2019-2020学年高中数学《第29课时 方差与标准差》导学案 苏教版必修3.doc

合集下载

高中数学方差与标准差

高中数学方差与标准差
x 甲=16×(27+38+30+37+35+31)=33, x 乙=16×(33+29+38+34+28+36)=33,
课前探究学习
课堂讲练互动
活页规范训练
题型三 用样本的数字特征估计总体的数字特征 例3 14分为了保护学生的视力;教室内的日光灯在使用一段 时间后必须更换;已知某校使用的100只日光灯在必须换掉前的使 用天数如下表:
自学导引 1 一组数据的 最大值与 最小值 的差称为极差
2.设一组样本数据 x1,x2,…,xn,其平均数为 x ,则称 s2

1 n
n
(xi- x )2
i=1
为这个样本的方差,其算术平方根 s

1 n
n
xi- x 2为样本的标准差,分别简称样本方差、样本标
i=1
准差.
课前探究学习
课堂讲练互动
活页规范训练
方差 s2=51[(84-85)2+(84-85)2+(84-85)2+(86-85)2+(87 -85)2]=1.6.
标准差 s= 1.6=25 10.
课前探究学习
课堂讲练互动
活页规范训练
题型二 方差与标准差的应用 例2 从甲 乙两种玉米苗中各抽10株;分别测得它们的株高单 位:cm如下: 甲:25 41 40 37 22 14 19 39 21 42 乙:27 16 44 27 44 16 40 40 16 40 问:1哪种玉米的苗长得高 2哪种玉米的苗长得齐 思路探索 本题主要考查利用平均数和标准差 方差分析数据 的特征 看哪种玉米的苗长得高;只要比较甲 乙两种玉米苗的均高 即可;要比较哪种玉米的苗长得整齐;只要看两种玉米的株高的 方差即可;因为方差体现一组数据波动大小的特征
课前探究学习

《标准差与方差》数学教案设计

《标准差与方差》数学教案设计

《标准差与方差》数学教案设计一、教学目标1.理解方差的定义和性质,掌握方差的意义和应用。

2.学会计算数据的方差和标准差。

3.培养学生运用统计方法解决实际问题的能力。

二、教学重点与难点1.重点:方差和标准差的定义及计算方法。

2.难点:方差的意义和在实际问题中的应用。

三、教学准备1.教学课件或黑板。

2.数据表格、计算器等教学工具。

四、教学过程一、导入新课(1)引导学生回顾平均数的定义和计算方法。

(2)提出问题:平均数能否完全反映一组数据的特征?为什么?(3)引导学生思考,为引入方差和标准差的概念做铺垫。

二、新课讲解1.讲解方差的定义和性质(1)通过实际例子,让学生感受数据波动的大小。

(2)引导学生理解方差是衡量数据波动程度的统计量。

(3)讲解方差的计算公式和性质。

2.讲解标准差的定义和性质(1)介绍标准差是方差的平方根,用于衡量数据的离散程度。

(2)讲解标准差的计算公式和性质。

3.讲解方差和标准差的意义(1)通过实际例子,让学生感受方差和标准差在数据分析中的作用。

(2)引导学生理解方差和标准差在描述数据分布特征方面的重要性。

三、案例分析1.分析案例一:某班学生的数学成绩(1)给出学绩的数据表格。

(2)引导学生计算平均数、方差和标准差。

(3)让学生讨论:哪个统计量更能反映这组数据的特征?2.分析案例二:某地区气温变化(1)给出某地区气温变化的数据表格。

(2)引导学生计算平均数、方差和标准差。

(3)让学生讨论:如何利用方差和标准差分析气温变化的规律?四、巩固练习1.学生独立完成课后练习题。

2.教师对学生的答案进行点评和讲解。

五、课堂小结2.强调方差和标准差在数据分析中的应用。

六、作业布置1.学生完成课后作业。

2.教师批改作业,了解学生的学习情况。

七、教学反思1.本节课教学效果如何?哪些地方需要改进?2.学生对方差和标准差的理解是否到位?如何提高学生的理解能力?3.在今后的教学中,如何更好地运用案例教学,提高学生的学习兴趣和积极性?八、教学延伸1.引导学生了解其他统计量(如偏度、峰度等)的定义和作用。

高中数学 第2章《统计》方差与标准差导学案 苏教版必修三

高中数学 第2章《统计》方差与标准差导学案 苏教版必修三

江苏省响水中学高中数学第2章?统计?方差与标准差导学案苏教
版必修3
学习目标
1.理解样本数据的方差、标准差的意义和作用
2.学会计算数据的方差、标准差 ,掌握通过合理抽样对总体的稳定性水平作出科学估计的方法.
一、根底知识导学
有甲、乙两种钢筋,现从中各抽取一个样本检查它们的抗拉强度(单位:kg/mm2), 通过计算发现,两个样本的平均数均为125.
甲110 120 130 125 120 125 135 125 135 125 乙115 100 125 130 115 125 125 145 125 145 哪种钢筋的质量较好?
三、重点难点探究
探究一
甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位: t/hm2) ,试根据这组数据估计哪一种水稻品种的产量比拟稳定.
品种第1年第2年第3年第4年第5年
甲10

探究二
如下,试估计这种日光灯的平均使用寿命和标准差.
天数151
-180 181
-210
211
-240
241
-270
271
-300
301
-330
331
-360
361
-390
灯泡数 1 11 18 20 25 16 7 2 四、智能根底检测。

方差与标准差

方差与标准差

课题:方差和标准差甲、乙两人的平均成绩相同,但是甲每次的射击成绩都接近平均数8, 而乙每次的射击成绩偏离平均数较大 •在评价数据的稳定性是,我们通常将各数据偏离平均数的波动程度作为指标。

直接计算射击成绩与平均成绩偏差的和,发现它们是一样的。

甲射击成绩与平均成绩的偏差的和:(7-8) + (8-8) + (8-8) + (8-8) + (9-8) =乙射击成绩与平均成绩的偏差的和;(10*8) - (6-8) + (10-8) - (6-8) + (8-8) = 0现在我们计算一下甲、乙两人每次射击成绩与平均成绩的偏差的平方和•甲=(7-8) 2+ (8-8) 2+ (8-8)2+ (8-8) ’+ (9-8)2=2 乙:< 10-8) 2+ (6-8) 2+ (10-8)2+ (6-8)2+ (8-8)16习兴趣 二、探究1(10分钟)选谁去参加比赛呢?我们先来算一算甲和乙命中环数的平均数吧!釉=](7+8 + 8+8+9) =8 (环)5& = -(1Q + 6+1Q + 6 + 8^=8 (环)5咦?平均数一样耶!那怎么比较两人成绩的好坏呢? 我们来画折线图直观地比较一下射击次序5 4 3 2 成绩(5F)86乙2、什么是标准差。

乙:9、5、7、8 7、6、8、6、7、7 经过计算,两人射击环数的平均数相同,但 S*>Si ,所以确定 乙—去参加比赛。

从一堆苹果中任取F 只,称得它们的 质量如下(单饥克)125, 124, 12b 123, 127则该样本标准差z — 2_(克)(用数字作答).【解析】样本平均数 r = |(125+124 + 121 + 123+127)=124则样本方差*—;『+/ +屮十]口屮)=仏所以S 二2*应用提高(5 分钟)能力提升,学 有余力的同 学可以仔细研究平均数方差标准差1. 2. 3* 4、5 3 2A11J12. 13. 14、15 13 23、6, 9、12. 15918请你用发现的结论来解决以下的问题匕己知数据曲,屯,…*斗的平均数为血方差为h 标 准差为C 则①数据曲+3,犹尹d ,曲+3 ,A n +3的平均数为;_1±3方差为b,标准差为一£一②数据斤乳吐-3,岭-3*…,吒心的平均数为方 差为_b_,标准差为_L_.c... ........ ........ ........ .. ........ 3热的平均数为“2®-方差为…聖」标准差为一亘。

2019-2020学年高中数学苏教版必修3教学案:第2章 2.3 2.3.2方差与标准差 Word版含解析

2019-2020学年高中数学苏教版必修3教学案:第2章 2.3 2.3.2方差与标准差 Word版含解析

2.3.2 方差与标准差[新知初探]1.极差、方差、标准差(1)极差:一组数据的最大值与最小值的差. (2)方差与标准差:设一组样本数据x 1,x 2,…,x n ,其平均数为x ,则称s 2=1n i =1n(x i -x )2为这个样本的方差,其算术平方根s =错误!为样本的标准差.2.方差与标准差的作用标准差与方差描述一组数据围绕平均数波动的大小,标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.方差、标准差刻画了一组数据的稳定程度.[小试身手]1.数据0,1,3,4,7的极差为________,方差为________. 答案:7 62.一组数据1,2,3,4,a 的平均数是3,则数据的方差为________,标准差为________. 答案:223.若1,2,3,x 的平均数是5,而1,3,3,x ,y 的平均数是6,则1,2,3,x ,y 的方差是________. 解析:由5=1+2+3+x4得x =14.同理y =9.由s 2=15(12+22+32+142+92)-5.82=24.56.答案:24.56[典例] 甲、乙两机床同时加工直径为100 cm 的零件,为检验质量,各从中抽取6件测量,数据(单位:方差、标准差的计算及应用cm)为:甲:99 100 98 100 100 103; 乙:99 100 102 99 100 100. (1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定. [解] (1)x 甲=16(99+100+98+100+100+103)=100,x 乙=16(99+100+102+99+100+100)=100.s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73.s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均数相同, 又s 2甲>s 2乙,所以乙机床加工零件的质量更稳定.[活学活用]某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔一小时抽一包产品,称其重量(单位:g)是否合格,分别记录抽查数据,获得重量数据茎叶图如下图:根据样本数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对稳定.解:设甲、乙两个车间产品重量的均值分别为x 甲、x 乙,方差分别为s 2甲、s 2乙, 则x 甲=122+114+113+111+111+1076=113,x 乙=124+110+112+115+108+1096=113,s 2甲=16[(122-113)2+(114-113)2+(113-113)2+(111-113)2+(111-113)2+(107-113)2]=21,s 2乙=16[(124-113)2+(110-113)2+(112-113)2+(115-113)2+(108-113)2+(109-113)2]=2913,由于s 2甲<s 2乙,所以甲车间的产品的重量相对稳定.[典例] 设数据x 1,x 2,…,x n 的方差为s 2,求下列各组数据的方差. (1) x 1+b ,x 2+b ,…,x n +b ; (2)ax 1, ax 2,…,ax n ; (3)ax 1+b, ax 2+b ,…,ax n +b .[解] 设数据x 1,x 2,…,x n 的平均数为x , 则数据x 1+b ,x 2+b ,… ,x n +b 的平均数为x +b , 数据ax 1,ax 2,…,ax n 的平均数为a x ,数据ax 1+b ,ax 2+b ,…,ax n +b 的平均数为a x +b , 设数据x 1+b ,x 2+b ,…, x n +b 的方差为s 21, 数据ax 1,ax 2,…,ax n 的方差为s 2,数据ax 1+b ,ax 2+b ,…,ax n +b 的方差为s 23,(1) s 21=1n [(x 1+b -x -b )2+(x 2+b -x -b )2+…+(x n +b -x -b )2]=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]=s 2, (2)s 2=1n [(ax 1-a x )2+(ax 2-a x )2+…+(ax n -a x )2]=a 2·1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]=a 2s 2,(3)s 23=1n[(ax 1+b -a x -b )2+(ax 2+b -a x -b )2+…+(ax n +b -a x -b )2]方差的性质=1n [(ax 1-a x )2+(ax 2-a x )2+…+(ax n -a x )2] =a 2·1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]=a 2s 2.[活学活用]1.已知一组数据x 1,x 2,…,x 8的平均数是2,方差为6,则数据x 1-1,x 2-1,…,x 8-1的平均数是________,方差是________.答案:1 62.已知一组数据x 1,x 2,…,x n 的平均数是-2,方差是4,则数据2x 1+3,2x 2+3,…,2x n +3的平均数是________,方差是________.答案:-1 16[典例] (广东高考)某工厂36名工人的年龄数据如下表.(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为统计图表中的方差问题44,列出样本的年龄数据.(2)计算(1)中样本的均值x 和方差s 2.(3)36名工人中年龄在x -s 与x +s 之间有多少人?所占的百分比是多少(精确到0.01%)? [解] (1)36人分成9组,每组4人,其中第一组的工人年龄为44,所以它在组中的编号为2, 所以所有样本数据的编号为4n -2(n =1,2,…,9), 其年龄数据为:44,40,36,43,36,37,44,43,37. (2)由均值公式知:x =44+40+…+379=40,由方差公式知:s 2=19[(44-40)2+(40-40)2+…+(37-40)2]=1009.(3)因为s 2=1009,s =103, 所以36名工人中年龄在x -s 和x +s 之间的人数等于年龄在区间[37,43]上的人数, 即40,40,41,…,39,共23人.所以36名工人中年龄在x -s 和x +s 之间的人数所占的百分比为2336×100%≈63.89%.[活学活用]从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?解:(1)如图所示:(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.层级一学业水平达标1.给出下列说法:①一组数据不可能有两个众数;②一组数据中的方差必须是正数;③将一组数据中的每一个数据加上或减去同一常数后,方差恒不变;④在频率分布直方图中,每个小长方形的面积等于相应小组的频率,其中错误的个数有________个.答案:22.某老师从星期一到星期五收到电子邮件数分别是10,6,8,5,6,则该组数据的方差s2=________.解析:5个数据的平均数x=10+6+8+5+65=7,所以s2=15×[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=3.2.答案:3.23.抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为________.解析:易知均值都是90,甲的方差为s 2甲=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4.乙的方差为s 2乙=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.∴s 2甲>s 2乙答案:24.如图是某市歌手大奖赛七位评委为某位选手打出分数的茎叶图,若去掉一个最高分和一个最低分,则剩余分数的方差为________.解析:去掉一个最高分和一个最低分,所剩数据为84,84,84,86,87,其均值为85,方差为s 2=15[(84-85)2×3+(86-85)2+(87-85)2]=85.答案:855.从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下(单位:cm): 甲:25 41 40 37 22 14 19 39 21 42 乙:27 16 44 27 44 16 40 40 16 40 问:(1)哪种玉米苗长得高? (2)哪种玉米苗长得齐?解:(1)∵x 甲=110(25+41+40+37+22+14+19+39+21+42)=110×300=30(cm),x 乙=110(27+16+44+27+44+16+40+40+16+40)=110×310=31(cm).∴x 甲<x 乙,即乙种玉米苗长得高. (2)s 2甲=110[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=110(25+121+100+49+64+256+121+81+81+144)=110×1 042=104.2, s 2乙=110(2×272+3×162+3×402+2×442)-312=128.8,∴s 2甲<s 2乙,即甲种玉米苗长得齐.层级二 应试能力达标1.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差见表:则参加奥运会的最佳人选应为________.解析:由平均数及方差的定义知,丙的平均成绩较高且较稳定. 答案:丙2.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是________.①这种抽样方法是一种分层抽样; ②这种抽样方法是一种系统抽样;③这五名男生成绩的方差大于这五名女生成绩的方差; ④该班级男生成绩的平均数小于该班女生成绩的平均数.解析:对①,分层抽样要求男女生总人数之比等于男女生抽样人数之比,所以①错.对②,系统抽样要求先对个体进行编号再抽样,所以②错.对③,男生方差为8,女生方差为6,所以③正确.对④,抽取的样本平均成绩不能代表总体平均成绩.所以④错.答案:③3.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则x 2+y 2的值为________.解析:由15(x +y +10+11+9)=10,15[(x -10)2+(y -10)2+0+1+1]=2,联立解得x 2+y 2=208.答案:2084.若10个正数的平方和是370,方差是33,则平均数为________. 解析:由s 2=110(x 21+x 2+…+x 210)-x 2,得33=110×370-x 2,解得x =2. 答案:25.样本容量为10的一组数据,它们的平均数是5,频率条形图如图,则其标准差等于________.解析:由条形图知2与8的个数相等,且多于5的个数,于是这10个数分别为2,2,2,2,5,5,8,8,8,8.∵x =5,∴s 2=110[(2-5)2+(2-5)2+(2-5)2+(2-5)2+(5-5)2+(5-5)2+(8-5)2+(8-5)2+(8-5)2+(8-5)2]=110×8×9=365.∴s =655.答案:6556.甲、乙两名同学在五次考试中的数学成绩统计用茎叶图表示如图所示,则成绩的方差较小的为________.解析:x 甲=15(98+99+105+115+118)=107,x 乙=15(95+106+108+112+114)=107.s 2甲=15[(98-107)2+(99-107)2+(105-107)2+(115-107)2+(118-107)2]=66.8.s 2乙=15[(95-107)2+(106-107)2+(108-107)2+(112-107)2+(114-107)2]=44.∴成绩的方差较小的为乙. 答案:乙7.一组数据的每一个数据都减去80,得到一组新数据,若求得的新数据的平均数是1.2,方差是4.4,则原来的数据的平均数和方差分别是________.解析:由平均数与方差的性质知原来数据的平均数1.2+80=81.2.方差不变. 答案:81.2,4.48.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s 1,s 2,s 3,则它们的大小关系为________.解析:由直方图容易求得甲、乙、丙三个社区“家庭每月日常消费额”的平均值分别为2 200 元、2 250 元、2 150 元,又由直方图可知甲的数据偏离平均值最大,故标准差最大,乙的数据偏离平均值最小,故标准差最小,即标准差的大小关系是s1>s3>s2.故填s1>s3>s2.答案:s1>s3>s29.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表:(1)(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.解:(1)画茎叶图如图所示,中间数为数据的十位数.从这个茎叶图中可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是33.5,甲的中位数是33.因此,乙发挥比较稳定,总体得分情况比甲好.(2)可求x甲=33,x乙=33,s甲≈3.96,s乙≈3.56,甲的中位数是33,乙的中位数是33.5,综合比较,乙参加比赛较合适.10.总体的各个个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5,求使该总体的方差最小时a,b的取值.解:∵数据共有10个,且总体的中位数为10.5,∴a+b=21,经计算,此时样本数据的平均数是10,∴使该总体的方差最小,则只要(a-10)2+(b-10)2最小即可,而(a-10)2+(b-10)2=(a-10)2+(a-11)2=2a2-42a+221,由二次函数的图象可知当a=10.5时,该总体的方差最小,此时b=10.5.。

高中数学 第2章《统计》方差与标准差 精品导学案 苏教版必修三

高中数学 第2章《统计》方差与标准差 精品导学案 苏教版必修三

江苏省响水中学高中数学第2章《统计》方差与标准差导学案苏教版必修3学习目标1.理解样本数据的方差、标准差的意义和作用2.学会计算数据的方差、标准差,掌握通过合理抽样对总体的稳定性水平作出科学估计的方法.一、基础知识导学有甲、乙两种钢筋,现从中各抽取一个样本检查它们的抗拉强度(单位:kg/mm2), 通过计算发现,两个样本的平均数均为125.甲110 120 130 125 120 125 135 125 135 125 乙115 100 125 130 115 125 125 145 125 145 哪种钢筋的质量较好?三、重点难点探究探究一甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位: t/hm2),试根据这组数据估计哪一种水稻品种的产量比较稳定.品种第1年第2年第3年第4年第5年甲9.8 9.9 10.1 10 10.2乙9.4 10.3 10.8 9.7 9.8探究二为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差. 天数151-180 181-210 211-240 241-270 271-30301-330 331-360 361-390灯泡数 1 11 18 20 25 16 7 2 四、智能基础检测教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。

所以在学习上级的精神下,本期个人的研修经历如下:1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。

2.观摩研讨:以年级组、教研组为单位,围绕一定的主题,定期组织教学观摩,开展以课例为载体的“说、做、评”系列校本研修活动。

数学苏教版必修3教案:2.3.2方差与标准差 Word版含解析

数学苏教版必修3教案:2.3.2方差与标准差 Word版含解析

2.3.2方差与标准差整体设计教材分析“方差与标准差”这节课在上节课平均数的基础上,从实例“有甲、乙两种钢筋,检查它们的抗拉强度”中平均数不是反映总体质量、水平的唯一特征数,在平均值相差不大的情况下,数据的稳定程度可以作为评价对象质量高低的又一重要因素,从而说明引入方差、标准差的必要性,同时使学生养成从多个角度看问题的习惯,锻炼了学生的创造性思维.为了让学生充分体会“稳定性”的意义,教材中用数轴表示两组数据,形象地表现出数据的“聚散”程度,并用极差反映数据的稳定性.当两组数据的极差相差不大时,就不适宜用极差来表示稳定性,这时可用“方差与标准差”作为比较数据稳定性的特征数.初中已学过方差概念,现在的教学不能停留在原有的水平上,要将用方差刻画数据的稳定程度的理由讲清楚,充分揭示用方差作为比较数据稳定性水平的特征数的思维过程.通过方差的单位与原数据的单位的比较,通过实际问题的分析,让学生了解到用方差反映稳定性水平的不足之处是与原数据单位不一致,且平方后可能夸大偏差的程度等,从而引入“标准差”的概念,这一过程应让学生在形成问题和解决问题的过程中加以探索.三维目标1.通过对具体案例的分析掌握样本数据的平均数、方差与标准差的基本概念和计算方法,培养学生分析问题和解决问题的能力,激发学生探究数学问题的兴趣和动机.2.在解决统计问题的过程中,进一步体会用样本估计总体的思想,形成对数据处理过程进行初步评价的意识.3.引导学生对一些生活中实际问题的学习, 进一步培养学生的数学素养和增强学生的数学应用意识及认真、耐心、细致的学习态度和学习习惯.4.渗透数学来源于实践,反过来又作用于实践的观点.重点难点教学重点:1.通过实例理解样本数据方差与标准差的意义和作用,学会计算数据的样本方差与标准差.2.根据方差与标准差对事件进行科学的决策,形成对数据处理过程进行初步评价的意识.教学难点:1.方差与标准差的计算方法及运算的准确性.2.用样本的基本数字特征估计总体的基本数字特征,从中进一步理解统计的基本思想.课时安排1课时教学过程导入新课平均数向我们提供了样本数据的重要信息,但是,平均数有时也会使我们作出对总体的片面判断.某地区的统计报表显示,此地区的年平均家庭收入是10万元,给人的印象是这个地区的家庭收入普遍比较高.但是,如果这个平均数是从200户贫困家庭和20户极富有的家庭收入计算出来的,那么它就既不能代表贫困家庭的年收入,也不能代表极富有家庭的年收入.因为这个平均数掩盖了一些极端情况.而这些极端情况显然是不能被忽视的.因此,只有平均数还难以概括样本数据的实际情况.举例:有甲、乙两种钢筋,现从中各抽取一个样本(如下表)检查他们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125.哪种钢筋的质量较好?两种钢筋的平均数都是125,那么,它们有没有什么差异呢?推进新课作出图形,作直观比较:直观上看,还是有差异的.乙的强度比较分散,甲的强度相对集中.因此,我们还需要从另外的角度来考察这两组数据.例如,在作统计图、表时提到过的极差甲的强度极差=135-110=25,乙的强度极差=145-100=45.它在一定程度上表明了样本数据的分散程度,与平均数一起,可以给我们许多关于样本数据的信息,显然,极差对极端值非常敏感,注意到这一点,我们可以得到一种“去掉一个最高分,去掉一个最低分”的统计策略.新知探究1.方差(variance)的概念:考察样本数据的分散程度的大小,最常用的统计量是方差,一般用s 2表示.假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.结合上节课有关离差的讨论可知,离差越小,稳定性就越高. 因此,通常用如下公式计算方差:∑=-=ni i x x n s 122)(1. 因为方差与原始数据的单位不同,且平方后可能夸大了离差的程度,因此将其算术平方根∑=-=ni i x x n s 12)(1 作为样本的标准差(standard deviation ),分别简称样本方差、样本标准差.2.计算样本数据x 1,x 2,…,x n 的标准差的算法是:S1 算出样本数据的平均数x ;S2 算出每个样本数据与样本平均数的差x i -x(i=1,2,…,n);S3 算出S2中x i -x(i=1,2,…,n)的平方;S4 算出S3中n 个平方数的平均数;S5 算出S4中平均数的算术平方根,即为样本标准差.关于方差、标准差的一点说明:(1)方差、标准差是用来描述样本数据的离散程度的,它反映了各个样本数据聚集于样本平均数周围的程度.方差与标准差越小,表明各个样本数据在样本平均数的周围越集中;反之,方差标准差越大,表明各个样本数据在样本平均数的周围越分散.(2)在实际应用中,方差与标准差常被理解为稳定性.例如在上面的比较两种钢筋的抗拉强度时,方差与标准差越小意味着该产品的质量越稳定;在描述成绩时,方差与标准差越小,说明成绩越稳定.(3)学生思考“标准差的取值范围是什么?标准差为0的样本数据有什么特点?” 由标准差的定义容易得出标准差是非负的;标准差为0意味着所有的样本数据都相等的特性,且与样本平均数也相等,可以构造一个样本容量为2的样本:x 1,x 2(x 1<x 2),这样可以体会出两个样本数据分散程度与样本标准差应用示例例1 根据下列四组样本数据,说明它们的异同点.(1) 555555555;(2) 444555666;(3) 334456677;(4) 222258888.分析:从数据的数字特征出发.解:四组数据的平均数都是5.0,标准差分别是0.00,0.82,1.49,2.83.虽然它们有相同的平均数,但是它们有不同的标准差,说明数据的分散程度是不一样的.点评:样本的方差、标准差能说明数据的分散程度.例2 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产量比较稳定.分析:巩固求方差和标准差的方法.解:甲品种的样本平均数为10,样本方差为[(9.8-10)2+(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02,乙品种的样本平均数也为10,样本方差为[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]÷5=0.24.因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定.点评:1.本题若仅由x甲=x乙,易产生这两种水稻的产量一样稳定的错觉.这表明在实际问题中,仅靠期望值(即平均数)不能完全反映问题,还要研究其偏离平均值的离散程度(及方差或标准差):标准差大说明取值分散性大,标准差小说明取值分散性小或者说取值比较稳定、集中.2.要对“根据这组数据估计…”的统计意义作必要的说明:第一,统计研究是以一定的样本为依据的,对于确定的样本得到确定的统计结果;第二,统计结果具有随机性,选择不同的样本可能得到不同的统计结果.最后还可让学生思考除了品种的优劣,影响水稻产量还有哪些因素?根据一组数据得到的结果是否可靠?这些问题的提出会激发学生对统计学理论的兴趣.例3 为了保护学生的视力,教室内的日光灯在使用了一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差.分析:用每一个区间内的组中值作为相应日光灯的使用寿命,再求平均使用寿命.解:各组中值分别为165.5,195.5,225.5,255.5,285.5,315.5,345.5,375.5,由此算165.5×1%+195.5×11%+225.5×18%+255.5×20%+285.5×25%+315.5×16%+345.5×7%+375.5×2%=268.4≈268(天).这些组中值的方差为1001×[1×(165.5-268.4)2+11×(195.5-268.4)2+18×(225.5-268.4)2+20×(255.5-268.4)2+ 25×(285.5-268.4)2+16×(315.5-268.4)2+7×(345.5-268.4)2+2×(375.5-268.4)2]=2 128.60(天2), 故所求的标准差约为6.2128≈46(天).答:估计这种日光灯的平均寿命约为268天,标准差约为46天.点评:此例的目的是:掌握连续性随机变量的平均值和标准差的一种估计方法,即组中值估计法.因为前一节例3已介绍了连续性随机变量的平均值的估计方法,所以处理此例时应让学生回忆前例并主动探索解决问题的方法.例4 容量是40的样本中各数据与30的差的平方和是250,样本标准差是1.5,求样本平均数.分析:根据样本平均数、样本方差、样本标准差的公式解题.解:∵(x 1-30)2+(x 2-30)2+…+(x 40-30)2=250,所以(x 12+x 22+…+x 402)-60(x 1+x 2+…+x 40)+40×302=250.即(x 12+x 22+…+x 402)-60×40x +40×900=250, ①又∵140[(x 1-x )2+(x 2-x )2+…+(x 40-x )2]=1.52=2.25,即(x 12+x 22+…+x 402)-2x(x 1+x 2+…+x 40)+40x 2=90,即(x 12+x 22+…+x 402)-80x 2+40x 2=90,②①-②得40x 2-2 400x+40×900=160, 即x 2-60x +896=0,( x -32)( x -28)=0, 所以,x =32或x =28.点评:理解样本方差的含义,抓住关键点:x 1+x 2+…+x 40=40x ,通过数形结合,结合消元x 1+x 2+…+x 40合理解决问题.例5 已知一组数据的方差是s 2,将这组数据的每个数据都加上10,求所得新数据的方差.分析:利用方差公式解题.解:设原数据:x 1,x 2,…,x n ,平均数是x ,方差是s 2,则新数据为:x 1+10,x 2+10,…,x n +10,平均数为则方差为n 1[(x 1+10-x -10)2+(x 2+10-x -10)2+…+(x n +10-x -10)2] =n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]=s 2.变式训练某班有50名学生,某次数学考试的成绩经计算得到的平均分数是70分,标准差是s ,后来发现登记有误,某甲得70分却记为40分,某乙50分误记为80分,更正后重新计算得标准差为s 1,则s 与s 1之间的大小关系是( )A.s=s 1B.s<s 1C.s>s 1D.不能确定解析:由题意,平均数不变,所以只要看与平均数的离差的平方的变化情况.因为方差刻画了数据相对于平均值的平均偏离程度.s 中有:(40-70)2+(80-70)2=1 000,s 1中有:(70-70)2+(50-70)2=400所以s>s 1.答案:C点评:由本例及变式可推理归纳方差的性质:(1)若给定一组数据x 1,x 2,…,x n ,方差为s 2,则ax 1,ax 2,…,ax n 的方差为a 2s 2;(2)若给定一组数据x 1,x 2,…,x n ,方差为s 2,则ax 1+b,ax 2+b,…,ax n +b 的方差为a 2s 2,特别地,当a=1时,则有x 1+b,x 2+b,…,x n +b 的方差为s 2,这说明将一组数据的每一个数据都减去相同的一个常数,其方差是不变的,即不影响这组数据的波动性;(3)方差刻画了数据相对于平均值的平均偏离程度.对于不同的数据集,当离散程度越大时,方差越大;(4)方差的单位是原始测量数据单位的平方,对数据中的极值较为敏感.知能训练课本本节练习解答:1.甲、乙两个班的样本平均数为160,但甲班的极差为3,乙班的极差为30,故甲班的波动较小.2.已知 s 2=3=81[(k 1-k )2+(k 2-k )2+…+(k 8-k )2], 而 883)...(28)3(2...)3(2)3(2821821⨯-+++=-+-+-k k k k k k =2k -3, s 12=18[(2k 1-6-2k+6)2+(2k 2-6-2k+6)2+…+(2k 8-6-2k+6)2]=4s 2=12.3.甲较稳定.4.甲的平均值为10,方差为0.055;乙的平均值为10,方差为0.105.点评:从练习中再次体会数据的离散程度影响对事件的客观判断,体会从平均数、离散程度的角度对事件作出科学判断的方法.课堂小结1.数据的离散程度影响对事件的客观判断,体会从平均数、离散程度的角度对事件作出科学判断的方法,方差与标准差越小,表明各个样本数据在样本平均数的周围越集中;反之,方差与标准差越大,表明各个样本数据在样本平均数的两边越分散;2.衡量离散程度的常用计算方法——方差与标准差,熟悉用计算器计算方差与标准差的方法,切实掌握相关的计算公式、方法、步骤并对有关数据进行合理解释;3.样本的有效选择对判断有重要影响,知道影响判断、决策的因素是多方面的,在对总体作出判断之前,要充分考虑各种因素,切实体会统计的思想方法;4.样本数据既具有随机性又具有规律性,在很广泛的条件下,简单随机抽样样本的数字特征如众数、中位数、平均数、方差与标准差随样本容量的增加及时稳定于总体相应的数字特征,总体的数字特征是一定的,不存在随机性.作业课本习题2.3 3、5、7.设计感想本节课一定要让学生体会平均数反映的是一组数据的平均水平,而方差和标准差则反映了一组数据的波动大小.在实际学习、工作中用得非常多,比如选择运动员参加大型比赛时,要看他以前的每次测试的平均成绩,但成绩的稳定性也非常重要;学习上也是如此,稳定了可以给最后的考试提供稳定心理.用这种与生活的息息相关性激发学生学数学的无限兴趣就是老师最大的收获.习题详解习题2.3 1. x =301(2×5.1+3×5.2+6×5.3+8×5.4+7×5.5+3×5.6+1×5.7)≈5.39. 该厂这个月的平均日产值约为5.39万元.2.在全部数据中找出最小值4.0和最大值7.4,两者之差为3.4,确定全距为3.5,以组距0.5将区间[4.0,7.5]分成7个组.x =1001(4.25×1+4.75×2+5.25×15+5.75×28+6.25×33+6.75×18+7.25×3)=6.03,估计试验田里麦穗的平均长度约为6.0 cm.3.(1)甲机床次品数的平均值为1.5,乙机床次品数的平均值为1.2,故乙机床次品数的平均值较小;(2)甲的方差为1.65,乙的方差为0.82,故乙机床的生产状况较为稳定.4.估计甲机床平均次品率约为(0×0.7+1×0.1+2×0.1+3×0.1)÷1 000=0.06%,乙机床平均次品率约为(0×0.5+1×0.3+2×0.2+3×0)÷1 000=0.07%,故甲机床的产品质量较好.5.(1)此样本中金属棒的平均长度约为5.99;(2)频率分布表如下:频率直方图如下:(3)6×(1-0.2%)≈5.99,6×(1+0.2%)≈6.01,故合格的金属棒有15根,合格率约为15÷40≈37.5%.6.(1)频率分布表如下:频率分布直方图如下:(2)由组中值估计的总体平均数为(57×5+65×14+73×25+81×11+89×5)×601=72.6,约73次. 实际总体平均数约为72,误差约为1.7.施了新化肥的土地的平均每块土地产量为20.52 kg ,未施新化肥的土地平均每块土地产量为17.36 kg ,且施了新化肥的土地产量的方差约为83.33,未施新化肥的土地产量的方差约为154.88,说明用了新化肥不仅平均产量高,而且产量稳定,故可认为新化肥取得了成功.。

高中数学《统计方差与标准差》课件苏教版必修25页文档

高中数学《统计方差与标准差》课件苏教版必修25页文档
高中数学《统计方差与标准差》课件 苏教版必修
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、

2019-2020学年九年级数学上册-5.2《方差与标准差》教案-苏科版

2019-2020学年九年级数学上册-5.2《方差与标准差》教案-苏科版

2019-2020学年九年级数学上册 5.2《方差与标准差》教案 苏科版 教学目标1.经历刻画数据离散程度的探索过程,感受表示数据离散程度的必要性.2.掌握方差和标准差的概念,会计算方差和标准差,理解它们的统计意义.3.了解方差和标准差是刻画数据离散程度统计量,并在具体情景中加以应用. 重点:掌握方差和标准差的概念,会求方差和标准差,理解它们的统计意义.难点:了解方差和标准差是刻画数据离散程度的统计量,并在具体情境中加以应用. 教学过程一、情境创设乒乓球的标准直径为40mm ,质检部门对甲、乙两厂生产的乒乓球的直径进行检测. 从甲、乙两厂生产的乒乓球中各抽样调查了10只,测量的结果如下(单位:mm ): 甲厂40.0 39.9 40.0 40.1 40.2 39.8 40.0 39.9 40.0 40.1 乙厂 39.8 40.2 39.8 40.2 39.9 40.1 39.8 40.2 39.8 40.2 思考:你认为哪个厂生产的乒乓球的直径与标准的误差更小呢?通过计算容易得到:甲乙两厂10只乒乓球的直径的平均数均为40mm ,极差均为0.4mm . 将上面的数据绘制成图:乙厂39.739.839.940.040.140.240.3从图中可以看出,甲厂的数据比较集中地在平均数附近波动,乙厂的数据与平均数的偏差较大.怎样用一个量来描述这两组数据偏离平均数的大小呢?在一组数据中1x ,2x ,…,n x 中,各数据与它们的平均数x 的差的平方分别是21()x x -,22()x x -,…2()n x x -,我们用它们的平均数,即用2222121[()()+()]n s x x x x x x n=-+-+-…来描述这组数据的离散程度,并把它叫做这组数据的方差,记作2s .(“一均,二差,三方,四再均”)我们来计算上面两组数据的方差. 40.0+39.9+40.040.1=4010x =甲…++, 39.8+40.2+39.840.2=4010x =乙…++. 甲厂39.739.839.940.040.140.240.3于是222221[(40.040)(40.140)(40.040)(39.940)]=0.01210s =-+-++-+-甲…, 222221[(39.840)(40.240)(40.240)(39.840)]=0.03410s =-+-++-+-乙…. 22s s <甲乙,说明甲组数据的离散程度较小.通常我们也可以用方差的算术平方根,即222121[()()+()]n s x x x x x x n=-+-+-…来描述一组数据的离散程度,并把它叫做这组数据的标准差,记作s .例如上述数据的标准差分别是:0.0120.11s =≈甲,0.0340.18s =≈乙.通常,一组数据的方差或者标准差越小,这组数据的离散程度越小,这组数据就越稳定.二、例题讲解《学与练》P3例1、例2、拓展提升方差的单位是数据单位的平方,标准差的单位与数据单位一致.三、课堂练习四、小结1.我们知道极差只能反映一组数据中两个 之间的大小情况,而对其他数据的波动情况不敏感.2.描述一组数据的离散程度可以采取许多方法,在统计中常采用先求这组数据的 ,再求这组数据与 的差的 的平均数,用这个平均数来衡量这组数据的波动性大小,即2222121[()()+()]n s x x x x x x n=-+-+-… . 3.一组数据方差的算术平方根叫做这组数据的 。

高中数学《平均数、中位数、众数、极差、方差 标准差》导学案

高中数学《平均数、中位数、众数、极差、方差   标准差》导学案

1.4.1平均数、中位数、众数、极差、方差1.4.2标准差[航向标·学习目标]1.理解平均数、中位数、众数、极差、方差、标准差的概念.2.会计算数据的平均数、标准差.3.体会用统计量表达样本数据,提高学生的学习兴趣.[读教材·自主学习]1.平均数:一般地,对于n个数x1,x2,…,x n,我们把□011n(x1+x2+…+x n)叫作这n个数的算术平均数,简称平均数.2.中位数:一般地,将n个数据按大小顺序排列,处于□02最中间的一个数(或最中间两个数据的平均数)叫作这组数据的中位数.3.众数:一组数据中□03出现次数最多的那个数据叫作这组数据的众数.4.极差:极差是数据的□04最大值与□05最小值的差.5.标准差:各个数据与平均数□06之差的平方的平均数,称为这组数据的方差,方差的□07算术平方根称为这组数据的标准差.[看名师·疑难剖析]1.平均数、中位数、众数刻画一组数据集中趋势的统计量有平均数、中位数和众数等,它们作为一组数据的代表各有优缺点,也各有各的用处,从不同的角度出发,不同的人会选取不同的统计量来表达同一组数据的信息.平均数是刻画一组数据集中趋势最常用的统计量.2.方差、标准差n 个数据x 1,x 2,…,x 3,我们把x 1+x 2+…+x n n记为x -,则方差可以用s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2]来表示,将方差的算术平方根s =1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2]称为标准差. 刻画一组数据离散趋势的统计量有方差、标准差等.对方差和标准差的理解还要注意以下几方面:(1)标准差、方差描述了一组数据围绕平均数的波动大小.标准差、方差越大,数据离散程度越大,稳定性越差;标准差、方差越小,数据离散程度越小,稳定性越好;(2)因方差与原始数据单位不同,且平方后可能夸大了偏差程度,所以虽然标准差与方差在体现数据分散程度上是一样的,但解决问题时一般用标准差;(3)标准差与方差的取值范围是[0,+∞).考点一 平均数、众数、中位数的计算例1 求下列一组数据的平均数、中位数、众数:10,20,80,40,30,90,50,40,50,40. [分析] 明确各概念,利用定义解题.[解] 这组数据的平均数为(10+20+80+40+30+90+50+40+50+40)÷10=45.将这组数据按从小到大的顺序排列,得10,20,30,40,40,40,50,50,80,90,所以中位数为(40+40)÷2=40.又因为40出现3次,出现次数最多,所以众数为40.类题通法求平均数必须先将所有数据求和,再把和除以数据的个数.求中位数时,必须将所有数据按从小到大的顺序排列后,把中间的数或中间两项的平均数称为这组数据的中位数.而众数则是出现次数最多的数据.在解答本类问题时,一定要审清题意,明确各数据出现的次数,认真计算,以防计算失误.[变式训练1] (1)甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.(2)在如下图所示的茎叶图中,甲、乙两组数据的中位数分别是________,________.答案(1)2423(2)4546解析(1)由茎叶图可知甲的平均数为(9+8+20)+(1+3+2+100)+(1+1+5+90)=24,乙的平均数为10(9+7+1+30)+(1+4+2+4+80)+(2+90)=23.10(2)甲组数据从小到大排序后,最中间的数是45,即甲组数据的中位数为45;乙组数据从小到大排序后,最中间的数是46,即乙组数据的中位数是46.考点二平均数、众数、中位数的应用例2个体户李某经营一家快餐店,下面是快餐店所有工作人员8月份的工资表:李某大厨二厨采购员杂工服务生会计3000元450元350元400元320元320元410元(1)计算所有员工8月份的平均工资;(2)由(1)计算出的平均工资能否反映打工人员这个月收入的一般水平?为什么?(3)去掉李某的工资后,再计算平均工资,这能代表打工人员当月的收入水平吗?(4)根据以上计算,以统计的观点,你对(3)的结果有什么看法?[解] (1)这7个人的8月份平均工资是x -1=17(3000+450+350+400+320+320+410)=750(元).(2)计算出的平均工资不能反映打工人员的当月收入的一般水平,可以看出,打工人员的工资都低于平均工资,因为这7个值中有一个极端值——李某的工资特别高,所以他的工资对平均工资的影响较大,同时他也不是打工人员.(3)去掉李某的工资后的平均工资x -2=16(450+350+400+320+320+410)=375(元),该平均工资能代表打工人员的当月收入的一般水平.(4)从本题的计算可以看出,个别特殊值对平均数有很大的影响,因此在选择样本时,样本中尽量不用特殊数据.类题通法本题充分说明了平均数在具体问题中的意义.[变式训练2] 据报道,某公司的33名职工的月工资(以元为单位)如下:(1)求该公司职工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.解 (1)平均数是x -=1500+4000+3500+2000×2+1500+1000×5+500×3+0×2033≈1500+591=2091(元),中位数是1500元,众数是1500元. (2)平均数是x -′=1500+28500+18500+2000×2+1500+1000×5+500×3+0×2033≈1500+1788=3288(元).中位数是1500元,众数是1500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.考点三 方差与标准差的计算例3 一个样本数据的方差是s 2=120[(x 1-3)2+(x 2-3)2+(x 3-3)2+…+(x 20-3)2].(1)求样本的容量n 及平均数x -;(2)如果样本数据的平方和为200,求样本的方差.[分析] 本题主要用方差的公式进行变形求解,我们要熟练掌握公式的变形. [解] (1)由样本数据方差公式可以得到样本容量n =20,平均数x -=3. (2)由s 2=120[(x 1-3)2+(x 2-3)2+…+(x 20-3)2]=120[(x 21+x 22+…+x 220)-6(x 1+x 2+…+x 20)+20×9]=120(200-360+180)=1.类题通法解决此类问题一定要熟记公式.[变式训练3] 甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:s 1、s 2、s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ) A .s 3>s 1>s 2 B .s 2>s 1>s 3 C .s 1>s 2>s 3 D .s 2>s 3>s 1 答案 B解析 x -甲=(7+8+9+10)×520=8.5,s 21=5×[(7-8.5)2+(8-8.5)2+(9-8.5)2+(10-8.5)2]20 =1.25,x -乙=(7+10)×6+(8+9)×420=8.5,s 22=6×[(7-8.5)2+(10-8.5)2]+4×[(8-8.5)2+(9-8.5)2]20=1.45,x -丙=(7+10)×4+(8+9)×620=8.5,s 23=4×[(7-8.5)2+(10-8.5)2]+6×[(8-8.5)2+(9-8.5)2]20=1.05,由s 22>s 21>s 23得s 2>s 1>s 3.故选B.考点四 数据的数字特征的应用例4 一次科技知识竞赛,两组学生成绩如下表:已经计算得到两个组成绩的平均数都是80分,请根据你所学过的统计知识,进一步判断这两个组在这次竞赛中的成绩谁优谁次,并说明理由.[分析]优次之分的标准是通过数据的各数字特征来反映.[解](1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组的成绩好一些;(2)s2甲=150×[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=172(分2).s2乙=150×(4×900+4×400+16×100+2×0+12×100+12×400)=256(分2).因为s2甲<s2乙,所以甲组的成绩比乙组的成绩好.(3)甲、乙两组成绩的中位数、平均数都是80分,其中,甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,从这一角度来看,甲组的成绩总体较好.(4)从成绩统计表来看,甲组的成绩高于90分(含90分)的人数为14+6=20(人),乙组的成绩高于90分(含90分)的人数为12+12=24(人),所以乙组成绩集中在高分段的人数多,同时乙组得满分的比甲组得满分的多6人,从这一角度来看,乙组的成绩较好.类题通法用数据的数字特征来反映该组数据的特点,本例就是从众数、中位数、方差、高分段以及满分的人数等数字特征全方位进行综合分析、比较,并作出判断.[变式训练4]有一组数据:x1,x2,…,x n(x1<x2<…<x n)的算术平均值为10,若去掉其中最大的一个,余下数据的算术平均值为9,若去掉其中最小的一个,余下数据的算术平均值为11.(1)求出第一个数x 1关于n 的表达式及第n 个数x n 关于n 的表达式; (2)若x 1,x 2,…,x n 都是正整数,试求第n 个数x n 的最大值,并举出满足题目要求且x n 取到最大值的一组数据.解 (1)依条件得⎩⎪⎨⎪⎧x 1+x 2+…+x n =10n , ①x 1+x 2+…+x n -1=9(n -1),②x 2+x 3+…+x n =11(n -1), ③由①-②得x n =n +9. 又由①-③得x 1=11-n .(2)由于x 1是正整数.故x 1=11-n ≥1⇒1≤n ≤10, 故x n =n +9≤19.当n =10时,x 1=1,x 10=19,x 2+x 3+…+x 9=80.此时,x 2=6,x 3=7,x 4=8,x 5=9,x 6=11,x 7=12,x 8=13,x 9=14.[例] (12分)某酒厂有甲、乙两条生产线生产同一种型号的白酒,产品在自动传输带上包装传送,每15分钟抽一瓶测定其质量是否合格,分别记录抽查的数据如下(单位:毫升):甲生产线:508,504,496,510,492,496 乙生产线:515,520,480,485,497,503 问:(1)这种抽样是何种抽样方法?(2)分别计算甲、乙两条生产线的平均值与标准差,并说明哪条生产线的产品较稳定.(一)精妙思路点拨(二)分层规范细解(1)根据题意知,抽样是每15分钟抽一瓶,是等距抽样,所以这种抽样是系统抽样.4分(2)根据已知抽样数据可计算:x -甲=16×(508+504+496+510+492+496)=501①,6分∴s 2甲=16×[(508-501)2+(504-501)2+(496-501)2+(510-501)2+(492-501)2+(496-501)2]=45①,∴s 甲=35≈6.708.8分x -乙=16×(515+520+480+485+497+503)=500①,∴s 2乙=16×[(515-500)2+(520-500)2+(480-500)2+(485-500)2+(497-500)2+(503-500)2]≈211.3①10分∴s 乙≈14.536.∴s 甲<s 乙,甲生产线的产品较稳定②.12分 (三)来自一线的报告通过阅卷后分析,对解答本题的失分警示和解题启示总结如下:(注:此处的①②见分层规范细解过程)(四)类题练笔掌握从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下(单位:cm): 甲:25,41,40,37,22,14,19,39,21,42; 乙:27,16,44,27,44,16,40,40,16,40. 问:(1)哪种玉米的苗长得高? (2)哪种玉米的苗长得齐?解 (1)x -甲=110×(25+41+40+37+22+14+19+39+21+42) =110×300=30(cm),x -乙=110×(27+16+44+27+44+16+40+40+16+40)=110×310=31(cm),∵x-甲<x-乙,∴乙种玉米的苗长得高.(2)s2甲=110×[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=110×1042=104.2(cm2),s2乙=110×[(27-31)2×2+(16-31)2×3+(44-31)2×2+(40-31)2×3]=110×1288=128.8(cm2).∵s2甲<s2乙,∴甲种玉米的苗长得齐.(五)解题设问(1)本题中样本数据的个数是多少?________.(2)需用样本数据的哪些数字特征?需要求出样本数据的________,用来衡量玉米的高度;求出样本数据的________(或________)用来衡量玉米长得是否齐.答案(1)有10个(2)平均数方差标准差1.已知某班8名学生的身高(单位:m)分别为:1.74,1.68,1.72,1.80,1.64,1.69,1.75,1.82,则这8名学生的平均身高为()A.1.60 m B.1.82 mC.1.73 m D.1.64 m答案 C解析求平均数.2.在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.48.49.49.99.69.49.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为() A.9.40.484 B.9.40.016C.9.50.04 D.9.50.016答案 D解析 去掉最高分9.9和最低分8.4,余下的数为9.4,9.4,9.6,9.4,9.7,其平均数x -=3×9.4+9.6+9.75=9.5,s 2=15×(0.12+0.12+0.12+0.12+0.22)=0.016.3.某学习小组在一次数学测验中,得100分的有1人,95分的有1人,90分的有2人,85分的有4人,80分和75分的各有1人,则该小组成绩的平均数、众数、中位数分别是( )A .85、85、85B .87、85、86C .87、85、85D .87、85、90答案 C4.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a ,b 的取值分别是________.答案 a =10.5,b =10.5解析 依题意及中位数定义可知:a =10.5,b =10.5.5.甲、乙两台机床在相同的技术条件下,同时生产一种零件,现在从中抽测10个,它们的尺寸(单位:mm)分别如下.甲:10.2,10.1,10,9.8,9.9,10.3,9.7,10,9.9,10.1 乙:10.3,10.4,9.6,9.9,10.1,10.9,8.9,9.7,10.2,10分别计算上面两个样本的平均数和方差.如果图纸规定零件的尺寸为10 mm ,从计算的结果来看,用哪台机床加工这种零件较合适?(要求利用公式笔算)解 x -甲=110×(10.2+10.1+…+10.1)=110×100=10, x -乙=110×(10.3+10.4+…+10)=110×100=10.所以s 2甲=110×[(10.2-10)2+(10.1-10)2+…+(10.1-10)2]=0.03(mm 2), 所以s 2乙=110×[(10.3-10)2+(10.4-10)2+…+(10-10)2]=0.06(mm 2). 所以s 2甲<s 2乙.所以甲机床比乙机床稳定,即用甲机床加工较合适.一、选择题1.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )89⎪⎪⎪ 9 73 1 6 4 0 2A .91.5和91.5B .91.5和92C .91和91.5D .92和92答案 A解析 中位数为12(91+92)=91.5;平均数为18(87+89+90+91+92+93+94+96)=91.5.2.某校高一有四个班,1~4班的人数分别为N 1,N 2,N 3,N 4,总人数为N ,英语成绩的平均分分别为M 1,M 2,M 3,M 4,则该校高一英语的平均分是( )A .M 1,M 2,M 3,M 4的平均数B .M 1,M 2,M 3,M 4的中位数C .M 1N 1,M 2N 2,M 3N 3,M 4N 4的平均数D .M 1N 1,M 2N 2,M 3N 3,M 4N 4的和与1N 的乘积 答案 D3.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( )A.65 B.65 C. 2 D .2答案 D解析 由题可知样本的平均值为1,所以a +0+1+2+35=1,解得a =-1,所以样本的方差为15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2,故选D. 4.甲、乙两名同学在五次考试中数学成绩统计用茎叶图表示如下图所示,则下列说法正确的是( )A.甲的平均成绩比乙的平均成绩高B .甲的平均成绩比乙的平均成绩低C .甲成绩的方差比乙成绩的方差大D .甲成绩的方差比乙成绩的方差小 答案 C解析 x -甲=15(98+99+105+115+118)=107, x -乙=15(95+106+108+112+114)=107.s 2甲=15[(98-107)2+(99-107)2+(105-107)2+(115-107)2+(118-107)2]=66.8,s 2乙=15[(95-107)2+(106-107)2+(108-107)2+(112-107)2+(114-107)2]=44.所以排除A 、B 、D ,选C.5.如下图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为x -A 和x -B ,样本标准差分别为s A 和s B ,则( )A.x -A >x -B ,s A >s BB.x -A <x -B ,s A >s BC.x -A >x -B ,s A <s BD.x -A <x -B ,s A <s B 答案 B解析 由图可知A 组的6个数为2.5,10,5,7.5,2.5,10, B 组的6个数为15,10,12.5,10,12.5,10, 所以x -A =2.5+10+5+7.5+2.5+106=37.56, x -B =15+10+12.5+10+12.5+106=706.显然x -A <x -B ,又由图形可知,B 组的数据分布比A 均匀,变化幅度不大,故B 组数据比较稳定,方差较小,从而标准差较小,所以s A >s B ,故选B.6.某次考试,班长算出了全班40人的数学成绩的平均分M ,如果把M 当成一个同学的成绩与原来的40个分数加在一起,算出这41个分数的平均值为N ,那么M ∶N 为( )A .40∶41B .41∶40C .2∶1D .1∶1答案 D解析 由题意知全班40个同学的总分为40M ,则N =40M +M41,整理,得M =N .二、填空题7.若40个数据的平方和是48,平均数是12,则这组数据的方差是________. 答案 1920解析 由题可得x 21+x 22+…+x 240=48,x -=12. 所以s 2=140[(x 1-x -)2+(x 2-x -)2+…+(x 40-x -)2] =140[(x 21+x 22+…+x 240)+40x -2-2x -(x 1+x 2+…+x 40)] =140⎝ ⎛⎭⎪⎫48+40×14-2×12×12×40=1920.8.从甲、乙、丙三个厂家生产的同一种产品中抽取8件产品,对其使用寿命(单位:年)进行追踪调查的结果如下:甲:3,4,5,6,8,8,8,10; 乙:4,6,6,6,8,9,12,13; 丙:3,3,4,7,9,10,11,12.三个厂家广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数,众数,中位数中的哪一种集中趋势的特征数.甲:________,乙:________,丙:________. 答案 众数 平均数 中位数9.某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2=________.答案 3.2解析本题主要考查统计知识——方差的计算.5个数据的平均数x-=10+6+8+5+65=7,所以s2=15×[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=3.2.三、解答题10.某校在一次考试中,甲、乙两班学生的数学成绩统计如下:选用平均数与众数、中位数评估这两个班的成绩.解甲班平均数79.6分,乙班平均数80.2分,从平均分看成绩较好的是乙班;甲班众数为90分,乙班众数为70分,从众数看成绩较好的是甲班;甲班的第25个和第26个数据都是80,所以中位数是80分,同理,乙班中位数也是80分,但是甲班成绩在中位数以上(含中位数)的学生有31人,占全班学生的62%,同理乙班27人,占54%,所以从中位数看成绩较好的是甲班.如果记85分以上为优秀,甲班有20人,优秀率为40%;乙班有24人,优秀率为48%,从优秀率来看成绩较好的是乙班.可见,一个班学生成绩的评估方法很多,需视要求而定.11.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况.有关数据如下表:每户丢弃旧塑料袋个数234 5户数6161513(1)求这50户居民每天丢弃旧塑料袋的平均数;(2)求这50户居民每天丢弃旧塑料袋的标准差.解根据平均数和标准差的公式计算即可.(1)平均数x -=150(2×6+3×16+4×15+5×13)=18550=3.7. (2)这50户居民每天丢弃旧塑料袋的方差为s 2=150[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=150×48.5=0.97.所以标准差s ≈0.985.12.两台机床同时生产直径为10毫米的零件,为了检验产品质量,检验员从两台机床的产品中各抽出4件进行测量,结果如下(单位:毫米):如果你是检验员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件更符合要求?解 先计算平均直径:x -甲=14×(10+9.8+10+10.2)=10(毫米).x -乙=14×(10.1+10+9.9+10)=10(毫米).由于x -甲=x -乙,因此,平均直径反映不出两台机床生产的零件的优劣.再计算方差:s 2甲=14×[(10-10)2+(9.8-10)2+(10-10)2+(10.2-10)2]=0.02(毫米2),s 2乙=14×[(10.1-10)2+(10-10)2+(9.9-10)2+(10-10)2]=0.005(毫米2). 由于s 2乙<s 2甲,这说明乙机床生产出的零件直径波动小,因此,从产品质量稳定性的角度考虑,乙机床生产的零件更符合要求.13.近几届冬奥会男、女1500米速滑的冠军成绩分别如下表所示:(1)分别求出男、女1500米速滑的冠军成绩的平均数和中位数;(2)分别求出男、女1500米速滑的冠军成绩的标准差;(3)通过(1)(2)的计算,请用自己的语言描述近几届冬奥会男、女1500米速滑的冠军成绩分别有什么特点.解(1)近几届冬奥会男子1500米速滑冠军成绩的平均数和中位数分别是1′54.17″,1′54.81″;女子的平均数和中位数分别是2′05.32″,2′03.42″.(2)近几届冬奥会男、女1500米速滑冠军成绩的标准差分别是3.7637″,6.0194″.(3)从上面的计算结果我们不难看出:近几届冬奥会男子速滑的冠军成绩相比女子成绩优异而且比较稳定.。

高中数学苏教版必修三学案:2.3.2 方差与标准差

高中数学苏教版必修三学案:2.3.2 方差与标准差

2.3.2 方差与标准差[学习目标] 1.会求样本标准差、方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.知识点一 极差定义:一组数据的最大值与最小值的差称为极差. 知识点二 标准差、方差 1.标准差(1)平均距离与标准差标准差是样本数据到平均数的一种平均距离,一般用s 表示.假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.x i 到x 的距离是|x i -x |(i =1,2,…,n ),则用如下公式来计算标准差: s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. (2)计算标准差的步骤 ①求样本数据的平均数x ;②求每个样本数据与样本平均数的差x i -x (i =1,2,…,n ); ③求(x i -x )2(i =1,2,…,n );④求s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2];⑤求s =s 2,即为标准差. 2.方差标准差的平方s 2叫做方差.s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中,x i (i =1,2,…,n )是样本数据,n 是样本容量,x 是样本平均数.题型一 极差例1 2013年5月31日,A ,B 两地的气温变化如图所示.(1)这一天A,B两地的平均气温分别是多少?(2)A地这一天气温的极差是多少?B地呢?(3)A,B两地气候各有什么特点?解(1)从2013年5月31日,A地的气温变化图可读取数据:18℃,17.5℃,17℃,16℃,16.5℃,18℃,19℃,20.5℃,22℃,23℃,23.5℃,24℃,25℃,25.5℃,24.5℃,23℃,22℃,20.5℃,20℃,19.5℃,19.5℃,19℃,18.5℃,18℃,所以A地平均气温为x A=20+124(-2-2.5-3-4-3.5-2-1+0.5+2+3+3.5+4+5+5.5+4.5+3+2+0.5+0-0.5-0.5-1-1.5-2)=20+124×10=20.4(℃)同理可得B地的平均气温为x B=21.4(℃).(2)A地这一天的最高气温是25.5℃,最低气温是16℃,极差是25.5-16=9.5(℃).B地这一天的最高气温是24℃,最低气温是18℃,极差是24℃-18℃=6℃.(3)A,B两地气温的特点:A地早晨和深夜较凉,而中午比较热,昼夜温差较大;B地一天气温相差不大,而且比较平缓.反思与感悟极差是数据的最大值与最小值的差,它反映了一组数据变化的最大幅度,它对一组数据中的极端值非常敏感.跟踪训练1以下四个叙述:①极差与方差都反映了数据的集中程度;②方差是没有单位的统计量;③标准差比较小时,数据比较分散;④只有两个数据时,极差是标准差的2倍.其中正确的是________.★答案★ ①④解析 只有两个数据时,极差等于|x 2-x 1|,标准差等于12|x 2-x 1|.故④正确.由定义可知①正确,②③错误.题型二 方差与标准差的计算例2 已知一个样本为1,3,2,5,x ,它的平均数是3,则这个样本的标准差是多少? 解 方法一 ∵x =1+3+2+5+x5=3,∴x =4. 由方差公式有:s 2=15[(1-3)2+(3-3)2+(2-3)2+(5-3)2+(4-3)2]=2,∴s = 2.方法二 ∵x =1+3+2+5+x5=3,∴x =4,由方差公式的变形形式有:s 2=15(12+32+22+52+42)-32=2,∴s = 2.反思与感悟 1.标准差公式及变形要记忆牢固,运用熟练. 2.方差、标准差单位不一致,要注意区别.跟踪训练2 将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:则7★答案★367解析 ∵由题意知去掉一个最高分和一个最低分后,所剩数据的数据是87,90,90,91,91,94,90+x .∴这组数据的平均数是87+90+90+91+91+94+90+x7=91,∴x =4.∴这组数据的方差是17(16+1+1+0+0+9+9)=367.题型三 方差与标准差的应用例3 甲、乙两机床同时加工直径为100cm 的零件,为检验质量,各从中抽取6件测量,数据为甲:99 100 98 100 100 103乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定. 解 (1)x 甲=16(99+100+98+100+100+103)=100,x 乙=16(99+100+102+99+100+100)=100.s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73, s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1. (2)两台机床所加工零件的直径的平均值相同,又s 2甲>s 2乙,所以乙机床加工零件的质量更稳定. 反思与感悟 1.极差、方差与标准差的区别与联系: 数据的离散程度可以通过极差、方差或标准差来描述.(1)极差是数据的最大值与最小值的差,它反映了一组数据变化的最大幅度,它对一组数据中的极端值非常敏感.(2)方差则反映了一组数据围绕平均数波动的大小,为了得到以样本数据的单位表示的波动幅度通常用标准差,即样本方差的算术平方根,是样本数据到平均数的一种平均距离. 2.在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度,在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性越差;方差越小,数据越集中,质量越稳定.跟踪训练3 某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其质量,分别记录抽查数据如下(单位:kg): 甲:102 101 99 98 103 98 99 乙:110115908575115110 (1)这种抽样方法是哪一种方法?(2)试计算甲、乙两个车间产品质量的平均数与方差,并说明哪个车间产品比较稳定. 解 (1)采用的抽样方法是:系统抽样.(2)x 甲=17(102+101+99+98+103+98+99)=100;x 乙=17(110+115+90+85+75+115+110)=100;x 2甲=17[(102-100)2+(101-100)2+(99-100)2+(98-100)2+(103-100)2+(98-100)2+(99-100)2]=17(4+1+1+4+9+4+1)≈3.43; s 2乙=17[(110-100)2+(115-100)2+(90-100)2+(85-100)2+(75-100)2+(115-100)2+(110-100)2]=17(100+225+100+225+625+225+100) ≈228.57.所以s 2甲<s 2乙,故甲车间产品较稳定.1.已知一个样本中的数据为1,2,3,4,5,则该样本的标准差为________. ★答案★2解析 ∵样本容量n =5, ∴x =15(1+2+3+4+5)=3,∴s =15[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2] = 2.2.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________. ★答案★ 0.1解析 x -=4.7+4.8+5.1+5.4+5.55=5.1,则方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.3.某学员在一次射击测试中射靶10次,命中环数如下: 7,8,7,9,5,4,9,10,7,4则:(1)平均命中环数为________; (2)命中环数的标准差为________. ★答案★ (1)7 (2)2解析 利用平均值和标准差公式求解. (1)x =7+8+7+9+5+4+9+10+7+410=7.(2)s 2=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s =2.4.已知样本x 1,x 2,x 3,x 4,x 5的方差为3,则样本4x 1+1,4x 2+1,4x 3+1,4x 4+1,4x 5+1的标准差是________. ★答案★ 4 3解析 若数据x 1,x 2,x 3,x 4,x 5的方差为s 2,则样本ax 1+b ,ax 2+b ,ax 3+b ,ax 4+b ,ax 5+b 的方差为a 2s 2.由题意知4x 1+1,4x 2+1,4x 3+1,4x 4+1,4x 5+1的方差为42×3=48. ∴其标准差为48=4 3.5.若1,2,3,x 的平均数是5,而1,3,3,x ,y 的平均数是6,则1,2,3,x ,y 的方差是________. ★答案★ 24.56解析 由5=1+2+3+x 4得x =14.同理y =9.由s 2=15(12+22+32+142+92)-5.82=24.56.1.标准差的平方s 2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中,总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性. 3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性.用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一★答案★.。

苏教版高中数学三教案:方差与标准差(1)

苏教版高中数学三教案:方差与标准差(1)

苏教版高中数学三教案:2泰州市娄庄中学孙有华教学目标:1.正确明白得样本数据方差、标准差的意义和作用,2.学会运算数据的方差、标准差;3.会用样本的差不多数字特点估量总体的差不多数字特点.教学重点:用样本数据的方差和标准差估量总体的方差与标准差.教学难点:明白得样本数据的方差、标准差的意义和作用,形成对数据处理过程进行初步评判的意识.教学方法:引导发觉、合作探究.教学过程:一、创设情形,揭示课题有甲、乙两种钢筋,现从中各抽取一个标本(如表)检查它们的抗拉强度(单位:kg/mm2),通过运算发觉,两个样本的平均数均为125.甲110 120 130 125 120 125 135 125 135 125 乙115 100 125 130 115 125125 145 125 145 提出问题:哪种钢筋的质量较好?二、学生活动由图能够看出,乙样本的最小值100低于甲样本的最小值100,最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳固.我们把一组数据的最大值与最小值的差称为极差(range).由图能够看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳固.运用极差对两组数据进行比较,操作简单方便,但假如两组数据的集中程度差异不大时,就不容易得出结论.考察样本数据的分散程度的大小,最常用的统计量是方差和标准差.三、建构数学 1.方差:一样地,设一组样本数据1x ,2x ,…,n x ,其平均数为-x ,则称- 212)(1x x n s ni i -=∑=为那个样本的方差.因为方差与原始数据的单位不同,且平方后可能夸大了离差的程度,我们将方差的算术平方根称为这组数据的标准差.2.标准差:21)(1-=-=∑x x n s ni i标准差也能够刻画数据的稳固程度. 3.方差和标准差的意义:描述一个样本和总体的波动大小的特点数,标准差大说明波动大. 四、数学运用[来源:Z 。

2019-2020年高中数学 2.3.2《方差与标准差》教案 苏教版必修3

2019-2020年高中数学 2.3.2《方差与标准差》教案 苏教版必修3

2019-2020年高中数学 2.3.2《方差与标准差》教案苏教版必修3学习目标(1)通过实例理解样本数据的方差、标准差的意义和作用;(2)学会计算数据的方差、标准差;(3)掌握通过合理抽样对总体的稳定性水平作出科学估计的思想.学习重点用样本数据的方差和标准差估计总体的方差与标准差.学习难点理解样本数据的方差、标准差的意义和作用,形成对数据处理过程进行初步评价的意识.学习过程一、问题情境有甲、乙两种钢筋,现从中各抽取一个标本(如表)检查它们的抗拉强度(单位:kg/mm2),二、学生活动由图可以看出,乙样本的最小值100低于甲样本的最小值100,最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.三、建构数学1.方差:一般地,设一组样本数据,,…,,其平均数为,则称为这个样本的方差.因为方差与原始数据的单位不同,且平方后可能夸大了离差的程度,我们将方差的算术平方根称为这组数据的标准差.2.标准差:标准差也可以刻画数据的稳定程度.3.方差和标准差的意义:描述一个样本和总体的波动大小的特征数,标准差大说明波动大.数学运用例1.甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据这例2.为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换。

已知某校使用的2.练习:(1)课本第68页练习第1、2、3、4题;(2)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为________.(3)若给定一组数据,,…,,方差为,则,,…,方差是课堂小结课外作业课本第69页第3,5,7题.2019-2020年高中数学 2.3.2两个变量的线性相关教案新人教A版教学目标:经历用不同估算方法描述两个变量线性相关的过程。

知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。

【教育专用】高中数学第二章统计2.3.2方差与标准差1教案苏教版必修3

【教育专用】高中数学第二章统计2.3.2方差与标准差1教案苏教版必修3

2.3.2 方差与标准差(1)教学目标:1.正确理解样本数据方差、标准差的意义和作用,2.学会计算数据的方差、标准差;3.会用样本的基本数字特征估计总体的基本数字特征.教学重点:用样本数据的方差和标准差估计总体的方差与标准差.教学难点:理解样本数据的方差、标准差的意义和作用,形成对数据处理过程进行初步评价的意识.教学方法:引导发现、合作探究.教学过程:一、创设情景,揭示课题有甲、乙两种钢筋,现从中各抽取一个标本(如表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125.提出问题:哪种钢筋的质量较好?二、学生活动由图可以看出,乙样本的最小值100低于甲样本的最小值100,最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.我们把一组数据的最大值与最小值的差称为极差(range).由图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定.运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论.考察样本数据的分散程度的大小,最常用的统计量是方差和标准差. 三、建构数学 1.方差:一般地,设一组样本数据1x ,2x ,…,n x ,其平均数为-x ,则称- 212)(1x x n s ni i -=∑=为这个样本的方差.因为方差与原始数据的单位不同,且平方后可能夸大了离差的程度,我们将方差的算术平方根称为这组数据的标准差.2.标准差:21)(1-=-=∑x x n s ni i 标准差也可以刻画数据的稳定程度. 3.方差和标准差的意义:描述一个样本和总体的波动大小的特征数,标准差大说明波动大. 四、数学运用例1 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm 2),试根据这组数据估计哪一种水稻品种的产量比较稳定.解:甲品种的样本平均数为10,样本方差为[(9.8-10)2+(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02.乙品种的样本平均数也为10,样本方差为[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]÷5=0.24 因为0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定.例2 为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差.分析 用每一区间内的组中值作为相应日光灯的使用寿命,再求平均寿命.解:各组中值分别为165,195,225,285,315,345,375,由此算得平均数约为165×1%+195×11%+225×18%+255×20%+285×25%+315×16%+345×7%+375×2%=267.9≈268(天) 这些组中值的方差为1/100×[1×(165-268)2+11×(195-268)2+18×(225-268)2+20×(255-268)2+25×(285-268)2+16×(315-268)2+7×(345-268)2+2×(375-268)2]=2128.60(天2). 故所求的标准差约466.2128 (天)答:估计这种日光灯的平均使用寿命约为268天,标准差约为46天.巩固深化,反馈矫正:(1)课本第71页练习第2,4,5题 ;(2)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ;五、归纳整理,整体认识1.用样本的数字特征估计总体的数字特征分两类: (1)用样本平均数估计总体平均数.(2)用样本方差、标准差估计总体方差、标准差.样本容量越大,估计就越精确. 2.方差、标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化 的幅度.。

2019-2020学年苏教版必修三 2.3.2 方差与标准差 学案

2019-2020学年苏教版必修三 2.3.2 方差与标准差 学案

2.3.2方差与标准差1.了解方差、标准差的意义和作用.2.理解用样本的数字特征估计总体的数字特征的思想和方法.3.掌握样本数据的方差、标准差的计算.1.极差一组数据的最大值与最小值的差. 2.方差与标准差(1)设一组样本数据:x 1,x 2,…,x n ,其平均数为x -,则称s 2=1n∑i =1n (x i -x -)2为这个样本的方差,其算术平方根s =1n ∑i =1n (x i -x -)2为样本的标准差,分别简称样本方差、样本标准差.其中,标准差的单位与原始数据单位相同,方差的单位是原始数据单位的平方.(2)一般地,平均数、方差、标准差具有如下性质:若数据x 1,x 2,…,x n 的平均数是x -,方差为s 2,标准差为s ,则新数据ax 1+b ,ax 2+b ,…,ax n +b 的平均数是a x -+b ,方差为a 2s 2,标准差为as .3.方差和标准差的意义方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的仅是这两组数据的个数相等,平均数相等或比较接近时的情况.方差较大的波动较大,方差较小的波动较小. 方差是样本数据到平均数的一种平均距离.1.判断(正确的打“√”,错误的打“×”)(1)数据5,4,4,3,5,2的众数为4.()(2)数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半.()(3)方差与标准差具有相同的单位.()(4)如果一组数中每个数减去同一个非零常数,则这组数的平均数改变,方差不变.()解析:(1)中的众数应为4和5;(2)正确;(3)二者单位不一致;(4)正确,平均数也应减去该常数,方差不变.答案:(1)×(2)√(3)×(4)√2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数解析:选B.标准差能反映一组数据的稳定程度.故选B.3.下列说法中正确的个数为()①数据的极差越小,样本数据分布越集中、稳定;②数据的平均数越小,样本数据分布越集中、稳定;③数据的标准差越小,样本数据分布越集中、稳定;④数据的方差越小,样本数据分布越集中、稳定.A.1B.2C .3D .4解析:选C.由数据的极差、标准差、方差的定义可知,它们都可以影响样本数据的分布和稳定性,而数据的平均数则与之无关,故②不正确,①③④正确.4.已知五个数据3,5,7,4,6,则该样本的标准差为________. 解析:因为x -=15×(3+5+7+4+6)=5,所以s = 15×[(3-5)2+…+(6-5)2]= 2. 答案: 2方差与标准差的计算已知一个样本为1,3,2,5,x ,它的平均数是3,则这个样本的标准差是多少?【解】 法一:因为x -=1+3+2+5+x5=3,所以x =4.由方差公式有:s 2=15[(1-3)2+(3-3)2+(2-3)2+(5-3)2+(4-3)2]=2,所以s = 2.法二:因为x -=1+3+2+5+x5=3,所以x =4,由方差公式的变形形式有: s 2=15(12+32+22+52+42)-32=2,所以s = 2.(1)方差的计算公式有两个都要记熟: s 2=1n ∑i =1n (x i -x )2=1n∑i =1n x 2i -x -2. (2)当样本数据有单位时,s 2与s 单位不同,要注意区别.1.若一组样本数据8,x ,10,11,9的平均数为10,则该组样本数据的方差为________.解析:因为平均数x -=8+x +10+11+95=10,所以x =12,从而方差为 s 2=15(4+4+0+1+1)=2.答案:2平均数与方差的综合应用甲、乙两机床同时加工直径为100 cm的零件,为检验质量,从中抽取6件测量数据为:甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算说明哪台机床加工零件的质量更稳定. 【解】 (1) x -甲=16(99+100+98+100+100+103)=100,x -乙=16(99+100+102+99+100+100)=100,s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73, s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)由(1)知x -甲=x -乙,比较它们的方差,因为s 2甲>s 2乙,故乙机床加工零件的质量更稳定.平均数与方差的综合应用方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的仅是这两组数据的个数相等,平均数相等或比较接近时的情况.方差、标准差越大,数据的离散程度越大;方差、标准差越小,数据的离散程度越小.2.为了解A ,B 两种轮胎的性能,某汽车制造厂分别从这两种轮胎中随机抽取了8个进行测试,下面列出了每一个轮胎行驶的最远里程数(单位:1 000 km):轮胎A 96,112,97,108,100,103,86,98 轮胎B 108,101,94,105,96,93,97,106(1)分别计算A ,B 两种轮胎行驶的最远里程的平均数、中位数; (2)分别计算A ,B 两种轮胎行驶的最远里程的极差、标准差; (3)根据以上数据你认为哪种型号的轮胎性能更加稳定? 解:(1)A 轮胎行驶的最远里程的平均数为: 96+112+97+108+100+103+86+988=100,中位数为:100+982=99;B 轮胎行驶的最远里程的平均数为:108+101+94+105+96+93+97+1068=100,中位数为:101+972=99.(2)A 轮胎行驶的最远里程的极差为: 112-86=26, 标准差为:s =42+122+32+82+0+32+142+228=2212≈7.43;B轮胎行驶的最远里程的极差为:108-93=15,标准差为:s=82+12+62+52+42+72+32+628=1182≈5.43.(3)由于A和B的最远行驶里程的平均数相同,而B轮胎行驶的最远里程的极差和标准差较小,所以B轮胎性能更加稳定.方差、标准差与统计图表的综合问题画出下列四组样本数据的直方图,并说明它们的异同点.(1)5,5,5,5,5,5,5,5,5;(2)4,4,4,5,5,5,6,6,6;(3)3,3,4,4,5,6,6,7,7;(4)2,2,2,2,5,8,8,8,8.【解】四组样本数据的直方图分别如图(1)(2)(3)(4)所示.四组数据的平均数都是5,标准差分别是0,0.82,1.49,2.83,说明这四组数据的分散程度是不一样的.先画出四组数据的直方图,建立总体分布与数字特征两种估计量之间的关系,从二者的本质入手解决问题,探究异同点.3.样本数为9的四组数据,它们的平均数都是5,条形图如图所示,则标准差最大的一组是( )A .第一组B .第二组C .第三组D .第四组解析:选D.法一:第一组中,样本数据都为5,标准差为0;第二组中,样本数据为4,4,4,5,5,5,6,6,6,标准差为63;第三组中,样本数据为3,3,4,4,5,6,6,7,7,标准差为253;第四组中,样本数据为2,2,2,2,5,8,8,8,8,标准差为22,故标准差最大的一组是第四组.法二:从四个图形可以直观看出第一组数据没有波动性,第二、三组数据的波动性都比较小,而第四组数据的波动性相对较大,利用标准差的意义可以直观得到答案.研究两个样本的波动情况或比较它们的稳定性、可靠性、平整性等性能好坏的这类题,先求平均数,比较一下哪一个更接近标准.若平均数相等,则再比较两个样本方差的大小来作出判断.在计算过程中,要仔细观察所给样本数据的特征,选择恰当的公式来计算平均数和方差,这样可避免计算的烦琐,降低错误率.为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换,已知某校使用的100只日光灯在必须换掉前的使用天数如下表:(2)若定期更换,可选择多长时间统一更换合适?【解】(1)各组中值分别为165,195,225,255,285,315,345,375,由此可算得平均数约为165×1%+195×11%+225×18%+255×20%+285×25%+315×16%+345×7%+375×2%=267.9≈268(天).所以估计这种日光灯的平均使用寿命约为268天. (2)将组中值对于此平均数求方差:1100×[1×(165-268)2+11×(195-268)2+18×(225-268)2+20×(255-268)2+25×(285-268)2+16×(315-268)2+7×(345-268)2+2×(375-268)2]=2 128.60.故标准差为 2 128.60≈46(天).所以标准差约为46天,故可在222天到314天左右统一更换较合适.取各组中值是求平均寿命的关键;求方差是求标准差的前提;只有标准差才与样本的单位相同;标准差表示波动幅度,故可决定日光灯更换的时间范围.1.一组数据的方差一定是( ) A .正数 B .负数 C .任意实数D .非负数解析:选D.方差可为0和正数.2.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲 乙 丙 丁 平均数x -(分)8.58.88.88解析:成绩最好的为乙、丙,而表现最为稳定的为丙,故参加奥运会的最佳人选应为丙. 答案:丙3.由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为__________.(从小到大排列)解析:假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4, 则⎩⎪⎨⎪⎧x 1+x 2+x 3+x 44=2,x 2+x 32=2,所以⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4.又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(4-x 2-2)2+(4-x 1-2)2 =122[(x 1-2)2+(x 2-2)2]=1,所以(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2. 由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.答案:1,1,3,3[A 基础达标]1.16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自己的成绩后,要判断能否进入决赛,则其他15位同学成绩的下列数据中,能使他得出结论的是( )A .平均数B .极差C .中位数D .方差解析:选C.判断是不是能进入决赛,只要判断是不是前8位,所以只要知道其他15位同学的成绩中是不是有8位高于他,也就是把其他15位同学的成绩排列后看第8位的成绩即可,小刘的成绩高于这个成绩就能进入决赛,低于这个成绩就不能进入决赛,这个第8位的成绩就是这15位同学成绩的中位数.2.某射手在一次训练中五次射击的成绩分别为9.4、9.4、9.4、9.6、9.7,则该射手五次射击的成绩的方差是( )A .0.08B .0.016C .0.02D .0.04解析:选B. x -=15×(9.4+9.4+9.4+9.6+9.7)=9.5,所以s 2=15×[(9.4-9.5)2+(9.4-9.5)2+(9.4-9.5)2+(9.6-9.5)2+(9.7-9.5)2]=0.016.3.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差解析:选C.由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.4.一组数据中的每一个数据都乘2,再都减80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )A .40.6 1.1B .48.8 4.4C .81.2 44.4D .78.8 75.6解析:选A.法一:设原来的数据为x 1,x 2,x 3,…,x n , 则新数据为2x 1-80,2x 2-80,2x 3-80,…,2x n -80, 所以(2x 1-80)+(2x 2-80)+…+(2x n -80)n =1.2,所以2(x 1+x 2+…+x n )-80n n =1.2,即x 1+x 2+…x nn =40.6.1n[(2x 1-80-1.2)2+(2x 2-80-1.2)2+…+(2x n -80-1.2)2]=4.4,即1n[(2x 1-81.2)2+(2x 2-81.2)2+…+(2x n -81.2)2]=4.4, 则1n [(x 1-40.6)2+(x 2-40.6)2+…+(x n -40.6)2]=14n [(2x 1-81.2)2+(2x 2-81.2)2+…+(2x n -81.2)2]=14×4.4=1.1.法二:设原数据的平均数为x -,方差为s 2,则数据中的每一个数都乘2,再都减80,得一组新数据后,新数据的平均数为2x --80,方差为22s 2,由题意得2x --80=1.2,22s 2=4.4, 解得x -=40.6,s 2=1.1.5.如图是某市甲、乙两地五月上旬日平均气温的统计图(温度为整数),则甲、乙两地这十天的日平均气温x -甲,x -乙和日平均气温的标准差s 甲,s 乙的大小关系应为( )A .x -甲=x -乙,s 甲<s 乙 B .x -甲=x -乙,s 甲>s 乙 C .x -甲>x -乙,s 甲<s 乙 D .x -甲>x -乙,s 甲>s 乙解析:选B.由折线统计图可得甲、乙两地五月上旬10天的日平均气温,从方差的统计意义是各数据浮动的大小可得乙的标准差比较小.则只需要计算均值即可.x -甲=24+30+28+24+22+26+27+26+29+2410=26,x -乙=24+26+25+26+24+27+28+26+28+2610=26. 故选B.6.某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10,其均值和方差分别为x -和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为________.解析:x 1+x 2+…+x 1010=x -,y i =x i +100,所以y 1,y 2,…,y 10的均值为x -+100,方差不变.答案:x -+100,s 27.某市有15个旅游景点,经计算,黄金周期间各个景点的旅游人数平均为20万,标准差为s ,后来经核实,发现甲、乙两处景点统计的人数有误,甲景点实际为20万,被误统计为15万,乙景点实际为18万,被统计成23万;更正后重新计算,得到标准差为s 1,则s 与s 1的大小关系为________.解析:由已知,两次统计所得的旅游人数总数没有变,即两次统计的各景点旅游人数的平均数是相同的,设为x -,则s =115[(15-x -)2+(23-x -)2+(x 3-x -)2+…+(x 15-x -)2], s 1=115[(20-x -)2+(18-x -)2+(x 3-x -)2+…+(x 15-x -)2]. 若比较s 与s 1的大小,只需比较(15-x -)2+(23-x -)2与(20-x -)2+(18-x -)2的大小即可.而(15-x -)2+(23-x -)2=754-76x -+2x -2,(20-x -)2+(18-x -)2=724-76x -+2x -2,所以(15-x -)2+(23-x -)2>(20-x -)2+(18-x -)2.从而s >s 1.答案:s >s 18.对划艇运动员甲、乙二人在相同的条件下进行了6次测试,测得他们最大速度的数据如下:甲:27,38,30,37,35,31; 乙:33,29,38,34,28,36.根据以上数据,试判断他们谁更优秀. 解:x -甲=16(27+38+30+37+35+31)=33,x -乙=16(33+29+38+34+28+36)=33,s 2甲=16[(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2+(31-33)2]=16×94=1523. s 2乙=16[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]=16×76=1223. 所以x -甲=x -乙,s 2甲>s 2乙.由此可以说明,甲、乙二人的最大速度的平均值相同,但乙比甲更稳定,故乙比甲更优秀.9.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9,已知这组数据的平均数为10,方差为2,求|x -y |的值.解:由题意可知x +y +10+11+95=10,所以x +y =20.又因为15[(x -10)2+(y -10)2+(10-10)2+(11-10)2+(9-10)2]=2,所以(x -10)2+(y -10)2=8, 即x 2+y 2-20(x +y )+200=8, 所以x 2+y 2-200=8, 所以x 2+y 2=208.又(x +y )2=x 2+y 2+2xy =400, 所以2xy =192,所以|x -y |2=x 2+y 2-2xy =208-192=16, 所以|x -y |=4.[B 能力提升]1.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数C.中位数D.标准差解析:选D.对样本中每个数据都加上一个非零常数时不改变样本的方差和标准差,众数、中位数、平均数都发生改变.2.若某同学连续三次考试的名次(第一名为1,第二名为2,以此类推且可以有名次并列的情况)均不超过3,则称该同学为班级尖子生.根据甲、乙、丙、丁四位同学过去连续三次考试的名次数据,推断一定不是尖子生的是()A.甲同学:平均数为2,中位数为2B.乙同学:平均数为2,方差小于1C.丙同学:中位数为2,众数为2D.丁同学:众数为2,方差大于1解析:选D.甲同学名次数据的平均数为2,说明名次之和为6,又中位数为2,得出三次考试名次均不超过3,断定甲是尖子生;乙同学名次数据的平均数为2,说明名次之和为6,又方差小于1,得出三次考试名次均不超过3,断定乙是尖子生;丙同学名次数据的中位数为2,众数为2,说明三次考试中至少有两次名次为2,故丙可能是尖子生;丁同学名次数据的众数为2,说明某两次名次为2,设另一次名次为x,经验证,当x=1,2,3时,方差均小于1,故x>3,断定丁一定不是尖子生.3.甲、乙两人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.(1)分别求出两人得分的平均数与方差;(2)根据图和(1)中计算结果,对两人的训练成绩作出评价.解:(1)由图可得甲、乙两人五次测试的成绩分别为甲:10,13,12,14,16;乙:13,14,12,12,14.x甲=10+13+12+14+165=13,x乙=13+14+12+12+145=13,s2甲=15×[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,s2乙=15×[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由s2甲>s2乙可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.4.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.解:(1)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a +0.5×a , 解得a =0.30.(2)由第一问知,100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5, 而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5, 所以2≤x <2.5.由0.50×(x -2)=0.5-0.48, 解得x =2.04.故可估计居民月均用水量的中位数为2.04吨.统计(强化练) [A 基础达标]1.某防疫站对学生进行身体健康调查,欲采用分层抽样的方法抽取样本.某中学共有学生2 000名,从中抽取了一个容量为200的样本,其中男生103名,则该中学共有女生 ( )A .1 030名B .97名C .950名D .970名解析:选D.由题意,知该中学共有女生2 000×200-103200=970名,故选D.2.福利彩票“双色球”中红色球的号码可从编号为01,02,…,33的33组数中随机选取,某彩民利用下面的随机数表选取6组数作为6个红色球的号码,选取方法是从下列随机数表中第1行第6列的数字开始由左到右依次选取两个数字,则选出来的第6个红色球的号码为( )A.23 B .09 C .02D .17解析:选C.从随机数表第1行第6列的数字开始由左到右依次选取两个数字,则选出的6个红色球的号码依次为21,32,09,16,17,02,故选出的第6个红色球的号码为02.故选C.3.某商场在五一促销活动中,对5月1日9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为 ( )A .6万元B .8万元C .10万元D .12万元解析:选C.设11时至12时的销售额为x 万元,由于频率分布直方图中各小组的组距相同,故各小矩形的高度之比等于频率之比,也等于销售额之比,所以9时至10时的销售额与11时至12时的销售额的比为0.100.40=14,所以有2.5x =14,解得x =10,故选C.4.某学校随机抽取20个班,调查各班中有网购经历的人数,所得数据如下:7,3,17,16,14,14,13,10,27,25,25,24,23,22,20,38,35,34,33,30.以5为组距将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )解析:选A.根据数据可作频率分布表,如下:5.如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图,估计这批产品的平均长度为________mm.解析:根据频率分布直方图,估计这批产品的平均长度为(12.5×0.02+17.5×0.04+22.5×0.08+27.5×0.03+32.5×0.03)×5=22.75 mm.答案:22.756.下图是根据某中学为地震灾区捐款的情况而制作的统计图,已知该校共有学生3 000人,由统计图可得该校共捐款________元.解析:由扇形统计图可知,该中学高一、高二、高三分别有学生960人、990人、1 050人,由条形统计图知,该中学高一、高二、高三人均捐款分别为15元、13元、10元,所以共捐款15×960+13×990+10×1 050=37 770(元).答案:37 7707.对某校高三年级学生参加社区服务的次数进行统计,随机抽取M名学生,得到这M 名学生参加社区服务的次数,根据此数据作出了频率分布表和频率分布直方图,如图所示:(1)求表中M ,p 及图中a 的值;(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数.解:(1)由分组[10,15)的频数是10,频率是0.25,知 10M=0.25, 解得M =40. 因为频数之和为40, 所以10+24+m +2=40, 得m =4,p =m M =440=0.10.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2440×5=0.12.(2)因为该校高三学生有240人,分组[10,15)的频率是0.25,所以估计该校高三学生参加社区服务的次数在区间[10,15)内的人数为240×0.25=60.[B能力提升]1.某同学将全班某次数学考试成绩整理成频率分布直方图后,并将每个小矩形上方线段的中点连结起来得到频率分布折线图(如图所示).据此估计此次考试成绩的众数是________.解析:众数是一组数据出现次数最多的数,结合题中频率分布折线图可以看出,数据“115”对应的纵坐标最大,所以相应的频率最大,频数最大,据此估计此次考试成绩的众数是115.答案:1152.某中学随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)频率分布直方图中x的值为________;(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1 200名,估计新生中可以申请住校的学生有________名.解析:(1)由频率分布直方图,可得20x+0.025×20+0.006 5×20+0.003×2×20=1,所以x=0.012 5.(2)新生上学路上所需时间不少于1小时的频率为0.003×2×20=0.12,因为1 200×0.12=144,所以1 200名新生中约有144名学生可以申请住校.答案:(1)0.012 5(2)1443.某制造商为运动会生产一批直径为40 mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:40.0240.0039.9840.0039.9940.0039.9840.0139.9839.9940.0039.9939.9540.0140.0239.9840.0039.9940.0039.96(1)完成下面的频率分布表,并画出频率分布直方图;只,试根据抽样检查结果估计这批产品的合格数.解:(1)频率分布表:(2)因为抽样的20只产品中在[39.98,40.02]范围内有18只,所以合格率为1820×100%=90%,所以10 000×90%=9 000(只).即根据抽样检查结果,可以估计这批产品的合格数为9 000只.。

江苏省响水中学高中数学《第29课时方差与标准差》导学案苏教版必修3

江苏省响水中学高中数学《第29课时方差与标准差》导学案苏教版必修3

第29课时方差与标准差学习目标:1•理解样本数据的方差、标准差的意义和作用2•学会计算数据的方差、标准差,掌握通过合理抽样对总体的稳定性水平作出科学估计的方法一、创设情境2有甲、乙两种钢筋,现从中各抽取一个样本检查它们的抗拉强度(单位:kg/mm ),通过计算发现,两个样本的平均数均为125.哪种钢筋的质量较好?知识导学1•极差的定义:2•样本方差:3•样本标准差:二、重难点探究: 探究一2甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm ),试根据这组数据估计哪一种水稻品种的产量比较稳定探究二,试估计这种日光灯的平均使用寿命和标准差三、基础智能检测:1•从两个班级中各抽5名学生测量身高(单位:cm),甲班的数据为160,162,159,160,1 59;乙班的数据为180,160,150,150,160.试估计哪个班级学生身高的波动小2•若k1,k2, *8 的方差为3,则2(k13),2(k23), ,2(k8 3)的方差为____________ .21 2 2 s 2—[(X 1 2)2(X 2 2)23•已知一个样本的方差104•已知样本X1,X2,,Xn 的方差为2,则样本2X 1 3,2X 2 3, ,2Xn3的方差为5•在一次歌手大奖赛上,七位评委为某歌手打出的分数如下 :9.4, 8.4, 9.4, 9.9, 9.6, 9.4, 9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为;6•在去年的足球超级联赛上,甲队每场平均失球数是 1.5,全年比赛失球个数的标准差为1.1,乙队每场比赛平均失球数是2.1,全年失球个数的标准差为0.4,你认为下列说法中哪些是正确的,为什么?(1)总体看来甲队比乙队技术好; (2)乙队比甲队技术更稳定; (3)甲队有时表现较差,有时又表现非常好; (4)乙队很少不失球.7. 甲、乙两名射击运动员在相同的条件下各射靶 20次命中的环数如下:甲:7, 8,6,8,6,5,9 , 10,7,4,5,6,5,6,7,8,7,9 , 10,9 ; 乙:9, 5,7,8,7,6,8,6,7,7 , 9,6,5,8,6,9,6,8,7,7 . 谁射击的情况比较稳定 ?8. 在训练运动员的过程中,需要进行体能测试,已经知道,对全国样本,T1测试的平均数为 20,标准差为2 , T2测试的平均数是 35,标准差是3.求: (1)上述两个测试哪个做得更好些 ?(2) 如果你是教练,为了增强你的队员的信心,你应该选择哪个测试结果 ? (3) 分值越高,运动员水平越高,哪一名运动员最强?哪一名运动员最弱?(X102)2],这个样本的平均数是。

苏教版数学高二《离散型随机变量的方差与标准差(二》 同步导学案

苏教版数学高二《离散型随机变量的方差与标准差(二》 同步导学案
§2.5.2离散型随机变量的均值和方差(二)
学习目标
1.进一步理解均值与方差都是随机变量的数字特征,通过它们可以刻划总体水平;
2.会求均值与方差,并能解决有关应用题.
学习过程
一、自学导航
复习回顾:
1.离散型随机变量的均值、方差、标准差的概念和意义,以及计算公式.
2.设随机变量 ,且 ,则 , .
二、例题精讲
例1有同寝室的四位同学分别写一张贺年卡,先集中起来,然后每人去拿一张,记自己拿自己写的贺年卡的人数为 .
(1)求随机变量 的概率分布;(2)求 的数学期望和方差.
例2有甲、乙两种品牌的手表,它们日走时误差分别为 (单位: ),其分布如下:
比较两种品牌手表的质量.
例3某城市有甲、乙、丙3个旅游景点,一位客人游览Байду номын сангаас三个景点的概率分别是
三、课堂精练
5,6,7 10
四、回顾小结
五、课后作业《创新活页》对应练习
,且客人是否游览哪个景点互不影响,设 表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.
⑴求 的分布列及数学期望;
⑵记“函数 在区间 上单调递增”为事件 ,求事件 的概率.
例4有一庄家为吸引顾客玩掷骰子游戏,以便自己轻松获利,以海报形式贴出游戏规则:顾客免费掷两枚骰子,把掷出的点数相加,如果得2或12,顾客中将30元;如果得3或11,顾客中将20元;如果得4或10,顾客中将10元;如果得5或9,顾客应付庄家10元;如果得6或8,顾客应付庄家20元;如果得7,顾客应付庄家30元.试用数学知识解释其中的道理.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学《第29课时 方差与标准差》导学案 苏教版必修3
学习目标:
1.理解样本数据的方差、标准差的意义和作用
2.学会计算数据的方差、标准差,掌握通过合理抽样对总体的稳定性水平作出科学估计的方法.
一、创设情境
有甲、乙两种钢筋,现从中各抽取一个样本检查它们的抗拉强度(单位:kg/mm 2
), 通过计算发现,两个样本的平均数均为125.
哪种钢筋的质量较好?
知识导学
1.极差的定义 :
2.样本方差:
3.样本标准差:
二、重难点探究:
探究一
甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位: t/hm 2
),试根据这组数据估计哪一种水稻品种的产量比较稳定.
探究二
教室内的日光灯在使用一段时间后必须更100,试估计这种日光灯的平均使用寿命和标准差.
三、基础智能检测:
1. 从两个班级中各抽5名学生测量身高(单位: cm), 甲班的数据为160,162,159,160,159; 乙班的数据为180,160,150,150,160.试估计哪个班级学生身高的波动小.
2.若128,,,k k k ⋅⋅⋅的方差为3,则1282(3),2(3),,2(3)k k k --⋅⋅⋅-的方差为___________.
3.已知一个样本的方差
222212101[(2)(2)(2)]10s x x x =-+-+⋅⋅⋅-,这个样本的平均数是__. 10.3
4.已知样本12,,,n x x x ⋅⋅⋅的方差为2,则样本1223,23,,23n x x x ++⋅⋅⋅+的方差为____
5.在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4, 8.4, 9.4, 9.9, 9.6, 9.4, 9.7, 去掉一个最高分和一个最低分后, 所剩数据的平均值和方差分别为 ;
6.在去年的足球超级联赛上, 甲队每场平均失球数是1.5, 全年比赛失球个数的标准差为1.1, 乙队每场比赛平均失球数是2.1, 全年失球个数的标准差为0.4, 你认为下列说法中哪些是正确的, 为什么?
(1)总体看来甲队比乙队技术好; (2) 乙队比甲队技术更稳定;
(3) 甲队有时表现较差, 有时又表现非常好; (4) 乙队很少不失球.
7. 甲、乙两名射击运动员在相同的条件下各射靶20次命中的环数如下:
甲: 7, 8 , 6 , 8 , 6 , 5 , 9 , 10 , 7 , 4 , 5 , 6 , 5 , 6 , 7 , 8 , 7 , 9 , 10 , 9 ;
乙: 9, 5 , 7 , 8 , 7 , 6 , 8 , 6 , 7 , 7 , 9 , 6 , 5 , 8 , 6 , 9 , 6 , 8 , 7 , 7 .
谁射击的情况比较稳定?
这10名游泳运动员测试后给出的.
25 39 3. 求:
(1)上述两个测试哪个做得更好些?
(2)如果你是教练, 为了增强你的队员的信心, 你应该选择哪个测试结果?
(3)分值越高, 运动员水平越高, 哪一名运动员最强?哪一名运动员最弱?。

相关文档
最新文档