中考数学压轴题十大类型经典题
中考数学压轴题十大类型经典题目
中考数学压轴题十大类型目录第一讲中考压轴题十大类型之动点问题1第二讲中考压轴题十大类型之函数类问题7第三讲中考压轴题十大类型之面积问题13第四讲中考压轴题十大类型之三角形存在性问题19第五讲中考压轴题十大类型之四边形存在性问题25第六讲中考压轴题十大类型之线段之间的关系31第七讲中考压轴题十大类型之定值问题38第八讲中考压轴题十大类型之几何三大变换问题44第九讲中考压轴题十大类型之实践操作、问题探究50第十讲中考压轴题十大类型之圆56第十一讲中考压轴题综合训练一62第十二讲中考压轴题综合训练二68第一讲中考压轴题十大类型之动点问题1.(2011吉林)如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A-B-C-E方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s ,△PAQ 的面积为y cm 2,(这里规定:线段是面积为0的三角形)解答下列问题:(1) 当x =2s 时,y =_____ cm 2;当x =92s 时,y =_______ cm 2. (2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式.(3)当动点P 在线段BC 上运动时,求出154y S 梯形ABCD 时x 的值. (4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.2.(2007河北)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;(2)当点P 运动到AD 上时,t 为何值能使PQ ∥DC??D CB A P Q K ED C BA (3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;(4)△PQE 能否成为直角三角形?若能,写出t 的取值范围;若不能,请说明理由. 备用图3.(2008河北)如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >).(1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值;(4)连结PG ,当PG AB ∥时,请直接..写出t 的值. 4.(2011山西太原)如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为(8,0),点B 的坐标为(11,4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O -C -B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t 秒(0t >),△MPQ 的面积为S .(1)点C 的坐标为________,直线l 的解析式为__________.(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围.(3)试求题(2)中当t 为何值时,S 的值最大,并求出S 的最大值.(4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值. P Ml Q CB A O xy5.(2011四川重庆)如图,矩形ABCD中,AB=6,BC=23,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动.在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG 和矩形ABCD在射线PA的同侧,设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.备用图1备用图2三、测试提高1.(2011山东烟台)如图,在直角坐标系中,梯形ABCD 的底边AB 在x 轴上,底边CD 的端点D 在y 轴上.直线CB 的表达式为41633y x =-+,点A 、D 的坐标分别为(-4,0),(0,4).动点P 自A 点出发,在AB 上匀速运动.动点Q 自点B 出发,在折线BCD 上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P 运动t (秒)时,△OPQ 的面积为S (不能构成△OPQ 的动点除外).(1)求出点B 、C 的坐标;(2)求S 随t 变化的函数关系式;(3)当t 为何值时S 有最大值?并求出最大值.备用图第二讲 中考压轴题十大类型之函数类问题1.(2011浙江温州)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(-4,0),点B 的坐标为(0,b )(b >0).P 是直线AB 上的一个动点,作PC ⊥x 轴,垂足为 C ,记点P 关于y 轴的对称点为P ′ (点P ′不在y 轴上),连结P P ′,P ′A ,P ′C ,设点P 的横坐标为a .(1) 当b =3时,①直线AB 的解析式;②若点P ′的坐标是(-1,m ),求m 的值;(2)若点P 在第一象限,记直线AB 与P ′C 的交点为D .当P ′D :DC =1:3时,求a 的值;(3)是否同时存在a ,b ,使△P ′CA 为等腰直角三角形?若存在,请求出所有满足要求的a ,b 的值;若不存在,请说明理由. 2. (2010武汉)如图,抛物线212y ax ax b =-+经过A (-1,0),C (2,32)两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点 (不与点B 重合),xy P'D O C BA P点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ =222y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围;(3)在同一平面直角坐标系中,两条直线x =m ,x =n 分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,H .问四边形EFHG 能否为平行四边形? 若能,求m ,n 之间的数量关系;若不能,请说明理由.备用图3. (2011江苏镇江)在平面直角坐标系xOy 中,直线1l 过点A (1,0)且与y 轴平行,直线2l 过点B (0,2)且与x 轴平行,直线1l 与2l 相交于点P .点E 为直线2l 上一点,反比例函数k y x(k >0)的图象过点E 且与直线1l 相交于点F .(1)若点E 与点P 重合,求k 的值;(2)连接OE 、OF 、EF .若k >2,且△OEF 的面积为△PEF 的面积2倍,求点E 的坐标; (3)是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三角形与△PEF 全等?若存在,求E 点坐标;若不存在,请说明理由.4. (2010浙江舟山)△ABC 中,∠A =∠B =30°,AB =23.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(1)当点B 在第一象限,纵坐标是62时,求点B 的横坐标; (2)如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究: ①当54a =,12b =-,355c =-时,A ,B 两点是否都在这条抛物线上?并说明理由;②设b =-2am ,是否存在这样的m 值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.5. (湖北黄冈)已知二次函数的图象如图所示. (1)求二次函数的解析式及抛物线顶点M 的坐标; (2)若点N 为线段BM 上的一点,过点N 作x 轴的垂线,垂足为点Q .当点N 在线段BM 上运动时(点N 不与点B ,点M 重合),设OQ 的长为t ,四边形NQAC 面积为S ,求S 与t 之间的函数关系式及自变量t 的取值范围; O yxCBA1 1 -1 -1(3)在对称轴右侧的抛物线上是否存在点P ,使△PAC 为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由;(4)将△OAC 补成矩形,使得△OAC 的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).三、测试提高1. (2011山东东营)如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =+交折线OAB 于点E . (1)记△ODE 的面积为S .求S 与b 的函数关系式;(2)当点E 在线段OA 上时,且tan ∠DEO =12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.第三讲 中考压轴题十大类型之面积问题1. (2011辽宁大连)如图,抛物线y =ax 2+bx +c 经过A (-1,0)、B(3,0)、C (0,3)三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB .(1)求该抛物线的解析式;(2)抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,直接写出点R 的坐标;若不存在,说明理由.2. (2011湖北十堰)如图,己知抛物线y =x 2+bx +c 与x 轴交于点A (1,0)和点 B ,与y 轴交于点C (0,-3).(1)求抛物线的解析式;(2)如图(1),己知点H (0,-1).问在抛物线上是否存在点G (点G 在y 轴的左侧),使得S △GHC =S △GHA ?若存在,求出点G 的坐标,若不存在,请说明理由:(3)如图(2),抛物线上点D 在x 轴上的正投影为点E (﹣2,0),yxM PO C B AF是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.3.(2010天津)在平面直角坐标系中,已知抛物线2=-+y x bx c+与x轴交于点A、B(点A在点B的左侧),与y轴的正半轴交于点C,顶点为E.(Ⅰ)若2c=,求此时抛物线顶点E的坐标;b=,3(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC中满足S= S△ABC,求此时直线BC的解析式;△BCE(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC 中满足S△BCE=2S△AOC,且顶点E恰好落在直线43=-+上,求此时抛y x物线的解析式.4.(2011山东聊城)如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t s时,△EFG的面积为S cm2.(1)当t =1s 时,S 的值是多少?(2)写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似?请说明理由. 5. (2011江苏淮安)如图,在Rt△ABC 中,∠C =90°,AC =8,BC =6,点P 在AB 上,AP =2,点E 、F 同时从点P 出发,分别沿PA 、PB 以每秒1个单位长度的速度向点A 、B 匀速运动,点E 到达点A 后立刻以原速度沿AB 向点B 运动,点F 运动到点B 时停止,点E 也随之停止.在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧.设E 、F 运动的时间为t 秒(t >0),正方形EFGH 与△ABC 重叠部分面积为S .(1)当t =1时,正方形EFGH 的边长是 .当t =3时,正方形EFGH 的边长是 .(2)当0<t ≤2时,求S 与t 的函数关系式;(3)直接答出:在整个运动过程中,当t 为何值时,S 最大?最大AE BF CGD面积是多少? G HF E P CBA 备用图三、测试提高1. (2010山东东营)如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点(D 不与A ,B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG .(1)当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;(2)设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值. 第四讲 中考压轴题十大类型之 三角形存在性问题 B ADE F G C B 备用图(1) A C B 备用图(2) AC板块一、等腰三角形存在性1. (2011江苏盐城)如图,已知一次函数7y x =-+与正比例函数34y x =的图象交于点A ,且与x 轴交于点B . (1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.(备用图)2. (2009湖北黄冈)如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒)(1)求A ,B ,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;(3)当902t <<时,△PQF 的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程. 板块二、直角三角形3. (2009四川眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).(1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.4. (2010广东中山)如图所示,矩形ABCD 的边长AB =6,BC =4,点F在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线上时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:(1)说明△FMN ∽△QWP ;(2)设04x ≤≤(即M 从D 到A 运动的时间段).试问x 为何值时,△PWQ 为直角三角形?当x 在何范围时,△PQW 不为直角三角形?(3)问当x 为何值时,线段MN 最短?求此时MN 的值.板块三、相似三角形存在性 5. (2011湖北天门)在平面直角坐标系中,抛物线2y ax bx =+ 3+与x 轴的两个交点分别为A (-3,0)、B (1,0),过顶点C 作CH ⊥x 轴于点H .(1)直接填写:a = ,b = ,顶点C 的坐标WQ P N MF DC BA为 ;(2)在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.(备用图)三、测试提高1. (2009广西钦州)如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0),过点C 的直线334y x t =-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且01t <<.(1)填空:点C的坐标是_____,b=_____,c=_____;(2)求线段QH的长(用含t的式子表示);(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.第五讲中考压轴题十大类型之四边形存在性问题1.(2009黑龙江齐齐哈尔)直线364y x=-+与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q 沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.2. (2010河南)在平面直角坐标系中,已知抛物线经过A (40),-,B (04),-,C (20),三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.3. (2011黑龙江鸡西)已知直线343y x =+与x 轴、y 轴分别交于A 、B 两点,∠ABC =60°,BC 与x 轴交于点C .(1)试确定直线BC 的解析式;(2)若动点P 从A 点出发沿AC 向点C 运动(不与A 、C 重合),同时动点Q 从C 点出发沿CBA 向点A 运动(不与C 、A 重合),动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,当△APQ 的面积最大时,y 轴上有一点M ,平面内是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形?若存在,请直接写出N 点的坐标;若不存在,请说明理由.4. (2007河南)如图,对称轴为直线x =27的抛物线经过点A (6,0)和B (0,4).(1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形?②是否存在点E ,使四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.5. (2010黑龙江大兴安岭)如图,在平面直角坐标系中,函数2y x =+12的图象分别交x 轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由. 三、测试提高1. (2009辽宁抚顺)已知:如图所示,关于x 的抛物线2=++y ax x c (a ≠0)与x 轴交于点A (-2,0)、点B (6,0),与y 轴交于点C .(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D ,使四边形ABDC 为等腰梯形,写出点D 的坐标,并求出直线AD 的解析式;(3)在(2)中的直线AD 交抛物线的对称轴于点M ,抛物线上有一动点P ,x 轴上有一动点Q .是否存在以A 、M 、P 、Q 为顶点的平行四边形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.yx O MB A第六讲 中考压轴题十大类型之线段之间的关系1. (2010天津)在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点.(Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(Ⅱ)若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标. 2. (2011四川广安)四边形ABCD 是直角梯形,BC ∥AD ,∠BAD =90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .y B O D C A x E y BO DC A x温馨提示:如图,可以作点D 关于x 轴的对称点D ',连接CD '与xE(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使得PA =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;(3)设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大?并求出最大值.3. (2011四川眉山)如图,在直角坐标系中,已知点A (0,1),B (4-,4),将点B 绕点A 顺时针方向旋转90°得到点C ,顶点在坐标原点的抛物线经过点B .(1) 求抛物线的解析式和点C 的坐标;(2) 抛物线上有一动点P ,设点P 到x 轴的距离为1d ,点P 到点A 的距离为2d ,试说明211d d =+;(3) 在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.4. (2011福建福州)已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关CyB QA MP x O 于直线3:33l y x =+对称. (1)求A 、B 两点坐标,并证明点A 在直线l 上;(2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.5. (2009湖南郴州) 如图1,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2)为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B . (1)写出正比例函数和反比例函数的关系式; (2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点Q 的坐标,如果不存在,请说明理由;(3)如图2,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值. 图1 图26. (2010江苏苏州)如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设()M m n ,是抛物线上的一点(m n 、为正整数),且它位于对称轴的右侧.若以M B O A 、、、为顶点的四边形四条边的长度是四个连续的正整数,求点M 的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P ,22228PA PB PM ++>是否总成立?请说明理由. 三、测试提高1. (2009浙江舟山)如图,已知点A (-4,8)和点B (2,n )在抛物线2=y ax 上.(1)求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;(2)平移抛物线2=y ax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.第七讲 中考压轴题十大类型之定值问题 1. (2011天津)已知抛物线1C :21112y x x =-+,点F (1,1). (Ⅰ)求抛物线1C 的顶点坐标;(Ⅱ)①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF +=;②抛物线1C 上任意一点P (P P x y ,)(01P x <<),连接PF ,4 x 2 2 A 8 -2 O-2-4 y 6B C D -44并延长交抛物线1C 于点Q (Q Q x y ,),试判断112PF QF+=是否成立?请说明理由; (Ⅲ)将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值. 2. (2009湖南株洲)如图,已知△ABC 为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D .(1)求点A 的坐标(用m 表示);(2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.3. (2008山东济南)已知:抛物线2y ax bx c =++(a ≠0),顶点C (1,3-),与x 轴交于A 、B两点,(10)A -,.(1)求这条抛物线的解析式;(2)如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点(P 与A 、B 两点不重合),过点P 作PM ⊥AE 于M ,PN ⊥DB 于N ,请判断PM PN BE AD+是否为定值? 若是,请求出此定值;若不是,请说明理由; (3)在(2)的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、BE 相交于点F 、G (F 与A 、E 不重合,G 与E 、B 不重合),请判断PA EF PB EG=是否成立.若成立,请给出证明;若不成立,请说明理由. 4. (2011湖南株洲)孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请解答以下问题:(1)若测得22OA OB ==(如图1),求a 的值;(2)对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x ⊥轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐标...; (3)对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.5. (2009湖北武汉)如图,抛物线24y ax bx a =+-经过()10A -,、()04C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(),1D m m +在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标;(3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=︒,求点P 的坐标.三、测试提高1. (2009湖南湘西)在直角坐标系xOy 中,抛物线2y x bx c =++yxOABC与x轴交于两点A、B,与y轴交于点C,其中A在B的左侧,B的坐标是(3,0).将直线y kx=沿y轴向上平移3个单位长度后恰好经过点B、C.(1)求k的值;(2)求直线BC和抛物线的解析式;(3)求△ABC的面积;(4)设抛物线顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标.、第八讲中考压轴题十大类型之几何三大变换问题1.(2009山西太原)问题解决:如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.当12CECD=时,求AMBN的值.方法指导:为了求得AMBN的值,可先求BN、AM的长,不妨设:类比归纳:在图(1)中,若13CE CD =,则AMBN 的值等于 ;若14CE CD =,则AMBN 的值等于 ;若1CE CD n=(n 为整数),则AMBN的值等于 .(用含n 的式子表示)联系拓广: 如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n=>=,,则AMBN 的值等于 .(用含m n ,的式子表示)2. (2011陕西)如图①,在矩形ABCD中,将矩形折叠,使B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或边CD (含端点)交于点F ,然后再展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.(1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形;(2)如图②,在矩形ABCD 中,AB =2,BC =4.当它的“折痕△BEF ”图(2)N ABCD EFM图(1)A B C DE FM N。
中考数学压轴题十大类型经典题目
第七讲 中考压轴题十大类型 第 讲 中考压轴题十大类型
定值问题 几何 大变换问题 问题探究
第九讲 中考压轴题十大类型 第十讲 中考压轴题十大类型 第十一讲 中考压轴题综 第十二讲 中考压轴题综 训 训
实践操作 圆 一 二
第一讲
1. 2011 出发 运 规定 1 林 如图
中考压轴题十大类型
梯形 ABCD 中 AD∥BC 初始时刻开始 设运 角形
样的 t 使△AOH
是等腰
角形
请说明理
D
C
D
C
A
E O
B
F P
A
E O
备用图 1
B
F P
D
C
A
E O
备用图 2
B
F P
测试提高
1 2011 山东烟
如图
在直角坐标系中
边 CD 的端点 D 在 y 轴 别为 点时
4 0 0 4
梯形 ABCD 的 边 AB 在 x 轴 4 16 直线 CB 的表 式为 y = − x + 点 A D 的坐标 3 3 点 P 自 A 点出发 在 AB 匀速运 点 Q 自点 B 速度均为
点 P 在 AB 的延长线 的速度沿 OA 匀速运
P 点出发
一
点E
O 点出发 以
A 点后
立即以原速度沿 AO 返回 点E
另一
点F
以
1 个单位长度的速度沿射线 PA 匀速运
F 同时出发
两点相遇时停
运
在点 E F 的运
过程中 以 EF 为边作等边△EFG 使
△EFG 和矩形 ABCD 在射线 PA 的同侧 设运 的时间为 t
到点 E 停 △PAQ 的面
中考数学压轴题十大题型(含详细答案)
一、中考数学压轴题1.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与 h 的函数关系式(不要求写出自变量h 的取值范围);(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.2.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.3.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.(3)如图3,点M 的坐标为(32,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.4.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.5.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.6.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.7.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.8.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.9.如图,在ABC ∆中,14AB =,45B ∠=︒,4tan 3A =,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.(1)当t =_______秒时,点N 落在AC 边上.(2)设正方形PQMN 与ABC ∆重叠部分面积为S ,当点N 在ABC ∆内部时,求S 关于t 的函数关系式.(3)当正方形PQMN 的对角线所在直线将ABC ∆的分为面积相等的两部分时,直接写出t 的值.10.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.11.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式; (3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)12.如图1,在平面直角坐标系中,抛物线239334y x x =--x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C . (1)过点C 的直线5334y x =-x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:(2)如图2, 将ABC ∆绕点B 顺时针旋转至A BC ''∆的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连接AE C E '、, 将AC E ∆'沿直线C E '翻折为A C E ∆'', 是否存在点E , 使得BAA ∆'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.13.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.14.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.15. 在平面直角坐标系中,点O 为坐标原点,直线y =﹣x+4与x 轴交于点A ,过点A 的抛物线y =ax 2+bx 与直线y =﹣x+4交于另一点B ,且点B 的横坐标为1.(1)该抛物线的解析式为;(2)如图1,Q 为抛物线上位于直线AB 上方的一动点(不与B 、A 重合),过Q 作QP ⊥x 轴,交x 轴于P ,连接AQ ,M 为AQ 中点,连接PM ,过M 作MN ⊥PM 交直线AB 于N ,若点P 的横坐标为t ,点N 的横坐标为n ,求n 与t 的函数关系式;在此条件下,如图2,连接QN 并延长,交y 轴于E ,连接AE ,求t 为何值时,MN ∥AE .(3)如图3,将直线AB 绕点A 顺时针旋转15度交抛物线对称轴于点C ,点T 为线段OA 上的一动点(不与O 、A 重合),以点O 为圆心、以OT 为半径的圆弧与线段OC 交于点D ,以点A 为圆心、以AT 为半径的圆弧与线段AC 交于点F ,连接DF .在点T 运动的过程中,四边形ODFA 的面积有最大值还是有最小值?请求出该值.16.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积.17.如图①,△ABC是等腰直角三角形,在两腰AB、AC外侧作两个等边三角形ABD和ACE,AM和AN分别是等边三角形ABD和ACE的角平分线,连接CM、BN,CM与AB交于点P.(1)求证:CM=BN;(2)如图②,点F为角平分线AN上一点,且∠CPF=30°,求证:△APF∽△AMC;(3)在(2)的条件下,求PFBN的值.18.如图,在⊙O中,直径AB=10,tanA=3.(1)求弦AC的长;(2)D是AB延长线上一点,且AB=kBD,连接CD,若CD与⊙O相切,求k的值;(3)若动点P以3cm/s的速度从A点出发,沿AB方向运动,同时动点Q以32cm/s的速度从B点出发沿BC方向运动,设运动时间为t (0<t<103),连结PQ.当t为何值时,△BPQ为Rt△?19.如图,在矩形ABCD中,点E为BC的中点,连接AE,过点D作DF AE⊥于点F,过点C作CN DF⊥于点N,延长CN交AD于点M.(1)求证:AM MD=(2)连接CF,并延长CF交AB于G①若2AB=,求CF的长度;②探究当ABAD为何值时,点G恰好为AB的中点.20.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.21.如图1,以AB为直径作⊙O,点C是直径AB上方半圆上的一点,连结AC,BC,过点C作∠ACB的平分线交⊙O于点D,过点D作AB的平行线交CB的延长线于点E.(1)如图1,连结AD,求证:∠ADC=∠DEC.(2)若⊙O的半径为5,求CA•CE的最大值.(3)如图2,连结AE,设tan∠ABC=x,tan∠AEC=y,①求y关于x的函数解析式;②若CBBE=45,求y的值.22.发现来源于探究.小亮进行数学探究活动,作边长为a的正方形ABCD和边长为b的正方形AEFG(a>b),开始时,点E在AB上,如图1.将正方形AEFG绕点A逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).23.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.24.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).(1)当甲追上乙时,x = .(2)请用x 的代数式表示y .问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;(4)若从2:00起计时,求几分钟后分针与时针第一次重合?25.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点A C 、(点A 在点C 的左侧),与y 轴正半轴交于点B ,24OC OB ==.(1)如图1,求a m 、的值;(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;(3)如图3,在(2)的条件下,当154d =时,过点D 作DE x 轴交抛物线于点E ,点P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线211y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH CG 交DG 于点H ,若3CFG EGH S S =△△,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.F解析:(1)∠FAB=90°;(2)22d h =;(3)直线PS 与直线AF 的交点K(-2,6).【解析】【分析】(1)通过直线AB 的解析式可求出点A 、B 的坐标,可知AOB 是等腰直角三角形,再结合已知条件即可确定90FAB ∠=︒;(2)根据已知条件证明CP=AC=QC=BC 从而得出△ACP 是等腰直角三角形,在Rt △CRP 中,利用sin ∠CPR 22CR CP ==,推出2CP CR =,继而得出22BQ CR =,得出答案; (3)过点 A 作AH ⊥CE 交 EC 的延长线于点 H ,延长 CH 到点 G ,使 HG=CH ,连接AG ,证明△AHC ≌△CEP ,设AH CE n ==,得出EG=CE+CH+GH=n+2+2=n+4,再通过角的等量代换,得出∠EAG=∠G ,从而有EG=EA=n+4,在Rt △AHE 中,通过勾股定理AE²=HE²+AH²可求出n 的值为6,从而得出直线AF 的解析式y = x + 8 ,再求出直线PS 的解析式为 y=-x+4,求交点即可.【详解】解:(1)如下图,y = -x + m ,当x=0时,y=m∴A (0,m ),OA=m当y=0时,0=-x+m ,x=m ,∴B (m ,0),OB=m∴OA=OB∴∠OAB=∠OBA=45°∵∠AFO=45°,∠FAB+∠FBA+∠AFB=180°∴∠FAB=90°(2)如下图 ,∵CP 、AC 分别是 Rt △QPB 和 Rt △QAB 的斜边上的中线∴CP= 12QB ,12AC QB =, ∴CP=AC=QC=BC∴∠CAB=∠CBA设∠CAB=∠CBA=α,∴∠CBP=45°+α∴∠CPB=∠CBP=45°+α∴∠PCB=180°-(∠CPB+∠CBP )=90°-2α∵∠ACB=180°-∠CAB-∠CBA=180°-2α∴∠ACP=∠ACB-∠PCB=180°-2α-(90°-2α)=90°∵AC=CP∴△ACP 是等腰直角三角形∴∠CPA=∠CAP=45°∵CR ⊥AP ,∴∠CRP=90°,在Rt △CRP 中sin ∠CPR 22CR CP == ∴2CP CR =∵12CP BQ =, ∴22BQ CR =即22d h =(3)过点 A 作AH ⊥CE 交 EC 的延长线于点 H ,延长 CH 到点 G ,使 HG=CH ,连接AG ∴∠AHC=∠CEP=90°∴∠HAC+∠HCA=∠PCE+∠HCA∴∠HAC=∠PCE ,∵AC=CP∴△AHC ≌△CEP∴CH=PE=2,AH=CE ,∴GH=CH=2,AH CE n ==∴EG=CE+CH+GH=n+2+2=n+4设∠DAP=β,则∠AEG=2β∴α+β=45°∵∠EBD=∠EDB=∠HDA=∠HAD=45°∴∠CAH=∠HAD-α=45°-α=β∵AH 垂直平分 GC∴AG=AC∴∠GAH=∠CAH=β∴∠G=90°-β 在△EAG 中∠EAG=180°-∠G-∠AEG=180°-(90°-β)-2β =90°-β∴∠EAG=∠G∴EG=EA=n+4在 Rt △AHE 中,AE²=HE²+AH²222(4)(2)n n n +=++126,2n n ==-(舍)∴AH=OE=6,EP=EB=2∴OB=OE+BE=8∴m=8,∴A (0,8)∴OA=OF=8 , ∴F (-8,0)∴直线 AF 的解析式为 y = x + 8∵CD=CE-DE=CE-BE=6-2=4∵线段 CD 关于直线 AB 的对称线段 DS∴SD=CD=4,∠CDA=∠SDA=45°∴∠CDS=90°,∴SD ∥x 轴过点 S 分别作 SM ⊥x 轴于点 M ,SN ⊥y 轴于点 N∴四边形 OMSN 、SMED 都是矩形∴OM=SN=OE-ME=2,ON=SM=DE=BE=2∴S(2,2)∵OP=OE-EP=6-2=4,∴P(4,0)设直线 PS 的解析式为 y=ax+b∴4022a b a b +=⎧⎨+=⎩,解得:14a b =-⎧⎨=⎩∴直线 PS 的解析式为 y=-x+4设直线PS 与直线AF 的交点K(x ,y)∴48y x y x =-+⎧⎨=+⎩解得26x y =-⎧⎨=⎩∴直线PS 与直线AF 的交点K(-2,6).【点睛】本题考查的知识点是一次函数与几何图形,将一次函数的图象与几何图形综合在一起的问题,是考查学生综合素质和能力的热点题型,它充分体现了数学解题中的数形结合思想和整体转化思想.本题考查的知识点有一次函数图象与坐标轴的交点问题、等腰直角三角形的判定及性质、三角形内角和定理、全等三角形的判定及性质、矩形的性质、待定系数法求一次函数解析式、线段垂直平分线等.2.C解析:(1)112y x =-+;(2)1d t =-+;(3)6215t -= 【解析】【分析】(1)根据互相垂直两直线斜率积为-1,设出直线CE 的解析式,再将点C 坐标代入即可求解;(2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,通过解直角三角形可证EDM ≌EAN ,ENH ≌EMG ,得到AN =DM ,HN =GM ,进而得到AH DG =,再根据CE 解析式求出D 点坐标,即可找出d 与t 之间的函数关系式;(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK =,证四边形BGMT 与四边形HNMC 均为矩形,得MN MT =,再进一步证明ENH ≌EMG ,利用全等三角形的性质通过角度计算,得出△BML 为等腰三角形且BM BL =,再用含有t 的代数式表示BM ,最后在Rt △BMG 中利用勾股定理建立等式,求出t 的值.【详解】解:(1)∵CE ⊥AB ,∴设直线CE 的解析式为:12y x c =-+, 把点C (2,0)代入上述解析式,得1c =,∴直线CD 的解析式为:112y x =-+; (2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,令26 112y xy x=+⎧⎪⎨=-+⎪⎩,解得22xy=-⎧⎨=⎩,∴()2,2E-,易证EDM≌EAN,ENH≌EMG,∴AN=DM ,HN=GM,∴AH DG=,由直线CE的解析式112y x=-+,可求点D(0,1)∴DG=1—t,∴1d t=-+;(3)过点B作BT CM⊥于点T,在直线BT上截取TL NK=,易证四边形BGMT与四边形HNMC均为矩形,由(2)问可知1tAH GD==-,则6tHC=-∴6tBG MT==-,∴MN MT=,∵90KNM LTM∠=∠=︒,∴ENH≌EMG,∴LNKM∠=∠,设KMNα∠=,则KMB KMNα∠=∠=,∴90NKM α∠=︒-,∴90NKM L α∠=∠=︒-,∵//BL MN ,∴2MBL BMN α∠=∠=,∴18090BML MBL L α∠=︒-∠-∠=︒-,∴BM BL =, ∵1tan 2KCH ∠=, ∴11322KH CH t ==-, ∴133322KN KH HN t t t TL =+=--=-=, ∴352BL BT TL t BM =+=-=, 在Rt BMG △中, 222BM BG GM =+,解得t =(不合题意舍去)或t =故,65t -=. 【点睛】本题一次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等,利用已知条件求相等交,相等线段是解决本题的关键.3.E解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P 点横坐标为118【解析】【分析】(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式; (2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x xx -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到22(1)33x AN AM +==,从而推出点F 的坐标21210(,)3333x x --+,由23FN EM =,列出关于x 的方程求解即可;(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=45GH.设点P (m ,-m²+2m+3),则T (m ,-2m+3),则PT=m²-4m ,GH=1-m , 可得m²-4m=45(1-m ),解方程即可. 【详解】(1)∵抛物线的顶点为C (1,4),∴设抛物线的解析式为2(1)4y a x =-+,∵抛物线过点B,(3,0),∴20(31)4a =-+,解得a=-1,∴设抛物线的解析式为2(1)4y x =--+,即2y x 2x 3=-++;(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x x x -++,∵抛物线的解析式为2y x 2x 3=-++,当y=0时,2023x x =-++,解得x=-1或x=3,∴A (-1.0),∴点D (0,3),∴过点BD 的直线解析式为3y x =-+,点F 在直线BD 上,则OM=x ,AM=x+1,∴22(1)33x AN AM +==, ∴2(1)2111333x x ON AN +=-=-=-, ∴21210(,)3333x x F --+,∴2210332233FN EM x x x +--++==, 解得x=1或x=2, ∴点E 的坐标为(2,3)或(1,4);(3)设直线DM 的解析式为y=kx+b ,过点D (0,3),M (32,0), 可得,3023k b b ⎧+=⎪⎨⎪=⎩,解得k=-2,b=3,∴直线DM 的解析式为y=-2x+3,∴32OM =,3OD =, ∴tan ∠DMO=2, 如图,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.∵PQ ⊥MT ,∴∠TFG=∠TPF ,∴TG=2GF ,GF=2PG ,∴PT=25GF , ∵PF=QF ,∴△FGP ≌△FHQ ,∴FG=FH ,∴PT=45GH. 设点P (m ,-m²+2m+3),则T (m ,-2m+3),∴PT=m²-4m ,GH=1-m ,∴m²-4m=45(1-m ), 解得:1112018m -=,或2112018m +=(不合题意,舍去), ∴点P 的横坐标为11201-. 【点睛】 本题考查二次函数综合题、平行线分线段成比例定理、轴对称性质等知识,解题的关键是学会用转化的思想思考问题,学会用数形结合的思想解决问题,有一定难度.4.D解析:(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可; (2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】(1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ====∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中:()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r ===∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN ∴AFN DFM ∆~∆∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上 ∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上∴54cos 5AB B BM BM === 解得:254BM = O 的半径长为258【点睛】 本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.5.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得.【详解】解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==.45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩ 解得16k b =-⎧⎨=⎩∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+,16362S AC DK t ∴=⋅=-+()06t ≤<; 如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠.ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥,HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠MR MB ∴=.CM MR ∴=.//RD AC ,::1:1CF RG CM RM ∴==.CF RG ∴=.同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP ==,5tan 19PG OF OBF BP OB∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=. 7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=. (1,0)N ∴-,75,22D ⎛⎫ ⎪⎝⎭. 设直线 DN 的解析式为y ax c =+,将N 、D 两点代入,07522a c a c -+=⎧⎪⎨+=⎪⎩解得5959 ac⎧=⎪⎪⎨⎪=⎪⎩∴直线DM的解析式为5599y x=+.【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标.6.D解析:(1)6;(2)y=-3x+10(1≤x<103);(2)1769或32【解析】【分析】(1)如下图,利用等腰直角三角形DHC可得到HC的长度,从而得出HB的长,进而得出AD的长;(2)如下图,利用等腰直角三角形的性质,可得PQ、PR的长,然后利用EB=PQ+PR得去x、y的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P在梯形内,一种是在梯形外,分别根y的值求出x的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D作BC的垂线,交BC于点H∵∠C=45°,DH⊥BC∴△DHC是等腰直角三角形∵四边形ABCD是梯形,∠B=90°∴四边形ABHD是矩形,∴DH=AB=8∴HC=8∴BH=BC-HC=6∴AD=6(2)如下图,过点P作EF的垂线,交EF于点Q,反向延长交BC于点R,DH与EF交于点G∵EF ∥AD,∴EF ∥BC∴∠EFP=∠C=45°∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ ⊥EF,∴PQ=QE=QF∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x∵EB=QR∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103 当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE ∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10则当y=2时,x=4,即AE=4 ∴()16644322ABCD S =⨯++⨯=梯形 【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力. 7.A解析:(1)详见解析;(2)2448x x y -+=(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====, 根据勾股定理得到()222222248OF FN ON x x x =+=-+=-+线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x,∴AF=4-x ,∴FN=2-x , ∴()222222248OF FN ON x x x =+=-+=-+∴248EF y x x =-+ ∵AM⊥AC,∴AE∥OB,∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴)24804x x y x x-+≤=<; (3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE ,∵∠EAO=90°,∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=,∵AE=AG,∴2421482x xxPE y-+==,()22248xAE yx-=-=,∴()22222224448448xx xxx xx---+=+,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴22EQ AO==∴224242()xAE E Q-===∴43x =, ∴BF=2或43. 【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.8.B解析:(1)12;(2)3)【解析】【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,4AB =222232BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M , D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度, 点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=,11903033BOD COB ∴∠=∠=⨯=, 10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=, 155,222DH OD QH DH ∴==∴==, 222255352OH OD DH ⎛⎫∴=-=-= ⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴==== 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠,E 为OA 上的点,F 为OB 上的点PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.9.A解析:(1)145;(2)2274,0314971421,2235t tSt t t⎧⎛⎫<≤⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<<⎪⎪⎝⎭⎩;(3)t的值为477或727.【解析】【分析】(1)如下图,根据4tan3A=,可得出PN与AP的关系,从而求出t的值;(2)如下图,存在2种情况,一种是点M在△ABC内,另一种是点M在△ABC外部,分别根据正方形和三角形求面积的公式可求解;(3)如下图,存在2种情况,一种是PM所在的直线将△ABC的面积平分,另一种是QN 所在的直线将△ABC的面积平分.【详解】(1)如图1,点N在AC上图1由题意可知:PD=DQ=t ,AP=7-t∴PN=PQ=2t ∵4tan 3A = ∴43NP AP =,即2473t t =- 解得:t=145 (2)①如图2,图2四边形PQMN 是正方形,90BQM ∴∠=︒,45B ∠=︒,BQ MQ ∴=,即72t t -=解得73t =, 故当0t <≤73时,22(2)4S t t ==; ②如图3, 图390BQF ∠=︒,45B ∠=︒,7BQ FQ t ∴==-,45BFQ MFE ∠=∠=︒,则37MF MQ QF t =-=-,90M ∠=︒,37ME MF t ∴==-, 则2221149(2)(37)21222S t t t t =--=-+-71435t ⎛⎫<< ⎪⎝⎭; 综上,2274,0314971421,2235t t S t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<< ⎪⎪⎝⎭⎩. (3)如下图,过点C 作AB 的垂线,交AB 于点G图4∵4tan 3A = ∴设CG=4x ,则AG=3x∵∠B=45°∴△CBG 是等腰直角三角形∴GB=GC=4x∵AB=14∴3x+4x=14,解得:x=2∴1148562ABC S== ∴1282ABCS = 情况一:PM 所在的直线平分△ABC 的面积,如下图,PM 与BC 交于点E图5则28PBES=∵四边形PQMN是正方形,∴∠EPB=45°∵∠B=45°∴△PBE是等腰直角三角形∵1282PBES PE PB==∴PE=PB=214∴PB=47∵PB=AB-PA=14-(7-t)=7+t∴7+t=47t=477-情况二:如下图,QN所在线段平分△ABC的面积,QF交AC于点F,过点F作AB的垂线,交AB于点H图6同理,28AFQS=∵四边形PQMN是正方形,∴∠EQH=45°∴△FHQ是等腰直角三角形∵4 tan3A=∴设FH=4y,则AH=3y,HQ=FH=4y,∴AQ=7y∴174282AFQS y y==,解得:2∵AQ=AB-QB=14-(7-t)=7+t∴2解得:27∴综上得:t的值为477或727.【点睛】本题考查动点问题,解题关键是根据动点的变化情况,适当划分为几种不同的形式分别分析求解.10.A。
(完整word版)中考数学压轴题十大类型经典题目
第一讲 中考压轴题十大类型之动点问题1. (2011吉林)如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s,动点P 沿A -B -C -E方向运动,到点E 停止;动点Q 沿B —C —E —D 方向运动,到点D 停止,设运动时间为x s,△PAQ 的面积为y cm 2,(这里规定:线段是面积为0的三角形)解答下列问题: (1) 当x =2s 时,y =_____ cm 2;当x =92s 时,y =_______ cm 2. (2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式. (3)当动点P 在线段BC 上运动时,求出154y S 梯形ABCD 时x 的值. (4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.2. (2007河北)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B出发沿折线段BA -AD —DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t>0).(1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长; (2)当点P 运动到AD 上时,t 为何值能使PQ ∥DC ?DCBA (3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;(4)△PQE 能否成为直角三角形?若能,写出t 的取值范围;若不能,请说明理由.备用图3. (2008河北)如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF —FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >). (1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由; (3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直接..写出t 的值.4. (2011山西太原)如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为(8,0),点B 的坐标为(11,4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂B备用图FE D C BA直于x 轴,与折线O -C —B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t 秒(0t ),△MPQ 的面积为S . (1)点C 的坐标为________,直线l 的解析式为__________.(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围. (3)试求题(2)中当t 为何值时,S 的值最大,并求出S 的最大值.(4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值.5. (2011四川重庆)如图,矩形ABCD 中,AB =6,BC =2错误!,点O 是AB 的中点,点P 在AB 的延长线上,且BP =3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停止运动.在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG和矩形ABCD 在射线PA 的同侧,设运动的时间为t 秒(t ≥0). (1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.备用图1 备用图26、(2011山东烟台)如图,在直角坐标系中,梯形ABCD 的底边AB 在x 轴上,底边CD 的端点D 在y 轴上.直线CB 的表达式为41633y x =-+,点A 、D 的坐标分别为(-4,0),(0,4).动点P 自A 点出发,在AB 上匀速运动.动点Q 自点B 出发,在折线BCD 上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P 运动t (秒)时,△OPQ 的面积为S (不能构成△OPQ 的动点除外).(1)求出点B 、C 的坐标; (2)求S 随t 变化的函数关系式;(3)当t 为何值时S 有最大值?并求出最大值.备用图第二讲 中考压轴题十大类型之函数类问题1. (2011浙江温州)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(—4,0),点B 的坐标为(0,b )(b >0).P 是直线AB 上的一个动点,作PC ⊥x 轴,垂足为 C ,记点P 关于y 轴的对称点为P ′ (点P ′不在y 轴上),连结P P ′,P ′A ,P ′C ,设点P 的横坐标为a .(1) 当b =3时,① 直线AB 的解析式;② 若点P ′的坐标是(—1,m ),求m 的值;(2)若点P 在第一象限,记直线AB 与P ′C 的交点为D .当P ′D :DC =1:3时,求a 的值;(3)是否同时存在a ,b ,使△P ′CA 为等腰直角三角形?若存在,请求出所有满足要求的a ,b 的值;若不存在,请说明理由.2. (2010武汉)如图,抛物线212y ax ax b =-+经过A (-1,0),C (2,32)两点,与x 轴交于另一点B . (1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点 (不与点B 重合),点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ2y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围; (3)在同一平面直角坐标系中,两条直线x =m ,x =n 分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,H .问四边形EFHG 能否为平行四边形? 若能,求m ,n 之间的数量关系;若不能,请说明理由.xyP'DO C BA P备用图3. (2011江苏镇江)在平面直角坐标系xOy 中,直线1l 过点A (1,0)且与y 轴平行,直线2l 过点B (0,2)且与x 轴平行,直线1l 与2l 相交于点P .点E 为直线2l 上一点,反比例函数ky x(k >0)的图象过点E 且与直线1l 相交于点F .(1)若点E 与点P 重合,求k 的值;(2)连接OE 、OF 、EF .若k 〉2,且△OEF 的面积为△PEF 的面积2倍,求点E 的坐标;(3)是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三角形与△PEF 全等?若存在,求E 点坐标;若不存在,请说明理由.4. (2010浙江舟山)△ABC 中,∠A =∠B =30°,AB =23.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转. (1)当点B 6B 的横坐标;(2)如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究:①当a =,12b =-,c =A ,B 两点是否都在这条抛物线上?并说明理由;②设b =-2am ,是否存在这样的m 值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.5. (湖北黄冈)已知二次函数的图象如图所示.(1)求二次函数的解析式及抛物线顶点M 的坐标;(2)若点N 为线段BM 上的一点,过点N 作x 轴的垂线,垂足为点Q .当点N 在线段BM 上运动时(点N 不与点B ,点M 重合),设OQ 的长为t ,四边形NQAC 面积为S ,求S 与t 之间的函数关系式及自变量t 的取值范围;(3)在对称轴右侧的抛物线上是否存在点P ,使△PAC 为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由;(4)将△OAC 补成矩形,使得△OAC 的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).O yxEDCB A6、(2011山东东营)如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =+交折线OAB 于点E .(1)记△ODE 的面积为S .求S 与b 的函数关系式;(2)当点E 在线段OA 上时,且tan ∠DEO =12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.第三讲 中考压轴题十大类型之面积问题1. (2011辽宁大连)如图,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3,0)、C (0,3)三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB . (1)求该抛物线的解析式;(2)抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,,说明理由.2.(2011湖北十堰)如图,己知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,—3).(1)求抛物线的解析式;(2)如图(1),己知点H(0,—1).问在抛物线上是否存在点G(点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标,若不存在,请说明理由:(3)如图(2),抛物线上点D在x轴上的正投影为点E(﹣2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.3.(2010天津)在平面直角坐标系中,已知抛物线2y x bx=-+c+与x轴交于点A、B(点A在点B的左侧),与y轴的正半轴交于点C,顶点为E.(Ⅰ)若2b =,3c =,求此时抛物线顶点E 的坐标;(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC 中满足S △BCE = S △ABC ,求此时直线BC 的解析式;(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC 中满足S △BCE =2S △AOC ,且顶点E 恰好落在直线43y x =-+上,求此时抛物线的解析式.4. (2011山东聊城)如图,在矩形ABCD 中,AB =12cm ,BC =8cm .点E 、F 、G 分别从点A 、B 、C同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2. (1)当t =1s 时,S 的值是多少?(2)写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似?请说明理由.A EGDBABA5. (2011江苏淮安)如图,在Rt△ABC 中,∠C =90°,AC =8,BC =6,点P 在AB 上,AP =2,点E 、F 同时从点P 出发,分别沿PA 、PB 以每秒1个单位长度的速度向点A 、B 匀速运动,点E 到达点A 后立刻以原速度沿AB 向点B 运动,点F 运动到点B 时停止,点E 也随之停止.在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧.设E 、F 运动的时间为t 秒(t >0),正方形EFGH 与△ABC 重叠部分面积为S .(1)当t =1时,正方形EFGH 的边长是 .当t =3时,正方形EFGH 的边长是 . (2)当0<t ≤2时,求S 与t 的函数关系式;(3)直接答出:在整个运动过程中,当t 为何值时,S 最大?最大面积是多少?备用图6、(2010山东东营)如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC上的两个动点(D 不与A ,B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG . (1)当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;(2)设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值y =-y=-范围,并求出y 的最大值.第四讲 中考压轴题十大类型之三角形存在性问题板块一、等腰三角形存在性1. (2011江苏盐城)如图,已知一次函数7y x =-+与正比例函数34y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.BA D E FGC B备用图(1)ACB备用图(2)AC(备用图)2. (2009湖北黄冈)如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒) (1)求A ,B ,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当902t <<时,△PQF 的面积是否总为定值?若是,求出此定值,若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.板块二、直角三角形3. (2009四川眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0). (1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.4. (2010广东中山)如图所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线上时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题: (1)说明△FMN ∽△QWP ;(2)设04x ≤≤(即M 从D 到A 运动的时间段).试问x 为何值时,△PWQ 为直角三角形?当x 在何范围时,△PQW 不为直角三角形?(3)问当x 为何值时,线段MN 最短?求此时MN 的值.板块三、相似三角形存在性5. (2011湖北天门)在平面直角坐标系中,抛物线2y ax bx =+3+与x 轴的两个交点分别为A (—3,0)、B (1,0),过顶点C 作CH ⊥x 轴于点H . (1)直接填写:a = ,b = ,顶点C 的坐标为 ;(2)在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不M C存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.(备用图)6、(2009广西钦州)如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为 (-1,0),过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作 PH ⊥OB 于点H .若PB =5t ,且01t <<.(1)填空:点C 的坐标是_____,b =_____,c =_____; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.yxQP B AO第五讲 中考压轴题十大类型之四边形存在性问题1. (2009黑龙江齐齐哈尔)直线364y x =-+与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.2. (2010河南)在平面直角坐标系中,已知抛物线经过A (40),-,B (04),-,C (20),三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.yxOC BA3. (2011黑龙江鸡西)已知直线343y x =+与x 轴、y 轴分别交于A 、B 两点,∠ABC =60°,BC 与x轴交于点C .(1)试确定直线BC 的解析式;(2)若动点P 从A 点出发沿AC 向点C 运动(不与A 、C 重合),同时动点Q 从C 点出发沿CBA 向点A 运动(不与C 、A 重合),动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围; (3)在(2)的条件下,当△APQ 的面积最大时,y 轴上有一点M ,平面内是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形?若存在,请直接写出N 点的坐标;若不存在,请说明理由.4. (2007河南)如图,对称轴为直线x =27的抛物线经过点A (6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形?②是否存在点E ,使四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.5. (2010黑龙江大兴安岭)如图,在平面直角坐标系中,函数2y x =+12的图象分别交x 轴、y 轴于A 、B两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点. (1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.7、 (2009辽宁抚顺)已知:如图所示,关于x 的抛物线2=++y ax x c (a ≠0)与x 轴交于点A (—2,0)、点B (6,0),与y 轴交于点C . yxOM B A(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D ,使四边形ABDC 为等腰梯形,写出点D 的坐标,并求出直线AD 的解析式; (3)在(2)中的直线AD 交抛物线的对称轴于点M ,抛物线上有一动点P ,x 轴上有一动点Q .是否存在以A 、M 、P 、Q 为顶点的平行四边形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.[来源:Zxxk .Com ]第六讲 中考压轴题十大类型之线段之间的关系1. (2010天津)在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点.(Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;y BDC y B DC温馨提示:如图,可以作点D 关于x 轴的对称点D ',连接CD '与x 轴交于点E ,此时△CDE 的周长是最小的.这样,你只需求出OE 的长,就可以确定点E 的坐标了.(Ⅱ)若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.2. (2011四川广安)四边形ABCD 是直角梯形,BC ∥AD ,∠BAD =90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使得PA =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;(3)设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大?并求出最大值.3. (2011四川眉山)如图,在直角坐标系中,已知点A (0,1),B (4-,4),将点B 绕点A 顺时针方向旋转90°得到点C ,顶点在坐标原点的抛物线经过点B . (1) 求抛物线的解析式和点C 的坐标;(2) 抛物线上有一动点P ,设点P 到x 轴的距离为1d ,点P 到点A 的距离为2d ,试说明211d d =+; (3) 在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.4. (2011福建福州)已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B两点(B 在A 点右侧),点H 、B 关于直线3:33l y x =+对称. (1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.5. (2009湖南郴州) 如图1,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2)为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .lyxK HBOACyBQ A MPx OOxPMAQB y (1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点Q 的坐标,如果不存在,请说明理由;(3)如图2,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值.图1x 图2 [来源:Z xk .Com ]6. (2010江苏苏州)如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设()M m n ,是抛物线上的一点(m n 、为正整数),且它位于对称轴的右侧.若以M B O A 、、、为顶点的四边形四条边的长度是四个连续的正整数,求点M 的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P ,22228PA PB PM ++>是否总成立?请说明理由.第七讲 中考压轴题十大类型之定值问题1. (2011天津)已知抛物线1C :21112y x x =-+,点F (1,1). (Ⅰ)求抛物线1C 的顶点坐标;(Ⅱ)①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF +=;②抛物线1C 上任意一点P (P P x y ,)(01P x <<),连接PF ,并延长交抛物线1C 于点Q (Q Q x y ,),试判断112PF QF+=是否成立?请说明理由; (Ⅲ)将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值.2. (2009湖南株洲)如图,已知△ABC 为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D . (1)求点A 的坐标(用m 表示); (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.3. (2008山东济南)已知:抛物线2y ax bx c =++(a ≠0),顶点C (1,3-),与x 轴交于A 、B 两点,(10)A -,.(1)求这条抛物线的解析式;(2)如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点(P 与A 、B 两点不重合),过点P 作PM ⊥AE 于M ,PN ⊥DB 于N ,请判断PM PNBE AD+是否为定值? 若是,请求出此定值;若不是,请说明理由;(3)在(2)的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、BE 相交于点F 、G (F 与A 、E 不重合,G 与E 、B 不重合),请判断PA EFPB EG=是否成立.若成立,请给出证明;若不成立,请说明理由.4. (2011湖南株洲)孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请解答以下问题:(1)若测得22OA OB ==(如图1),求a 的值;(2)对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x ⊥轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐..标.; (3)对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.5. (2009湖北武汉)如图,抛物线24y ax bx a =+-经过()10A -,、()04C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(),1D m m +在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=︒,求点P 的坐标.[来源:学.科.网Z .X .X .K ]6、 (2009湖南湘西)在直角坐标系xOy 中,抛物线2y x bx c =++yxOAB C与x 轴交于两点A 、B ,与y 轴交于点C ,其中A 在B 的左侧,B 的坐标是(3,0).将直线y kx =沿y 轴向上平移3个单位长度后恰好经过点B 、C .(1) 求k 的值;(2) 求直线BC 和抛物线的解析式; (3) 求△ABC 的面积;(4) 设抛物线顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P 的坐标.第八讲 中考压轴题十大类型之几何三大变换问题1. (2009山西太原)问题解决:如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.类比归纳:在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN的值等于 ;若1CE CD n =(n 为整数),则AMBN 的值等于 .(用含n 的式子表示)联系拓广: 如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压方法指导: 为了求得AMBN的值,可先求BN 、AM 的长,不妨设:AB =2图(2)NABCD EFM图(1)A B CDEFMNαθ4HB 2B 3A 3A 222B 1A 1A 011平后得到折痕MN ,设()111AB CE m BC m CD n=>=,,则AM BN 的值等于 .(用含m n ,的式子表示)2. (2011陕西)如图①,在矩形ABCD 中,将矩形折叠,使B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或边CD (含端点)交于点F ,然后再展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.(1)由“折痕三角形"的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形; (2)如图②,在矩形ABCD 中,AB =2,BC =4.当它的“折痕△BEF "的顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中, AB =2,BC =4,该矩形是否存在面积最大的“折痕△BEF ”?若存在,图① 图② 图③3. (2010江西南昌)课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题.实验与论证设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示.(1)用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;(2)图1-图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n边形A0A1A2…A n-1与正n边形A0B1B2…B n-1重合(其中,A1与B1重合),现将正n边形A0B1B2…B n—1绕顶点A0逆时针旋转α(n1800<<α).(3)设θn与上述“θ3,θ4,…”的意义一样,请直接写出θn的度数;(4)试猜想在n边形且不添加其他辅助线的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.4.(2009山东德州)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)A DEG 图①FA DG图②FAC图③。
中考数学压轴题十大类型经典题目
中考数学压轴题⼗⼤类型经典题⽬中考数学压轴题⼗⼤类型⽬录第⼀讲中考压轴题⼗⼤类型之动点问题1第⼆讲中考压轴题⼗⼤类型之函数类问题7第三讲中考压轴题⼗⼤类型之⾯积问题13第四讲中考压轴题⼗⼤类型之三⾓形存在性问题19第五讲中考压轴题⼗⼤类型之四边形存在性问题25第六讲中考压轴题⼗⼤类型之线段之间的关系31第七讲中考压轴题⼗⼤类型之定值问题38第⼋讲中考压轴题⼗⼤类型之⼏何三⼤变换问题44第九讲中考压轴题⼗⼤类型之实践操作、问题探究50第⼗讲中考压轴题⼗⼤类型之圆56第⼗⼀讲中考压轴题综合训练⼀62第⼗⼆讲中考压轴题综合训练⼆68第⼀讲中考压轴题⼗⼤类型之动点问题1.(中招吉林)如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P 沿A-B-C-E⽅向运动,到点E停⽌;动点Q沿B-C-E-D⽅向运动,到点D停⽌,设运动时间为x s ,△P AQ 的⾯积为y cm 2,(这⾥规定:线段是⾯积为0的三⾓形)解答下列问题:(1)当x =2s 时,y =_____ cm 2;当x =92s 时,y =_______ cm 2.(2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式.(3)当动点P 在线段BC 上运动时,求出15 4y S 梯形ABCD时x 的值.(4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对⾓线平⾏的所有x 的值.D C BAP QK E D CBA2. (中招河北)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB ⽅向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停⽌运动,点Q 也随之停⽌.设点P 、Q 运动的时间是t 秒(t >0).(1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;(2)当点P 运动到AD 上时,t 为何值能使PQ ∥DC ?(3)设射线QK 扫过梯形ABCD 的⾯积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;(4)△PQE 能否成为直⾓三⾓形?若能,写出t 的取值范围;若不能,请说明理由.备⽤图3. (中招河北)如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA ⽅向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ,交折线BC -CA于点G .点P Q ,同时出发,当点P 绕⾏⼀周回到点D 时停⽌运动,点Q 也随之停⽌.设点P Q ,运动的时间是t 秒(0t >).(1)D F ,两点间的距离是;(2)射线QK 能否把四边形CDEF 分成⾯积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P ⼜恰好落在射线QK 上时,求t 的值;(4)连结PG ,当PG AB ∥时,请直接..写出t 的值.4. (中招⼭西太原)如图,在平⾯直⾓坐标系中,四边形OABC 是平⾏四边形.直线l 经过O 、C 两点.点A 的坐标为(8,0),点B 的坐标GK QP F ED C BA备⽤图FE D C BA为(11,4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的⽅向向点C 运动,过点P 作PM 垂直于x 轴,与折线O -C -B 相交于点M .当P 、Q 两点中有⼀点到达终点时,另⼀点也随之停⽌运动,设点P 、Q 运动的时间为t 秒(0t ),△MPQ 的⾯积为S .(1)点C 的坐标为________,直线l 的解析式为__________.(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围.(3)试求题(2)中当t 为何值时,S 的值最⼤,并求出S 的最⼤值.(4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三⾓形?请直接写出t 的值.yBCQlMPMlQ C B AO xy5. (中招四川重庆)如图,矩形ABCD 中,AB =6,BC =23,点O 是AB 的中点,点P 在AB 的延长线上,且BP =3.⼀动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,⽴即以原速度沿AO 返回;另⼀动点F 从P 点出发,以每秒1个单位长度的速度沿射线P A 匀速运动,点E 、F 同时出发,当两点相遇时停⽌运动.在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFGyxOA BCQlM PF E OPDCBAF E OPAF E OPDCBA和矩形ABCD 在射线P A 的同侧,设运动的时间为t 秒(t ≥0).(1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的⾯积为S ,请直接写出S 与t 之间的函数关系式和相应的⾃变量t 的取值范围;(3)设EG 与矩形ABCD 的对⾓线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三⾓形?若存在,求出对应的t 的值;若不存在,请说明理由.备⽤图1备⽤图2三、测试提⾼ 1.(中招⼭东烟台)如图,在直⾓坐标系中,梯形ABCD 的底边AB在x 轴上,底边CD 的端点D 在y 轴上.直线CB 的表达式为41633y x =-+,点A 、D 的坐标分别为(-4,0),(0,4).动点P ⾃A 点出发,在AB 上匀速运动.动点Q ⾃点B 出发,在折线BCD 上匀速运动,速度均为每秒1个单位.当其中⼀个动点到达终点时,它们同时停⽌运动.设点P 运动t (秒)时,△OPQ 的⾯积为S (不能构成△OPQ 的动点除外).(1)求出点B 、C 的坐标;(2)求S随t变化的函数关系式;(3)当t为何值时S有最⼤值?并求出最⼤值.备⽤图第⼆讲中考压轴题⼗⼤类型之函数类问题1. (中招浙江温州)如图,在平⾯直⾓坐标系中,O 是坐标原点,点A 的坐标为(-4,0),点B 的坐标为(0,b )(b >0).P 是直线AB 上的⼀个动点,作PC ⊥x 轴,垂⾜为 C ,记点P 关于y 轴的对称点为P ′ (点P ′不在y 轴上),连结P P ′,P ′A ,P ′C ,设点P 的横坐标为a .(1)当b =3时,①直线AB 的解析式;②若点P ′的坐标是(-1,m ),求m 的值;(2)若点P 在第⼀象限,记直线AB 与P ′C 的交点为D .当P ′D :DC =1:3时,求a 的值;(3)是否同时存在a ,b ,使△P ′CA 为等腰直⾓三⾓形?若存在,请求出所有满⾜要求的a ,b 的值;若不存在,请说明理由.D B P2. (中招武汉)如图,抛物线212y ax ax b =-+经过A (-1,0),C (2,32)两点,与x 轴交于另⼀点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上⼀动点 (不与点B 重合),点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ =222y ,求y 2与x 的函数关系式,并直接写出⾃变量x 的取值范围;(3)在同⼀平⾯直⾓坐标系中,两条直线x =m ,x =n 分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,H .问四边形EFHG 能否为平⾏四边形? 若能,求m ,n 之间的数量关系;若不能,请说明理由.备⽤图3. (中招江苏镇江)在平⾯直⾓坐标系xOy 中,直线1l 过点A (1,0)且与y 轴平⾏,直线2l 过点B (0,2)且与x 轴平⾏,直线1l 与2l 相交于点P .点E 为直线2l 上⼀点,反⽐例函数ky x(k >0)的图象过点E 且与直线1l 相交于点F .(1)若点E 与点P 重合,求k 的值;(2)连接OE 、OF 、EF .若k >2,且△OEF 的⾯积为△PEF 的⾯积2倍,求点E 的坐标;(3)是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三⾓形与△PEF 全等?若存在,求E 点坐标;若不存在,请说明理由.4. (中招浙江⾈⼭)△ABC 中,∠A =∠B =30°,AB =23.把△ABC 放在平⾯直⾓坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意⾓度的旋转.(1)当点B 在第⼀象限,纵坐标是62时,求点B 的横坐标;(2)如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究:①当54a =,12b =-,355c =-时,A ,B 两点是否都在这条抛物线上?并说明理由;②设b =-2am ,是否存在这样的m 值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.5. (湖北黄冈)已知⼆次函数的图象如图所⽰.(1)求⼆次函数的解析式及抛物线顶点M 的坐标;(2)若点N 为线段BM 上的⼀点,过点N 作x 轴的垂线,垂⾜为点Q .当O y xCBA1 1 -1-1M AxyB C-12-2OO-22-1C B yxA MNQ点N 在线段BM 上运动时(点N 不与点B ,点M 重合),设OQ 的长为t ,四边形NQAC ⾯积为S ,求S 与t 之间的函数关系式及⾃变量t 的取值范围;(3)在对称轴右侧的抛物线上是否存在点P ,使△P AC 为直⾓三⾓形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由;(4)将△OAC 补成矩形,使得△OAC 的两个顶点成为矩形⼀边的两个顶点,第三个顶点落在矩形这⼀边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).三、测试提⾼1.(中招⼭东东营)如图所⽰,四边形OABC 是矩形,点A 、C 的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =+交折线OAB 于点E .(1)记△ODE 的⾯积为S .求S 与b 的函数关系式;O yxE DCB A(2)当点E 在线段OA 上时,且tan ∠DEO =12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的⾯积是否发⽣变化,若不变,求出该重叠部分的⾯积;若改变,请说明理由.第三讲中考压轴题⼗⼤类型之⾯积问题1. (中招辽宁⼤连)如图,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3,0)、C (0,3)三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB .(1)求该抛物线的解析式;(2)抛物线上是否存在⼀点Q ,使△QMB 与△PMB 的⾯积相等,若存在,求点Q 的坐标;若不存在,说明理由;(3)在第⼀象限、对称轴右侧的抛物线上是否存在⼀点R ,使△RPM 与△RMB 的⾯积相等,若存在,直接写出点R 的坐标;若不存在,说明理由.2. (中招湖北⼗堰)如图,⼰知抛物线y =x 2+bx +c 与x 轴交于点A (1,0)和点 B ,与y 轴交于点C (0,-3).y xMPOCBA(1)求抛物线的解析式;(2)如图(1),⼰知点H(0,-1).问在抛物线上是否存在点G(点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标,若不存在,请说明理由:(3)如图(2),抛物线上点D在x轴上的正投影为点E(﹣2,0),F 是OC的中点,连接DF,P为线段BD上的⼀点,若∠EPF=∠BDF,求线段PE的长.3.(中招天津)在平⾯直⾓坐标系中,已知抛物线2=-+y x bx c+与x轴交于点A、B(点A在点B的左侧),与y轴的正半轴交于点C,顶点为E.(Ⅰ)若2c=,求此时抛物线顶点E的坐标;b=,3(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC 中满⾜S△BCE= S△ABC,求此时直线BC的解析式;(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC 中满⾜S△BCE=2S△AOC,且顶点E恰好落在直线43 =-+上,求此时抛y x物线的解析式.。
中考数学压轴题归类复习(十大类型附详细解答)
不圆有关的二次函数综合题………………………………………………………..29
其它(如新定义型题、面积问题等)……………………………………………..33
参考答案…………………………………………………………………………….36
第 1 页 共 78 页
A1、O1、B1.若△A1O1B1 的两个顶点恰好落在抛物线上,请直接写出点 A1 的横坐标为
.
第 8 页 共 78 页
三、相似与三角函数问题 例 3.(四川省遂宁市)如图,二次函数的图象经过点 D(0, 7 3 ),丏顶点 C 的横坐标为
9 4,该图象在 x 轴上截得的线段 AB 的长为 6.
(1)求该二次函数的解析式;
时停止运动.过点 P 作直线 PE∥OC,不折线 O﹣B﹣A 交于点 E.设点 P 运动的时间为 t
(秒).求当以 B、D、E 为顶点的三角形是直角三角形时点 E 的坐标.
第 10 页 共 78 页
苏州中考题:(28 题)如图,点 O 为矩形 ABCD 的对称中心,AB=10cm,BC=12cm.点
中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖 面广,条件隐蔽,关系复杂,思路难觅,解法灵活。所以,解数学压轴题,一要树立必胜的 信心,要做到:数形结合记心头,大题小作来转化,潜在条件丌能忘,化动为静多画图,分 类讨论要严密,方程函数是巟具,计算推理要严谨,创新品质得提高。
(2)在该抛物线的对称轴上找一点 P,使 PA+PD 最小,求出点 P 的坐标;
(3)在抛物线上是否存在点 Q,使△QAB 不△ABC 相似?如果存在,求出点 Q 的坐标;如 y
果丌存在,请说明理由.
D
中考数学压轴题专项训练十套(含答案)
中考数学压轴题专项训练十套(含答案)中考数学压轴题专项训练(一)做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在直角梯形 $OABC$ 中,$AB\parallel OC$,$BC\perp x$ 轴于点 $C$,$A(1,1)$,$B(3,1)$.动点$P$ 从点 $O$ 出发,沿 $x$ 轴正方向以每秒 $1$ 个单位长度的速度移动.过点 $P$ 作 $PQ\perp OA$,垂足为 $Q$.设点$P$ 移动的时间为 $t$ 秒($0<t<4$),$\triangle OPQ$ 与直角梯形 $OABC$ 重叠部分的面积为 $S$.1)求经过 $O$,$A$,$B$ 三点的抛物线解析式.2)求 $S$ 与 $t$ 的函数关系式.3)将 $\triangle OPQ$ 绕着点 $P$ 顺时针旋转$90^{\circ}$,是否存在 $t$,使得 $\triangle OPQ$ 的顶点$O$ 或 $Q$ 在抛物线上?若存在,直接写出 $t$ 的值;若不存在,请说明理由.解析:1)由题意可知,经过 $O$,$A$,$B$ 三点的抛物线为$y=ax^{2}+bx+c$,代入三点的坐标可得:begin{cases}a+b+c=1\\4a+2b+c=1\\9a+3b+c=1end{cases}$解得 $a=-\dfrac{1}{4}$,$b=\dfrac{5}{4}$,$c=\dfrac{1}{2}$,即经过 $O$,$A$,$B$ 三点的抛物线解析式为 $y=-\dfrac{1}{4}x^{2}+\dfrac{5}{4}x+\dfrac{1}{2}$.2)设 $\triangle OPQ$ 的高为 $h$,则 $\triangle OPQ$ 的面积为 $\dfrac{1}{2}xh$,其中 $x=OP=t$.由于 $\triangle OPQ$ 与直角梯形 $OABC$ 重叠部分的面积为 $S$,所以$S=\dfrac{1}{2}(AB+BC)h=\dfrac{1}{2}(3+2t)h$.又因为 $P$ 沿 $x$ 轴正方向以每秒 $1$ 个单位长度的速度移动,所以 $h$ 的变化率为$\dfrac{\mathrm{d}h}{\mathrm{d}t}=-1$,即 $h=-t+4$.综上所述,$S=\dfrac{1}{2}(3+2t)(-t+4)=-t^{2}+5t-6$,即$S$ 与 $t$ 的函数关系式为 $S=-t^{2}+5t-6$.3)将 $\triangle OPQ$ 绕着点 $P$ 顺时针旋转$90^{\circ}$,则 $\triangle OPQ$ 变为 $\triangle OP'Q'$,其中$P'$,$Q'$ 分别为 $P$,$Q$ 绕着点 $P$ 顺时针旋转$90^{\circ}$ 后的点.易知 $\triangle OP'Q'$ 的顶点为 $O'$,坐标为 $(1+t,1)$.将 $O'$ 的坐标代入抛物线的解析式中,得到 $y=-\dfrac{1}{4}(1+t)^{2}+\dfrac{5}{4}(1+t)+\dfrac{1}{2}$.令 $y=0$,解得 $t=2\pm\sqrt{3}$.由于 $0<t<4$,所以 $t=2+\sqrt{3}$,即存在 $t$,使得$\triangle OPQ$ 的顶点 $O$ 在抛物线上.答案:(1)$y=-\dfrac{1}{4}x^{2}+\dfrac{5}{4}x+\dfrac{1}{2}$;(2)$S=-t^{2}+5t-6$;(3)$t=2+\sqrt{3}$.2)正方形以每秒5个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止。
第一讲 中学考试压轴题十大类型之动点问题
DCBA P QK E DCBA 第一讲 中考压轴题十大类型之动点问题1、如图,梯形ABCD 中,AD ∥BC ,∠BAD=90°,CE ⊥AD 于点E ,AD=8cm ,BC=4cm ,AB=5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s ,动点P 沿A-B-C-E 方向运动,到点E 停止;动点Q 沿B-C-E-D 方向运动,到点D 停止,设运动时间为x s ,△PAQ 的面积为y cm 2,(这里规定:线段是面积为0的三角形)解答下列问题:(1) 当x=2s 时,y=_____ cm 2;当x =92s 时,y=_______ cm 2.(2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式.(3)当动点P 在线段BC 上运动时,求出154=y S 梯形ABCD 时x 的值.(4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.2、如图,在等腰梯形ABCD 中,AD ∥BC ,AB=DC=50,AD=75,BC=.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长; (2)当点P 运动到AD 上时,t 为何值能使PQ ∥DC ?(3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式; (4)△PQE 能否成为直角三角形?若能,写出t 的取值围;若不能,请说明理由.备用图3、如图,在Rt △ABC 中,∠C=90°,AB=50,AC=30,D ,E ,F 分别是AC ,AB ,BC 的中点.点P 从点D 出发沿折线DE-EF-FC-CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK ⊥AB ,交折线BC-CA 于点G .点P,Q 同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P,Q 运动的时间是t 秒(0t >). (1)D,F 两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由; (3)当点P 运动到折线EF —FC 上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG ∥AB 时,请直接..写出t 的值.4、如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为(8,0),点B 的坐标为(11,4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O-C-B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t 秒(0t ),△MPQ 的面积为S .(1)点C 的坐标为________,直线l 的解析式为__________.(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值围. (3)试求题(2)中当t 为何值时,S 的值最大,并求出S 的最大值.(4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值.5、如图,矩形ABCD 中,AB =6,BC =23,点O 是AB 的中点,点P 在AB 的延长线上,且BP =3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停止运动.在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线PA 的同侧,设运动的时间为t 秒(t ≥0).(1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值围;(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.备用图1 备用图2测试提高如图,在直角坐标系中,梯形ABCD 的底边AB 在x 轴上,底边CD 的端点D 在y 轴上.直线CB 的表达式B备用图FE D C BA为41633y x=-+,点A、D的坐标分别为(-4,0),(0,4).动点P自A点出发,在AB上匀速运动.动点Q自点B出发,在折线BCD上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为S(不能构成△OPQ的动点除外).(1)求出点B、C的坐标;(2)求S随t变化的函数关系式;(3)当t为何值时S有最大值?并求出最大值.备用图第二讲中考压轴题十大类型之函数类问题1、如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(-4,0),点B的坐标为(0,b)(b>0).P 是直线AB上的一个动点,作PC⊥x轴,垂足为 C,记点P关于y轴的对称点为P′ (点P′不在y轴上),连结P P′,P′A,P′C,设点P的横坐标为a.(1)当b=3时,①直线AB的解析式;②若点P′的坐标是(-1,m),求m的值;(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值;(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.2、如图,抛物线212y ax ax b=-+经过A(-1,0),C(2,32)两点,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若抛物线的顶点为M,点P为线段OB上一动点 (不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,22y,求y2与x的函数关系式,并直接写出自变量x的取值围;(3)在同一平面直角坐标系中,两条直线x=m,x=n分别与抛物线交于点E,G,与(2)中的函数图象交于点F,H.问四边形EFHG能否为平行四边形? 若能,求m,n之间的数量关系;若不能,请说明理由.xyP'DO CBAP备用图3、在平面直角坐标系xOy中,直线1l过点A(1,0)且与y轴平行,直线2l过点B(0,2)且与x轴平行,直线1l与2l相交于点P.点E为直线2l上一点,反比例函数kyx=(k>0)的图象过点E且与直线1l相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积2倍,求点E的坐标;(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由.4、△ABC中,∠A=∠B=30°,AB=3ABC放在平面直角坐标系中,使AB的中点位于坐标原点O (如图),△ABC可以绕点O作任意角度的旋转.(1)当点B6B的横坐标;(2)如果抛物线2y ax bx c=++(a≠0)的对称轴经过点C,请你探究:①当5a=,12b=-,35c=A,B两点是否都在这条抛物线上?并说明理由;②设b=-2am,是否存在这样的m值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.OyxCBA11-1-1OyxED CBA5、已知二次函数的图象如图所示.(1)求二次函数的解析式及抛物线顶点M 的坐标;(2)若点N 为线段BM 上的一点,过点N 作x 轴的垂线,垂足为点Q .当点N 在线段BM 上运动时(点N 不与点B ,点M 重合),设OQ 的长为t ,四边形NQAC 面积为S ,求S 与t 之间的函数关系式及自变量t 的取值围;(3)在对称轴右侧的抛物线上是否存在点P ,使△PAC 为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由;(4)将△OAC 补成矩形,使得△OAC 的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).测试提高如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =+交折线OAB 于点E . (1)记△ODE 的面积为S .求S 与b 的函数关系式;(2)当点E 在线段OA 上时,且tan ∠DEO=12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.第三讲 中考压轴题十大类型之面积问题1、如图,抛物线y =ax 2+bx+c 经过A (-1,0)、B (3,0)、C (0,3)三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB . (1)求该抛物线的解析式;(2)抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,直实用文档接写出点R的坐标;若不存在,说明理由.2、如图,己知抛物线y=x2+bx+c与x轴交于点A(1,0)和点 B,与y轴交于点C(0,-3).(1)求抛物线的解析式;(2)如图(1),己知点H(0,-1).问在抛物线上是否存在点G (点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标,若不存在,请说明理由:(3)如图(2),抛物线上点D在x轴上的正投影为点E(﹣2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.3、在平面直角坐标系中,已知抛物线y=-x²+bx+c与x轴交于点A、B(点A在点B的左侧),与y轴的正半轴交于点C,顶点为E.(1)若2b=,3c=,求此时抛物线顶点E的坐标;(2)将(1)中的抛物线向下平移,若平移后,在四边形ABEC中满足S△BCE= S△ABC,求此时直线BC的解析式;(3)将(1)中的抛物线作适当的平移,若平移后,在四边形ABEC中满足S△BCE=2S△AOC,且顶点E恰好落在直线43y x=-+上,求此时抛物线的解析式.4、如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第ts时,△EFG的面积为Scm2.(1)当t=1s时,S的值是多少?yxMPOCBA(2)写出S与t之间的函数解析式,并指出自变量t的取值围;(3)若点F在矩形的边BC上移动,当t为何值时,以点B、E、F为顶点的三角形与以C、F、G为顶点的三角形相似?请说明理由.5、如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿AB向点B 运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t秒(t>0),形EFGH与△ABC重叠部分面积为S.(1)当t=1时,形EFGH的边长是.当t=3时,形EFGH的边长是.(2)当0<t≤2时,求S与t的函数关系式;(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?BA BA备用图测试提高如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作形DEFG.(1)当形DEFG的边GF在BC上时,求形DEFG的边长;(2)设DE = x,△ABC与形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值围,并求出y的最大值.第四讲中考压轴题十大类型之三角形存在性问题板块一、等腰三角形存在性1、如图,已知一次函数7y x=-+与正比例函数34y x=的图象交于点A,且与x轴交于点B.AEB FGDBAD EFGC B备用图(1)AC备用图(2)ACy=-x+7OABxyy=43xy=-x+7OABxyy=43x(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l 交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.(备用图)2、如图,在平面直角坐标系xOy中,抛物线21410189y x x=--与x轴的交点为点A,与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)(1)求A,B,C三点的坐标和抛物线的顶点的坐标;(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;(3)当92t<<时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.板块二、直角三角形1、如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为 (1,0).(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标.2、如图所示,矩形ABCD 的边长AB=6,BC=4,点F 在DC 上,DF=2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线上时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题: (1)说明△FMN ∽△QWP ;(2)设04x ≤≤(即M 从D 到A 运动的时间段).试问x 为何值时,△PWQ 为直角三角形?当x 在何围时,△PQW 不为直角三角形?(3)问当x 为何值时,线段MN 最短?求此时MN 的值.板块三、相似三角形存在性1、在平面直角坐标系中,抛物线2y ax bx =+3+与x 轴的两个交点分别为A (-3,0)、B (1,0),过顶点C 作CH ⊥x 轴于点H .(1)直接填写:a = ,b= ,顶点C 的坐标为 ;(2)在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.(备用图)测试提高FP WQNA BWQP NM F BA如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0),过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且01t <<. (1)填空:点C 的坐标是_____,b =_____,c =_____;(2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.第五讲 中考压轴题十大类型之四边形存在性问题1、直线364y x =-+与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.2、 在平面直角坐标系中,已知抛物线经过A (40),-,B (04),-,C (20),三点. (1)求抛物线的解析式;(2)若点M 为第三象限抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.y xQP BAO3、 已知直线343y x =+与x 轴、y 轴分别交于A 、B 两点,∠ABC=60°,BC 与x 轴交于点C . (1)试确定直线BC 的解析式;(2)若动点P 从A 点出发沿AC 向点C 运动(不与A 、C 重合),同时动点Q 从C 点出发沿CBA 向点A 运动(不与C 、A 重合),动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值围; (3)在(2)的条件下,当△APQ 的面积最大时,y 轴上有一点M ,平面是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形?若存在,请直接写出N 点的坐标;若不存在,请说明理由.y xOC BA4、如图,对称轴为直线x =27的抛物线经过点A (6,0)和B (0,4).(1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值围;(3)①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形?②是否存在点E ,使四边形OEAF 为形?若存在,求出点E 的坐标;若不存在5、如图,在平面直角坐标系中,函数2y x =+12的图象分别交x 轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点. (1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面任意一点,在坐标平面是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.测试提高已知:如图所示,关于x 的抛物线2=++y ax x c (a ≠0)与x 轴交于点A (-2,0)、点B (6,0),与y 轴交于点C .(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D ,使四边形ABDC 为等腰梯形,写出点D 的坐标,并求出直线AD 的解析式; (3)在(2)中的直线AD 交抛物线的对称轴于点M ,抛物线上有一动点P ,x 轴上有一动点Q .是否存在以A 、M 、P 、Q 为顶点的平行四边形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.yxOMBA第六讲 中考压轴题十大类型之线段之间的关系1. (2010天津)在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点.(Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(Ⅱ)若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.2. (2011)四边形ABCD 是直角梯形,BC ∥AD ,∠BAD=90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使得PA=PC ,若存在,求出点P 的坐标;若不存在,请说明理由; (3)设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE-QC|最大?并求出最大值.y B OD C A xED 'yBOD CA x温馨提示:如图,可以作点D 关于x 轴的对称点D ',连接CD '与x 轴交于点E ,此时△CDE 的周长是最小的.这样,你只需求出OE 的长,就可以确定点E 的坐标了.3. (2011眉山)如图,在直角坐标系中,已知点A(0,1),B(4-,4),将点B 绕点A 顺时针方向旋转90°得到点C ,顶点在坐标原点的抛物线经过点B . (1) 求抛物线的解析式和点C 的坐标;(2) 抛物线上有一动点P ,设点P 到x 轴的距离为1d ,点P 到点A 的距离为2d ,试说明211d d =+; (3) 在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.4. (2011)已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B在A 点右侧),点H 、B 关于直线3:3l y x =+对称. (1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN+NM+MK 和的最小值.lyxK HBOA5. (2009) 如图1M (-2,-1),且P (-1,-2)为双曲线上的一点,Q 轴,QB 垂直于y 轴,垂足分别是A 、B . (1(2)当点Q 在直线MO Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点Q (3)如图2,当点Q OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值.图1x 图2 [来源:Z xk .Com]6. (2010)如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设()M m n ,是抛物线上的一点(m n 、为正整数),且它位于对称轴的右侧.若以M B O A 、、、为顶点的四边形四条边的长度是四个连续的正整数,求点M 的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P ,22228PA PB PM ++>是否总成立?请说明理由.三、测试提高1. (2009)如图,已知点A(-4,8)和点B(2,n)在抛物线2=y ax 上.(1)求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ+QB 最短,求出点Q 的坐标;(2)平移抛物线2=y ax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C(-2,0)和点D(-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C+CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.4x22A8 -2O -2 -4y6 B C D -44第七讲 中考压轴题十大类型之定值问题1. (2011天津)已知抛物线1C :21112y x x =-+,点F(1,1). (Ⅰ)求抛物线1C 的顶点坐标;(Ⅱ)①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF +=;②抛物线1C 上任意一点P (P P x y ,)(01P x <<),连接PF ,并延长交抛物线1C 于点Q (Q Q x y ,),试判断112PF QF+=是否成立?请说明理由; (Ⅲ)将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值.2. (2009株洲)如图,已知△ABC 为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D . (1)求点A 的坐标(用m 表示); (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.3. (2008)已知:抛物线2y ax bx c =++(a ≠0),顶点C (1,3-),与x 轴交于A 、B 两点,(10)A -,.(1)求这条抛物线的解析式;(2)如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点(P 与A 、B 两点不重合),过点P 作PM ⊥AE 于M ,PN ⊥DB 于N ,请判断PM PNBE AD+是否为定值? 若是,请求出此定值;若不是,请说明理由;(3)在(2)的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、BE 相交于点F 、G (F 与A 、E 不重合,G 与E 、B 不重合),请判断PA EFPB EG=是否成立.若成立,请给出证明;若不成立,请说明理由.4. (2011株洲)孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请解答以下问题:(1)若测得22OA OB ==(如图1),求a 的值;(2)对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x ⊥轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐标...; (3)对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.5. (2009)如图,抛物线24y ax bx a =+-经过()10A -,、()04C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(),1D m m +在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=︒,求点P 的坐标.[来源:学.科.网Z .X .X .K]三、测试提高1. (2009湘西)在直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于两点A 、B ,与y 轴交于点C ,其中A 在B 的左侧,B 的坐标是(3,0).将直线y kx =沿y 轴向上平移3个单位长度后恰好经过点B 、C . (1) 求k 的值;(2) 求直线BC 和抛物线的解析式; (3) 求△ABC 的面积; (4) 设抛物线顶点为D ,点P 在抛物线的对称轴上,且∠APD=∠ACB ,求点P 的坐标.、第八讲 中考压轴题十大类型之 几何三大变换问题1. (2009)问题解决:如图(1),将形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.的值等于 ;若14CE CD =,则整数),则AMBN的值等折叠,使点B 落在CD 边上一点E MN ,设()111AB CE m BC m CD n=>=,,则(不与点C D ,重合),压平后得到折痕AMBN的值等于 .(用含m n ,的式子表示)2. (2011)如图①,在矩形ABCD 中,将矩形折叠,使B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或边CD (含端点)交于点F ,然后再展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.图(2)N ABCD EFM图(1) Ny xCD F EA (B )Oy xCD FEA (B )Oy xCDFEA (B )O图1 图2 图3 图4ααααθ4θ6θ5θ3HHHHB 4A 4B 2B 3B 3B 4B 5A 5A 4B 3A 3A 3A 3A 2A 2A 2B 2B 2B 1B 1B 1A A A 1A A A 2B 2A 0B 1A 1A (1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形; (2)如图②,在矩形ABCD 中,AB=2,BC=4.当它的“折痕△BEF ”的顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中, AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF ”?若存在,说明理由,并求出此时点E 的坐标;若不存在,为什么?图① 图② 图③3. (2010)课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题.实验与论证设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示. (1)用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;(2)图1-图4中,连接A 0H 时,在不添加其他辅助线的情况下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请选择其中的一个图给归纳与猜想设正n 边形A 0A 1A 2…A n-1与正n 边形A 0B 1B 2…B n-1重合(其中,A 1与B 1重合),现将正n 边形A 0B 1B 2…B n-1绕顶点A 0逆时针旋转α(nοο1800<<α).(3)设θn 与上述“θ3,θ4,…”的意义一样,请直接写出θn 的度数;(4)试猜想在n 边形且不添加其他辅助线的情形下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.4. (2009)已知形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)求证:EG=CG ;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)A DEGFADGFAED5. (2010)卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90°,B ∠=306cm °,;A BC ∠==图②中,90D ∠=°,45E ∠=°, 4cm DE =.图③是卫同学所做的一个实验:他将DEF △的直角边DE 与△ABC 的斜边AC 重合在一起,并将DEF △沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合). (1)在DEF △沿AC 方向移动的过程中,卫同学发现:F C 、两点间的距离逐渐_________.(填“不变”、“变大”或“变小”)(2)卫同学经过进一步地研究,编制了如下问题:问题①:当DEF △移动至什么位置,即AD 的长为多少时,F C 、的连线与AB 平行?问题②:当DEF △移动至什么位置,即AD 的长为多少时,以线段AD FC BC 、、的长度为三边长的三角形是直角三角形?问题③:在DEF △的移动过程中,是否存在某个位置,使得15FCD ∠=°?如果存在,求出AD 的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程.(图①)(图②)CEDF。
中考数学压轴题归类复习十大类型附详细解答
中考数学压轴题辅导(十大类型)目录动点型问题 (3)几何图形的变换(平移、旋转、翻折) (6)相似与三角函数问题9 三角形问题(等腰直角三角形、等边三角形、全等三角形等) (13)与四边形有关的二次函数问题 (16)初中数学中的最值问题 (19)定值的问题 (22)存在性问题(如:平行、垂直,动点,面积等) (25)与圆有关的二次函数综合题 (29)其它(如新定义型题、面积问题等) (33)参考答案 (36)中考数学压轴题辅导(十大类型)数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
中考必考考点数学压轴题归类复习(十大类型附详细解答)
中考数学压轴题辅导(十大类型)目录动点型问题 (3)几何图形的变换(平移、旋转、翻折) (6)相似与三角函数问题9三角形问题(等腰直角三角形、等边三角形、全等三角形等) (13)与四边形有关的二次函数问题 (16)初中数学中的最值问题 (19)定值的问题 (22)存在性问题(如:平行、垂直,动点,面积等) (25)与圆有关的二次函数综合题 (29)其它(如新定义型题、面积问题等) (33)参考答案 (36)中考数学压轴题辅导(十大类型)数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
中考数学压轴题归类复习(十大类型附详细解答)
中考数学压轴题辅导(十大类型)目录动点型问题 (3)几何图形的变换(平移、旋转、翻折) (6)相似与三角函数问题9三角形问题(等腰直角三角形、等边三角形、全等三角形等) (13)与四边形有关的二次函数问题 (16)初中数学中的最值问题 (19)定值的问题 (22)存在性问题(如:平行、垂直,动点,面积等) (25)与圆有关的二次函数综合题 (29)其它(如新定义型题、面积问题等) (33)参考答案 (36)中考数学压轴题辅导(十大类型)数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
20XX中考数学压轴题十大题型(含详细答案)1
一、中考数学压轴题1.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式;(3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)2.已知:如图,AB 为O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;(2)如图2,连接HC ,若HC HF =,求证:HC HA =;(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK的值.3.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.5.如图,矩形ABCD 中,AB =8,BC =12,E 是BC 边的中点,点P 在线段AD 上,过P 作PF ⊥AE 于F ,设PA =x .(1)求证:△PFA ∽△ABE ;(2)当点P 在线段AD 上运动时,是否存在实数x ,使得以点P ,F ,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,请说明理由;(3)探究:当以D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点时,请直接写出DP 满足的条件: .6.已知,在Rt △ABC 和Rt △DEF 中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB =EF =6,如图1,D 是斜边AB 的中点,将等腰Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N .(1)如图1,当α=60°时,求证:DM =BN ;(2)在上述旋转过程中,DN DM 的值是一个定值吗?请在图2中画出图形并加以证明; (3)如图3,在上述旋转过程中,当点C 落在斜边EF 上时,求两个三角形重合部分四边形CMDN 的面积.7.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax ,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.8.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.9.如图,在ABC ∆中,14AB =,45B ∠=︒,4tan 3A =,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.(1)当t =_______秒时,点N 落在AC 边上.(2)设正方形PQMN 与ABC ∆重叠部分面积为S ,当点N 在ABC ∆内部时,求S 关于t 的函数关系式.(3)当正方形PQMN 的对角线所在直线将ABC ∆的分为面积相等的两部分时,直接写出t 的值.10.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C .(1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.11.对于平面直角坐标系xOy 中的图形W 1和图形W 2.给出如下定义:在图形W 1上存在两点A ,B (点A ,B 可以重合),在图形W 2上存在两点M ,N ,(点M 于点N 可以重合)使得AM=2BN ,则称图形W 1和图形W 2满足限距关系(1)如图1,点C(1,0),D(-1,0),E(0,3),点P 在线段DE 上运动(点P 可以与点D ,E 重合),连接OP ,CP .①线段OP 的最小值为_______,最大值为_______;线段CP 的取值范直范围是_____; ②在点O ,点C 中,点____________与线段DE 满足限距关系;(2)如图2,⊙O 的半径为1,直线3y x b =+(b>0)与x 轴、y 轴分别交于点F ,G .若线段FG 与⊙O 满足限距关系,求b 的取值范围;(3)⊙O 的半径为r(r>0),点H ,K 是⊙O 上的两个点,分别以H ,K 为圆心,1为半径作圆得到⊙H 和 K ,若对于任意点H ,K ,⊙H 和⊙K 都满足限距关系,直接写出r 的取值范围.12.如图1,在平面直角坐标系中,抛物线2393344y x x =--与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C . (1)过点C 的直线5334y x =-交x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:(2)如图2, 将ABC ∆绕点B 顺时针旋转至A BC ''∆的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连接AE C E '、, 将AC E ∆'沿直线C E '翻折为A C E ∆'', 是否存在点E , 使得BAA ∆'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系xoy 中,直线122y x =-+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2x =与x 轴的交点为点,A 且经过点B C 、两点.(1)求抛物线的解析式;(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.14.在平面直角坐标系xOy 中,点A 为x 轴上的动点,点B 为x 轴上方的动点,连接OA ,OB ,AB .(1)如图1,当点B 在y 轴上,且满足OAB ∠的角平分线与OBA ∠的角平分线交于点P ,请直接写出P ∠的度数;(2)如图2,当点B 在y 轴上,OAB ∠的角平分线与OBA ∠的角平分线交于点P ,点C 在BP 的延长线上,且满足45AOC ∠=︒,求OAB OCB∠∠;(3)如图3,当点B 在第一象限内,点P 是AOB ∆内一点,点M ,N 分别是线段OA ,OB 上一点,满足:1902APB AOB ∠=︒+∠,PM PN =,180ONP OMP ∠+∠=︒.以下结论:①OM ON =;②AP 平分OAB ∠;③BP 平分OBA ∠;④AM BN AB +=.正确的是:________.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过程).15.如图1,已知点B (0,9),点C 为x 轴上一动点,连接BC ,△ODC 和△EBC 都是等边三角形.(1)求证:DE =BO ;(2)如图2,当点D 恰好落在BC 上时.①求点E 的坐标;②在x 轴上是否存在点P ,使△PEC 为等腰三角形?若存在,写出点P 的坐标;若不存在,说明理由;③如图3,点M 是线段BC 上的动点(点B ,点C 除外),过点M 作MG ⊥BE 于点G ,MH ⊥CE 于点H ,当点M 运动时,MH +MG 的值是否发生变化?若不会变化,直接写出MH +MG 的值;若会变化,简要说明理由.16.已知抛物线y=﹣x 2﹣2x+3交x 轴于点A 、C (点A 在点C 左侧),交y 轴于点B .(1)求A ,B ,C 三点坐标;(2)如图1,点D 为AC 中点,点E 在线段BD 上,且BE=2DE ,连接CE 并延长交抛物线于点M ,求点M 坐标;(3)如图2,将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,点P 为△ACG 内一点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在它们的左侧作等边△APR 和等边△AGQ ,求PA+PC+PG 的最小值,并求当PA+PC+PG 取得最小值时点P 的坐标(直接写出结果即可).17.已知:矩形ABCD 内接于⊙O ,连接 BD ,点E 在⊙O 上,连接 BE 交 AD 于点F ,∠BDC+45°=∠BFD ,连接ED .(1)如图 1,求证:∠EBD=∠EDB ;(2)如图2,点G 是 AB 上一点,过点G 作 AB 的垂线分别交BE 和 BD 于点H 和点K ,若HK=BG+AF ,求证:AB=KG ;(3)如图 3,在(2)的条件下,⊙O 上有一点N ,连接 CN 分别交BD 和 AD 于10点 M 和点 P ,连接 OP ,∠APO=∠CPO ,若 MD=8,MC= 3,求线段 GB 的长.18.如图,平面直角坐标系中,抛物线228y ax ax a =--与x 轴交于B 、C 两点(点B 在点C 右侧),与y 轴交于点A ,连接AB ,5AB =(1)求抛物线的解析式;(2)点P 在第二象限的抛物线上,连接PB 交y 轴于D ,取PB 的中点E ,过点E 作EH x ⊥轴于点H ,连接DH ,设点P 的横坐标为t .ODH 的面积为S ,求S 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,作PF y ⊥轴于F ,连接CP 、CD ,CP CD =,点S 为PF 上一点,连接BS 交y 轴于点T ,连接BF 并延长交抛物线于点R .SBC FBO 45∠+∠=︒,在射线CS 上取点Q.连接QF ,QF RF =,求直线TQ 的解析式.19.如图①,△ABC 是等腰直角三角形,在两腰AB 、AC 外侧作两个等边三角形ABD 和ACE ,AM 和AN 分别是等边三角形ABD 和ACE 的角平分线,连接CM 、BN ,CM 与AB 交于点P .(1)求证:CM =BN ;(2)如图②,点F 为角平分线AN 上一点,且∠CPF =30°,求证:△APF ∽△AMC ; (3)在(2)的条件下,求PF BN的值. 20.定义:将函数l 的图象绕点P (m ,0)旋转180°,得到新的函数l '的图象,我们称函数l '是函数关于点P 的相关函数.例如:当m =1时,函数y =(x +1)2+5关于点P (1,0)的相关函数为y =﹣(x ﹣3)2﹣5.(1)当m =0时①一次函数y =x ﹣1关于点P 的相关函数为 ;②点(12,﹣98)在二次函数y =﹣ax 2﹣ax +1(a ≠0)关于点P 的相关函数的图象上,求a 的值.(2)函数y =(x ﹣1)2+2关于点P 的相关函数y =﹣(x +3)2﹣2,则m = ;(3)当m﹣1≤x≤m+2时,函数y=x2﹣mx﹣12m2关于点P(m,0)的相关函数的最大值为6,求m的值.21.已知菱形ABCD中,∠ABC=60°,AB=4,点M在BC边上,过点M作PM∥AB交对角线BD于点P,连接PC.(1)如图1,当BM=1时,求PC的长;(2)如图2,设AM与BD交于点E,当∠PCM=45°时,求证:BEDE=33+;(3)如图3,取PC的中点Q,连接MQ,AQ.①请探究AQ和MQ之间的数量关系,并写出探究过程;②△AMQ的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.22.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.23.(1)(发现)如图1,在ABC中,//DE BC分别交AB于D,交AC于E.已知CD BE⊥,3CD=,5BE=,求BC DE+的值.思考发现,过点E作//EF DC,交BC延长线于点F,构造BEF,经过推理和计算能够使问题得到解决(如图2).请回答:BC DE +的值为______.(2)(应用)如图3,在四边形ABCD 中,//AB CD ,AD 与BC 不平行且AD BC =,对角线AC BD ⊥,垂足为O .若3CD =,5AB =,DAB CBA ∠=∠,求AC 的长.(3)(拓展)如图4,已知平行四边形ABCD 和矩形ABEF ,AC 与DF 交于点G ,FD FB =,且30BFD ∠=︒,60EBF ∠=︒,判断AC 与DF 的数量关系并证明.24.在菱形ABCD 中,点P 是对角线BD 上一点,点M 在CB 的延长线上,且PC PM =, 连接PA .()1如图①,求证:PA PM =;()2如图②,连接,AM PM 与AB 交于点,120O ADC ︒∠=求证 =PC AM ;()3连接AM ,当 90ADC ︒∠=时,PC 与AM 的数量关系是25.如图,直角三角形ABC ∆中,90460ACB AC A ∠︒=∠︒=,,=,O 为BC 中点,将ABC ∆绕O 点旋转180︒得到DCB ∆.一动点P 从A 出发,以每秒1的速度沿A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.(1)当点P 运动2秒时,另一动点Q 也从A 出发沿A B D →→的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN 使//QN PM ,设点Q 的运动时间为t 秒,(0<t<10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在BC 上以每秒32的速度匀速运动,在CD 上以每秒2的速度匀度运动,是否存在这样的P R 、,使BPR ∆为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.C解析:(1)点C的坐标为(2,0);(2)1522 y x=-+;(3)①2481515y x x=-;②1013.【解析】【分析】(1)求得对称轴,由对称性可知C点坐标;(2)利用待定系数法求解可得;(3)①由AE=3AO的关系,建立K型模型相似,求得点E坐标代入解析式可得;②若△CDB与△BOA相似,则∠OAB=∠CDB=90°,由相似关系可得点D坐标,代入解析式y=ax2-2ax可得a值.【详解】解:(1)把0y=代入22y ax ax=-,得220ax ax-=,解得:0x=,或2x=.∵点C在x轴正半轴上,∴点C的坐标为(2,0).(2)设直线表达式为y kx b=+,把点(1,2)A,(5,0)B分别代入y kx b=+,得250k bk b+=⎧⎨+=⎩,解得1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的表达式为:1522y x=-+.(3)①作AH x⊥轴于点H,EF AH⊥于点F(如图),∵222125OA=+=,2222420AB,22525OB==,∴222OA AB OB+=.∴90EAO OAB∠=∠=︒.由EFA AHO△∽△,得2EF FA EAAH HO AO===,∴4EF=,2FA=,∴点E 坐标为()3,4-.把(3,4)E -代入22y ax ax =-,得964a a +=, 解得:415a =. ∴2481515y x x =-. ②若△CDB 与△BOA 相似,如图,作DG ⊥BC ,∴CD BD BC AO AB BO==,∠OAB=∠CDB=90°, 35525==, ∴35CD =65BD =,∵523BC =-=,∴356565535DG ==, ∴156225x -+=,解得:135x =, ∴点D 的坐标为:(135,65), 把点D 代入22y ax ax =-,即16913622555a a -⨯= 解得:1013a =; 故答案为:1013. 【点睛】本题是二次函数的综合问题,考查了二次函数的基本性质,数形结合与K 型模型的使用,以及相似存在性问题,内容综合较好,难度相当入门级压轴问题.2.A解析:(1)详见解析;(2)详见解析;(3)15KG AK =【解析】 【分析】(1)根据同弧所对的圆周角相等,进行角度计算,得90AHG HAG ∠+∠=︒,进而得到90AGH ∠=︒,即可证明AG HD ⊥;(2)连接AC 、AD 、CF ,根据同弧所对的圆周角相等,进行角度计算,得HFA HAF ∠=∠,进而得到HF HA =,再根据已知HC HF =,得到HC HA =; (3)在DH 上截取DT HC =,过点C 作CM HD ⊥于点M ,通过证明AHC ≌ATD 得到AH AT =,进而得到HG CH GD +=,再根据F 为DG 中点,得到GF DF =,通过勾股定理逆用,证明90HCF ∠=︒,再通过解ACE △得1tan 3CAB ∠=,解△CDH 得1tan 2CDF ∠=,求得OF 、OH ,逆用勾股定理证明90HOF ∠=︒,易求1tan 2KHG ∠=,1tan 3HAG ∠=,最后求得KGAK的值. 【详解】(1)证明:如图,设HAG ∠为α,∵HAG BDC ∠=∠, ∴HAG BDC α∠=∠=, ∵CD AB ⊥,∴90BDC DBE ∠+∠=︒ ∴90DBE α∠=︒-,∵AHG ∠与ABD ∠为同对弧AD 所对的圆周角, ∴90AHG ABD α∠=∠=︒-, ∴90AHG HAG ∠+∠=︒,∴18090AGH AHG HAG ∠=︒-∠-∠=︒ ∴AG HD ⊥(2)如图,连接AC 、AD 、CF ,∵AB 为直径,AB CD ⊥, ∴CE DE =, ∴AB 垂直平分CD , ∴AC AD =,FC FD =,∴ACD ADC ∠=∠,FCD FDC ∠=∠,∴ACD FCD ADC FDC ∠-∠=∠-∠,即ACF ADF ∠=∠, 设FCD FDC α∠=∠=,ACF ADF β∠=∠=, ∵ADH ∠与ACH ∠为同对弧AH 所对的圆周角, ∴ADH ACH β∠=∠=, ∴2HCF HCA ACF β∠=∠+∠=, ∵HFC FCD FDC ∠=∠+∠, ∴2HFC α∠=, ∵HC HF =, ∴HCF HFC ∠=∠, ∴22αβ=, ∴αβ=, ∵AB 为直径, ∴90ADB ∠=︒, ∴90HDB β∠=︒-,∵HAB ∠与为HDB ∠同对弧BH 所对的圆周角, ∴90HAB HDB β∠=∠=︒-, ∵AB CD ⊥,∴9090BFD αβ∠=︒-=︒-, ∵9090HFA BFD αβ∠=∠=︒-=︒-, ∴HFA HAF ∠=∠, ∴HF HA =, ∴HC HA =;(3)如图,在DH 上截取DT HC =,∵ADH ∠与ACH ∠同对弧AH 所对的圆周角, ∴ADH ACH ∠=∠, ∵AB 为直径,且AB CD ⊥ ∴AC =AD , ∴AC AD =, ∴AHC ≌ATD , ∴AH AT =, ∵AG HT ⊥, ∴HG TG =,∴HG CH GT DT GD +=+=, 设2HG k =,则4CH k =,GD 6k =, ∵F 为DG 中点, ∴3GF DF k ==,∴5HF HG GF k =+=,FD =CF =3k ,在HCF 中,由勾股定理逆定理得90HCF ∠=︒, 过点C 作CM HD ⊥于点M , 由△HCF 面积,可求CM =125k , ∴229=5MF CF CM k -=, ∴1tan 2CM CM CDF MD MF FD ∠===+, 解ACE △得1tan 3CAB ∠=, 易求OF ,OH ,由勾股定理逆定理得90HOF ∠=︒, 易求1tan 2KHG ∠=,1tan 3HAG ∠=, ∴15KG AK =. 【点睛】本题考查圆与三角形综合,主要考查知识点有同弧所对的圆周角相等,垂径定理,三角形全等的判定与性质,勾股定理的逆用,解直角三角形,锐角三角函数等,知识点跨度大,计算量多;熟练掌握圆的性质和三角形相关知识是解决本题的关键.3.B解析:(1)213y x x 222=+-;(2)4;(3)存在,Q 的坐标为()2,4-或()2,1-- 【解析】 【分析】()1根据题意将()D 2,3、()B 4,0-的坐标代入抛物线表达式,即可求解;()2由题意设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭,BMC1SMK OB 2=⋅⋅,即可求解; ()3由题意和如图所示可知,1tan QHN 2∠=,在RtQNH 中,QH m 6=+,222QN OQ (2)m m 4==-+=+,2QN m 4sin QHN QH5∠+===,进行分析计算即可求解. 【详解】解:()1将()D 2,3、()B 4,0-的坐标代入抛物线表达式得:422316420a b a b +-=⎧⎨--=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩, 则抛物线的解析式为:213y x x 222=+-; ()2过点M 作y 轴的平行线,交直线BC 于点K ,将点B 、C 的坐标代入一次函数表达式:y k'x b'=+得:04'''2k b b =-+⎧⎨=-⎩,解得:1'2'2k b ⎧=-⎪⎨⎪=-⎩, 则直线BC 的表达式为:1y x 22=--, 设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭, 22BMC1113SMK OB 2x 2x x 2x 4x 2222⎛⎫=⋅⋅=----+=-- ⎪⎝⎭, a 10=-<,BMC S∴有最大值,当bx 22a=-=-时, BMCS最大值为4,点M 的坐标为()2,3--;()3如图所示,存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆,切点为N ,过点M 作直线平行于y 轴,交直线AC 于点H ,点M 坐标为()2,3--,设:点Q 坐标为()2,m -, 点A 、C 的坐标为()1,0、()0,2-,OA 1tan OCA OC 2∠==, QH //y 轴, QHN OCA ∠∠∴=, 1tan QHN 2∠∴=,则sin QHN 5∠=将点A 、C 的坐标代入一次函数表达式:y mx n =+得:02m n n +=⎧⎨=-⎩, 则直线AC 的表达式为:y 2x 2=-,则点()H 2,6--,在Rt QNH 中,QH m 6=+,QN OQ ===QN sin QHNQHm 6∠===+, 解得:m 4=或1-,即点Q 的坐标为()2,4-或()2,1--.【点睛】本题考查的是二次函数知识的综合运用,涉及到解直角三角形、圆的基本知识,本题难点是()3,核心是通过画图确定圆的位置,本题综合性较强.4.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得.【详解】解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==. 45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩解得16k b =-⎧⎨=⎩∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+, 16362S AC DK t ∴=⋅=-+()06t ≤<; 如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠.ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥,HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠MR MB ∴=.CM MR ∴=.//RD AC ,::1:1CF RG CM RM ∴==.CF RG ∴=.同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP ==,5tan 19PG OF OBF BP OB ∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=. 7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=. (1,0)N ∴-,75,22D ⎛⎫ ⎪⎝⎭. 设直线 DN 的解析式为y ax c =+,将N 、D 两点代入,07522a c a c -+=⎧⎪⎨+=⎪⎩ 解得5959a c ⎧=⎪⎪⎨⎪=⎪⎩∴直线DM 的解析式为5599y x =+. 【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标. 5.D解析:(1)见解析;(2)存在,满足条件的x 的值为6或253;(3)DP =485或10<DP ≤12【解析】【分析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似; (2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:①当∠PEF =∠EAB 时,则得到四边形ABEP 为矩形,从而求得x 的值;②当∠PEF =∠AEB 时,再结合(1)中的结论,得到等腰△APE .再根据等腰三角形的三线合一得到F 是AE 的中点,运用勾股定理和相似三角形的性质进行求解.(3)首先计算圆D 与线段相切时,x 的值,在画出圆D 过E 时,半径r 的值,确定x 的值,半径比这时大时符合题意,根据图形确定x 的取值范围,从而得出DP 的范围.【详解】(1)证明:∵矩形ABCD ,∴∠ABE =90°,AD ∥BC ,∴∠PAF =∠AEB ,又∵PF ⊥AE ,∴∠PFA =90°=∠ABE ,∴△PFA ∽△ABE .(2)解:分二种情况:①若△EFP ∽△ABE ,如图1,则∠PEF =∠EAB ,∴PE ∥AB ,∴四边形ABEP 为矩形,∴PA =EB =6,即x =6.②如图2,若△PFE ∽△ABE ,则∠PEF =∠AEB ,∵AD ∥BC∴∠PAF =∠AEB ,∴∠PEF =∠PAF .∴PE =PA .∵PF ⊥AE ,∴点F 为AE 的中点,Rt △ABE 中,AB =8,BE =6,∴AE 22AB BE +2286+,∴EF =152AE =, ∵△PFE ∽△ABE , ∴PE EF AE BE =, ∴5106x =,∴PE=253,∴满足条件的x的值为6或253.(3)如图3,当⊙D与AE相切时,设切点为G,连接DG,∵AP=x,∴PD═DG=12﹣x,∵∠DAG=∠AEB,∠AGD=∠B=90°,∴△AGD∽△EBA,∴AD DG AE AB=,∴1212108x-=,∴x=125,∴12481255 DP=-=,当⊙D过点E时,如图4,⊙D与线段有两个公共点,连接DE,此时PD=DE=10,故答案为:DP =485或10<DP ≤12. 【点睛】 本题考查动点问题,动点在不同地方时,得到的图形是不同的,解题关键是确定动点运动过程中,有几种对应的图形,然后再根据图形性质分析求解.6.A解析:(1)详见解析;(2)3DN DM =,是一个定值;(3)92 【解析】【分析】(1)利用ASA 证ADM DBN △≌△,从而得出DM BN =;(2)如下图,先证NDQ MDP △∽△,得出DN DQ DM DP=,然后在Rt BDQ △,利用tan ∠B 得出DQ BQ 的值,最后得出DN DM的值; (3)如下图,先证点C 是EF 的中点,然后利用CD 平分EDF ∠可推导出四边形CGDH 为正方形,从而得出CHN CGM △≌△,进而得出面积.【详解】解:(1)由题意,∵60α=︒,90EDF ∠=︒,∴30BDN ∠=︒,∴BDN A ∠=∠,B EDA ∠=∠,∵点D 是斜边AB 的中点,∴AD BD =,∴ADM DBN △≌△,∴DM BN =.(2)3DN DM=,是一个定值. 证明:如图1,作DP AC ⊥于点P ,DQ BC ⊥于点Q ,∴90NQD MPD ∠=∠=︒,又∵90MDN PDQ ∠=∠=︒,∴NDQ MDP ∠=∠,∴NDQ MDP △∽△,∴DN DQ DM DP=, 在Rt BDQ △中,60B ∠=︒,∴tan ∠B 3DQ BQ ==又由(1)可知:DP BQ =,∴3DQ DP=,∴3DN DM=. (3)连接CD ,作CG DE ⊥于点G ,CH DF ⊥于点H ,在Rt ABC 中,点D 是AB 的中点,∴132CD AB ==, ∵AB EF =,∴12CD EF =,∵90EDF ∠=︒,∴C 是EF 中点, ∴CD 平分EDF ∠,45CDE ∠=︒,∵CG DE ⊥,CH DF ⊥,∴CG CH =,∵90CGD CHD EDF ∠=∠=∠=︒,∴四边形CGDH 为正方形,90GCH ∠=︒,∴GCM HCN ∠=∠,∴CHN CGM △≌△,∴S 四边形CMDN S =正方形21922CGDH CD ==. 【点睛】本题综合考查了全等三角形和相似三角形的证明和性质,解题关键是找出两个全等(相似)三角形,根据三角形全等(相似)的性质推出结论. 7.(1)212(02)16(25)x x y x x ⎧≤≤⎪=⎨≤≤⎪⎩;(2)220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)第2分钟末两颗弹珠速度相差最大,最大相差6米/分钟;(4)存在,理由详见解析【解析】【分析】(1)将(1,2)代入21y ax =,得2a =,从而得到212y x =,再代入2x =求出18y =,即可得到反比例函数解析式,即可得解;(2)当01x ≤≤时,第二颗弹珠未弹出,故第二颗弹珠的解析式为20y =;再分别根据(1)中的结论,即可求出当13x <≤和36x <≤时第二颗弹珠的解析式;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,则第2分钟末两颗弹珠速度相差最大,分别求出第2分钟末时两颗弹珠的速度,再相减即可的解;(4)第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟,第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同.可以根据速度相等时列方程求得时刻.【详解】(1)当02x ≤≤时,将(1,2)代入21y ax =,得2a =,212y x ∴=,∵当2x =时,18y =,∴当25x ≤≤时,116y x=, 1y ∴与x 的函数关系式为212(02)16(25)x x y x x⎧≤≤⎪=⎨≤≤⎪⎩; (2)当01x ≤≤时,第二颗弹珠未弹出,∴第二颗弹珠的解析式为20y =;当13x <≤时,第二颗弹珠的解析式为222(1)y x =-;当36x <≤时,第二颗弹珠的解析式为2161y x =-; ∴2y 与x 的函数关系式为220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,∴第2分钟末两颗弹珠速度相差最大,∵第一颗弹珠的速度为2218222y x =⨯==米/分钟,第二颗弹珠的速度为2122(1)212y x =⨯==-米/分钟,∴两颗弹珠的速度最大相差8-2=6米/分钟;(4)存在,理由如下:第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟, 第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同. 这个时刻可以通过解方程2162(1)x x=-求得. 【点睛】本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息,明确自变量的取值范围和图象所经过的点的坐标. 8.A解析:(1)详见解析;(2)2448x x y x-+=(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====, 根据勾股定理得到()222222248OF FN ON x x x =+=-+=-+,根据平行线分线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x,∴AF=4-x ,∴FN=2-x ,∴()222222248OF FN ON x x x =+=-+=-+, ∴248EF y x x =--+,∵AM⊥AC,∴AE∥OB, ∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴()244804x x y x x-+≤=<; (3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE , ∵∠EAO=90°,∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=, ∵AE=AG,∴221482x x x PE y -+==,)22248x AE y x-=-=, )22222224448448x x x x x x x ---+=+, 解得:x=2,②当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ⊥A E 于Q ,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS ), ∴22EQ AO == ∴24242()x AE E x Q -===, ∴43x =, ∴BF=2或43. 【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.9.A解析:(1)145;(2)2274,0314971421,2235t t S t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<< ⎪⎪⎝⎭⎩;(3)t 的值为477或727.【解析】【分析】(1)如下图,根据4tan 3A =,可得出PN 与AP 的关系,从而求出t 的值; (2)如下图,存在2种情况,一种是点M 在△ABC 内,另一种是点M 在△ABC 外部,分别根据正方形和三角形求面积的公式可求解;(3)如下图,存在2种情况,一种是PM 所在的直线将△ABC 的面积平分,另一种是QN 所在的直线将△ABC 的面积平分.【详解】(1)如图1,点N 在AC 上图1由题意可知:PD=DQ=t ,AP=7-t∴PN=PQ=2t ∵4tan 3A = ∴43NP AP =,即2473t t =- 解得:t=145 (2)①如图2,图2四边形PQMN 是正方形,90BQM ∴∠=︒,45B ∠=︒,BQ MQ ∴=,即72t t -=解得73t =, 故当0t <≤73时,22(2)4S t t ==; ②如图3, 图390BQF ∠=︒,45B ∠=︒,7BQ FQ t ∴==-,45BFQ MFE ∠=∠=︒,则37MF MQ QF t =-=-,90M ∠=︒,37ME MF t ∴==-, 则2221149(2)(37)21222S t t t t =--=-+-71435t ⎛⎫<< ⎪⎝⎭; 综上,2274,0314971421,2235t t S t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<< ⎪⎪⎝⎭⎩. (3)如下图,过点C 作AB 的垂线,交AB 于点G图4∵4tan 3A = ∴设CG=4x ,则AG=3x∵∠B=45°∴△CBG 是等腰直角三角形∴GB=GC=4x∵AB=14∴3x+4x=14,解得:x=2∴1148562ABC S== ∴1282ABCS = 情况一:PM 所在的直线平分△ABC 的面积,如下图,PM 与BC 交于点E图5则28PBES=∵四边形PQMN是正方形,∴∠EPB=45°∵∠B=45°∴△PBE是等腰直角三角形∵1282PBES PE PB==∴PE=PB=214∴PB=47∵PB=AB-PA=14-(7-t)=7+t∴7+t=47t=477-情况二:如下图,QN所在线段平分△ABC的面积,QF交AC于点F,过点F作AB的垂线,交AB于点H图6同理,28AFQS=∵四边形PQMN是正方形,∴∠EQH=45°∴△FHQ是等腰直角三角形∵4 tan3A=∴设FH=4y,则AH=3y,HQ=FH=4y,∴AQ=7y∴174282AFQS y y==,解得:2∵AQ=AB-QB=14-(7-t)=7+t ∴2解得:7∴综上得:t的值为7或7.【点睛】本题考查动点问题,解题关键是根据动点的变化情况,适当划分为几种不同的形式分别分析求解.10.B解析:(1)y =12x 2﹣32x ﹣2;(2)点M 的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P 的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【解析】【分析】(1)根据题意直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,则点A 、B 的坐标分别为:(0,-2)、(4,0),即可求解; (2)由题意直线MA 的表达式为:y =(12m ﹣32)x ﹣2,则点N (43m -,0),当MN AN =32时,则NH ON =32,即4343m m m ---=32,进行分析即可求解; (3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB 、∠PAB=∠OBA 三种情况,分别求解即可.【详解】解:(1)直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,则点A 、B 的坐标分别为:(0,﹣2)、(4,0), 则c =﹣2,将点B 的坐标代入抛物线表达式并解得:a =12, 故抛物线的表达式为:y =12x 2﹣32x ﹣2①; (2)设点M (m ,12m 2﹣32m ﹣2)、点A (0,﹣2),。
中考数学压轴题(八大类型)
中考数学压轴题(八大类型 )一.面积与动点1.(重庆市綦江县)如图,已知抛物线y =a (x -1)2+33(a ≠0)经过点A (-2,0),抛物线的顶点为D ,过O 作射线OM ∥AD .过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为t (s ).问:当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC =OB ,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t (s ),连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.二.几何图形与变换2.(辽宁省铁岭市)如图所示,已知在直角梯形OABC 中,AB ∥OC ,BC ⊥x 轴于点C ,A (1,1)、B (3,1).动点P 从O 点出发,沿x 轴正方向以每秒1个单位长度的速度移动.过P 点作PQ 垂直于直线..OA ,垂足为Q .设P 点移动的时间为t 秒(0<t <4),△OPQ 与直角梯形OABC 重叠部分的面积为S .(1)求经过O 、A 、B 三点的抛物线解析式;(2)求S 与t 的函数关系式;(3)将△OPQ 绕着点P 顺时针旋转90°,是否存在t ,使得△OPQ 的顶点O 或Q 在抛物线上?若存在,直接写出t 的值;若不存在,请说明理由.D C My O A B Q Px三.相似 204.(四川省遂宁市)如图,二次函数的图象经过点D (0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6.(1)求该二次函数的解析式;(2)在该抛物线的对称轴上找一点P ,使P A +PD 最小,求出点P 的坐标;(3)在抛物线上是否存在点Q ,使△QAB 与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.四。
中考数学压轴题归类复习(十大类型附详细解答)
中考数学压轴题辅导(十大类型)目录动点型问题................................................................ . (3)几何图形的变换(平移、旋转、翻折) (6)相似与三角函数问题9三角形问题(等腰直角三角形、等边三角形、全等三角形等) (13)与四边形有关的二次函数问题 (16)初中数学中的最值问题 (19)定值的问存在性问题(如:平行、垂直,动点,面积等) (25)与圆有关的二次函数综合题 (29)其它(如新定义型题、面积问题等) (33)参考答案 (36)中考数学压轴题辅导(十大类型)数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
最新中考数学压轴题十大题型(含详细答案)2
一、中考数学压轴题1.已知:如图,四边形ABCD ,AB DC ,CB AB ⊥,16AB cm =,6BC cm =,8CD cm =,动点Q 从点D 开始沿DA 边匀速运动,运动速度为1/cm s ,动点P 从点A 开始沿AB 边匀速运动,运动速度为2/cm s .点P 和点Q 同时出发,O 为四边形ABCD 的对角线的交点,连接 PO 并延长交CD 于M ,连接QM .设运动的时间为()t s ,08t <<.(1)当t 为何值时,PQ BD ?(2)设五边形QPBCM 的面积为()2S cm ,求S 与t 之间的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使PQM 的面积等于五边形面积的1115?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使点Q 在MP 的垂直平分线上?若存在,求出t 的值;若不存在,请说明理由.2.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:①个位上的数字是千位上的数字的两倍;②百位上的数字与十位上的数字之和是12的倍数;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.例如:1423于4132为“相关和平数”求证:任意的两个“相关和平数”之和是1111的倍数.3.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax =,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.4.(1)阅读理解:如图①,在ABC 中,若8AB =,5AC =,求BC 边上的中线AD 的取值范围. 可以用如下方法:将ACD 绕着点D 逆时针旋转180︒得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠=︒,CB CD =,100BCD ∠=︒,以C 为顶点作一个50︒的角,角的两边分别交AB 、AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并说明理由.5.已知:如图,二次函数213222y x x =-++的图象交x 轴于A 点和B 点(A 点在B 点左则),交y 轴于E 点,作直线,EB D 是直线EB 上方抛物线上的一个动点.过D 点作 直线l 平行于直线.EB M 是直线 EB 上的任意点,N 是直线l 上的任意点,连接,MO NO ,始终保持MON ∠为90︒,以MO 和ON 边,作矩形MONC .(1)在D 点移动过程中,求出当DEB ∆的面积最大时点D 的坐标;在DEB ∆的面积最大 时,求矩形MONC 的面积的最小值.(2)在DEB ∆的面积最大时,线段ON 交直线EB 于点G ,当点,,,D N G B 四个点组成平行 四边形时,求此时线段ON 与抛物线的交点坐标.6.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.7.如图1,△ABC 内接于⊙O ,直径AD 交BC 于点E ,延长AD 至点F ,使DF =2OD ,连接FC 并延长交过点A 的切线于点G ,且满足AG ∥BC ,连接OC ,若cos ∠BAC =13,BC =8. (1)求证:CF 是⊙O 的切线;(2)求⊙O 的半径OC ;(3)如图2,⊙O 的弦AH 经过半径OC 的中点F ,连结BH 交弦CD 于点M ,连结FM ,试求出FM 的长和△AOF 的面积.8.如图,在平面直角坐标系xoy 中,直线122y x =-+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2x =与x 轴的交点为点,A 且经过点B C 、两点.(1)求抛物线的解析式;(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.9.如图1,抛物线23y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .(1)求顶点D 的坐标;(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N .①若直线CM 将BCD ∆分成的两部分面积之比为2:1,求点M 的坐标;②若NCB DBC ∠=∠,求点N 的坐标.10.问题背景:如图(1),ABC 内接于O ,过点A 作O 的切线l ,在l 上任取一个不同于点A 的点P ,连接PB PC 、,比较BPC ∠与BAC ∠的大小,并说明理由.问题解决:如图(2),A (0,2)、B (0,4),在x 轴正半轴上是否存在一点P ,使得cos APB ∠最小?若存在,求出点P 的坐标;若不存在,请说明理由.拓展应用:如图(3),四边形ABCD 中,//AB CD ,AD CD ⊥于D ,E 是AB 上一点,AE AD =,P 是DE 右侧四边形ABCD 内一点,若8AB =,11CD =,tan 2C =,9DEP S =,求sin APB ∠的最大值.11.定义:两个相似等腰三角形,如果它们的底角有一个公共的顶点,那么把这两个三角形称为“关联等腰三角形”.如图,在ABC ∆与AED ∆中,,BA BC EA ED == ,且,ABC AED ∆∆所以称ABC ∆与AED ∆为“关联等腰三角形”,设它们的顶角为α,连接,EB DC ,则称DC EB 会为“关联比". 下面是小颖探究“关联比”与α之间的关系的思维过程,请阅读后,解答下列问题:[特例感知]()1当ABC ∆与AED ∆为“关联等腰三角形”,且90α︒=时, ①在图1中,若点E 落在AB 上,则“关联比”DC EB=②在图2中,探究ABE ∆与ACD ∆的关系,并求出“关联比”DC EB的值.[类比探究]()2如图3,①当ABC ∆与AED ∆为“关联等腰三角形”,且120a ︒=时,“关联比”DC EB= ②猜想:当ABC ∆与AED ∆为“关联等腰三角形”,且n α=︒时,“关联比”DC EB= (直接写出结果,用含n 的式子表示)[迁移运用]()3如图4, ABC ∆与AED ∆为“关联等腰三角形”.若90,4,ABC AED AC ︒∠=∠==点P 为AC 边上一点,且1PA =,点E 为PB 上一动点,求点E 自点B 运动至点P 时,点D 所经过的路径长.12.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.13.对于平面内的点M 和点N ,给出如下定义:点P 为平面内的一点,若点P 使得PMN 是以M ∠为顶角且M ∠小于90°的等腰三角形,则称点P 是点M 关于点N 的锐角等腰点P .如图,点P 是点M 关于点N 的锐角等腰点.在平面直角坐标系xOy 中,点O 是坐标原点.(1)已知点(2,0)A ,在点123(0,2),(13),(13)P P P -,4(2,2)P -中,是点O 关于点A 的锐角等腰点的是___________.(2)已知点(3,0)A ,点C 在直线2y x b =+上,若点C 是点O 关于点A 的锐角等腰点,求实数b 的取值范围.(3)点D 是x 轴上的动点,(,0),(2,0)D t E t -,点(,)F m n 是以D 为圆心,2为半径的圆上一个动点,且满足0n ≥.直线24y x =-+与x 轴和y 轴分别交于点H K ,,若线段HK 上存在点E 关于点F 的锐角等腰点,请直接写出t 的取值范围.14.在综合与实践课上老师将直尺摆放在三角板上,使直尺与三角板的边分别交于点P 、M 、N 、Q ,(1)如图①所示.当∠CNG =42°,求∠HMC 的度数.(写出证明过程)(2)将直尺向下平移至图 2 位置,使直尺的边缘通过点 C,交 AB 于点 P,直尺另一侧与三角形交于 N、Q 两点。
中考数学压轴题归类复习(十大类型附详细解答)
中考数学压轴题辅导(十大类型)目录动点型问题 (3)几何图形的变换(平移、旋转、翻折) (6)相似与三角函数问题9 三角形问题(等腰直角三角形、等边三角形、全等三角形等) (13)与四边形有关的二次函数问题 (16)初中数学中的最值问题 (19)定值的问题 (22)存在性问题(如:平行、垂直,动点,面积等) (25)与圆有关的二次函数综合题 (29)其它(如新定义型题、面积问题等) (33)参考答案 (36)中考数学压轴题辅导(十大类型)数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
中考数学压轴题专项训练十套(含答案)
做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图,抛物线22++=bx ax y 与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点.(1)求抛物线的解析式及点D 的坐标.(2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标.(3)过点P 作直线CD 的垂线,垂足为Q .若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′,是否存在点P ,使点Q ′恰好在x 轴上?若存在,求出此时点P 的坐标;若不存在,请说明理由.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,已知直线112y x=-+与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.(1)请直接写出C,D两点的坐标,并求出抛物线的解析式;(2个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于点D.(1)求抛物线的解析式;(2)点K为线段AB上一动点,过点K作x轴的垂线,交直线CD于点H,交抛物线于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A ,B 两点,点A 在x 轴上,点B 的横坐标为-8.(1)求抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点(不与点A ,B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E . ①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值.②连接PA ,以PA 为边作图示一侧的正方形APFG .随着点P 的运动,正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 轴上时,直接写出对应的点P 的坐标.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日三、解答题23. (11分)如图1,点A 为抛物线C 1:2122y x =-的顶点,点B 的坐标为(1,0),直线AB 交抛物线C 1于另一点C .(1)求点C 的坐标;(2)如图1,平行于y 轴的直线x =3交直线AB 于点D ,交抛物线C 1于点E ,平行于y 轴的直线x =a 交直线AB 于点F ,交抛物线C 1于点G ,若FG :DE =4:3,求a 的值;(3)如图2,将抛物线C 1向下平移m (m >0)个单位得到抛物线C 2,且抛物线C 2的顶点为P ,交x 轴负半轴于点M ,交射线AB 于点N ,NQ ⊥x 轴于点Q ,当NP 平分∠MNQ 时,求m 的值.图1 图2做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图1,在平面直角坐标系中,已知点A(0,,点B在x轴正半轴上,且∠ABO=30°.动点P在线段AB上,从点A向点B个单位长度的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边三角形PMN.(1)求直线AB的解析式;(2)求等边三角形PMN的边长(用含有t的代数式表示),并求出当等边三角形PMN的顶点M运动到与原点O重合时t的值;(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边三角形PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2时S与t的函数关系式,并求出S的最大值.图2图1做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,平面直角坐标系xOy中,点A的坐标为( 2,2),点B的坐标为(6,6),抛物线经过A,O,B三点.连接OA,OB,AB,线段AB交y 轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O,B重合),直线EF与抛物线交于M,N两点(点N在y轴右侧),连接ON,BN,当点F在线段OB 上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN 相似(点B,O,P分别与点O,A,N对应)的点P的坐标.做题时间:_______至_______ 家长签字:_____________共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在平面直角坐标系中,已知点A,B,C的坐标分别为( 1,0),(5,0),(0,2).(1)求过A,B,C三点的抛物线解析式.(2)点P从点A出发,沿x轴正方向以每秒1个单位长度的速度向点B移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.设点P运动的时间为t(0≤t≤6)秒,△PBF的面积为S.①求S与t的函数关系式;②当t为何值时,△PBF的面积最大?最大面积是多少?(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.备用图做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC ⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P′的坐标是(-1,m),求m的值.(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值.(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.23.(1)21433y x x =-+; (2)22102412311143422tt S t t t t t ⎧<⎪⎪=-<⎨⎪⎪-+-<<⎩≤≤()()(); (3)存在,t =1或2.中考数学压轴题专项训练(二)参考答案23.(1)213222y x x =-++,(3 2),D ; (2)123(0 2) 2) 2),,,P P P --; (3)存在,点P的坐标为 (或.中考数学压轴题专项训练(三)参考答案中考数学压轴题专项训练(四)参考答案中考数学压轴题专项训练(六)参考答案中考数学压轴题专项训练(七)参考答案中考数学压轴题专项训练(八)参考答案中考数学压轴题专项训练(十)参考答案。
中考数学压轴题归类复习十大类型附详细解答定稿版
中考数学压轴题归类复习十大类型附详细解答精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】中考数学压轴题辅导(十大类型)目录动点型问题 (3)几何图形的变换(平移、旋转、翻折) (6)相似与三角函数问题 9三角形问题(等腰直角三角形、等边三角形、全等三角形等) (13)与四边形有关的二次函数问题 (16)初中数学中的最值问题 (19)定值的问题 (22)存在性问题(如:平行、垂直,动点,面积等) (25)与圆有关的二次函数综合题 (29)其它(如新定义型题、面积问题等) (33)参考答案 (36)中考数学压轴题辅导(十大类型)数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
中考数学压轴题十大类型经典题目
中考数学压轴题十大类型目录第一讲 中考压轴题十大类型之动点问题 1 第二讲 中考压轴题十大类型之函数类问题 7 第三讲 中考压轴题十大类型之面积问题 13 第四讲 中考压轴题十大类型之三角形存在性问题 19 第五讲 中考压轴题十大类型之四边形存在性问题 25 第六讲 中考压轴题十大类型之线段之间的关系 31 第七讲 中考压轴题十大类型之定值问题 38 第八讲 中考压轴题十大类型之几何三大变换问题 44 第九讲 中考压轴题十大类型之实践操作、问题探究 50 第十讲 中考压轴题十大类型之圆 56 第十一讲 中考压轴题综合训练一 62 第十二讲 中考压轴题综合训练二 68第一讲 中考压轴题十大类型之动点问题1.(2011吉林)如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s ,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s ,△P AQ 的面积为y cm 2,(这里规定:线段是面积为0的三角形)解答下列问题:(1) 当x =2s 时,y =_____ cm 2;当x =92s 时,y =_______ cm 2. (2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式.(3)当动点P 在线段BC 上运动时,求出154 y S 梯形ABCD 时x 的值. (4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有xD C B A PQK E D C B A 的值.2.(2007河北)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;(2)当点P 运动到AD 上时,t 为何值能使PQ ∥DC ?(3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;(4)△PQE 能否成为直角三角形?若能,写出t 的取值范围;若不能,请说明理由. 备用图3.(2008河北)如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >).(1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值;(4)连结PG ,当PG AB ∥时,请直.接.写出t 的值. 4.(2011山西太原)如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为(8,0),点B 的坐标为(11,4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O -C -B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t 秒(0t >),△MPQ 的面积为S .(1)点C 的坐标为________,直线l 的解析式为__________.(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围.(3)试求题(2)中当t 为何值时,S 的值最大,并求出S 的最大值.(4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值.5.(2011四川重庆)如图,矩形ABCD 中,AB =6,BC =23,点O 是AB 的中点,点P 在AB 的延长线上,且BP =3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1个单位长度的速度沿射线P A 匀速运动,点E 、F 同时出发,当两点相遇时停止运动.在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线P A 的同侧,设运动的时间为t 秒(t ≥0).(1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.备用图1备用图2三、测试提高1.(2011山东烟台)如图,在直角坐标系中,梯形ABCD 的底边AB 在x 轴上,底边CD 的端点D 在y 轴上.直线CB 的表达式为41633y x =-+,点A 、D 的坐标分别为(-4,0),(0,4).动点P 自A 点出发,在AB 上匀速运动.动点Q 自点B 出发,在折线BCD 上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P 运动t (秒)时,△OPQ 的面积为S (不能构成△OPQ 的动点除外).(1)求出点B 、C 的坐标;(2)求S 随t 变化的函数关系式;(3)当t 为何值时S 有最大值?并求出最大值.备用图第二讲 中考压轴题十大类型之函数类问题P M l Q C B A O x y(1)(2011浙江温州)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(-4,0),点B 的坐标为(0,b )(b >0).P 是直线AB 上的一个动点,作PC ⊥x 轴,垂足为 C ,记点P 关于y 轴的对称点为P ′ (点P ′不在y 轴上),连结P P ′,P ′A ,P ′C ,设点P 的横坐标为a .(1) 当b =3时,①直线AB 的解析式;②若点P ′的坐标是(-1,m ),求m 的值;(2)若点P 在第一象限,记直线AB 与P ′C 的交点为D .当P ′D :DC =1:3时,求a 的值;(3)是否同时存在a ,b ,使△P ′CA 为等腰直角三角形?若存在,请求出所有满足要求的a ,b 的值;若不存在,请说明理由.2. (2010武汉)如图,抛物线212y ax ax b=-+经过A (-1,0),C (2,32)两点,与x 轴交于另一点B . (1)求此抛物线的解析式; (2)若抛物线的顶点为M ,点P 为线段OB 上一动点 (不与点B 重合),点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ =222y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围; (3)在同一平面直角坐标系中,两条直线x =m ,x =n 分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,H .问四边形EFHG 能否为平行四边形? 若能,求m ,n 之间的数量关系;若不能,请说明理由.备用图3. (2011江苏镇江)在平面直角坐标系xOy 中,直线1l 过点A (1,0)且与y 轴平行,直线2l 过点B (0,2)且与x 轴平行,直线1l 与2l 相交于点P .点E 为直线2l 上一点,反比例函数k y x=(k >0)的图象过点E 且与直线1l 相交于点F . (1)若点E 与点P 重合,求k 的值; (2)连接OE 、OF 、EF .若k >2,且△OEF 的面积为△PEF 的面积2倍,求点E 的坐标;x y P'DO C B A P(3)是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三角形与△PEF 全等?若存在,求E 点坐标;若不存在,请说明理由.4. (2010浙江舟山)△ABC 中,∠A =∠B =30°,AB =23.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(1)当点B 在第一象限,纵坐标是62时,求点B 的横坐标; (2)如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究: ①当54a =,12b =-,355c =-时,A ,B 两点是否都在这条抛物线上?并说明理由; ②设b =-2am ,是否存在这样的m 值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.5. (湖北黄冈)已知二次函数的图象如图所示.(1)求二次函数的解析式及抛物线顶点M的坐标; (2)若点N 为线段BM 上的一点,过点N 作x 轴的垂线,垂足为点Q .当点N 在线段BM 上运动时(点N 不与点B ,点M 重合),设OQ 的长为t ,四边形NQAC 面积为S ,求S 与t 之间的函数关系式及自变量t 的取值范围;(3)在对称轴右侧的抛物线上是否存在点P ,使△P AC 为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由;(4)将△OAC 补成矩形,使得△OAC 的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程). 三、测试提高1. (2011山东东营)如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =+交折线OAB 于点E .(1)记△ODE 的面积为S .求S 与b 的函数关系式;(2)当点E 在线段OA 上时,且tan ∠DEO =12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由. 第三讲 中考压轴题十大类型之面积问题Oy x C B A1 1 -1 -11. (2011辽宁大连)如图,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3,0)、C (0,3)三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB .(1)求该抛物线的解析式;(2)抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,直接写出点R 的坐标;若不存在,说明理由.2. (2011湖北十堰)如图,己知抛物线y =x 2+bx +c 与x 轴交于点A (1,0)和点 B ,与y 轴交于点C (0,-3).(1)求抛物线的解析式; (2)如图(1),己知点H (0,-1).问在抛物线上是否存在点G (点G 在y 轴的左侧),使得S △GHC =S △GHA ?若存在,求出点G 的坐标,若不存在,请说明理由:(3)如图(2),抛物线上点D 在x 轴上的正投影为点E (﹣2,0),F 是OC 的中点,连接DF ,P 为线段BD 上的一点,若∠EPF =∠BDF ,求线段PE 的长. 3. (2010天津)在平面直角坐标系中,已知抛物线2y x bx =-+c +与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴的正半轴交于点C ,顶点为E . (Ⅰ)若2b =,3c =,求此时抛物线顶点E 的坐标;(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC 中满足S △BCE = S △ABC ,求此时直线BC 的解析式;(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC 中满足S △BCE =2S △AOC ,且顶点E 恰好落在直线43y x =-+上,求此时抛物线的解析式.4. (2011山东聊城)如图,在矩形ABCD 中,AB =12cm ,BC =8cm .点E 、F 、G 分别从点A 、B 、C 同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2.(1)当t =1s 时,S 的值是多少?(2)写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似?请说明理由.5. (2011江苏淮安)如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6,点P 在AB 上,AP =2,点E 、F 同时从点P 出发,分别沿P A 、PB 以每秒1个单位长度的速度向点A 、B 匀速运动,点E 到达点A 后立刻以原速度沿AB 向点B 运动,点F 运动到点B 时停止,点E 也随之停A EB FC GD y x MPO C B A止.在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧.设E 、F 运动的时间为t 秒(t >0),正方形EFGH 与△ABC 重叠部分面积为S .(1)当t =1时,正方形EFGH 的边长是 .当t =3时,正方形EFGH 的边长是 .(2)当0<t ≤2时,求S 与t 的函数关系式;(3)直接答出:在整个运动过程中,当t 为何值时,S 最大?最大面积是多少? G HF E P CBA 备用图三、测试提高1. (2010山东东营)如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点(D 不与A ,B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG .(1)当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;(2)设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值.第四讲 中考压轴题十大类型之 三角形存在性问题板块一、等腰三角形存在性1. (2011江苏盐城)如图,已知一次函数7y x =-+与正比例函数34y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.(备用图)B AD E F G C B 备用图(1) A C B 备用图(2) A C2. (2009湖北黄冈)如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒)(1)求A ,B ,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;(3)当902t <<时,△PQF 的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.板块二、直角三角形3. (2009四川眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).(1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△P AE 是直角三角形时,求点P 的坐标.4. (2010广东中山)如图所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线上时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:(1)说明△FMN ∽△QWP ;(2)设04x ≤≤(即M 从D 到A 运动的时间段).试问x 为何值时,△PWQ 为直角三角形?当x 在何范围时,△PQW 不为直角三角形?(3)问当x 为何值时,线段MN 最短?求此时MN 的值.板块三、相似三角形存在性 5. (2011湖北天门)在平面直角坐标系中,抛物线2y ax bx =+3+与x 轴的两个交点分别为A (-3,0)、B (1,0),过顶点C 作CH ⊥x 轴于点H . (1)直接填写:a = ,b = ,顶点C 的坐标为 ; (2)在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形?若存在,WQ PN M F D C BA求出点D 的坐标;若不存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.(备用图)三、测试提高1. (2009广西钦州)如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0),过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且01t <<.(1)填空:点C 的坐标是_____,b =_____,c =_____;(2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.第五讲 中考压轴题十大类型之四边形存在性问题1. (2009黑龙江齐齐哈尔)直线364y x =-+与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标. 2. (2010河南)在平面直角坐标系中,已知抛物线经过A (40),-,B (04),-,C (20),三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.3. (2011黑龙江鸡西)已知直线343y x =+与x 轴、y 轴分别交于A 、B 两点,∠ABC =60°,BC 与x 轴交于点C .(1)试确定直线BC 的解析式;(2)若动点P 从A 点出发沿AC 向点C 运动(不与A 、C 重合),同时动点Q 从C 点出发沿CBA 向点A 运动(不与C 、A 重合),动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,当△APQ 的面积最大时,y 轴上有一点M ,平面内是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形?若存在,请直接写出N 点的坐标;若不存在,请说明理由.4. (2007河南)如图,对称轴为直线x =27的抛物线经过点A (6,0)和B (0,4).(1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形?②是否存在点E ,使四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.5. (2010黑龙江大兴安岭)如图,在平面直角坐标系中,函数2y x =+12的图象分别交x 轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.三、测试提高 yM B1. (2009辽宁抚顺)已知:如图所示,关于x 的抛物线2=++y ax x c (a ≠0)与x 轴交于点A (-2,0)、点B (6,0),与y 轴交于点C .(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D ,使四边形ABDC 为等腰梯形,写出点D 的坐标,并求出直线AD 的解析式;(3)在(2)中的直线AD 交抛物线的对称轴于点M ,抛物线上有一动点P ,x 轴上有一动点Q .是否存在以A 、M 、P 、Q 为顶点的平行四边形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.第六讲 中考压轴题十大类型之线段之间的关系1. (2010天津)在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点. (Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(Ⅱ)若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标. 2. (2011四川广安)四边形ABCD 是直角梯形,BC ∥AD ,∠BAD =90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N . (1)求抛物线的解析式;(2)抛物线上是否存在点P ,使得P A =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;(3)设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大?并求出最大值.3. (2011四川眉山)如图,在直角坐标系中,已知点A (0,1),B (4-,4),将点B绕点A 顺时针方向旋转90°得到点C ,顶点在坐标原点的抛物线经过点B . (1) 求抛物线的解析式和点C 的坐标;(2) 抛物线上有一动点P ,设点P 到x 轴的距离为1d ,点P 到点A 的距离为2d ,y B O D C A x E yB O DC A x 温馨提示:如图,可以作点D 关于x 轴的对称点D ',连接CD '与C y B QA M PxO 试说明211d d =+;(3) 在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.4. (2011福建福州)已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线3:33l y x =+对称. (1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.5. (2009湖南郴州) 如图1,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2)为双曲线上的一点,Q 为坐标平面上一动点,P A 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B . (1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点Q 的坐标,如果不存在,请说明理由;(3)如图2,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值. 图1 图26. (2010江苏苏州)如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为(3,0)、(0,4). (1)求抛物线的解析式;(2)设()M m n ,是抛物线上的一点(m n 、为正整数),且它位于对称轴的右侧.若以M B O A 、、、为顶点的四边形四条边的长度是四个连续的正整数,求点M 的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P ,22228PA PB PM ++>是否总成立?请说明理由. 三、测试提高1. (2009浙江舟山)如图,已知点A (-4,8)和点B (2,n )在抛物线2=y ax 上.(1)求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;(2)平移抛物线2=y ax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.第七讲 中考压轴题十大类型之定值问题线1C :1. (2011天津)已知抛物21112y x x =-+,点F (1,1).(Ⅰ)求抛物线1C 的顶点坐标;(Ⅱ)①若抛物线1C 与y 轴的交点为A ,连1C 于点B ,求证:接AF ,并延长交抛物线112AF BF +=;②抛物线1C 上任意一点P (P P x y ,)(01P x <<),连接PF ,并延长交抛物线1C 于点Q (Q Q x y ,),试判断112PF QF+=是否成立?请说明理由; (Ⅲ)将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值.2. (2009湖南株洲)如图,已知△ABC 为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D .(1)求点A 的坐标(用m 表示); (2)求抛物线的解析式;4x22A8 -2 O-2 -4y6BCD-44(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值. 3. (2008山东济南)已知:抛物线2y ax bx c =++(a ≠0),顶点C(1,3-),与x轴交于A 、B 两点,(10)A -,. (1)求这条抛物线的解析式;(2)如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点(P 与A 、B 两点不重合),过点P 作PM ⊥AE 于M ,PN⊥DB 于N ,请判断PM PNBE AD+是否为定值? 若是,请求出此定值;若不是,请说明理由;(3)在(2)的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、BE 相交于点F 、G (F 与A 、E 不重合,G 与E 、B 不重合),请判断PAEFPB EG =是否成立.若成立,请给出证明;若不成立,请说明理由.4. (2011湖南株洲)孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请解答以下问题: (1)若测得22OA OB ==(如图1),求a 的值;(2)对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x ⊥轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐标...; (3)对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.5. (2009湖北武汉)如图,抛物线24y ax bx a =+-经过()10A -,、()04C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(),1D m m +在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标;(3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=︒,求点P的坐标.三、测试提高1. (2009湖南湘西)在直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于两点A 、B ,与y 轴交于点C ,其中A 在B 的左侧,B 的坐标是(3,0).将直线y kx =沿y 轴向上平移3个单位长度后恰好经过点B 、C . (1) 求k 的值;(2) 求直线BC 和抛物线的解析式; (3) 求△ABC 的面积;(4) 设抛物线顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P 的坐标.、第八讲 中考压轴题十大类型之 几何三大变换问题1. (2009山西太原)问题解决:如图(1),将正方形纸片ABCD 折叠,使点B 落在CD边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.类比归纳:在图(1)中,若13CE CD =,则AMBN 的值等于 ;若14CE CD =,则AM BN 的值等于 ;若1CE CD n=(n 为整数),则AMBN 的值等于 .(用含n 的式子表示) 联系拓广: 如图(2),将矩形纸片ABCD折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n=>=,,则AMBN 的值等于 .(用含m n ,的式子表示) 2. (2011陕西)如图①,在矩形ABCD 中,将矩形折叠,使B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或边CD (含端点)交于点F ,然后再展开铺平,则以B 、E 、F 为顶点的△BEF 称为y x O A BC方法指导: 为了求得AM BN的值,可先求BN 、AM 的长,不妨设:图(2)NA BCD E F M图(1)A BCDE FM N图1 图2 图3 图4ααααθ4θ6θ5θ3HHHHB 4A 4B 2B 3B 3B 4B 5A 5A 4B 3A 3A 3A 3A 2A 2A 2B 2B 2B 1B 1B 1A 0A 0A 1A 1A 1A 2B 2A 0B 1A 1A 0矩形ABCD 的“折痕三角形”.(1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形;(2)如图②,在矩形ABCD 中,AB =2,BC =4.当它的“折痕△BEF ”的顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中, AB =2,BC =4,该矩形是否存在面积最大的“折痕△BEF ”?若存在,说明理由,并求出此时点E 的坐标;若不存在,为什么?图① 图② 图③ 3. (2010江西南昌)课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题. 实验与论证设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示.(1)用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;(2)图1-图4中,连接A 0H 时,在不添加其他辅助线的情况下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n 边形A 0A 1A 2…A n -1与正n 边形A 0B 1B 2…B n -1重合(其中,A 1与B 1重合),现将正n 边形A 0B 1B 2…B n -1绕顶点A 0逆时针旋转α(nοο1800<<α).(3)设θn 与上述“θ3,θ4,…”的意义一样,请直接写出θn 的度数;(4)试猜想在n 边形且不添加其他辅助线的情形下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.4. (2009山东德州)已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D C B A PQ K E D C B A(2011吉林)如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s ,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s ,△PAQ 的面积为y cm 2,(这里规定:线段是面积为0的三角形)解答下列问题:(1) 当x =2s 时,y =_____ cm 2;当x =92s 时,y =_______ cm 2.(2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式.(3)当动点P 在线段BC 上运动时,求出154=y S 梯形ABCD 时x 的值. (4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值. (2007河北)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;(2)当点P 运动到AD 上时,t 为何值能使PQ ∥DC ?(3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;(4)△PQE 能否成为直角三角形?若能,写出t 的取值范围;若不能,请说明理由.备用图(2008河北)如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t>). (1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值;(4)连结PG ,当PG AB ∥时,请直接..写出t 的值. (2011山西太原)如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为(8,0),点B 的坐标为(11,4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O -C -B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t 秒(0t >),△MPQ 的面积为S .(1)点C 的坐标为________,直线l 的解析式为__________.(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围.(3)试求题(2)中当t 为何值时,S 的值最大,并求出S 的最大值.(4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值.1. (2011四川重庆)如图,矩形ABCD 中,AB =6,BC =23,点O 是AB 的中点,点P 在AB 的延长线上,且BP =3.一动点E 从O 点出发,以每秒A 点后,立即以原速度沿AO 返回;另一动点F 从P E 、F 同时出发,当两点相遇时停止运动.在点E 、F ,使△EFG 和矩形ABCD 在射线PA 的同侧,设运动的时间为t 秒((1)当等边△EFG 的边FG 恰好经过点C (2)在整个运动过程中,设等边△EFG S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.备用图1备用图2三、测试提高1. (2011山东烟台)如图,在直角坐标系中,梯形ABCD 的底边AB 在x 轴上,底边CD 的端点D 在y 轴上.直线CB 的表达式为41633y x =-+,点A 、D 的坐标分别为(-4,0),(0,4).动点P 自A 点出发,在AB 上匀速运动.动点Q 自点B 出发,在折线BCD 上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P 运动t (秒)时,△OPQ 的面积为S (不能构成△OPQ 的动点除外).(1)求出点B 、C 的坐标;(2)求S 随t 变化的函数关系式;(3)当t 为何值时S 有最大值?并求出最大值.备用图1. (2011浙江温州)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(-4,0),点B 的坐标为(0,b )(b >0).P 是直线AB 上的一个动点,作PC ⊥x 轴,垂足为 C ,记点P 关于y 轴的对称点为P ′ (点P ′不在y 轴上),连结P P ′,P ′A ,P ′C ,设点P 的横坐标为a .(1) 当b =3时,① 直线AB 的解析式;② 若点P ′的坐标是(-1,m ),求m 的值;(2)若点P 在第一象限,记直线AB 与P ′C 的交点为D .当P ′D :DC =1:3时,求a 的值;(3)是否同时存在a ,b ,使△P ′CA 为等腰直角三角形?若存在,请求出所有满足要求的a ,b 的值;若不存在,请说明理由.(2010武汉)如图,抛物线212y ax ax b =-+经过A (-1,0),C (2,32)两点,与x 轴交于另一点B . (1)求此抛物线的解析式; (2)若抛物线的顶点为M ,点P 为线段OB 上一动点 (不与点B 重合),点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ=22y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围;(3)在同一平面直角坐标系中,两条直线x =m ,x =n 分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,H .问四边形EFHG 能否为平行四边形? 若能,求m ,n 之间的数量关系;若不能,请说明理由.备用图(2011江苏镇江)在平面直角坐标系xOy 中,直线1l 过点A (1,0)且与y 轴平行,直线2l 过点B (0,2)且与x 轴平行,直线1l 与2l 相交于点P .点E 为直线2l 上一点,反比例函数k y x=(k >0)的图象过点E 且与直线1l 相交于点F . x yP'D O C B A P(1)若点E 与点P 重合,求k 的值;(2)连接OE 、OF 、EF .若k >2,且△OEF 的面积为△PEF 的面积2倍,求点E 的坐标;(3)是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三角形与△PEF 全等?若存在,求E 点坐标;若不存在,请说明理由.(2010浙江舟山)△ABC 中,∠A =∠B =30°,AB=.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(1)当点BB 的横坐标; (2)如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究:①当a ,12b =-,c =A ,B 两点是否都在这条抛物线上?并说明理由; ②设b =-2am ,是否存在这样的m 值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.(湖北黄冈)已知二次函数的图象如图所示.(1(2)若点N 为线段BM 在线段BM 上运动时(点N 不与点B ,点M 重合),设OQ t 的取值范围;(3P的坐标;若不存在,请说明理由; (4)将△OAC 补成矩形,使得△对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).三、测试提高1. (2011山东东营)如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =+交折线OAB 于点E . (1)记△ODE 的面积为S .求S 与b 的函数关系式;(2)当点E 在线段OA 上时,且tan ∠DEO =12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.(2011辽宁大连)如图,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3,0)、C (0,3)三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB .(1)求该抛物线的解析式;(2)抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,直接写出点R 的坐标;若不存在,说明理由.(2011湖北十堰)如图,己知抛物线y =y 轴交于点C (0,-3). (1)求抛物线的解析式; (2)如图(1),己知点H (0,-1).,使得S △GHC =S △GHA ?若存在,求出点G (3)如图(2),抛物线上点D 在x DF ,P 为线段BD 上的一点,若∠EPF =∠BDF (2010c +与x 轴交于点A 、B (点A 在点E . (Ⅰ)若2b =,3c =(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC 中满足S △BCE = S △ABC ,求此时直线BC 的解析式;(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC 中满足S △BCE =2S △AOC ,且顶点E 恰好落在直线43y x =-+上,求此时抛物线的解析式.(2011山东聊城)如图,在矩形ABCD 中,AB =12cm ,BC =8cm .点E 、F 、G 分别从点A 、B 、C 同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2.(1)当t =1s 时,S 的值是多少?(2)写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似?请说明理由.5. (2011江苏淮安)如图,在Rt△ABC 中,∠C =90°,AC =8,BC =6,点P 在AB 上,A E DAP =2,点E 、F 同时从点P 出发,分别沿PA 、PB 以每秒1个单位长度的速度向点A 、B 匀速运动,点E 到达点A 后立刻以原速度沿AB 向点B 运动,点F 运动到点B 时停止,点E 也随之停止.在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧.设E 、F 运动的时间为t 秒(t >0),正方形EFGH 与△ABC 重叠部分面积为S .(1)当t =1时,正方形EFGH 的边长是 .当t =3时,正方形EFGH 的边长是 .(2)当0<t ≤2时,求S 与t 的函数关系式;(3)直接答出:在整个运动过程中,当t 为何值时,S 最大?最大面积是多少?A备用图三、测试提高 1. (2010山东东营)如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点(D 不与A ,B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG .(1)当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;(2)设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值.第四讲 中考压轴题十大类型之 三角形存在性问题 板块一、等腰三角形存在性1. (2011江苏盐城)如图,已知一次函数7y x =-+与正比例函数3y x =的图象交于点A ,且与x 轴交于点B . (1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.ADE F G C B 备用图(1) A C B备用图(2) A C(备用图)(2009湖北黄冈)如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒)(1)求A ,B ,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;(3)当902t <<时,△PQF 的面积是否总为定值?若是,求出此定值,若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.板块二、直角三角形(2009四川眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).(1)求该抛物线的解析式;(2) 动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.(2010广东中山)如图所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线上时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:(1)说明△FMN ∽△QWP ;(2)设04x ≤≤(即M 从D 到A 运动的时间段).试问x 为何值时,△PWQ 为直角三角形?当x 在何范围时,△PQW 不为直角三角形?(3)问当x 为何值时,线段MN 最短?求此时MN 的值.板块三、相似三角形存在性(3) (20113+与x 轴的两个交点分别为A (-3H . (1)直接填写:a = ,b (2)在y 轴上是否存在点D D 的坐标;若不存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.(备用图)三、测试提高1. (2009广西钦州)如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 334y x t =-与点的坐标为(-1,0),过点C 的直线x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作01t <<. PH ⊥OB 于点H .若PB =5t ,且(1)填空:点C 的坐标是_____,b =_____,c =_____;(2)求线段QH 的长(用含t 的式子表示); (3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.第五讲 中考压轴题十大类型之四边形存在性问题1. (2009黑龙江齐齐哈尔)直线364y x =-+与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系式;(3)当485S=时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.(2010河南)在平面直角坐标系中,已知抛物线经过A (40),-,B (04),-,C (20),三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.2. (2011黑龙江鸡西)已知直线343y x =+x 轴、y 轴分别交于A 、B 两点,∠ABC =60°,BC 与x轴交于点C .(1)试确定直线BC 的解析式;(2)若动点P 从A 点出发沿AC 向点C 运动(不与A 、C 重合),同时动点Q 从C 点出发沿CBA 向点A 运动(不与C 、A 重合),动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,当△APQ 的面积最大时,y 轴上有一点M ,平面内是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形?若存在,请直接写出N 点的坐标;若不存在,请说明理由.3. (2007河南)如图,对称轴为直线x =27的抛物线经过点A (6,0)和B (0,4).(1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形?②是否存在点E ,使四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由. 4. (2010黑龙江大兴安岭)如图,在平面直角坐标系中,函数2y x =+12的图象分别交x 轴、y 轴于A 、B两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.三、测试提高1. (2009辽宁抚顺)已知:如图所示,关于x 的抛物线2=++y ax x c (a ≠0)与xC .(1(2)在抛物线上有一点D ,使四边形AD 的解析式;(3)在(2)中的直线AD 轴上有一动点Q .是否存在以A 、M 、P 、Q1. (2010天津)在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点.(Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(Ⅱ)若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标. (2011四川广安)四边形ABCD 是直角梯形,BC ∥AD , ∠BAD =90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使得PA =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;(3)设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大?并求出最大值.(2011四川眉山)如图,在直角坐标系中,已知点A (0,1),B (4-,4),将点B 绕点A 顺时针方向旋转90°得到点C ,顶点在坐标原点的抛物线经过点B .(1) 求抛物线的解析式和点C 的坐标;(2) 抛物线上有一动点P ,设点P 到x 轴的距离为1d ,点P 到点A 的距离为2d ,试说明211d d =+;(3) 在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值. (2011福建福州)已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线3:33l y x =+ (1)求A 、B 两点坐标,并证明点A 在直线l 上;(2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.2. (2009湖南郴州) 如图1,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2)为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .(1)写出正比例函数和反比例函数的关系式;y B O D C A x E yB O DC A x 温馨提示:如图,可以作点D 关于x 轴的对称点D ',连接CD '与x 轴交于点E ,此时△CDE 的周长是最小的.这样,你只需求出OE 的长,就可以确定点E 的坐标了.(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点Q 的坐标,如果不存在,请说明理由;(3)如图2,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值.图1 图23.(2010江苏苏州)如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式; (2)设()Mm n ,是抛物线上的一点(m n 、为正整数),且它位于对称轴的右侧.若以M B O A 、、、为顶点的四边形四条边的长度是四个连续的正整数,求点M 的坐标; (3)在(2)的条件下,试问:2228PM +>是否总成立?请说明理由. 三、测试提高1.(2009浙江舟山)如图,已知点A (-4(1)求a 的值及点B 关于x 轴对称点AQ +QB 最短,求出点Q 的坐标;(2)平移抛物线2=y ax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点. ①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.第七讲 中考压轴题十大类型之定值问题1.(2011天津)已知抛物线1C :21112y x x =-+,点F (1,1). (Ⅰ)求抛物线1C 的顶点坐标;(Ⅱ)①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF +=;②抛物线1C 上任意一点P (P P x y ,)(01P x <<),连接PF ,并延长交抛物线1C 于点Q(Q Q x y ,),试判断112PF QF+=是否成立?请说明理由; (Ⅲ)将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值.(2009湖南株洲)如图,已知△ABC 为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D .(1)求点A 的坐标(用m 表示); (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.2y ax bx c =++(a ≠0),(2008山东济南)已知:抛物线点,(10)A -,.顶点C (1,3-),与x 轴交于A 、B 两(1)求这条抛物线的解析式; (2)如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点(P 与A 、B 两点不重合),过点P 作PM ⊥AE 于M ,PN ⊥DB 于N ,请判断PM PNBE AD+是否为定值? 若是,请求出此定值;若不是,请说明理由;(3)在(2)的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、BE 相交于点F 、G (F 与A 、E 不重合,G 与E 、B 不重合),请判断PA EFPB EG=是否成立.若成立,请给出证明;若不成立,请说明理由.(2011湖南株洲)孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请解答以下问题: (1)若测得OA OB==1),求a 的值;(2)对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x ⊥轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐标...; (3)对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标. (2009湖北武汉)如图,抛物线24y ax bx a =+-经过()10A -,、()04C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式; (2)已知点(),1D m m +在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标;(3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=︒,求点P 的坐标.三、测试提高1.(2009湖南湘西)在直角坐标系xOy与x 轴交于两点A 、B ,与y 轴交于点C ,0).将直线y kx =沿y 轴向上平移3个单位长度后恰好经过点B 、C .(1) 求k 的值;(2) 求直线BC 和抛物线的解析式; (3) 求△ABC 的面积;(4)设抛物线顶点为D ,点P 在抛物线的对称轴上,且 ∠APD =∠ACB ,求点P 的坐标.HB 2B 3A 3A 222、第八讲 中考压轴题十大类型之 几何三大变换问题1.(2009山西太原)问题解决:如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.于 ;若(n 为整数),则B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n=>=,,则AMBN 的值等于 .(用含m n ,的式子表示) (2011陕西)如图①,在矩形ABCD 中,将矩形折叠,使B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或边CD (含端点)交于点F ,然后再展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.(1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形;(2)如图②,在矩形ABCD 中,AB =2,BC =4.当它的“折痕△BEF ”的顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中, AB =2,BC =4,该矩形是否存在面积最大的“折痕△BEF ”?若存在,说明理由,并求出此时点E 的坐标;若不存在,为什么?图① 图② 图③ (2010江西南昌)课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题. 实验与论证设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示. (1)用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;2)图1-图4中,连接A 0H 时,在不添加其他辅图(2)N A BCD EFM 图(1)助线的情况下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n 边形A 0A 1A 2…A n -1与正n 边形A 0B 1B 2…B n -1重合(其中,A 1与B 1重合),现将正n 边形A 0B 1B 2…B n -1绕顶点A 0逆时针旋转α(nοο1800<<α).(3)设θn 与上述“θ3,θ4,…”的意义一样,请直接写出θn 的度数;(4)试猜想在n 边形且不添加其他辅助线的情形下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.(2009山东德州)已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明) (2010江苏苏州)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90°,B ∠=306cm °,;A BC ∠==图②中,90D ∠=°,45E ∠=°,4cm DE =.图③是刘卫同学所做的一个实验:他将DEF △的直角边DE 与△ABC 的斜边AC 重合在一起,并将DEF △沿AC 方向移动.在移动过程中,D 、E 两点始终在AC (移动开始时点D 与点A重合). (1)在DEF △沿AC 方向移动的过程中,刘卫同学发现:F C 、两点间的距离逐渐_________.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题: 问题①:当DEF △移动至什么位置,即AD 的长为多少时,F C 、的连线与AB 平行?问题②:当DEF △移动至什么位置,即AD 的长为多少时,以线段AD FC BC 、、的长度为三边长的三角形是直角三角形?问题③:在DEF △的移动过程中,是否存在某个位置,使得15FCD ∠=°?如果存在,求出AD 的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程.AD EG 图① F A D G图② FA E 图③ (图②)D图甲a 3a 2a 1A 6A 5A 4A 3A 2A 1θCAB三、测试提高 1.(2009湖南常德)如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形.(1)当把△ADE 绕A 点旋转到图2的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;(2)当△ADE 绕A 点旋转到图3的位置时,△AMN 是否还是等边三角形?若是,请给出证明,并求出当AB =2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由.第九讲 中考压轴题十大类型之 实践操作、问题探究1.(2009陕西)问题探究 (1)请在图①的正方形ABCD 内,画出使∠APB=90°的一个..点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使∠APB=60°的所有..的点P ,并说明理由. 问题解决(3)如图③,现在一块矩形钢板ABCD ,AB =4,BC =3.工人师傅想用它裁出两块全等的、面积最大的△APB 和△CP ′D 钢板,且∠APB =∠CP ′D=60°.请你在图③中画出符合要求的点P 和P ′,并求出APB △的面积(结果保留根号).(2011江西)某数学兴趣小组开展了一次活动,过程如下:设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线AB 、AC 之间,并使小棒两端分别落在两射线上.活动一:如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,12A A 为第1根小棒.数学思考: (1) 小棒能无限摆下去吗?答:______.(填“能”或“不能”)1AA =12A A =32A A =1.(2)设① θ=______度; 212n nA A -的长度为② 若记小棒图1图2 图3D C BA ①D CBA③D C B A②。