北航考博2011概率论与数理统计真题

合集下载

北航数理统计答案

北航数理统计答案

北航数理统计答案【篇一:北航数理统计考试题】术部2011年12月2007-2008学年第一学期期末试卷一、(6分,a班不做)设x1,x2,…,xn是来自正态总体n(?,?2)的样本,令t?x?x),试证明t服从t-分布t(2)二、(6分,b班不做)统计量f-f(n,m)分布,证明1f的?(0?1)的分位点x?是1f1??(n,m)。

三、(8分)设总体x的密度函数为?(1??)x?,0?x?1p(x;?)??0,其他?其中???1,是位置参数。

x1,x2,…,xn是来自总体试求参数?的矩估计和极大似然估计。

四、(12分)设总体x的密度函数为?1?x???exp???,x???p(x;?)??????,??0,其它其中???????,?已知,??0,?是未知参数。

x1,x2,…,xn是来自总?体x的简单样本。

(1)试求参数?的一致最小方差无偏估计?;(2)?是否为?的有效估计?证明你的结论。

五、(6分,a班不做)设x1,x2,…,xn是来自正态总体n(?简单样本,y1,y2,…,yn是来自正态总体n(?两样本相互独立,其中?设h0:?1??2,h1:?1??2,1221?,?1)2的,?2)的简单样本,且21,?1,?2,?222是未知参数,???22。

为检验假可令zi?xi?yi, i?1,2,...,n ,???1??2 ,则上述假设检验问题等价于h0:?1?0,h1:?1?0,这样双样本检验问题就变为单检验问题。

基于变换后样本z1,z2,…,zn,在显著性水平?下,试构造检验上述问题的t-检验统计量及相应的拒绝域。

六、(6分,b班不做)设x1,x2,…,xn是来自正态总体n(?简单样本,?0已知,?2未知,试求假设检验问题h0:?2,?)02的??0,h1:?22??02的水平为?的umpt。

七、(6分)根据大作业情况,试简述你在应用线性回归分析解决实际问题时应该注意哪些方面?八、(6分)设方差分析模型为?xij????i??j??ij?2??ij服从正态总体分布n(0,?)且?ij相互独立??i?1,2,...,p;j?1,...,q?pq??和?满足??i?0,??j?0.j?ii?1j?1?总离差平方和pst?sa?sb?se中sa?q?(xi??x),x?i?1x??pqi?1j?11pqij,xi??1qijx?qj?1,且e(se)=(p-1)(q-1)?.?...??p?0的拒绝2试求e(sa),并根据直观分析给出检验假设h0:?1??2域形式。

北航数理统计期末考试题

北航数理统计期末考试题

材料学院研究生会学术部2011年12月2007-2008学年第一学期期末试卷一、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体2(,)N μσ的样本,令)x x T -=,试证明T 服从t -分布t (2)二、(6分,B 班不做)统计量F-F(n,m)分布,证明111(,)F F n m αααα-的(0<<1)的分位点x 是。

三、(8分)设总体X 的密度函数为其中1α>-,是位置参数。

x 1,x 2,…,x n 是来自总体X 的简单样本,试求参数α的矩估计和极大似然估计。

四、(12分)设总体X 的密度函数为1x exp x (;) 0 , p x μμσσσ⎧⎧-⎫-≥⎨⎬⎪=⎭⎨⎩⎪⎩,其它,其中,0,μμσσ-∞<<+∞>已知,是未知参数。

x 1,x 2,…,x n 是来自总体X 的简单样本。

(1)试求参数σ的一致最小方差无偏估计σ∧; (2)σ∧是否为σ的有效估计?证明你的结论。

五、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体211(,)N μσ的简单样本,y 1,y 2,…,y n 是来自正态总体222(,)N μσ的简单样本,且两样本相互独立,其中221122,,,μσμσ是未知参数,2212σσ≠。

为检验假设012112:, :,H H μμμμ=≠可令12, 1,2,..., , ,i i i z x y i n μμμ=-==-则上述假设检验问题等价于0111:0, :0,H H μμ=≠这样双样本检验问题就变为单检验问题。

基于变换后样本z 1,z 2,…,z n ,在显著性水平α下,试构造检验上述问题的t-检验统计量及相应的拒绝域。

六、(6分,B 班不做)设x 1,x 2,…,x n 是来自正态总体20(,)N μσ的简单样本,0μ已知,2σ未知,试求假设检验问题22220010:, :H H σσσσ≥<的水平为α的UMPT 。

北航数理统计期末考试题

北航数理统计期末考试题

北航数理统计期末考试题2011年2007-2008学年第一学期期末试卷一、(6分,A班不做)设x1,x2,…,xn是来自正态总体的样本,令,试证明T服从t-分布t(2)二、(6分,B班不做)统计量F-F(n,m)分布,证明。

三、(8分)设总体X的密度函数为其中,是位置参数。

x1,x2,…,xn是来自总体X的简单样本,试求参数的矩估计和极大似然估计。

四、(12分)设总体X的密度函数为,其中是未知参数。

x1,x2,…,xn是来自总体X的简单样本。

(1)试求参数的一致最小方差无偏估计;(2)是否为的有效估计?证明你的结论。

五、(6分,A班不做)设x1,x2,…,xn是来自正态总体的简单样本,y1,y2,…,yn是来自正态总体的简单样本,且两样本相互独立,其中是未知参数,。

为检验假设可令则上述假设检验问题等价于这样双样本检验问题就变为单检验问题。

基于变换后样本z1,z2,…,zn,在显著性水平下,试构造检验上述问题的t-检验统计量及相应的拒绝域。

六、(6分,B班不做)设x1,x2,…,xn是来自正态总体的简单样本,已知,未知,试求假设检验问题的水平为的UMPT。

七、(6分)根据大作业情况,试简述你在应用线性回归分析解决实际问题时应该注意哪些方面?八、(6分)设方差分析模型为总离差平方和试求,并根据直观分析给出检验假设的拒绝域形式。

九、(8分)某个四因素二水平试验,除考察因子A、B、C、D外,还需考察,。

今选用表,表头设计及试验数据如表所示。

试用极差分析指出因子的主次顺序和较优工艺条件。

列号试验号 A B C D 实验数据 1 2 3 4 5 6 7 1 1 1 1 1 1 1 1 12.8 2 1 1 1 2 2 2 228.2 3 1 2 2 1 1 2 2 26.1 4 1 2 2 2 2 1 1 35.3 5 2 1 2 1 2 1 2 30.5 6 2 1 2 2 1 2 1 4.3 7 22 1 1 2 2 1 33.3 8 2 2 1 2 1 1 2 4.0 十、(8分)对某中学初中12岁的女生进行体检,测量四个变量,身高x1,体重x2,胸围x3,坐高x4。

北交大2011-2012学年第二学期概率论与数理统计期末考试试卷(A卷)答案

北交大2011-2012学年第二学期概率论与数理统计期末考试试卷(A卷)答案

北 京 交 通 大 学2011~2012学年第二学期概率论与数理统计期末考试试卷(A 卷)参 考 答 案一.(本题满分8分)在某个社区,60%的家庭拥有汽车,30%的家庭拥有房产,而20%的家庭既有汽车又有房产.现随机地选取一个家庭,求此家庭或者有汽车或者有房产但不是都有的概率. 解:设=A “任取一个家庭拥有汽车”,=B “任取一个家庭拥有房产”.由题设得 ()6.0=A P ,()3.0=B P ,()2.0=AB P .因此有 ()()()()4.02.06.0=-=-=-=AB P A P AB A P B A P ; ()()()()1.02.03.0=-=-=-=AB P B P AB B P B A P . 所求概率为()()()5.01.04.0=+=+=⋃B A P B A P B A B A P . 二.(本题满分8分)假设一个人在一年中患感冒的次数X 服从参数为4=λ的Poisson 分布.现有一种预防感冒的新药,它对于22%的人来讲,可将上面的参数λ降为1=λ(称为疗效显著);对37%的人来讲,可将上面的参数λ降为3=λ(称为疗效一般);而对于其余的人来讲则是无效的.现有一人服用此药一年,在这一年中,他患了2次感冒,求此药对他是“疗效显著”概率有多大? 解:设{}此药疗效显著=1A ,{}此药疗效一般=2A ,{}此药无效=3A,{}次感冒某人一年中患2=B . 由题设,可知如果事件1A 发生,则X 服从参数为1=λ的Poisson 分布;如果事件2A 发生,则X 服从参数为3=λ的Poisson 分布;如果事件3A 发生,则X 服从参数为4=λ的Poisson 分布.因此,由Bayes 公式,我们有()()()()()∑==31111k kkA BP A P A B P A P B A P2206.02441.02337.02122.02122.042321212=⨯+⨯+⨯⨯=----eeee .三.(本题满分8分)某人住家附近有一个公交车站,他每天上班时在该站等车的时间X (单位:分钟)服从41=λ的指数分布,如果他候车时间超过5分钟,他就改为步行上班.求他一周5天上班时间中至少有2天需要步行的概率. 解:X 的密度函数为()⎪⎩⎪⎨⎧≤>=-00414x x ex p xX .设=A “候车时间超过5分钟”,则()4554415-+∞-==≥=⎰edx eX P p x .设Y :一周5天中他需要步行上班的天数.则()p B Y ,5~,因此所求概率为()()()()41155005111112p p C p p C Y P Y P ----=≤-=≥4438.0151144545545=⎪⎪⎭⎫⎝⎛-⋅⋅-⎪⎪⎭⎫⎝⎛--=---e e e . 四.(本题满分8分)设随机变量X 的密度函数为()⎩⎨⎧≤≤+=其它5.002x xcx x f .⑴ 求常数c ;⑵ 求X 的分布函数()x F . 解:⑴ 由密度函数的性质()1=⎰+∞∞-dxx f ,得()()()()⎰⎰⎰⎰+∞∞-+∞∞-++==5.05.0001dxx f dx x f dx x f dxx f ()81242135.00235.002+=⎪⎭⎫ ⎝⎛+=+=⎰c x x c dx x cx ,解方程,得21=c .⑵ 当0≤x 时,()()0==⎰∞-xdtt f x F ;当5.00<<x 时,()()()()()27212320xx dt t tdt t f dt t f dtt f x F xx x+=+=+==⎰⎰⎰⎰∞-∞-;当5.0≥x 时,()()()()()15.05.00=++==⎰⎰⎰⎰∞-∞-xxdtt f dt t f dt t f dtt f x F .综上所述,随机变量X 的分布函数为()⎪⎩⎪⎨⎧≥<<+≤=5.015.0027023x x x x x x F . 五.(本题满分8分) 设n 个随机变量n X X X ,,,21 相互独立,都服从区间()1,0上的均匀分布,令()n X X X Y ,,,max 21 =,⑴ 求随机变量Y 的密度函数()x p Y ;⑵ 求数学期望()Y E . 解:⑴ 随机变量X 的密度函数为()⎩⎨⎧<<=其它101x x p X ,分布函数为()⎪⎩⎪⎨⎧≥<<≤=111000x x xx x F X . 随机变量Y 的密度函数为 ()()()()⎩⎨⎧<<==--其它01011x nx x p x F n x p n X n X Y .⑵ ()()111+=⋅==⎰⎰-+∞∞-n n dx nxx dx x xp Y E n Y .六.(本题满分8分)设二维随机变量()Y X ,的联合密度函数为()⎪⎩⎪⎨⎧≤<≤=其它10421,22y x y x y x p⑴ 求随机变量Y 的边际密度函数;(5分)⑵ 求条件密度函数()y x p YX .(3分) 解:当0≤y ,或者1≥y 时,()0=y p Y ; 当10<<y 时,()()⎰⎰⎰--+∞∞-===yyyyY dxx yydx x dx y x p y p 22421421,253022731221221y xy dx xyyy=⋅==⎰所以,随机变量Y 的边际密度函数为()⎪⎩⎪⎨⎧<<=其它102725y yy p Y .当10<<y 时,()02725>=y y p Y ,因此当10<<y 时,X 关于Y 的条件密度函数为()()()y p y x p y x p Y Y X ,=2322522327421-==yx y yx即当10<<y 时,条件密度函数为()⎪⎩⎪⎨⎧≤<≤=-其它10232232y x y x y x p Y X .七.(本题满分8分)设随机变量X 与Y 相互独立,而且都服从正态分布()2,σμN .再令bY aX U+=,bY aX V -=,其中a 与b 是不全为零的常数,求随机变量U 与V 的协方差()V U ,cov 与相关系数V U ,ρ.解:由于随机变量X 与Y 都服从正态分布()2,σμN ,所以()()μ==Y E X E ,()()2σ==Y D X D .()()()()()μμμb a b a Y bE X aE bY aX E U E +=⋅+⋅=+=+=; ()()()()()μμμb a b a Y bE X aE bY aX E V E -=⋅-⋅=-=-=. 再由于随机变量X 与Y 相互独立,故有()()()()()222222222σσσb a b a Y D b X D a bY aX D U D +=⋅+⋅=+=+=, ()()()()()222222222σσσb a b a Y D b X D a bY aX D V D +=⋅+⋅=+=-=, ()()bY aX bY aX V U -+=,cov ,cov ()()()()()2222222,c o v,c o v σb a Y D b X D a Y Y b X X a -=-=-=,所以,()()()2222,,cov ba b a VD UD VU V U +-==ρ.八.(本题满分8分)某药厂断言,该厂生产的某种药品对治愈一种疑难的血液病的治愈率为8.0.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言;否则就拒绝这一断言.试用中心极限定理计算,⑴ 如果实际上对这种疾病的治愈率确为8.0,问拒绝这一断言的概率是多少?⑵ 如果实际上对这种疾病的治愈率为7.0,问接受这一断言的概率是多少? (附,标准正态分布()1,0N 的分布函数()x Φ的某些数值:解:设X :100位服用此药品的病人中治愈此病的人数,则()p B X ,100~.⑴ 当8.0=p 时, ()()⎪⎭⎫⎝⎛⨯⨯⨯-≤⨯⨯⨯-=≤=2.08.01008.0100752.08.01008.010075X P XP P 拒绝断言()()1056.08944.0125.1125.125.12.08.01008.0100=-=Φ-=-Φ=⎪⎭⎫⎝⎛-≤⨯⨯⨯-=X P . ⑵ 当7.0=p 时, ()()⎪⎭⎫⎝⎛⨯⨯⨯-≤⨯⨯⨯--=>=3.07.01007.0100753.07.01007.0100175X P XP P 接受断言()1379.08621.0109.1109.13.07.01007.01001=-=Φ-≈⎪⎭⎫⎝⎛≤⨯⨯⨯--=X P . 九.(本题满分8分) 设总体()2,~σμN X ,()921,,,X X X是取自总体X 中的一个样本,令∑==61161i i X Y , ∑==97231i i X Y ,()∑=-=9722221i i Y X U.计算统计量()UY Y Z 212-=的分布(不需求出Z 的密度函数,只需指出Z 所服从的分布及其参数). 解:由题设可知,⎪⎪⎭⎫⎝⎛6,~21σμN Y ,⎪⎪⎭⎫⎝⎛3,~22σμN Y , 所以有 ⎪⎪⎭⎫⎝⎛-2,0~221σN Y Y .因此有()1,0~221N Y Y σ-.又由()∑=-=9722221i iY XU ,得()2~2222χσU.因此由t 分布的构造,得 ()()2~21222222121t UY Y UY Y Z ⋅-=-=σσ. 十.(本题满分8分)设总体X 服从参数为p 的几何分布,其分布律为{}1-==k pqk X P () ,3,2,1=k .其中10<<p 是未知参数,p q -=1.()n X X X ,,,21 是取自该总体中的一个样本.试求参数p 的极大似然估计量. 解:似然函数为 (){}{}{}{}n n n n x X P x X P x X P x X x X x X P p L ======== 22112211,,,()()()()nx nx x x nk k n p p p p p p p p ----∑-=--⋅-==1211111111所以,()()p n x p n p L n k k -⎪⎭⎫⎝⎛-+=∑=1ln ln ln 1.所以,()01ln 1=---=∑=pnxpn p L dpd nk k,解方程,得xp 1=.因此p 的极大似然估计量为Xp 1ˆ=.十一.(本题满分10分)⑴ 设总体X 等可能地取值1,2,3, ,N ,其中N 是未知的正整数.()n X X X ,,,21 是取自该总体中的一个样本.试求N 的极大似然估计量.(7分)⑵ 某单位的自行车棚内存放了N 辆自行车,其编号分别为1,2,3,…,N ,假定职工从车棚中取出自行车是等可能的.某人连续12天记录下他观察到的取走的第一辆自行车的编号为12, 203, 23, 7, 239, 45, 73, 189, 95, 112, 73, 159,试求在上述样本观测值下,N 的极大似然估计值.(3分) 解:⑴ 总体X 的分布列为 {}Nx X P 1==, ()N x ,,2,1 =.所以似然函数为 (){}nni i i Nx X P N L 11===∏=, ()()n i N x i ,,2,1,1 =≤≤.当N 越小时,似然函数()N L 越大;另一方面,N 还要满足:()n i N x i ,,2,1,1 =≤≤,即{}()n n x x x x N =≥,,,max 21 .所以,N 的最大似然估计量为()n X N =ˆ.⑵ 由上面的所求,可知N 的最大似然估计值为()239ˆ==n x N . 十二.(本题满分10分)三个朋友去喝咖啡,他们决定用如下的方式付账:每人各掷一枚均匀的硬币,如果某人掷出的结果与其余两人的不一样,则由该人付账;如果三人掷出的结果都一样,则重新掷下去,直到确定了由谁付账时为止.求:⑴ 抛掷硬币次数X 的数学期望;(5分)⑵ 进行了3次还没确定付账人的概率.(5分) 解:⑴ X 的取值为 ,3,2,1.并且()43411⋅⎪⎭⎫⎝⎛==-k k X P , () ,3,2,1=k .即随机变量X 服从参数43=p 的几何分布,因此()341==pX E .⑵ ()()015625.0641414313333==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=>=X P P 次还未确定付账人进行了.。

11年10月全国自考概率论与数理统计(经管类),试题(真题)和答案

11年10月全国自考概率论与数理统计(经管类),试题(真题)和答案

2011年10月全国自考概率论与数理统计(经管类)试题和答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设随机变量A与B相互独立,P(A)>0,P(B)>0,则一定有P(A∪B)=()A.P(A)+P(B)B.P(A)P(B)C.1-P(A)P(B)D.1+P(A)P(B)答案:C 解析:因为A和B相互独立,则A与B相互独立,即P(A B)=P(A)P(B).而P(A∪B)表示A和B至少有一个发生的概率,它等于1减去A和B都不发生的概率,即P(A∪B)=1- P(A B)=1-P(A)P(B).故选C.2.设A、B为两个事件,P(A)≠P(B)>0,且A B⊃,则一定有()A.P(A|B)=1B.P(B|A)=1C.P(B|A)=1D.P(A|B)=0答案:A 解析:A,B为两个事件,P(A)≠P(B)>0,且A⊃B,可得B发生,A一定发生,A不发生,B就一定不发生,即P(A|B)=1,P(B|A)=1.则P{-1<X≤1}=()A.0.2B.0.30 1 20.2 0.3 0.5 XP3.若随机变量X的分布为了,C .0.7D .0.5 答案:D4.下列函数中,可以作为连续型随机变量的概率密度的是()A .3sin ,()20,x x f x ππ⎧≤≤⎪=⎨⎪⎩其他B .3sin ,()20,x x f x ππ⎧-≤≤⎪=⎨⎪⎩其他C .3cos ,()20,x x f x ππ⎧≤≤⎪=⎨⎪⎩其他D .31cos ,()20,x x f x ππ⎧-≤≤⎪=⎨⎪⎩其他答案:B 解析:连续型随机变量的概率密度有两条性质:(1)()fx ≥0;(2)()1f x dx +∞-∞=⎰. A 选项中,3[,]2x ππ∈时,()f x =sin x ≤0;B 选项中,3[,]2x ππ∈时,()f x ≥0,且()1f x dx +∞-∞=⎰;C 选项中,()f x ≤0;D 选项中,()f x ≥0, ()f x dx +∞-∞=⎰2π+1.故只有B 是正确的. 5.若()1,()3,E X D X =-=则E (32X -4)=() A .4 B .8 C .3 D .6答案:B 解析:E (2X )=2()[()]D X E X +=4,E (32X -4)=3E (2X )-4=8.6.设二维随机变量(X ,Y )的密度函数⎩⎨⎧≤≤≤≤=,y x y x f 其他,0;10,10,1),(则X 与Y ()A .独立且有相同分布B .不独立但有相同分布C .独立而分布不同D .不独立也不同分布答案:A 解析:分别求出X ,Y 的边缘分布得:()X f x =⎩⎨⎧≤≤,x 其他,0,10,1()Y f y =⎩⎨⎧≤≤,y 其他,0,10,1由于(,)f x y = ()X f x ·()Y f y ,可以得到X 与Y 相互独立且具有相同分布. 7.设随机变量X ~B (16,12),Y ~N (4,25),又E (XY )=24,则X 与Y 的相关系数XY ρ=() A .0.16 B .-0.16 C .-0.8 D .0.8答案:C 解析:因为X ~B (16,12),Y ~N (4,25),所以E (X )=16×12=8,E (Y )=4, D (X )=16×12×12=4,D (Y )=25,所以XYρ=0.8==-.8.设总体X ~N (μ, 2σ),12,,,n x x x 为其样本,则Y =2211()ni i x μσ=-∑服从分布() A .2(1)n χ- B .2()n χC .(1)t n -D .()t n答案:B 解析:因为12,,,n x x x ~N (μ,2σ),则i x μ-~N (0,2σ),()i x μσ-~N (0,1),故Y =2211()ni i x μσ=-∑=21()ni i x μσ=-∑的分布称为自由度为n 的2χ分布,记为2()n χ.9.设总体X ~N (μ, 2σ),其中2σ已知,12,,,n x x x 为其样本,x =11nii x n =∑,作为μ的置信区间(0.025x u -0.025x u +),其置信水平为()A .0.95B .0.05C .0.975D .0.025答案:A 解析:本题属于2σ已知的单个正态总体参数的置信区间,故0.025=2α,α=0.05,置信水平为1-α=0.95. 10.总体X ~N (μ, 2σ),12,,,n x x x 为其样本,x 和2s 分别为样本均值与样本方差,在2σ已知时,对假设检验0010::H H μμμμ=↔≠应选用的统计量是()ABCD答案:A 解析:对假设检验0010::H H μμμμ=↔≠,由于2σ已知,应选用统计量u =,它是x 的标准化随机变量,具有的特点是:(1)u 中包含所要估计的未知参数μ;(2) u 的分布为N (0,1),它与参数μ无关. 二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

北航考博2011概率论与数理统计真题(回忆版_准确率达90%)

北航考博2011概率论与数理统计真题(回忆版_准确率达90%)

概率部分 一、填空题 36 分 1、 设每次试验成功的概率是 p(0<p<1),则在 4 次试验中至少失败一次的概率是
2、
设随机变量
X
的概率密度为:
f
(x)

k
(1
1 x2 )(1
|
x
|a )
,
x (, ) ,其中
k
为常
数,a>0,问 k 的值为 3、 一盒内有 3 个红球,12 个白球,从中不放回取 6 次,每次取一个球,则第 6 次取球时
取到红球的概率为
4、 设二维随机变量 ( X ,Y ) ~ N (1, 22 ,1, 32; 1) ,则 D(X-2Y+5)= 3
5、 三门大炮同时炮击一战舰(每炮发一弹),设击中敌舰一、二、三发的概率为 0.5,、0.3、0.2,而敌舰中弹一、二、三发的概率分别为 0.3、0.6、0.9,则敌舰被击沉 的概率为
N (2,
2 ) 的简单样本,则
2 的无偏估计 S12

1 m 1
m i 1
(Xi

Xቤተ መጻሕፍቲ ባይዱ)2
,
S22

1 n 1
n i 1
(Yi
Y )2 ,
S32

(m
1)S12 mn
(n 1)S22 2
中较优的是
五、12 分
设 X1, X 2 ,L , X m 和Y1,Y2 ,L ,Yn 分别为来自 N (,1) 和 N (2,1) 的简单随机样本,且两样 本独立,其中 是未知参数,
其中k为常数一盒内有3个红球12个白球从中不放回取6次每次取一个球则第6次取球时取三门大炮同时炮击一战舰每炮发一弹设击中敌舰一二三发的概率为050302而敌舰中弹一二三发的概率分别为030609则敌舰被击沉的概率为已知t分布关于x的边沿概率密度关于y的边沿概率密度是否相互独立

概率论与数理统计试题(含答案)

概率论与数理统计试题(含答案)

概率论与数理统计期末考试试卷参考解答及评分标准开/闭卷 闭卷A/B 卷A 课程编号2219002801-2219002811课程名称概率论与数理统计学分3命题人(签字) 审题人(签字) 年 月 日第一部分 基本题一、选择题(共6小题,每小题5分,满分30分。

在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错0分) 1. 事件表达式A B 的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 答:选D ,根据A B 的定义可知。

2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1 (D) 是必然事件 答:选A ,这是因为对立事件的积事件是不可能事件。

3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布 (D) 自由度为2的F 分布答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。

4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) (A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)答:选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。

中国民航大学《概率论与数理统计》期末复习题及解答

中国民航大学《概率论与数理统计》期末复习题及解答

中国民航大学《概率论与数理统计》期末复习题一、填空题1.设A 与B 是相互独立的随机事件,满足P(A)=0.3, P(B A )=0.7 ,则P(B)= .2. 随机变量X )4,1(~N ,随机变量Y 服从参数2=θ的指数分布, 其概率密度为⎪⎩⎪⎨⎧≤>=-0 , 00, 21)(21y y e y f yY 而且X 与Y 的相关系数为21=XY ρ, 则),cov(Y X = .3.设离散型随机变量X 的分布函数为 ⎪⎪⎩⎪⎪⎨⎧≤<≤--<=x x x F 3 ,13x 2 , 522 , 0)(则随机变量X 的分布律为 。

4. 设随机变量X )1,0(~N , 随机变量Y )(~2n χ, 且X 与Y 是相互独立,令nYX T =,则~2T 分布.5.设总体X 服从参数为λ的泊松分布, 0>λ为未知参数。

),,,(21n X X X 是总体X中抽取的一个样本,则参数λ的矩估计量λˆ= . 二 、选择题1. 在某大学任意选出一名学生。

令:A={选出的学生是男生},B={选出的学生是三年级学生},C={选出的学生是数学系的学生},则当 时,ABC=C 成立。

(A )数学系的学生都是三年级的男生 (B )三年级的学生都是数学系的男生 (C )该学校的男生都是数学系三年级的学生(D )三年级的男生都是数学系的学生2. 设袋中有a 只黑球,b 只白球,每次从中取出一球,取后不放回,从中取两次,则第二次取出白球的概率为( )(A )22)(b a b +(B ))1)(()1(-++-b a b a b b (C )11-+-b a b (D )b a b+3.设离散型随机变量X 的分布律为),2,1(!}{ ===k k ck X P kλ其中0>λ为常数,则c=( )(A )λe - (B )λe (C ) 11--λe (D )11-λe4. 设随机变量921,,,X X X 相互独立的且同分布,而且),9,2,1(1,1 ===i DX EX i i 令∑==91i iX X ,则对任意给定的0>ε,由切比雪夫不等式直接可得( )(A )211}1{εε-≥<-X P (B )211}9{εε-≥<-X P(C )291}9{εε-≥<-X P (D )211}191{εε-≥<-X P5.设总体X),0(~2σN ,),,,(21n X X X 是从中抽取的一个简单随机样本,则2σ的无偏估计量为( )(A )∑=-=n i iX n 12211ˆσ (B )∑==ni i X n 1221ˆσ(C )∑=+=n i iX n 12211ˆσ(D )∑=+=ni iXn n 1222)1(ˆσ三、设有两箱同种类零件,第一箱装有50件,其中10件为一等品;第二箱装有30件,其中18件为一等品,今从两箱中随意取出一箱,然从该箱取零件2次,每次任取一只,作不放回抽样.求:(1) 第一次取出的零件为一等品的概率;(2) 在第一次取出的零件为一等品的条件下,第二次取出的也是一等品的概率.四、甲,乙两人进行比赛,规定若某人先赢得4局比赛的胜利得整场比赛的胜利. 设在每局比赛中,甲,乙两人获胜的概率都是21,令X 表示所需比赛的局数,求: (1) X 的可能取值; (2)X 的分布律; (3)E(X).五、向平面区域}0,40:),{(2≥-≤≤=x x y y x D 内随机地投掷一点,即二维随机变量(X,Y)服从平面区域D 上的均匀分布.(1) 试求二维随机变量(X,Y)的联合密度函数;(2) 点(X,Y)到y 轴距离的概率密度函数;(3) 设(X,Y)∈D,过点(X,Y)作y 轴的平行线,设S 为此平行线与x 轴、y 轴以及曲线24x y -=所围成的曲边梯形的面积,求E(S).六、设随机变量X 与Y 的分布律分别为X 0 1 Y 0 1 p 1-1p 1p p 1-2p 2p 其中,101<<p ,102<<p 证明:如果X 与Y 不相关,则X 与Y 相互独立.七、假设一条自动生产线生产的产品的合格率为0.8,试用中心极限定理计算,要使一批产品的合格率在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件? (已知,9015.0)29.1(=Φ,95.0)65.1(Φ=其中)(x Φ是正态分布)1,0(N 的分布函数)八、设总体X 服从区间),0(θ上的均匀分布,其中0>θ为未知参数. ),,,(21n X X X 是从该总体中抽取的一个样本.(1)求未知参数θ的极大似然估计θˆ (2)求θˆ的概率密度函数; (3)判断θˆ是否为未知参数θ的无偏估计.九、某厂在所生产的汽车蓄电池的说明书上写明:使用寿命的标准差不超过0.9年,现随机地抽取了10只蓄电池, 测得样本的标准差为1.2年,假定使用寿命服从正态分布),(2σμN ,取显著性水平05.0=α,试检验 81.0::81.0:2120<≥σσH H概率论与数理统计期末复习题三(答案)一、填空题1) 742) 2 3)4) ),1(n F5) X =λˆ 二、选择题1) A 2) D 3) D 4) C 5) B三、解 : (1) 设 21}{,,次取到一等品第==i i A i {}2,1==i i B i ,箱被挑出的是第由全概率公式 )|()()|()()(2121111B A P B P B A P B P A P +=52301821501021=⨯+⨯=(2) 由条件概率定义及全概率公式得)()|()()|()()()()|(12212121112112A P B A A P B P B A A P B P A P A A P A A P +==48557.0522930171821495091021≈⨯⨯⨯+⨯⨯⨯=四、解 : (1) 由题意知,X 的可能取值为 4,5,6,7 (2) 分布律为41221⎪⎭⎫ ⎝⎛C 5341221⎪⎭⎫ ⎝⎛C C 6351221⎪⎭⎫ ⎝⎛C C 7361221⎪⎭⎫ ⎝⎛C C即(3) ()169316571656415814=⨯+⨯+⨯+⨯=X E五、解 : (1) 平面区域D 的面积为⎰⎰-==2402316x dy dx A所以(X ,Y )的概率密度为⎪⎩⎪⎨⎧∉∈=D y x D y x y x f ),(,0),(,163),( (2) 点()Y X ,到y 轴的距离的概率密度函数,即是分量X 的边缘密度函数,当20≤≤x 时())4(163163),(2402⎰⎰∞+∞---===x X x dy dy y x f x f所以,分量X 的边缘密度函数为⎪⎩⎪⎨⎧≤≤-=其它,020,)4(163)(2x x x f X(3) 曲边梯形的面积为⎰⎰--==Xx X X dy dx S 04032314而 ()⎰∞+∞--=⎪⎭⎫⎝⎛-=dxx f x x X X E S E X )()314(31433()dx x x x ⎰-⋅-=2234163)314(38=六、证明 : 令}1{==X A }1{==Y B 则}0{==X A }0{==Y B 由于X 与Y 是不相关的,所以()()()0=-Y E X E XY E 由题知 ()()1}1{p X P A P X E ==== ()()2}1{p Y P B P Y E ====所以 ()21p p XY E = 而XY 的取值只有0和1当1=XY 时 ())(}1,1{}1{AB P Y X P XY P XY E ======)()(21B P A P p p ==所以A 与B 是相互独立的.由此可知A 与B ,A 与B ,A 与B 也是相互独立的. 综上可知,X 与Y 是相互独立的.七、解 : 设这批产品至少要生产n 件 令∑==ni iX X 1且 n X X X ,,,21 独立同服从)8.0,1(b .所求为 9.0}84.076.0{≥<<n XP所以}84.076.0{}84.076.0{n X n P n XP <<=<<})8.01(8.08.084.0)8.01(8.08.0)8.01(8.08.076.0{-⨯⨯-<-⨯⨯-<-⨯⨯-=n n n n n X n n n P 9.01)1.0(2)1.0()1.0(≥-Φ=-Φ-Φ=n n n即 95.0)1.0(≥Φn 则65.01.0≥n 解得 25.2725.162=≥n所以 273min =n则这批产品至少要生产273件.八 解 : (1) 记()),,,min(211n x x x x =,),,,max(21)(n n x x x x =由题意知,总体X 的概率函数为 ⎪⎩⎪⎨⎧≤≤=其它,00,1)(θθx x f由于θ≤≤n x x x ,,,021 ,等价于 )1(0x ≤ ,θ≤)(n x .则似然函数为()()θθθθ≤≤===∏∏==n n ni ni i x x x f L ,0,11)()(111于是对于满足条件θ≤)(n x 的任意θ有n n nx L )(11)(≤=θθ即)(θL 在)(n x =θ时取到最大值n n x )(1,故θ的最大似然估计值为())(max ˆ1ini n x x ≤≤==θθ最大似然估计量为)(max ˆ1)(ini n X X ≤≤==θ(2) X 的密度函数为⎪⎩⎪⎨⎧≤≤=其它,00,1)(θθx x f则分布函数为 ⎪⎪⎩⎪⎪⎨⎧≥<<≤=θθθx x x x x F ,10,0,0)(因此)(max ˆ1)(in i n X X ≤≤==θ的概率密度函数为[]⎪⎩⎪⎨⎧<<==--其它,00,)()()(11ˆθθθx nx x f x F n x f n n(3) 由于θθθθθθ≠+===⎰⎰∞+∞-1)()ˆ(0ˆn ndx nxdx x xf E n故θˆ不是θ的无偏估计. 九、 解 : 检验假设81.0:81.0:2120<≥σσH H则有题意知拒绝域为())1(1212022-≤-=-n S n αχσχ这里: 05.0=α 10=n 查表得 325.3)9(295.0=χ 且 222.1=s81.020=σ则 ()()325.31681.02.1110122022>=⨯-=-=σχs n 所以2χ不在拒绝域内,故接受0H注:若本题目中没有给出检验假设,通常我们给的假设是:.81.0:;81.0:2120>≤σσH H 然后再进行检验.。

2011年考研数学概率论真题与答案--WORD版

2011年考研数学概率论真题与答案--WORD版

2011年概率论考研真题与答案1. (2011年数学一、三)设1()F x 和2()F x 为两个分布函数,其相应的概率密度1()f x 与2()f x 是连续函数,则必为概率密度函数的是_________. 【D 】 A.12()()f x f x B.212()()f x F x C.12()()f x F x D.1221()()()()f x F x f x F x + 解:根据分布函数的性质,1221()()()()0f x F x f x F x +≥1221[()()+()()]f x F x f x F x dx +∞-∞∴⎰12()()F x F x +∞=-∞1=2. (2011年数学一)设随机变量X 与Y 相互独立,且()E X 与()E Y 存在,记{}max ,U X Y =,{}min ,V X Y =,则()E UV =_________. 【B 】A. ()()E U E VB. ()()E X E YC. ()()E U E YD. ()()E X E V 解:因为当X Y ≥时,,U X V Y ==;当X Y <时,,U Y V X ==.所以,UV XY =,于是()()E UV E XY =根据X 与Y 相互独立,所以()()()E UV E X E Y =.3. (2011年数学三)设总体X 服从参数为(0)λλ>的泊松分布,12,,,(2)n X X X n ≥ 是来自该总体的简单随机样本,则对于统计量1=11n i i T X n =∑和12=1111n in i T X X n n -=+-∑,有__________. 【D 】A. 1212()(),()()E T E T D T D T >>B. 1212()(),()()E T E T D T D T ><C. 1212()(),()()E T E T D T D T <>D. 1212()<(),()()E T E T D T D T < 解: ()X P λ(),()E X D X λλ∴==1=1=111()()()n ni i i i E T E X E X n n λ∴===∑∑12=11111()()(1)11n i n i E T E X X n n n n n nλλλλ-=+=⋅-⋅+⋅=+--∑ 12()()E T E T ∴<122=1=1111()()()n n i i i i D T E X D X n n n n nλλ===⋅⋅=∑∑11222=1=11111()()()()1(1)n n i n i n i i D T D X X D X D X n n n n --=+=+--∑∑ 222111(1)()(1)11n n n n n n n n nλλλλλ=⋅-⋅+⋅=+=+--- 21()()D T D T ∴<4. (2011年数学三)设(,)X Y 服从22(,,,,0)N μμσσ则2()E XY =____. 【22()μσμ+】解: 因为(,)X Y 服从二维正态分布,且相关系数为零,则X 与Y 相互独立.22222()()()()[()()]()E XY E X E Y E X D Y E Y μσμ∴=⋅=⋅+=+5. (2011年数学三)且{}221P X Y ==,求: (1) 二维随机变量(,)X Y 的概率分布;(2) Z XY =的概率分布;(3) X 与Y 的相关系数XY ρ.解:(1) 由{}221P X Y ==, 可得:{}220P X Y ≠={}{}{}0,10,11,00P X Y P X Y P X Y ∴==-=======因此,(,)X Y 的概率分布为(2) 显然,Z XY =的可能取值为-1,0,1,由(,)X Y 的概率分布可得:(3)(),(),()0,()393E X D X E Y D Y ====, ()0E XY = (,)()()()0Cov X Y E XY E X E Y ∴=-=0XY ρ==6. (2011年数学一)设12,,,n X X X 是来自正态总体20(,)N μσ的简单随机样本,其中0μ已知,2>0σ,未知. (1)求参数2σ的最大似然估计 2σ;(2)计算 2()E σ和 2()D σ.解: 总体的概率密度为: 202()22(;)x f x μσσ--=似然函数为2012()2221()(;)ni i x ni i L f x μσσσ=--=∑==∏两边取对数,得 202212()ln ()ln 22nii xnL n μσσσ=-=--∑关于2σ求导,得2212222()ln ()+22()nii x d L nd μσσσσ=--=∑令22ln ()0,d L d σσ=解得λ的最大似然估计值 22011()ni i x n σμ==-∑ (2) 20(,)i X N μσ(0,1)i X N μσ-∴222002111()()()nni ii i X Xn μμχσσ==-∴=-∑∑20211[()]ni i E Xn μσ=∴-=∑, 20211[()]2ni i D Xn μσ=-=∑于是, 2222220021111()[()]=[()]==n ni i i i E E X E X n n n nσσσμμσσ===--⋅∑∑ 4442220022211112()[()]=[()]=2=n n i i i i D D X D X n n n n nσσσσμμσ===--⋅∑∑ 7. (2011年数学三)设二维随机变量(,)X Y 服从区域G 上的均匀分布,其中G 是由0,2x y x y -=+=以及0y =所围成的三角形区域. 求:(1)X 的概率密度()X f x ;(2) 条件概率密度()X Y f x y .解:(1)根据二维均匀分布的定义,(,)X Y 的概率密度为1,(,)(,)0,x y G f x y ∈⎧=⎨⎩其它X 的概率密度为02-010101()(,)112=2-1<200x x X dy x x x f x f x y dy dy x x x +∞-∞⎧≤≤⎪≤≤⎧⎪⎪==<≤≤⎨⎨⎪⎪⎩⎪⎩⎰⎰⎰其他其他(2) 2-2(1-y)01101()(,)=00y y Y y dx y f y f x y dx +∞-∞⎧≤≤≤≤⎧⎪==⎨⎨⎩⎪⎩⎰⎰其他其他在=(0y 1)Y y ≤≤时,X 的条件概率密度12-(,)2(1-y)()==()0X Y Y y x y f x y f x y f y ⎧≤≤⎪⎨⎪⎩其他。

课程代码为04183的概率论与数理统计-试题及答案(2011年1月、4月、7月、10月)

课程代码为04183的概率论与数理统计-试题及答案(2011年1月、4月、7月、10月)

课程代码为04183的概率论与数理统计试题及答案(2010年1月、4月、7月、10月)全国2011年1月自考概率论与数理统计(经管类)参考答案27、解:(1)E (X )=10111101+=+=+-⎰λλλλλλλx dx x xX =E (X )=1+λλ 1ˆλ=xx -1. (2) 似然函数为L()λ=∏∏=-==ni i n i i x x f 111)(λλ2011年4月高等教育自学考试全国统一命题考试概率论与数理统计(经管类) 试卷(课程代码 04183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A,B,C 为随机事件,则事件“A,B,C 都不发生”可表示为 【 】A .CB A B .BC A C .A B CD .ABC2.设随机事件A 与B 相互独立,且P(A)=51,P(B)=53,则P(AUB)= 【 】 A .253 B .2517 C .54 D . 2523 3.设随机变量X-B(3,0.4),则P{X ≥1}= 【 】A .0.352B .0.432C .0.784D .0.9364.已知随机变量X 的分布律为,则P{-2≤4}=【 】A .0.2B .0.35C .0.55D .O.8二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.设A,B为随机事件, P(A)=0.6, P(B/A)=0.3,则P(P(AB)= 12.设随机事件A与B互不相容,P面=o.6,P(AUB)=0.8,则P(B)= 13.设随机变量x服从参数为3的泊松分布,则P{X=2}=14.设随机变量x-N(0.42),且p{x>1}=0.4013,φ(x)为标准正态分布函数,则φ(0.25)=三、计算题(本大题共2小题,每小题8分,共16分)26.盒中有3个新球、1个旧球,第一次使用时从中随机取一个,用后放回,第二次使用时从中随机取两个,事件A表示“第二次取到的全是新球”,求P(A).四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)30.某种装置中有两个相互独立工作的电子元件,其中一个电子元件的使用寿命X(单 位:小时)服从参数10001的指数分布,另一个电子元件的使用寿命y(单位:小 时)服从参数20001的指数分布.试求:(1)(X ,J ,)的概率密度;(2)E(X),E(y): (3)两个电子元件的使用寿命均大于1200小时的概率.2011年7月高等教育自学考试全国统一命题考试概率论与数理统计(经管类)试卷(课程代码 04183)2011年7月高等教育自学考试全国统一命题考试概率论与数理统计(经管类)试题答案及评分参考一、单项选择题1.B2.C3.B4.D5.D6.C7.A8.C9.D 10.A二、填空题11.12.13.14.15.16.17.18.19.20.21. 1/422.23.[2.728,3.032]24.25.-6三、计算题26.27.28.29.30.全国2011年10月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

北航概率统计试卷及答案解析

北航概率统计试卷及答案解析

Detailed : T
x ~ N(, 2 ) n
x
0
~
N (0,1)
n
(n
1)s2 2
~
2 (n
1)
T

x s
0
~t
n
1
n
x 0

n (n 1)s2
2

x 0
s

x 0 s
n
n
(n 1)
2、设 X 为随机变量,且 EX 1, DX 0.1 ,则一定成立的是 B 。
7、设随机变量
X
的概率密度为
f
(x)

ex
a ex
,
x ,(常数 a 0 ),
A 卷 5 页-3
则 P{0 X ln 3}

A. 1 ; 6
B. ; C. 1 ; D. 2 。
ห้องสมุดไป่ตู้
6
12

ln 3 0
f
(x)dx

ln 3 0
ex
a e
x
dx
P(B) 0.2
2、设在试验 E 中事件 A发生的概率 P( A) ( 0 1),
n 把试验 E 独立地重复做下去, 令 Bn “在前 次实验中事件 A至少发生一次”,

lim
n
P(Bn
)


Answer:一旦涉及到
lim
n
P(
X
)

?
的题时,后面的不是
0
就是
1,根据经验判断即可。
一、 选择题,根据题目要求,在题下选项中选出一个正确答案(本题共 36 分,

概率论与数理统计的答案详解_北邮版_(第一章的)

概率论与数理统计的答案详解_北邮版_(第一章的)

概率论与数理统计习题及答案习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点. (1) 掷一颗骰子,出现奇数点. (2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面.” B =“至少有一次出现正面.” C =“两次出现同一面.” 【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ=======,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反2.设A ,B ,C 为三个事件,试用A ,B ,C(1) A 发生,B ,C 都不发生; (2) A 与B 发生,C (3) A ,B ,C 都发生; (4) A ,B ,C (5) A ,B ,C 都不发生; (6) A ,B ,C(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC(5) ABC=A B C (6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.指出下列等式命题是否成立,并说明理由:(1) A∪B=(AB)∪B;(2) A B=A∪B;A∩C=AB C;(3) B(4) (AB)( AB)= ∅;(5) 若A⊂B,则A=AB;(6) 若AB=∅,且C⊂A,则BC=∅;(7) 若A⊂B,则B⊃A;(8) 若B⊂A,则A∪B=A.【解】(1)不成立.特例:若Α∩B=φ,则ΑB∪B=B.所以,事件Α发生,事件B必不发生,即Α∪B发生,ΑB∪B不发生.故不成立.(2)不成立.若事件Α发生,则A不发生,Α∪B发生,所以A B不发生,从而不成立.A,AB画文氏图如下:(3)不成立.B所以,若Α-B发生,则AB发生, A B不发生,故不成立.(4)成立.因为ΑB与AB为互斥事件.(5)成立.若事件Α发生,则事件B发生,所以ΑB发生.若事件ΑB发生,则事件Α发生,事件B发生.故成立.(6)成立.若事件C发生,则事件Α发生,所以事件B不发生,故BC=φ.⊂.(7)不成立.画文氏图,可知B A(8)成立.若事件Α发生,由()A AB ⊂,则事件Α∪B 发生.若事件Α∪B 发生,则事件Α,事件B 发生. 若事件Α发生,则成立.若事件B 发生,由B A ⊂,则事件Α发生.4.设A ,B 为随机事件,且P (A )=0.7,P (A B )=0.3,求P (AB ). 【解】 P (AB )=1P (AB )=1[P (A )P (AB )]=1[0.70.3]=0.65.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB(2) 在什么条件下P (AB【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0P(AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )P (AB )P (BC )P (AC )+P (ABC )=14+14+13112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8. (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1P (A 1)=1(17)59. 从一批由45件正品,5件次品组成的产品中任取3件,求其中恰有一件次品的概率.【解】与次序无关,是组合问题.从50个产品中取3个,有350C 种取法.因只有一件次品,所以从45个正品中取2个,共245C 种取法;从5个次品中取1个,共15C 种取法,由乘法原理,恰有一件次品的取法为245C 15C种,所以所求概率为21455350C C P C =.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从NM 件次品中取nm 件的排列数为P n mN M --种,故P (A )=C P P P m m n mn M N MnN-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n种,n 次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n m 次取得次品,每次都有N M 种取法,共有(N M )n m 种取法,故()C ()/m m n m nnP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 在电话号码簿中任取一电话号码,求后面4个数全不相同的概率(设后面4个数中的每一个数都是等可能地取自0,1,…,9).【解】这是又重复排列问题.个数有10种选择,4个数共有104种选择.4个数全不相同,是排列问题.用10个数去排4个位置,有410P 种排法,故所求概率为4410/10P P =.12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p == *16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076*17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=?19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|xy |>30.如图阴影部分所示.22301604P ==22.0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+⎪⎝⎭⎰⎰ 题22图23.P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.则1(0.8)0.9n-≥即为 (0.8)0.1n ≤ 故n ≥1lg8=11.07,至少必须进行11次独立射击. 32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦()()()()P AB P B P AB P B =,即()[1()][()()]()P AB P B P A P AB P B -=- 因此 ()()()P AB P A P B =,故A 与B 相互独立. 33.三人独立地破译一个密码,他们能破译的概率分别为151314,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)×0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)×0.6+0.4×0.5×0.7×1=0.458。

北航概率统计试卷及答案解析

北航概率统计试卷及答案解析

们取得某种球的概率和次数无关。这是抽签公平性的理论保障。所以
P( Ai )
m nm
7、设总体 X ~ N(1,42 ) , X1, X 2 ,, X9 为总体 X 的一个样本, X 为样本均值,
则 P{| X | 1}
。 (已知 (1.5) 0.9332 )。
Answer:
X
~
N
(1,42
)
,
X
1 n
n k 1
(Xk2
2Xk
X
X
2)
1 n
n
(Xk2
k 1
2Xk
X)
X2
n
1 n
n
(Xk2
k 1
2Xk
Xk
k 1
n
)
X2
n
n
1 n
n k 1
X
2 k
2
k 1
Xk
k 1
n2
Xk
X2
n
1 n
n k 1
X
2 k
2(
Xk
k 1
n
)2
X2
1 n
n k 1
X
2 k
X2
5、设随机变量 X 的概率密度为 f (x) ,分布函数为 F (x) ,
C 2(n 1) 2
C 1 2(n 1)
5、设随机变量
Xn 的概率密度为
fn (x)
1
n 1 n2x2
,
x , (n 1, 2,
)。
则对任意
0
,成立 lim P{| n
Xn
| }

Answer:
可以看到,当 n 越大时, fn (x) 越小,而 P{| Xn | } 在图形中指的是 fn (x) 函数与 x 轴之间所夹的面积,所

概率论与数理统计试题库及答案(考试必做)

概率论与数理统计试题库及答案(考试必做)

概率论试题一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B)A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===⋅⋅⋅则A=______________7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。

2011年4月自考04183概率论与数理统计(经管类)》试题及答案

2011年4月自考04183概率论与数理统计(经管类)》试题及答案

全国2011年4月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A,B,C为随机事件,则事件“A,B,C都不发生”可表示为( )A.错误!未找到引用源。

B.错误!未找到引用源。

BCC.ABC D.错误!未找到引用源。

2.设随机事件A与B相互独立,且P(A)=错误!未找到引用源。

,P(B)=错误!未找到引用源。

,则P(A 错误!未找到引用源。

B)=( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

3.设随机变量X~B(3,0.4),则P{X≥1}=( )A.0.352B.0.432C.0.784D.0.9364.已知随机变量X的分布律为P{-2<X≤4 }=( )A.0.2C.0.55D.0.85.设随机变量X的概率密度为f(x)=错误!未找到引用源。

,则E(X),D(X)分别为( )A.-3,错误!未找到引用源。

B.-3,2C.3,错误!未找到引用源。

D.3,26.设二维随机变量(X,Y)的概率密度为f(x,y)=错误!未找到引用源。

则常数c=( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.2D.47.设随机变量X~N(-1,22),Y~N(-2,32),且X与Y相互独立,则X-Y~( )A.N(-3,-5)B.N(-3,13)C.N (1,错误!未找到引用源。

)D.N(1,13)8.设X,Y为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)=2,则错误!未找到引用源。

XY=( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

9.设随机变量X~错误!未找到引用源。

2(2),Y~错误!未找到引用源。

完整word版,北交大2011-2012学年第二学期概率论与数理统计期末考试试卷(A卷)答案

完整word版,北交大2011-2012学年第二学期概率论与数理统计期末考试试卷(A卷)答案

北 京 交 通 大 学2011~2012学年第二学期概率论与数理统计期末考试试卷(A 卷)参 考 答 案一.(本题满分8分)在某个社区,60%的家庭拥有汽车,30%的家庭拥有房产,而20%的家庭既有汽车又有房产.现随机地选取一个家庭,求此家庭或者有汽车或者有房产但不是都有的概率. 解:设=A “任取一个家庭拥有汽车”,=B “任取一个家庭拥有房产”.由题设得 ()6.0=A P ,()3.0=B P ,()2.0=AB P .因此有 ()()()()4.02.06.0=-=-=-=AB P A P AB A P B A P ; ()()()()1.02.03.0=-=-=-=AB P B P AB B P B A P . 所求概率为()()()5.01.04.0=+=+=⋃B A P B A P B A B A P . 二.(本题满分8分)假设一个人在一年中患感冒的次数X 服从参数为4=λ的Poisson 分布.现有一种预防感冒的新药,它对于22%的人来讲,可将上面的参数λ降为1=λ(称为疗效显著);对37%的人来讲,可将上面的参数λ降为3=λ(称为疗效一般);而对于其余的人来讲则是无效的.现有一人服用此药一年,在这一年中,他患了2次感冒,求此药对他是“疗效显著”概率有多大? 解:设{}此药疗效显著=1A ,{}此药疗效一般=2A ,{}此药无效=3A , {}次感冒某人一年中患2=B .由题设,可知如果事件1A 发生,则X 服从参数为1=λ的Poisson 分布;如果事件2A 发生,则X 服从参数为3=λ的Poisson 分布;如果事件3A 发生,则X 服从参数为4=λ的Poisson 分布.因此,由Bayes 公式,我们有 ()()()()()∑==31111k kkA BP A P A B P A P B A P2206.02441.02337.02122.02122.042321212=⨯+⨯+⨯⨯=----ee e e. 三.(本题满分8分)某人住家附近有一个公交车站,他每天上班时在该站等车的时间X (单位:分钟)服从41=λ的指数分布,如果他候车时间超过5分钟,他就改为步行上班.求他一周5天上班时间中至少有2天需要步行的概率. 解:X 的密度函数为()⎪⎩⎪⎨⎧≤>=-00414x x ex p xX . 设=A “候车时间超过5分钟”,则()4554415-+∞-==≥=⎰e dx e X P p x.设Y :一周5天中他需要步行上班的天数.则()p B Y ,5~,因此所求概率为()()()()41155005111112p p C p p C Y P Y P ----=≤-=≥4438.0151144545545=⎪⎪⎭⎫ ⎝⎛-⋅⋅-⎪⎪⎭⎫ ⎝⎛--=---e e e . 四.(本题满分8分)设随机变量X 的密度函数为()⎩⎨⎧≤≤+=其它05.002x x cx x f .⑴ 求常数c ;⑵ 求X 的分布函数()x F .解:⑴ 由密度函数的性质()1=⎰+∞∞-dx x f ,得()()()()⎰⎰⎰⎰+∞∞-+∞∞-++==5.05.001dx x f dx x f dx x f dx x f ()81242135.00235.002+=⎪⎭⎫ ⎝⎛+=+=⎰c x x cdx x cx ,解方程,得21=c . ⑵ 当0≤x 时,()()0==⎰∞-xdt t f x F ;当5.00<<x 时,()()()()()27212320x x dt t t dt t f dt t f dt t f x F xx x +=+=+==⎰⎰⎰⎰∞-∞-;当5.0≥x 时,()()()()()15.05.00=++==⎰⎰⎰⎰∞-∞-xxdt t f dt t f dt t f dt t f x F .综上所述,随机变量X 的分布函数为()⎪⎩⎪⎨⎧≥<<+≤=5.015.0027023x x x x x x F . 五.(本题满分8分) 设n 个随机变量n X X X ,,,21Λ相互独立,都服从区间()1,0上的均匀分布,令()n X X X Y ,,,m ax 21Λ=,⑴ 求随机变量Y 的密度函数()x p Y ;⑵ 求数学期望()Y E . 解:⑴ 随机变量X 的密度函数为()⎩⎨⎧<<=其它0101x x p X ,分布函数为()⎪⎩⎪⎨⎧≥<<≤=111000x x x x x F X .随机变量Y 的密度函数为 ()()()()⎩⎨⎧<<==--其它01011x nx x p x F n x p n X n X Y .⑵ ()()111+=⋅==⎰⎰-+∞∞-n ndx nx x dx x xp Y E n Y . 六.(本题满分8分)设二维随机变量()Y X ,的联合密度函数为()⎪⎩⎪⎨⎧≤<≤=其它010421,22y x y x y x p⑴ 求随机变量Y 的边际密度函数;(5分)⑵ 求条件密度函数()y x p Y X .(3分) 解:当0≤y ,或者1≥y 时,()0=y p Y ; 当10<<y 时, ()()⎰⎰⎰--+∞∞-===yyyyY dx x y ydx x dx y x p y p 22421421,2503022731221221y x y dx x y yy=⋅==⎰ 所以,随机变量Y 的边际密度函数为()⎪⎩⎪⎨⎧<<=其它102725y yy p Y . 当10<<y 时,()02725>=y y p Y ,因此当10<<y 时,X 关于Y 的条件密度函数为()()()y p y x p y x p Y Y X ,=2322522327421-==y x y y x即当10<<y 时,条件密度函数为()⎪⎩⎪⎨⎧≤<≤=-其它10232232y x y x y x p Y X .七.(本题满分8分)设随机变量X 与Y 相互独立,而且都服从正态分布()2,σμN .再令bY aX U +=,bY aX V -=,其中a 与b 是不全为零的常数,求随机变量U 与V 的协方差()V U ,cov 与相关系数V U ,ρ. 解:由于随机变量X 与Y 都服从正态分布()2,σμN ,所以()()μ==Y E X E ,()()2σ==Y D X D .()()()()()μμμb a b a Y bE X aE bY aX E U E +=⋅+⋅=+=+=; ()()()()()μμμb a b a Y bE X aE bY aX E V E -=⋅-⋅=-=-=. 再由于随机变量X 与Y 相互独立,故有()()()()()222222222σσσb a b a Y D b X D a bY aX D U D +=⋅+⋅=+=+=, ()()()()()222222222σσσb a b a Y D b X D a bY aX D V D +=⋅+⋅=+=-=, ()()bY aX bY aX V U -+=,cov ,cov ()()()()()2222222,cov ,cov σb a Y D b X D a Y Y b X X a -=-=-=,所以,()()()2222,,cov ba b a V D U D V U VU +-==ρ. 八.(本题满分8分)某药厂断言,该厂生产的某种药品对治愈一种疑难的血液病的治愈率为8.0.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言;否则就拒绝这一断言.试用中心极限定理计算,⑴ 如果实际上对这种疾病的治愈率确为8.0,问拒绝这一断言的概率是多少?⑵ 如果实际上对这种疾病的治愈率为7.0,问接受这一断言的概率是多少? (附,标准正态分布()1,0N 的分布函数()x Φ的某些数值:解:设X :100位服用此药品的病人中治愈此病的人数,则()p B X ,100~.⑴ 当8.0=p 时,()()⎪⎭⎫ ⎝⎛⨯⨯⨯-≤⨯⨯⨯-=≤=2.08.01008.0100752.08.01008.010075X P X P P 拒绝断言()()1056.08944.0125.1125.125.12.08.01008.0100=-=Φ-=-Φ=⎪⎭⎫⎝⎛-≤⨯⨯⨯-=X P .⑵ 当7.0=p 时,()()⎪⎭⎫ ⎝⎛⨯⨯⨯-≤⨯⨯⨯--=>=3.07.01007.0100753.07.01007.0100175X P X P P 接受断言()1379.08621.0109.1109.13.07.01007.01001=-=Φ-≈⎪⎭⎫⎝⎛≤⨯⨯⨯--=X P .九.(本题满分8分) 设总体()2,~σμN X ,()921,,,X X X Λ是取自总体X 中的一个样本,令∑==61161i i X Y , ∑==97231i i X Y ,()∑=-=9722221i i Y X U .计算统计量()U Y Y Z 212-=的分布(不需求出Z 的密度函数,只需指出Z 所服从的分布及其参数). 解:由题设可知,⎪⎪⎭⎫ ⎝⎛6,~21σμN Y ,⎪⎪⎭⎫⎝⎛3,~22σμN Y ,所以有 ⎪⎪⎭⎫⎝⎛-2,0~221σN Y Y .因此有()1,0~221N Y Y σ-. 又由()∑=-=9722221i i Y X U ,得()2~2222χσU .因此由t 分布的构造,得 ()()2~21222222121t UY Y UY Y Z ⋅-=-=σσ.十.(本题满分8分)设总体X 服从参数为p 的几何分布,其分布律为{}1-==k pq k X P ()Λ,3,2,1=k .其中10<<p 是未知参数,p q -=1.()n X X X ,,,21Λ是取自该总体中的一个样本.试求参数p 的极大似然估计量. 解:似然函数为 (){}{}{}{}n n n n x X P x X P x X P x X x X x X P p L ========ΛΛ22112211,,,()()()()n x nx x x nk k n p p p p p p p p ----∑-=--⋅-==1211111111Λ 所以,()()p n x p n p L n k k -⎪⎭⎫⎝⎛-+=∑=1ln ln ln 1.所以,()01ln 1=---=∑=p nx p n p L dp d nk k ,解方程,得xp 1=. 因此p 的极大似然估计量为Xp1ˆ=. 十一.(本题满分10分)⑴ 设总体X 等可能地取值1,2,3,Λ,N ,其中N 是未知的正整数.()n X X X ,,,21Λ是取自该总体中的一个样本.试求N 的极大似然估计量.(7分)⑵ 某单位的自行车棚内存放了N 辆自行车,其编号分别为1,2,3,…,N ,假定职工从车棚中取出自行车是等可能的.某人连续12天记录下他观察到的取走的第一辆自行车的编号为12, 203, 23, 7, 239, 45, 73, 189, 95, 112, 73, 159,试求在上述样本观测值下,N 的极大似然估计值.(3分) 解:⑴ 总体X 的分布列为 {}Nx X P 1==, ()N x ,,2,1Λ=. 所以似然函数为 (){}nni i i N x X P N L 11===∏=, ()()n i N x i ,,2,1,1Λ=≤≤.当N 越小时,似然函数()N L 越大;另一方面,N 还要满足:()n i N x i ,,2,1,1Λ=≤≤,即{}()n n x x x x N =≥,,,max 21Λ.所以,N 的最大似然估计量为()n X N =ˆ. ⑵ 由上面的所求,可知N 的最大似然估计值为()239ˆ==n x N . 十二.(本题满分10分)三个朋友去喝咖啡,他们决定用如下的方式付账:每人各掷一枚均匀的硬币,如果某人掷出的结果与其余两人的不一样,则由该人付账;如果三人掷出的结果都一样,则重新掷下去,直到确定了由谁付账时为止.求:⑴ 抛掷硬币次数X 的数学期望;(5分)⑵ 进行了3次还没确定付账人的概率.(5分) 解:⑴ X 的取值为Λ,3,2,1.并且()43411⋅⎪⎭⎫⎝⎛==-k k X P , ()Λ,3,2,1=k . 即随机变量X 服从参数43=p 的几何分布,因此()341==p X E .⑵ ()()015625.0641414313333==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=>=X P P 次还未确定付账人进行了.。

北航2011《应用数理统计》试题及参考答案

北航2011《应用数理统计》试题及参考答案

北航2011《应用数理统计》考试题及参考解答一、填空题(每小题3分,共9分)1,设总体X 服从正态分布(0,4)N ,而1215(,,)X X X 是来自X 的样本,则221102211152()X X U X X ++=++服从的分布是_______ .解:(10,5)F .2,ˆnθ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:ˆˆlim (), lim Var()0n nn n E θθθ→∞→∞==. 3,分布拟合检验方法有_______ 与____ ___. 解:2χ检验、柯尔莫哥洛夫检验. 二、单项选择题(每小题3分,共9分)1,设总体~(1,9)X N ,129(,,,)X X X 是X 的样本,则___B___ .(A )1~(0,1)3X N -; (B )1~(0,1)1X N -; (C )1~(0,1)9X N -; (D ~(0,1)X N . 2,若总体2(,)XN μσ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的置信区间____B___ .(A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能.3,在假设检验中,就检验结果而言,以下说法正确的是____B___ . (A )拒绝和接受原假设的理由都是充分的;(B )拒绝原假设的理由是充分的,接受原假设的理由是不充分的; (C )拒绝原假设的理由是不充分的,接受原假设的理由是充分的; (D )拒绝和接受原假设的理由都是不充分的. 三、(本题10分)设总体21(,)XN μσ、22(,)Y N μσ,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22X Y S S 、分别是它们的样本均值和样本方差,证明12(2)X Y t n n +-,其中2221212(1)(1)2X Yn S n S S n n ω-+-=+-.证明:易知221212(,)X YN n n σσμμ--+,(0,1)X Y U N =.由定理可知22112(1)(1)Xn S n χσ--,22222(1)(1)Yn S n χσ--.由独立性和2χ分布的可加性可得222121222(1)(1)(2)XYn S n S V n n χσσ--=++-.由U 与V 得独立性和t 分布的定义可得12(2)X Y t n n =+-.四、(本题10分)设总体X 的概率密度为1, 0,21(;), 1,2(1)0, x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他,其中参数01)θθ<<( 未知,12()n X X X ,,,是来自总体的一个样本,X 是样本均值,(1)求参数;的矩估计量θθˆ(2)证明24X 不是2θ的无偏估计量.解:(1)101()(,)22(1)42x x E X xf x dx dx dx θθθθθθ+∞-∞==+=+-⎰⎰⎰,令()X E X =,代入上式得到θ的矩估计量为1ˆ22X θ=-. (2)222211141 (4)44[()]4()424E X EX DX EX DX DX n nθθθ⎡⎤==+=++=+++⎢⎥⎣⎦,因为()00D X θ≥>,,所以22(4)E X θ>.故24X 不是2θ的无偏估计量.五、(本题10分)设总体X 服从[0,](0)θθ>上的均匀分布,12(,,)n X X X 是来自总体X 的一个样本,试求参数θ的极大似然估计. 解:X 的密度函数为1,0;(,)0,x f x θθθ≤≤⎧=⎨⎩其他,似然函数为1,0,1,2,,,()0,n i x i n L θθθ<<=⎧⎪=⎨⎪⎩其它显然0θ>时,()L θ是单调减函数,而{}12max ,,,n x x x θ≥,所以{}12ˆmax ,,,n X X X θ=是θ的极大似然估计.六、(本题10分)设总体X 服从(1,)B p 分布,12(,,)n X X X 为总体的样本,证明X 是参数p 的一个UMVUE .证明:X 的分布律为1(;)(1),0,1x x f x p p p x -=-=.容易验证(;)f x p 满足正则条件,于是21()ln (;)(1)I p E f x p p p p ⎡⎤∂==⎢⎥∂-⎣⎦. 另一方面1(1)1Var()Var()()p p X X n n nI p -===, 即X 得方差达到C-R 下界的无偏估计量,故X 是p 的一个UMVUE .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年北京航空航天大学博士生入学考试题
概率部分
一、填空题 36分
1、 设每次试验成功的概率是p (0<p<1),则在4次试验中至少失败一次的概率是
2、 设随机变量X 的概率密度为:21
(),(,)(1)(1||)
a
f x k
x x x =∈-∞+∞++,其中k 为常数,a>0,问k 的值为
修改一下仅为获得财富值
3、 一盒内有3个红球,12个白球,从中不放回取6次,每次取一个球,则第6次取球时取
到红球的概率为 4、 设二维随机变量221
(,)~(1,2,1,3;)3
X Y N ,则D(X-2Y+5)=
5、 三门大炮同时炮击一战舰(每炮发一弹),设击中敌舰一、二、三发的概率为0.5,、0.3、
0.2,而敌舰中弹一、二、三发的概率分别为0.3、0.6、0.9,则敌舰被击沉的概率为 6、 设二维随机变量(,)X Y 的概率密度为21
(,),01,023
f x y x xy x y ⎧=+
≤≤≤≤⎨⎩
(其它条件为0),则(1)P X Y +≤=
7、 考贝叶斯公式的题,比较简单,没记住…… 8、 已知T 分布()t n 的密度函数()n f t ,求lim ()n n f t ->∞
=
9、 设随机变量序列12,,,n X X X 独立同分布,且2~(,),(1,2,3,)i X N i μσ= ,记
21
n
n i i Y X ==∑
,***()()n
n n Y Y F x P Y x =
=≤,则对任意实数X 有*lim ()n
Y n F x ->∞
=
第二题
设二维随机变量(,)X Y 的概率密度为
2232
1(,)(1sin sin )2x y f x y e x y π
+-
=
+,,x y -∞<<+∞,
(1)求(,)X Y 关于X 的边沿概率密度()X f x ; (2)求(,)X Y 关于Y 的边沿概率密度()Y f y ; (3)X 与Y 是否相互独立?
(4)利用本题可以用于说明一个什么样的问题? 第三题 8分
设⋅⋅⋅⋅⋅⋅,,,,21n X X X 是相互独立的随机变量序列,且i X 的分布律为
{i P X =
=
{i P X =
=
{0}1i P X ==(1,2,)i =⋅⋅⋅; 记∑==n
i i n X n Y 1
1,),2,1(⋅⋅⋅=n 。

试求:(1)2,,i i i EX EX DX ;
(2),n n EY DY ;
(3)证明: 对任给0>ε,成立lim {||}0n n P Y ε→∞
≥=。

数理统计部分 四、填空题 20分
1、设12,,,n X X X 独立同分布,且2~(,)i X N μσ,则当
α=
时,随机变量
2
*2
2
(())~()X n αμσχ-+,其中1
1n i i X X n ==∑,*2
211()n i i X X n σ==-∑
2、设总体X 的概率密度函数为:
,01
(;)1,120,x f x x others θθθ≤<⎧⎪
=-≤<⎨⎪⎩
其中,01θθ<<为未知参数,12,,,n X X X 为来自总体X 的样本,求θ的矩估计 3、设12,,,n X X X 是来自均匀分布(,2),(0)U θθθ>的总体X 的样本,则θ的极大似然估计为
4、设12,,,n X X X 是来自正态总体2
(,)N μσ的简单样本,其中μ未知,2σ已知,欲使μ的置信水平为1α-的置信区间长度不大于,0L L >,则样本容量n 至少取多少
5、设12,,,m X X X 是来自正态总体21(,)N μσ的简单样本,12,,,n Y Y Y 是来自正态总体
2
2(,)N μσ的简单样本,则2
σ的无偏估计2
21
1
1()1m i i S X X m ==--∑,22211()1n i i S Y Y n ==--∑, 22
212
3
(1)(1)2m S n S S m n -+-=+-中较优的是
五、12分
设12,,,m X X X 和12,,,n Y Y Y 分别为来自(,1)N μ和(2,1)N μ的简单随机样本,且两样本
独立,其中μ是未知参数,
(1) 基于合并样本12,,,m X X X ,12,,,n Y Y Y 求μ的极大似然估计^
μ (2) 计算^
()E μ
(3) 在(2)的基础上给出μ的无偏估计 六、8分
设总体X 服从正态分布2
(,)N μσ,其中2σ已知,考虑假设检验:
00100:,:()H H μμμμμμ=≠>
在显著域水平α下的拒绝域为
*121{(,,,}n W x x x z α-=≥
则(1)求其犯第二类错误的概率β
(2)当n 一定的情况下,β随α的如何变化?
无答案有答案的话就不是这个财富值了大家有别的年份的题欢迎分享。

相关文档
最新文档