倍。
即是要画一个五边形A′B′C′D′E′,要与五边形ABCDE相似且相似比为1.5.画法是:1.在平面上任取一点O.2.以O为端点作射线OA、OB、OC、OD、OE.3.在射线OA、OB、OC、OD、OE上分别取点A′、B′、C′、D′、E′,使OA′:OA=OB′:OB=OC′:OC=OD′:OD=OE′:OE=1.5.4.连结A′B′、B′C′、C′D′、D′E′、E′A′。
这样:A′B′B′C′C′D′D′E′A′E′=====1.5.ABBCCDDEAE则五边形A′B′C′D′E′为所求。
另外一种情况,所画五边形跟原五边形分别在位似中心的两侧。
2.剔除格式错误,得到如下文章:据此可得A、B、C三个图形中的两个图形都是位似图形;而D的对应顶点的连线不能相交于一点,故不是位似图形。
图形的位似变换与坐标
1.什么叫位似图形?
定义:两个多边形不仅相似,而且对应顶点的连线相交于一 点,对应 边互相平行,像这样的两个图形叫做位似图形,这 个点叫做位 似中心.
位似比:两个位似图形的相似比叫做位似比.
注意: (1)位似图形一定是相似图形,而相似图形不一定是位似 图 形,位似图形与它们的位置有关,而相似图形与它们的位 置无关; (2)位似图形是一种特殊的相似图形,它的每一组对应点 所在的直线都经过同一个点; (3)位似是一种重要的图形变换方式,利用位似变换可以 将一个图形进行放大或缩小.
y
当图形关 于x轴对称, 横坐标不 变,纵坐标 乘以(-1).
A’”(-3,4)
A(3,4)
C’”(-5,1) C’’’’(-5,-1)
B(1,2) B’”(-1,2)
0
B’(1,-2) B’’’’(-1,-2)
C(5,1)
x
C’(5,-1)
A’’’’(-3,-4)
A’(3,-4)
图2
归纳(二): 图形的对称:
复习回顾
3.画位似图形的步骤
步骤: (1)确定位似中心点; (2)将图形各顶点与位似中心连接(或延长); (3)按位似比进行取点; (4)顺次连接各点,所得的图形就是所求的图形.
注意: (1)位似中心可以是任意一点,这个点可以在多边形的内部 或外部或在多边形上,但具体问题一般要考虑画图方便 且符合要求;
放大后对应点的坐标分别是多少?
A′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 )
y
A'
6
4 A
3
2
B'
C
1
B
o
2
4
6
中考数学复习----《位似》知识点总结与专项练习题(含答案)
中考数学复习----《位似》知识点总结与专项练习题(含答案)知识点总结1. 位似的概念:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心。
2. 位似与平面直角坐标系:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k 。
练习题1、(2022•百色)已知△ABC 与△A 'B 'C '是位似图形,位似比是1:3,则△ABC 与△A 'B 'C '的面积比是( )A .1:3B .1:6C .1:9D .3:1【分析】利用为位似的性质得到△ABC 与△A 'B 'C '相似比是1:3,然后根据相似三角形的性质求解.【解答】解:∵△ABC 与△A 'B 'C '是位似图形,位似比是1:3,∴△ABC 与△A 'B 'C '相似比是1:3,∴△ABC 与△A 'B 'C '的面积比是1:9.故选:C .2、(2022•梧州)如图,以点O 为位似中心,作四边形ABCD 的位似图形A ′B ′C ′D ′,已知 OA OA =31,若四边形ABCD 的面积是2,则四边形A ′B ′C ′D ′的面积是( )A .4B .6C .16D .18【分析】直接利用位似图形的性质得出面积比进而得出答案.【解答】解:∵以点O 为位似中心,作四边形ABCD 的位似图形A ′B ′C ′D ′,=,∴==, 则四边形A ′B ′C ′D ′面积为:18.故选:D .3、(2022•威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =…=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )A .(34)3B .(34)7C .(34)6D .(43)6 【分析】根据余弦的定义得到OB =OA ,进而得到OG =()6OA ,根据位似图形的概念得到△GOH 与△AOB 位似,根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:在Rt △AOB 中,∠AOB =30°,∵cos∠AOB=,∴OB=OA,同理,OC=OB,∴OC=()2OA,……OG=()6OA,由位似图形的概念可知,△GOH与△AOB位似,且位似比为()6,∵S△AOB=1,∴S△GOH=[()6]2=()6,故选:C.4、(2022•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是()A.1:2 B.1:4 C.1:3 D.1:9【分析】根据两三角形位似,周长比等于相似比即可求解.【解答】解:∵△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,∴△ABC与△DEF的周长之比是1:2,故选:A.5、(2022•重庆)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC 的周长为4,则△DEF的周长是()A.4 B.6 C.9 D.16【分析】根据位似图形是相似图形,相似三角形的周长比等于相似比,可以求得△DEF 的周长.【解答】解:∵△ABC与△DEF位似,相似比为2:3.∴C△ABC:C△DEF=2:3,∵△ABC的周长为4,∴△DEF的周长是6,故选:B.6、(2022•黔西南州)如图,在平面直角坐标系中,△OAB与△OCD位似,位似中心是坐标原点O.若点A(4,0),点C(2,0),则△OAB与△OCD周长的比值是.【分析】利用关于原点为位似中心的对应点的坐标变换规律得到相似比为2:1,然后根据相似三角形的性质解决问题.【解答】解:∵△OAB与△OCD位似,位似中心是坐标原点O,而点A(4,0),点C(2,0),∴相似比为4:2=2:1,∴△OAB与△OCD周长的比值为2.故答案为:2.7、(2022•潍坊)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为.【分析】如图,连接B′D′.利用相似多边形的性质求出正方形A′B′C′D′的面积,求出边长,再求出B′D′可得结论.【解答】解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的周长=4π,故答案为:4π.8、(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是.【分析】先根据位似的性质得到△ABC和△DEF的位似比为OA:OD,再利用比例性质得到OA:OD=2:5,然后利用相似比等于位似比和相似三角形的性质求解.【解答】解:∵△ABC和△DEF是以点O为位似中心的位似图形.∴△ABC和△DEF的位似比为OA:OD,∵OA:AD=2:3,∴OA:OD=2:5,∴△ABC与△DEF的周长比是2:5.故答案为:2:5.。
初中数学位似变换知识点总结(共6篇)
初中数学位似变换知识点总结第1篇11 有向直线在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相规定了正方向的直线,叫做有向直线,读作有向直线l12 数轴我们把数轴上任意一点所对应的实数称为点的坐标对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值上面的内容是初中数学知识点之数轴,相信同学们看过以后都可以很好的掌握了吧。
如果想要了解更多更全的初中数学知识就来关注吧。
初中数学位似变换知识点总结第2篇一、角的定义“静态”概念:有公共端点的两条射线组成的图形叫做角。
“动态”概念:角可以看作是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形。
如果一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角;大于0小于直角的角叫做锐角。
二、角的换算:1周角=2平角=4直角=360°;1平角=2直角=180°;1直角=90°;1度=60分=3600秒(即:1°=60′=3600″);1分=60秒(即:1′=60″).三、余角、补角的概念和性质:概念:如果两个角的和是一个平角,那么这两个角叫做互为补角。
如果两个角的和是一个直角,那么这两个角叫做互为余角。
说明:互补、互余是指两个角的数量关系,没有位置关系。
性质:同角(或等角)的余角相等;同角(或等角)的补角相等。
四、角的比较方法:角的大小比较,有两种方法:(1)度量法(利用量角器);(2)叠合法(利用圆规和直尺)。
五、角平分线:从一个角的顶点引出的一条射线。
把这个角分成相等的两部分,这条射线叫做这个角的平分线。
常见考法(1)考查与时钟有关的问题;(2)角的计算与度量。
误区提醒角的度、分、秒单位的换算是60进制,而不是10进制,换算时易受10进制影响而出错。
平面几何中的位似变换与旋转
平面几何中的位似变换与旋转位似变换和旋转是平面几何中常见的变换方式,它们在数学和几何学中有着重要的应用。
本文将对位似变换和旋转进行讨论,探讨它们的定义、性质以及在几何学中的实际应用。
一、位似变换的定义与性质位似变换,又称为相似变换,是指在几何平面上进行的一种变换,保持了形状和比例的尺寸。
具体地说,位似变换是通过两个相似图形之间的对应关系来进行的,这种对应关系保持了各个点之间的距离比例不变。
位似变换有以下几个显著的性质:1. 周长比例不变:经过位似变换后,两个相似图形的周长比保持不变。
2. 面积比例不变:经过位似变换后,两个相似图形的面积比保持不变。
3. 小边比例不变:经过位似变换后,两个相似图形的对应边长度比保持不变。
二、旋转的定义与性质旋转是指通过围绕某一固定点旋转来改变几何图形的位置。
在旋转过程中,每个点按照一定的角度和方向绕旋转中心旋转。
旋转有以下几个显著的性质:1. 保持长度和角度:旋转过程中,两个点之间的距离和角度保持不变。
2. 保持对称性:旋转对称图形经旋转后仍具有对称性。
3. 保持面积不变:经过旋转后,图形的面积保持不变。
三、位似变换与旋转的应用1. 图像变换:位似变换和旋转广泛应用于图像处理中,可以进行图像的缩放、旋转和翻转等操作。
例如,在计算机图形学中,可以通过位似变换和旋转将一个图像变换到指定位置或角度。
2. 几何测量:位似变换和旋转可以应用于测量目标物体的长度、面积和角度。
例如,在建筑设计中,可以通过位似变换和旋转来计算地块的面积和建筑物的尺寸。
3. 地图制图:位似变换和旋转可以用于制作地图。
通过位似变换和旋转,可以将地球的三维地图投影到平面上,从而得到更直观和便于测量的地图。
4. 几何证明:位似变换和旋转在几何证明中有重要的应用,可以用来证明几何命题的等价性。
例如,可以利用位似变换和旋转来证明两个三角形的全等性。
结论位似变换和旋转是平面几何中常见的变换方式,它们保持了形状和比例,具有一些特殊的性质。
苏科版九年级数学下册 6.6 图形的位似 知识点总结+例题+练习(含答案)
图形的位似【学习目标】1、了解位似多边形的概念,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;2、能在同一坐标系中,感受图形放缩前后点的坐标的变化.【要点梳理】要点一、位似多边形1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点二、坐标系中的位似图形在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k (k ≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k |.要点诠释:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标等于原来点的坐标乘以(或除以)k 或-k.【典型例题】类型一、位似多边形例1. 下列每组的两个图形不是位似图形的是( ).A. B. C. D.【答案】D【解析】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.据此可得A 、B 、C 三个图形中的两个图形都是位似图形;而D 的对应顶点的连线不能相交于一点,故不是位似图形.故选D .举一反三【变式】在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的 ( ).A. 3倍B.21 C.31 D.不知AB 的长度,无法判断【答案】C例2. 利用位似图形的方法把五边形ABCDE 放大1.5倍.【答案与解析】即是要画一个五边形A ′B ′C ′D ′E ′,要与五边形ABCDE 相似且相似比 为1.5.画法是:1.在平面上任取一点O.2.以O 为端点作射线OA 、OB 、OC 、OD 、OE.3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A ′、B ′、C ′、D ′、E ′,使OA ′:OA = OB ′:OB =OC ′:OC =OD ′:OD =OE ′:OE =1.5.4.连结A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′A ′.这样:A ′B ′AB =B ′C ′BC =C ′D ′CD =D ′E ′DE =A ′E ′AE=1.5. 则五边形A ′B ′C ′D ′E ′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.举一反三【变式】在已知三角形内求作内接正方形.A 1B 1C 1D 1E 1 A B C DE【答案与解析】作法:(1)在AB 上任取一点G ′,作G ′D ′⊥BC;(2)以G ′D ′为边,在△ABC 内作一正方形D ′E ′F ′G ′;(3)连接BF ′,延长交AC 于F ;(4)作FG∥CB,交AB 于G ,从F 、G 分别作BC 的垂线FE , GD ;∴四边形DEFG 即为所求.类型二、坐标系中的位似图形例3.如图,在10×10的正方形网格中,点A ,B ,C ,D 均在格点上,以点A 为位似中心画四边形AB ′C ′D ′,使它与四边形ABCD 位似,且相似比为2.(1)在图中画出四边形AB ′C ′D ′;(2)填空:△AC ′D ′是 三角形.【思路点拨】(1)延长AB 到B ′,使AB ′=2AB ,得到B 的对应点B ′,同样得到C 、D 的对应点C ′,D ′,再顺次连接即可;(2)利用勾股定理求出AC ′2=42+82=80,AD ′2=62+22=40,C ′D ′2=62+22=40,那么AD ′=C ′D ′,AD ′2+C ′D ′2=AC ′2,即可判定△AC ′D ′是等腰直角三角形.【答案与解析】解:(1)如图所示:B C(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.例4.如图△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M 对应的点M′的坐标为.【思路点拨】(1)把点A、B、C的横、纵坐标都乘以2可得到对应点D、E、F的坐标,再描点可得△DEF;把点A、B、C的横、纵坐标都乘以﹣2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′;(2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.【答案与解析】解:(1)如图,△DEF和△D′E′F′为所作;(2)点M对应的点M′的坐标为(2a,2b)或(﹣2a,﹣2b).故答案为(2a,2b)或(﹣2a,﹣2b).举一反三:【变式】如图,将△AOB中各顶点的纵坐标,横坐标分别乘-1,•得到的图形与原图形相比有什么变化?作出所得的图形,这个过程可以看作是一个什么图形变换?【答案】解:图形的形状和大小都没有变化;可以看作是△AOB绕O•点按逆时针方向旋转180°得到的.【巩固练习】一. 选择题1.下面给出了相似的一些命题:(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似;其中正确的有().A.2个 B.3个 C.4个 D.5个2.下列说法错误的是().A.位似图形一定是相似图形.B.相似图形不一定是位似图形.C.位似图形上任意一对对应点到位似中心的距离之比等于相似比.D.位似图形中每组对应点所在的直线必相互平行.3.下列说法正确的是() .A.分别在ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则ADE是ABC放大后的图形.B.两位似图形的面积之比等于相似比.C.位似多边形中对应对角线之比等于相似比.D.位似图形的周长之比等于相似比的平方.4.如图,在平面直角坐标系中,已知点A(﹣3,6),B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)5. 下列命题:①两个正方形是位似图形;②两个等边三角形是位似图形;③两个同心圆是位似图形;④平行于三角形一边的直线截这个三角形的两边,所得的三角形与原三角形是位似图形.其中正确的有( ).A.1个B.2个C.3个D.4个二. 填空题8. 如果两个位似图形的对应线段长分别为3cm 和5cm ,且较小图形周长为30cm ,则较大图形周长为__________.9.如图,在平面直角坐标系中,已知A (1,0),D (3,0),△ABC 与△DEF 位似,原点O 是位似中心.若AB=1.5,则DE= .10.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形,已知OA =10cm ,OA ′=20cm ,则五边形ABCDE 的周长与五边形的周长的比值是__________.11. △ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,△ADE 是△ABC 缩小后的图形.若DE 把△ABC 的面积分成相等的两部分,则AD :AB=________.12. 把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为____________________.13.如图,以O 为位似中心,将边长为256的正方形OABC 依次作位似变换,经第一次变化后得正方形OA 1B 1C 1,其边长OA 1缩小为OA 的,经第二次变化后得正方形OA 2B 2C 2,其边长OA 2缩小为OA 1的,经第,三次变化后得正方形OA 3B 3C 3,其边长OA 3缩小为OA 2的,…,依次规律,经第n 次变化后,所得正方形OA n B n C n 的边长为正方形OABC 边长的倒数,则n= .A B C D E '''''A B C D E '''''14. 如图,△ABC中,AB=AC=4,∠BAC=36°,∠ABC的平分线与AC边的交点D为边AC的黄金分割点(AD>DC),则BC=______________.三.综合题15.如图,D、E分别AB、AC上的点.(1)如果DE∥BC,那么△ADE和△ABC是位似图形吗?为什么?(2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么?16.如图,F在BD上,BC、AD相交于点E,且AB∥CD∥EF,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)若AB=2,CD=3,求EF的长.17. 如图1,矩形ODEF 的一边落在矩形ABCO 的一边上,并且矩形ODEF ∽矩形ABCO ,其相(1)求矩形ODEF 的面积;(2)将图1中的矩形ODEF 绕点O 逆时针旋转一周,连接EC 、EA ,△ACE 的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由.【答案与解析】一、选择题1.【答案】B【解析】(1)菱形的角不一定对应相等,故错误;(2)(3)(5)符合相似的定义,故正确;(4)对应边的比不一定相等.故错误.故正确的是:(2)(3)(5).故选B .2.【答案】D.3.【答案】C.4.【答案】D.【解析】∵A (﹣3,6),B (﹣9,﹣3),以原点O 为位似中心,相似比为,把△ABO 缩小,∴点A 的对应点A ′的坐标为(﹣3×,6×)或[﹣3×(﹣),6×(﹣)],即A ′点的坐标为(﹣1,2)或(1,﹣2).5.【答案】B【解析】由位似图形的概念可知③和④对,故选B.6.【答案】D.【解析】∵AC >BC ,∴AC 是较长的线段,AC ≈0.618AB .故选D .7.【答案】B.【解析】∵AB=1,设AD=x ,则FD=x-1,FE=1,∵四边形EFDC 与矩形ABCD 相似, AB AC,二、填空题 8.【答案】50cm. 9.【答案】4.5.【解析】∵△ABC与DEF 是位似图形,它们的位似中心恰好为原点,已知A 点坐标为(1,0),D 点坐标为(3,0),∴AO=2,DO=5,∴==,∵AB=1.5,∴DE=4.5.故答案为:4.5.10.【答案】1:2.【解析】∵五边形ABCDE 与五边形A ′B ′C ′D ′E ′位似,OA=10cm ,OA ′=20cm ,∴五边形ABCDE ∽五边形A ′B ′C ′D ′E ′,且相似比为:OA :OA ′=10:20=1:2, ∴五边形ABCDE 的周长与五边形A ′B ′C ′D ′E ′的周长的比为:OA :OA ′=1:2. 故答案为:1:2.11.【答案】 .【解析】由BC ∥DE 可得△ADE ∽△ABC ,所以,故.111x x =-13. 【答案】16.【解析】由图形的变化规律可得×256=, 解得n=16.14. 【解析】∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,又BD 平分∠ABC ,∴∠ABD=∠CBD=36°,∴∠BDC=72°,∴BC=BD=AD ,∵D 点是AC 的黄金分割点,三.解答题15.【答案与解析】(1)△ADE 和 △ABC 是位似图形.理由是:DE ∥BC ,所以∠ADE=∠B , ∠AED=∠C.所以△ADE ∽△ABC ,所以. 又因为 点A 是△ADE 和 △ABC 的公共点,点D 和点B 是对应点,点E 和点C是对应点,直线BD 与CE 交于点A ,所以△ADE 和 △ABC 是位似图形.(2)DE ∥BC.理由是:因为△ADE 和△ABC 是位似图形,所以△ADE ∽△ABC所以∠ADE=∠B所以DE ∥BC.16.【答案与解析】解:(1)△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形, 理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC ,△AEB ∽△DEC ,且对应边都交于一点,∴△DFE与△DBA,△BFE与△BDC,△AEB与△DEC都是位似图形;(2)∵△BFE∽△BDC,△AEB∽△DEC,AB=2,CD=3,∴==,∴==,解得:EF=.17.【答案与解析】(1)∵矩形ODEF∽矩形ABCO,其相似比为1:4,(2)存在.。
初中数学 如何判断两个图形是否位似
初中数学如何判断两个图形是否位似要判断两个图形是否位似,我们可以通过比较它们的形状和大小来进行判断。
在初中数学中,有几种方法可以判断两个图形是否位似。
在本文中,我们将介绍三种常用的方法:比较对应角、比较对应边的比例和使用位似判定定理。
方法一:比较对应角如果两个图形的对应角相等,那么它们很可能是位似的。
对应角是指两个图形中对应的角度相等。
例如,对于两个三角形,如果它们的对应角相等,那么它们很可能是位似的。
可以通过测量角度来比较对应角。
方法二:比较对应边的比例如果两个图形的对应边的比例相等,那么它们很可能是位似的。
对应边的比例是指两个图形中对应的边的长度之比相等。
例如,对于两个三角形,如果它们的对应边的比例相等,那么它们很可能是位似的。
可以通过测量边长来比较对应边的比例。
方法三:使用位似判定定理位似判定定理是判断两个图形是否位似的重要定理。
根据位似判定定理,如果两个三角形的一个角相等,而另外两个对应边的比例也相等,那么它们是位似的。
也就是说,如果∠A = ∠D,AB/DE = BC/EF = AC/DF,那么三角形ABC和DEF是位似的。
通过上述方法,我们可以判断两个图形是否位似。
下面举一个例子来说明。
例子:判断以下两个三角形是否位似。
三角形ABC,∠A = 60°,∠B = 70°,∠C = 50°,AB = 4 cm,BC = 5 cm,AC = 6 cm。
三角形DEF,∠D = 60°,∠E = 70°,∠F = 50°,DE = 8 cm,EF = 10 cm,DF = 12 cm。
方法一:比较对应角由于两个三角形的对应角度相等,∠A = ∠D,∠B = ∠E,∠C = ∠F,它们很可能是位似的。
方法二:比较对应边的比例计算两个三角形的对应边的比例:AB/DE = 4/8 = 1/2BC/EF = 5/10 = 1/2AC/DF = 6/12 = 1/2由于两个三角形的对应边的比例相等,它们很可能是位似的。
初中数学位似变换知识点总结
初中数学位似变换知识点总结初中数学位似变换知识点总结复习中什么要多抓多练,这一点很重要,以下是小编整理的初中数学位似变换知识点总结,欢迎大家学习!初中数学位似知识点总结(一)1.重点:位似图形的有关概念、性质与作图.2.难点:利用位似将一个图形放大或缩小.3.难点的突破方法(1)位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.(2)掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;④位似比就是相似比.利用位似图形的定义可判断两个图形是否位似.(3)位似图形首先是相似图形,所以它具有相似图形的一切性质.位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比).(4)两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.(5)利用位似,可以将一个图形放大或缩小,其步骤见下面例题.作图时要注意:①首先确定位似中心,位似中心的位置可随意选择;②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形.初中数学位变换练习题(二)一、选择题1.下列说法正确的是().A.相似的两个五边形一定是位似图形B.两个大小不同的正三角形一定是位似图形C.两个位似图形一定是相似图形D.所有的正方形都是位似图形考查目的':考查位似图形的概念.答案:C.解析:位似图形是相似图形的特例,相似图形不一定是位似图形,故答案应选择C.2.两个位似多边形一对对应顶点到位似中心的距离比为1∶2,且它们面积和为80,则较小的多边形的面积是()A.16 B.32 C.48 D.64考查目的:考查位似图形的概念和性质.答案:A.解析:位似图形必定相似,具备相似形的性质,其相似比等于一对对应顶点到位似中心的距离比.相似比为1∶2,则面积比为1∶4,由面积和为80,得到它们的面积分别为16,64.故答案应选择A.3.如图,以点A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若S1表示△ADE的面积,S2表示四边形DBCE的面积,则S1∶S2=()A.1∶2 B.1∶3 C.1∶4 D.2∶3考查目的:考查位似图形的性质和画法.答案:B.解析:位似图形必定相似,具备相似形的性质,△ADE与△ABC相似比为1∶2,则面积比为1∶4,所以△ADE与四边形DBCE的面积比为1∶3,故答案应选择B.二、填空题4.如图,五边形ABCDE与五边形A′B′C′D′E′是位似图形,且位似比为1:2.若五边形ABCDE的面积为17 cm2,周长为20 cm,那么五边形A′B′C′D′E′的面积为________ cm2,周长为________ cm.考查目的:考查位似图形的概念和性质.答案:68;40.解析:位似图形必定相似,相似比是1∶2,则面积比是1∶4,故五边形A′B′C′D′E′的面积应是68cm2;周长是40 cm.5.如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形周长为30cm,则较大图形周长为________ cm.考查目的:考查位似图形的概念和性质.答案:50.解析:位似图形一定是相似图形,具备相似图形的性质,其相似比等于一组对应边的比,相似比是3∶5,则周长比是3∶5,故答案应是50.三、解答题6.利用位似的方法把下图缩小到原来的一半,要求所作的图形在原图内部.考查目的:考查位似图形的画法.答案:解析:利用位似的方法作图,要求所作图要位于原图内部,关键是确定位似中心,本题的位似中心取在原图内部,(1)在五边形ABCDE内部任取一点O.(2)以点O为端点作射线OA、OB、OC、OD、OE.(3)分别在射线OA、OB、OC、OD、OE上取点A′、B′、C′、D′,使OA∶OA′=OB∶OB′=OC∶OC′=OD∶OD′=OE∶OE′=2∶1.(4)连接A′B′、B′C′、C′D′、D′E′、E′A′.得到所要画的多边形A′B′C′D′E′.7.如图,小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m,已知小明的身高是1.6 m,他的影长是2 m.(1)图中△ABC与△ADE是否位似?为什么?(2)求古塔的高度.考查目的:考查位似图形的概念和性质.答案:△ABC与△ADE位似;古塔的高度为16 m.解析:根据位似图形的概念,△ABC与△ADE中,BC与DE平行,两个三角形相似,且对应顶点的连线相交于一点,所以△ABC与△ADE 位似.利用相似三角形对应边成比例,可求出DE的长,故古塔的高度是16 m.。
九年级数学上册第2课时 平面直角坐标系中的位似变换
第2课时平面直角坐标系中的位似变换【知识与技能】1.理解位似图形的定义,能熟练地利用坐标变化将一个图形放大与缩小.2.理解平移、轴对称、旋转和位似四种变换的基本性质,会按要求画出经变换后的图形.【过程与方法】在具体活动操作中,培养学生的动手操作能力,进一步增强用位似变换来解决实际问题的能力.【情感态度】在观察、操作、推理、归纳等探索过程中,进一步培养学生综合运用知识的能力,体验成功的喜悦,树立良好的数学自信心.【教学重点】用图形的坐标变化来表示图形的位似变换,能综合运用平移、轴对称、旋转和位似进行图案设计.【教学难点】体会用图形的坐标变化来表示图形的位似变换的变化规律.一、情境导入,初步认识问题如图,已知点A(0,3),B(2,0)是平面直角坐标系内的两点,连接AB.(1)将线段AB向左平移3个单位得到线段A1B1,画出图形,并写出A1,B1的坐标;(2)作出线段AB关于y轴对称的线段A2B2,并写出A2,B2点的坐标;(3)将线段AB绕原点O旋转180°得到线段A3B3,画出图形,并写出A3,B3的坐标.(4)以原点O为位似中心,位似比为12,把线段AB缩小,得到线段A4B4,请在图中画出线段A4B4,写出A4,B4坐标.观察对应点坐标的变化,你有什么发现?【教学说明】问题(1)、(2)、(3), 从学生已有的知识入手, 以问题为载体, 自然复习平移、轴对称、旋转等变换.而问题(4), 则是承上启下为新课的学习做好铺垫, 同时, 与问题(1)、(2)、(3)一起形成了完整的知识结构, 这样以旧引新, 帮助学生建立新旧知识间的联系.对问题(1)、(2)、(3)的处理, 可采用灵活多样形式, 既可自主探究, 也可小组讨论相互交流, 教师也可适时参与讨论.在处理问题(4)时, 教师可给学生充裕的探讨时间, 让学生自己发现结论.二、思考探究, 获取新知通过上面的问题(4)思考, 可以发现:在平面直角坐标系中, 如果位似是以原点为位似中心, 位似比为k , 那么位似图形对应点坐标的比为k 或-k.这一结论是否正确呢?下面我们再通过探究来验证一下.问题 如图, △ABC 三个顶点坐标分别为A (2, 3),B (2, 1),C (4, 3), 以点O 为位似中心, 相似比为2, 将△ABC 放大, 得到△A 1B 1C 1.(1)请在图中画出所有满足要求的△A 1B 1C 1;(2)写出A 、B 、C 的对应点A 1, B 1, C 1的坐标;(3)观察对应顶点坐标的变化, 你有什么发现?分析与解 (1)作直线OA , OB , OC , 在射线OA 、OB 、OC 上, 截取A 1, B 1, C 1, 使1112===OA OB OC OA OB OC, 依次连接A 1, B 1, C 1, 得△A 1B 1C 1, 则△A 1B 1C 1是适合要求的图形;类似地, 在第三象限可画△A 2B 2C 2, 使得△A 2B 2C 2是以O 为位似中心, 位似比为2的放大图形, 如图所示:(2)把△ABC 放大后, A , B , C 的对应点为A 1(4, 6), B 1(4, 2), C 1(8, 6);A 2(-4, -6), B 2(-4, -2), C 2(-8, -6);(3)观察对应点坐标的变化, 可以发现, 各顶点的横、纵坐标均是其对应点横、纵坐标的k倍或-k倍.【教学说明】通过对上述问题的探究思考,让学生主动参与数学知识的“再发现”,在动手——猜想——交流——归纳过程中进一步体验坐标平面内的位似变换性质.性质在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比为k或-k.三、典例精析,掌握新知例1△OEF是△OAB以点O为位似中心;由△OAB放大而得到的,若点A、B坐标分别为(-1,4)和(3,2),且相似比为3∶1,求点E、F的坐标.分析与解由坐标平面内以原点O为位似中心的两个图形的对应顶点坐标之间的关系可以知道,点E,F的坐标应为(-1×3,4×3)和(3×3,2×3)或(-1×(-3),4×(-3))和(3×(-3),2×(-3)),即E、F的坐标为(-3,12)和(9,6)或(3,-12)和(-9,-6).例2如图,四边形ABCD的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O为位似中心,相似比为12的位似图形.分析与解问题的关键是要确定位似图形各个顶点的坐标.根据前面的规律,点A的对应点A′的坐标为(-6×12,6×12),即(-3,3).类似地,可以确定其他顶点的坐标.如图,利用位似中对应点的坐标的变化规律,分别取A′(-3,3),B′(-4,1),C(-2,0),D′(-1,2).依次连接A′,B′,C′,D′,四边形A′B′C′D′就是要求的四边形ABCD的位似图形.【教学说明】这里的两道题都可让学生自主探究,教师巡视,发现问题及时指导,最后教师再展示解题过程,锻炼学生的解题能力.在例2中,还可以画出四边形ABCD类似原点O在第四象限的位似图形,可让学生试一试.四、运用新知,深化理解1.如图表示△AOB和把它缩小后得到的△OCD,求△AOB与△COD的相似比.2.如图,△ABC三个顶点坐标分别为A(2,-2),B(4,-5),C(5,-2),以原点O为位似中心,将这个三角形放大为原来的2倍.【教学说明】所选的两道题是前面知识的延续,学生可自主完成,教师巡视,对优秀者应给予鼓励,增强他们学习兴趣.五、师生互动,课堂小结1.通过本节课的学习,你有哪些收获?2.列举出生活中的位似图案.【教学说明】针对问题1,学生可发表各自看法,这样一方面可提炼本节知识点,另一方面也可对所存在的问题进行探讨,完善知识技能.而问题2则可让学生感受数学来源于生活,从而更深理解本节知识.1.布置作业:从教材P51习题27.3中选取.2.完成练习册中相应练习.本课时可类比上一课时的教学方式进行,只不过本课时涉及到了平面直角坐标系,教学时教师应让学生充分参与,体会平面直角坐标系中的位似变换,以培养学生的动手操作能力和用位似变换解决实际问题的能力.本课的难点是用图形的坐标变化来表示图形的位似变换的变化规律,教师可让学生以小组为单位进行讨论,争取让学生自己发现规律,教师再予以适当点拨,以培养学生的探究能力.。
位似变换的坐标变化规律
位似变换的坐标变化规律
嘿,大家好呀!今天咱来聊聊位似变换的坐标变化规律。
你们知道吗,我之前有一次特别好玩的经历。
有一天我在家里整理我的玩具,我有好多好多的小玩具车呀。
我就突发奇想,把它们摆成了一个图案,就像一个小小的车队。
然后呢,我就开始试着把这个图案放大和缩小。
当我把它们放大的时候,哇塞,那些小玩具车好像一下子变得好大呀,就像突然长大了一样。
而且我发现它们在这个过程中的位置也发生了变化,就像是有一种神奇的力量在拉扯它们。
然后我又试着缩小,嘿,它们就又变小啦,位置也跟着改变了。
这不就跟位似变换很像嘛!就好像那些玩具车的坐标随着我的操作在有规律地变化着。
放大缩小,位置移动,真的太有意思啦!
哎呀呀,原来生活中也能找到和位似变换坐标变化规律相关的有趣事情呢。
以后再看到位似变换,我肯定就会想起我那些可爱的小玩具车啦!哈哈!这就是我对位似变换坐标变化规律的有趣发现啦,你们觉得好玩不?。
位似变换与全等变换的几何性质
位似变换与全等变换的几何性质几何变换是几何学中的重要概念,在形状保持不变的情况下,通过平移、旋转、镜像、位似变换和全等变换等操作来改变图形的位置和方向。
其中,位似变换和全等变换是常用的几何变换方式。
本文将重点探讨位似变换与全等变换的几何性质。
一、位似变换的概念与性质位似变换,又称为相似变换,是指通过等比例因子同时对图形进行平移、旋转和缩放,使得图形的形状和内部角度保持不变。
具体来说,对于图形ABC,若存在一个坐标变换矩阵T,使得任意点P(x, y)变换后的坐标为P'(x', y'),同时满足以下条件:1. P' = T(P);2. 所有线段的长度比例相同,即AB/CD = BC/DE = AC/DF;3. 所有角度保持相等。
从以上性质可以看出,位似变换能够改变图形的大小、位置和朝向,但不改变其形状和内部角度关系。
这在很多几何问题中具有重要意义,比如类似三角形的判断和比较、计算图形长度和角度等。
二、全等变换的概念与性质全等变换,又称为同构变换,是指通过平移、旋转和镜像等操作将一个图形变换到与之完全相同的位置和形状。
对于图形ABC,若存在一个坐标变换矩阵T,使得任意点P(x, y)变换后的坐标为P'(x', y'),同时满足以下条件:1. P' = T(P);2. 所有线段的长度相等,即AB = CD,BC = DE,AC = DF;3. 所有角度相等。
全等变换保持了图形的大小、位置、朝向以及形状和内部角度的关系,是一种更为严格和精确的几何变换方式。
全等变换在证明几何定理和解决几何问题时经常使用,尤其在三角形全等判定、证明以及线段长度的测量等方面有着重要的应用。
三、位似变换与全等变换的关系位似变换与全等变换之间存在一定的关系和差异:1. 相同点:位似变换和全等变换都能改变图形的位置和朝向,以及图形的大小。
2. 不同点:位似变换仅保持图形的形状和内部角度关系不变,全等变换则保持了所有的性质都不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学位似变换知识点总结
初中数学位似变换知识点总结
初中数学位似知识点总结(一)
1.重点:位似图形的有关概念、性质与作图.
2.难点:利用位似将一个图形放大或缩小.
3.难点的突破方法
(1)位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.
(2)掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;④位似比就是相似比.利用位似图形的定义可判断两个图形是否位似.
(3)位似图形首先是相似图形,所以它具有相似图形的一切性质.位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比).
(4)两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.
(5)利用位似,可以将一个图形放大或缩小,其步骤见下面例题.作图时要注意:①首先确定位似中心,位似中心的位置可随意选择;②确定
原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形.
初中数学位变换练习题(二)
一、选择题
1.下列说法正确的是().
A.相似的两个五边形一定是位似图形
B.两个大小不同的正三角形一定是位似图形
C.两个位似图形一定是相似图形
D.所有的正方形都是位似图形
考查目的:考查位似图形的概念.
答案:C.
解析:位似图形是相似图形的特例,相似图形不一定是位似图形,故答案应选择C.
2.两个位似多边形一对对应顶点到位似中心的距离比为1∶2,且它们面积和为80,则较小的多边形的面积是()
A.16 B.32 C.48 D.64
考查目的:考查位似图形的概念和性质.
答案:A.
解析:位似图形必定相似,具备相似形的性质,其相似比等于一对对应顶点到位似中心的距离比.相似比为1∶2,则面积比为1∶4,由面积和。