高中数学必修四三角恒等式教案
人教版高中必修4(B版)第三章三角恒等变换课程设计
人教版高中必修4(B版)第三章三角恒等变换课程设计一、课程背景本课程设计是针对高中必修课程《数学四》(B版)第三章三角恒等变换的教学实践。
在本章节中,学生将学习三角函数的基本概念,包括正弦、余弦、正切等;以及三角函数的基本性质、图像特征等知识。
在此基础上,进一步学习三角恒等变换的定义、性质、应用等内容,帮助学生感受数学美妙,拓展学生的数学思维和实际应用能力。
二、课程目标•知识目标1.掌握三角函数的概念、性质、基本图像和相关公式;2.掌握三角恒等变换的概念、性质和基本应用;3.理解三角恒等变换与三角函数图像的关系,培养学生对数学美的感悟。
•能力目标1.能灵活应用三角函数及其相关公式;2.能理解并应用三角恒等变换在实际问题中得到解决;3.能有效运用数学知识解决实际问题,并能形成自己的思考方式。
•情感目标1.通过学习,培养学生感受数学美妙的情感和兴趣;2.让学生理解数学是实践中最常用的一门学科;3.激发学生爱思考、勇于探究、善于合作的精神。
三、课程内容1.三角函数基础知识复习;2.三角恒等变换;3.三角函数图像变化。
四、教学方法1.讲授法:通过课堂讲解,准确阐述三角恒等变换的基本概念、性质、公式等,并通过简单的计算题、实例演练等方式帮助学生掌握相关知识;2.实践结合法:通过实际问题的解答,引导学生思考、动手解决,培养学生的数学实践能力;3.合作学习法:通过小组讨论、合作解题等方式,让学生在团队中相互交流、借鉴、提高彼此能力。
五、教学设计第一节课时间:1学时主要内容:三角函数基础知识复习1.引入三角函数知识,介绍正弦、余弦、正切的定义、符号、图像及基本性质;2.以例子为主,提高学生对于三角函数的计算能力;3.通过课堂测验,及时调整教学内容,帮助弱势学生摆脱困境。
第二节课时间:1学时主要内容:三角恒等变换1.引入三角恒等变换的定义、本质及重要性;2.提出三角恒等变换相关的公式,并进行简单的计算;3.通过实例演示,帮助学生理解三角恒等变换在证明中的应用。
高中数学必修四(人教新A版)教案29简单的三角恒等变换
所以 当且仅当
即 时, 取得最大值 ,此时S取得最大值 ,矩形的宽为
即长、宽相等,矩形为圆内接正方形.
2
高中数学必修四课时教案
教
学过Βιβλιοθήκη 程及方法
问题与情境及教师活动
学生活动
(2)设角为自变量,设对角线与一条边的夹角为 ,矩形长与宽分别为
、 ,所以面积 .
而 ,所以 ,当且仅当 时,S取最大值 ,所以当且仅当 即 时,S取最大值,此时矩形为内接正方形.
高中数学必修四课时教案
备课人
授课时间
课题
§3.2简单的三角恒等变换(2)
课标要求
进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:
教
学
目
标
知识目标
熟练掌握三角公式及其变形公式
技能目标
抓住角、函数式特点,灵活运用三角公式解决一些实际问题.
情感态度价值观
培养学生观察、分析、解决问题的能力
重点
和、差、倍角公式的灵活应用
难点
如何灵活应用和、差、倍角公式的进行三角式化简、求值、证明
教
学
过
程
及
方
法
问题与情境及教师活动
学生活动
一、复习
1、(用提问的方式复习前面学过的十一个公式)
两角和与差的余弦、正弦、正切公式:
二倍角的正弦、余弦、正切公式
2、已知sin(α+β)= ,sin(α-β)= ,求 的值。
变式:已知半径为1的半圆,PQRS是半圆的内接矩形如图,问P点在什么位置时,矩形的面积最大,并求最大面积时的值.
三角恒等式全章教案
三角恒等式全章教案
目的
本教案旨在介绍三角恒等式及其应用,帮助学生更好地理解三角函数的概念,提高其解决三角函数问题的能力。
内容
1. 三角恒等式的定义及基本性质
- 介绍三角恒等式的定义及常见性质,包括正弦函数、余弦函数、正切函数的三角恒等式。
2. 三角恒等式的应用
- 研究如何利用三角恒等式解决三角函数的各种问题,包括角度计算、证明等。
3. 综合练
- 通过综合练巩固对三角恒等式的理解,并应用所学知识解决问题。
教学方法
1. 讲解法:通过教师的讲解,引导学生理解三角恒等式的概念、定义及性质。
2. 实例法:通过具体的例子,帮助学生更好地理解三角恒等式
的使用方法及其应用。
3. 练法:通过大量的练,提高学生解决三角函数问题的能力。
教学步骤
1. 引入:通过引入具体的问题,引导学生了解三角函数与三角
恒等式的关系。
2. 讲解:介绍三角恒等式的定义及其性质,帮助学生建立起对
三角恒等式的认识。
3. 实例:通过具体的例子,让学生理解三角恒等式的使用方法
及其应用。
4. 练:通过一些简单的练,帮助学生巩固所学知识。
5. 拓展:通过更复杂的例子及应用,提高学生解决三角函数问
题的能力。
6. 总结:对所学知识进行总结归纳,帮助学生建立起完整的知
识体系。
总结
通过本教案的学习,学生可以更好地理解三角恒等式及其应用,提高其解决三角函数问题的能力。
建议在课后进行一些练习以巩固
所学知识。
人教版高中数学必修四第三章 三角恒等变换全章教案
3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.三、学法与教学用具1. 学法:启发式教学2. 教学用具:多媒体四、教学设想:(一)导入:我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家可以猜想,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-=(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示,大家思考:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索()cos αβ-与cos α、cos β、sin α、sin β之间的关系,由此得到cos()cos cos sin sin αβαβαβ-=+,认识两角差余弦公式的结构.思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果?展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.思考:()cos ?αβ+=,()()cos cos αβαβ+=--⎡⎤⎣⎦,再利用两角差的余弦公式得出()()()()cos cos cos cos sin sin cos cos sin sin αβαβαβαβαβαβ+=--=-+-=-⎡⎤⎣⎦(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值.解:分析:把75、15构造成两个特殊角的和、差.()231cos 75cos 4530cos 45cos30sin 45sin 302222=+=-=⨯=()231cos15cos 4530cos 45cos30sin 45sin 30222=-=+=⨯=点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活运用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===- 所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角α、β的象限,也就是符号问题,学会灵活运用.(五)作业:15012.P T T -3.1.2两角和与差的正弦、余弦、正切公式(1)教案一、教学分析1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α-β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α-(-β)的关系,从而由公式C(α-β)推得公式C(α+β),又如比较sin(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S(α-β)、S(α+β)等.2.通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义.3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的. 二、三维目标1.知识与技能:在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.2.过程与方法:通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3.情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质.三、重点难点教学重点:两角和与差的正弦、余弦、正切公式及其推导.教学难点:灵活运用所学公式进行求值、化简、证明.四、课时安排2课时五、教学设想第1课时(一)导入新课思路 1.(旧知导入)教师先让学生回顾上节课所推导的两角差的余弦公式,并把公式默写在黑板上或打出幻灯片,注意有意识地让学生写整齐.然后教师引导学生观察cos(α-β)与cos(α+β)、sin(α-β)的内在联系,进行由旧知推出新知的转化过程,从而推导出C (α+β)、S (α-β)、S (α+β).本节课我们共同研究公式的推导及其应用.思路2.(问题导入)教师出示问题,先让学生计算以下几个题目,既可以复习回顾上节所学公式,又为本节新课作准备.若sin α=55,α∈(0,2π),cos β=1010,β∈(0,2π),求cos(α-β),cos(α+β)的值.学生利用公式C (α-β)很容易求得cos (α-β),但是如果求cos (α+β)的值就得想法转化为公式C (α-β)的形式来求,此时思路受阻,从而引出新课题,并由此展开联想探究其他公式.(二)推进新课、新知探究、提出问题①还记得两角差的余弦公式吗?请一位同学到黑板上默写出来.②在公式C (α-β)中,角β是任意角,请学生思考角α-β中β换成角-β是否可以?此时观察角α+β与α-(-β)之间的联系,如何利用公式C (α-β)来推导cos(α+β)=?③分析观察C (α+β)的结构有何特征?④在公式C (α-β)、C (α+β)的基础上能否推导sin(α+β)=?sin(α-β)=?⑤公式S (α-β)、S (α+β)的结构特征如何?⑥对比分析公式C (α-β)、C (α+β)、S (α-β)、S (α+β),能否推导出tan(α-β)=?tan (α+β)=?⑦分析观察公式T (α-β)、T (α+β)的结构特征如何?⑧思考如何灵活运用公式解题?活动:对问题①,学生默写完后,教师打出课件,然后引导学生观察两角差的余弦公式,点拨学生思考公式中的α,β既然可以是任意角,是怎样任意的?你会有些什么样的奇妙想法呢?鼓励学生大胆猜想,引导学生比较cos(α-β)与cos(α+β)中角的内在联系,学生有的会发现α-β中的角β可以变为角-β,所以α-(-β)=α+β〔也有的会根据加减运算关系直接把和角α+β化成差角α-(-β)的形式〕.这时教师适时引导学生转移到公式C (α-β)上来,这样就很自然地得到cos(α+β)=cos [α-(-β)]=cos αcos(-β)+sin αsin(-β)=cos αcos β-sin αsin β.所以有如下公式:(α+β)对问题②,教师引导学生细心观察公式C (α+β)的结构特征,可知“两角和的余弦,等于这两角的余弦积减去这两角的正弦积”,同时让学生对比公式C (α-β)进行记忆,并填空:cos75°=cos(_________)==__________=___________.对问题③,上面学生推得了两角和与差的余弦公式,教师引导学生观察思考,怎样才能得到两角和与差的正弦公式呢?我们利用什么公式来实现正、余弦的互化呢?学生可能有的想到利用诱导公式⑸⑹来化余弦为正弦(也有的想到利用同角的平方和关系式sin 2α+cos 2α=1来互化,此法让学生课下进行),因此有sin(α+β)=cos [2π-(α+β)]=cos [(2π-α)-β]=cos(2π-α)cos β+sin(2π-α)sin β =sin αcos β+cos αsin β.在上述公式中,β用-β代之,则sin(α-β)=sin [α+(-β)]=sin αcos(-β)+cos αsin(-β)=sin αcos β-cos αsin β. (α+β)(α-β).同时进一步体会本节公式的探究过程及公式变化特点,体验三角公式的这种简洁美、对称美.为强化记忆,教师可让学生填空,如sin(θ+φ)=___________,sin 75sin 72cos 75cos 72ππππ+=__________. 对问题⑥,教师引导学生思考,在我们推出了公式C (α-β)、C (α+β)、S (α+β)、S (α-β)后,自然想到两角和与差的正切公式,怎么样来推导出tan(α-β)=?,tan(α+β)=?呢?学生很容易想到利用同角三角函数关系式,化弦为切得到.在学生探究推导时很可能想不到讨论,这时教师不要直接提醒,让学生自己悟出来.当cos(α+β)≠0时,tan(α+β)=.sin sin cos cos sin cos cos sin )cos()sin(βαβαβαβββ-+=++a a 如果cos αcos β≠0,即cos α≠0且cos β≠0时,分子、分母同除以cos αcos β得tan(α+β)=)tan(tan 1tan tan βαβα--+,据角α、β的任意性,在上面的式子中,β用-β代之,则有tan(α-β)=.tan tan 1tan tan )tan(tan 1)tan(tan βαβαβαβα+-=---+ 由此推得两角和、差的正切公式,简记为T (α-β)、T (α+β).对问题⑥,让学生自己联想思考,两角和与差的正切公式中α、β、α±β的取值是任意的吗?学生回顾自己的公式探究过程可知,α、β、α±β都不能等于2π+k π(k ∈Z ),并引导学生分析公式结构特征,加深公式记忆.对问题⑦⑧,教师与学生一起归类总结,我们把前面六个公式分类比较可得C (α+β)、S (α+β)、T (α+β)叫和角公式;S (α-β)、C (α-β)、T (α-β)叫差角公式.并由学生归纳总结以上六个公式的推导过程,从而得出以下逻辑联系图.可让学生自己画出这六个框图.通过逻辑联系图,深刻理解它们之间的内在联系,借以理解并灵活运用这些公式.同时教师应提醒学生注意:不仅要掌握这些公式的正用,还要注意它们的逆用及变形用.如两角和与差的正切公式的变形式tan α+tan β=tan(α+β)(1-tan αtan β),tan α-tan β=tan(α-β)(1+tan αtan β),在化简求值中就经常应用到,使解题过程大大简化,也体现了数学的简洁美.对于两角和与差的正切公式,当tan α,tan β或tan (α±β)的值不存在时,不能使用T (α±β)处理某些有关问题,但可改用诱导公式或其他方法,例如:化简tan(2π-β),因为tan 2π的值不存在,所以改用诱导公式tan(2π-β)=βββπβπsin cos )2cos()2sin(=--来处理等.(三)应用示例思路1例1 已知sin α=53-,α是第四象限角,求sin(4π-α),cos(4π+α),tan(4π-α)的值. 活动:教师引导学生分析题目中角的关系,在面对问题时要注意认真分析条件,明确要求.再思考应该联系什么公式,使用公式时要有什么准备,准备工作怎么进行等.例如本题中,要先求出cos α,tan α的值,才能利用公式得解,本题是直接应用公式解题,目的是为了让学生初步熟悉公式的应用,教师可以完全让学生自己独立完成.解:由sin α=53-,α是第四象限角,得cos α=54)53(1sin 122=--=-a . ∴tan α=a a cos sin =43-. 于是有sin(4π-α)=sin 4πcos α-cos 4πsin α=,1027)53(225422=-⨯-⨯ cos(4π+α)=cos 4πcos α-sin 4πsin α=,1027)53(225422=-⨯-⨯ tan(α-4π)=4tan tan 14tan tan ππa a +-=a a tan 11tan +-=7)43(1143-=-+--. 点评:本例是运用和差角公式的基础题,安排这个例题的目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯.变式训练1.不查表求cos75°,tan105°的值.解:cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30° =42621222322-=⨯-⨯, tan105°=tan(60°+45°)= 311345tan 60tan 145tan 60tan -+=-+ =-(2+3). 2.设α∈(0,2π),若sin α=53,则2sin(α+4π)等于( ) A.57 B.51 C.27 D.4 答案:A例 2 已知sin α=32,α∈(2π,π),cos β=43-,β∈(π,23π).求sin(α-β),cos(α+β),tan(α+β).活动:教师可先让学生自己探究解决,对探究困难的学生教师给以适当的点拨,指导学生认真分析题目中已知条件和所求值的内在联系.根据公式S (α-β)、C (α+β)、T (α+β)应先求出cosα、sin β、tan α、tan β的值,然后利用公式求值,但要注意解题中三角函数值的符号.解:由sin α=32,α∈(2π,π),得 cos α=a 2sin 1--=-2)32(1--=35-,∴tan α=552-. 又由cos β=31-,β∈(π,23π). sin β=β2cos 1--=47)43(12-=---, ∴tan β=37.∴sin(α-β)=sin αcos β-cos αsin β =32×(43-)-(12356)47()35(--=-⨯-. ∴cos(α+β)=cos αcos β-sin αsin β=(35-)×(43-)-32×(47-) =.127253+∴tan(α+β)=35215755637)552(137552tan tan 1tan tan ++-=⨯--+-=-+βαβα=17727532+-. 点评:本题仍是直接利用公式计算求值的基础题,其目的还是让学生熟练掌握公式的应用,训练学生的运算能力.变式训练引导学生看章头图,利用本节所学公式解答课本章头题,加强学生的应用意识.解:设电视发射塔高CD=x 米,∠CAB=α,则sin α=6730, 在Rt △ABD 中,tan(45°+α)=3030+x tan α. 于是x=30tan )45tan(30-+αα , 又∵sin α=6730,α∈(0,2π),∴cos α≈6760,tan α≈21. tan(45°+α)=211211tan 1tan 1-+≈-+αα=3, ∴x=21330⨯-30=150(米). 答:这座电视发射塔的高度约为150米.例3 在△ABC 中,sinA=53(0°<A<45°),cosB=135(45°<B<90°),求sinC 与cosC 的值. 活动:本题是解三角形问题,在必修5中还作专门的探究,这里用到的仅是与三角函数诱导公式与和差公式有关的问题,难度不大,但应是学生必须熟练掌握的.同时也能加强学生的应用意识,提高学生分析问题和解决问题的能力.教师可让学生自己阅读、探究、讨论解决,对有困难的学生教师引导学生分析题意和找清三角形各角之间的内在联系,从而找出解决问题的路子.教师要提醒学生注意角的范围这一暗含条件.解:∵在△ABC 中,A+B+C=180°,∴C=180°-(A+B).又∵sinA=53且0°<A<45°,∴cosA=54. 又∵cosB=135且45°<B<90°,∴sinB=1312. ∴sinC=sin [180°-(A+B)]=sin(A+B)=sinAcosB+cosAsinB =53×135+54×1312=6563, cosC=cos [180°-(A+B)]=-cos(A+B)=sinAsinB-cosAcosB=53×1312-54×135=6516. 点评:本题是利用两角和差公式,来解决三角形问题的典型例子,培养了学生的应用意识,也使学生更加认识了公式的作用,解决三角形问题时,要注意三角形内角和等于180°这一暗含条件.变式训练在△ABC 中,已知sin(A-B)cosB+cos(A-B)sinB ≥1,则△ABC 是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰非直角三角形答案:C思路2例1 若sin(43π+α)=135,cos(4π-β)=53,且0<α<4π<β<43π,求cos(α+β)的值. 活动:本题是一个典型的变角问题,也是一道经典例题,对训练学生的运算能力以及逻辑思维能力很有价值.尽管学生思考时有点难度,但教师仍可放手让学生探究讨论,教师不可直接给出解答.对于探究不出的学生,教师可恰当点拨引导,指导学生解决问题的关键是寻找所求角与已知角的内在联系,引导学生理清所求的角与已知角的关系,观察选择应该选用哪个公式进行求解,同时也要特别提醒学生注意:在求有关角的三角函数值时,要特别注意确定准角的范围,准确判断好三角函数符号,这是解决这类问题的关键.学生完全理清思路后,教师应指导学生的规范书写,并熟练掌握它.对于程度比较好的学生可让其扩展本题,或变化条件,或变换所求的结论等.如教师可变换α,β角的范围,进行一题多变训练,提高学生灵活应用公式的能力,因此教师要充分利用好这个例题的训练价值.解:∵0<α<4π<β<43π,∴43π<43π+α<π,-2π<4π-β<0, 又已知sin(43π+α)=135,cos(4π-β)=53, ∴cos(43π+α)=1312-,sin(4π-β)=54-. ∴cos(α+β)=sin [2π+(α+β)]=sin [(43π+α)-(4π-β)] =sin(43π+α)cos(4π-β)-cos(43π+α)sin(4π-β) =135×53-(1312-)×(54-)=6533-. 本题是典型的变角问题,即把所求角利用已知角来表示,实际上就是化归思想.这需要巧妙地引导,充分让学生自己动手进行角的变换,培养学生灵活运用公式的能力.变式训练已知α,β∈(43π,π),sin(α+β)=53-,sin(β-4π)=1312,求cos(α+4π)的值. 解:∵α,β∈(43π,π),sin(α+β)=53-,sin(β-4π)=1312, ∴23π<α+β<2π,2π<β-4π<43π.∴cos(α+β)=54,cos(β-4π)=135-. ∴cos(α+4π)=cos [(α+β)-(β-4π)] =cos(α+β)cos(β-4π)+sin(α+β)sin(β-4π) =54×(135-)+(53-)×1312=6556-.例2 化简.sin sin )sin(sin sin )sin(sin sin )sin(aa a a θθθβθβββ-+-+- 活动:本题是直接利用公式把两角的和、差化为两单角的三角函数的形式,教师可以先让学生自己独立地探究,然后进行讲评.解:原式=aa a a a a sin sin sin cos cos sin sin sin sin cos cos sin sin sin sin cos cos sin θθθθβθβθββββ-+-+- =a a a a a a a a sin sin sin sin sin cos cos sin sin sin sin sin sin cos sin cos sin sin sin sin sin sin sin cos sin cos sin βθβθβθθβθβθβθβθβαθβ-+-+- =asin sin sin 0βθ =0.点评:本题是一个很好的运用公式进行化简的例子,通过学生独立解答,培养学生熟练运用公式的运算能力.变式训练 化简)cos(sin sin 2cos sin 2)sin(βαβαβαβα++-+ 解:原式=βαβαβαβαβαβαsin sin cos cos sin sin 2cos sin 2sin cos cos sin -+- =).tan()cos()sin(cos cos sin sin cos sin sin cos αβαβαββαβαβαβα-=--=+-(四)作业已知0<β<4π,4π<α<43π,cos(4π-α)=53,sin(43π+β)=135,求sin(α+β)的值. 解:∵4π<α<43π,∴2π-<4π-α<0.∴sin(4π-α)=2)53(1--=54-.又∵0<β<4π,∴43π<43π+β<π,cos(43π+β)=2)135(1--=1312-.∴sin(α+β)=-cos(2π+α+β)=-cos [(43π+β)-(4π-α)]=-cos(43π+β)cos(4π-α)-sin(43π+β)sin(4π-α)=-(1312-)×53135-×(54-)=6556.(五)课堂小结1.先由学生回顾本节课都学到了哪些数学知识和数学方法,有哪些收获与提高,在公式推导中你悟出了什么样的数学思想?对于这六个公式应如何对比记忆?其中正切公式的应用有什么条件限制?怎样用公式进行简单三角函数式的化简、求值与恒等式证明.2.教师画龙点睛:我们本节课要理解并掌握两角和与差的正弦、余弦、正切公式及其推导,明白从已知推得未知,理解数学中重要的数学思想——转化思想,并要正确熟练地运用公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.3.1.2两角和与差的正弦、余弦、正切公式(2)教案教学分析1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α-β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α-(-β)的关系,从而由公式C (α-β)推得公式C (α+β),又如比较sin(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S (α-β)、S (α+β)等.2.通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义.3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的. 二、三维目标1.知识与技能:在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力. 2.过程与方法:通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3.情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质. 三、重点难点教学重点:两角和与差的正弦、余弦、正切公式及其推导. 教学难点:灵活运用所学公式进行求值、化简、证明. 四、课时安排 2课时五、教学设想 (一)导入新课思路 1.(复习导入)让学生回忆上节课所学的六个公式,并回忆公式的来龙去脉,然后让一个学生把公式默写在黑板上或打出幻灯.教师引导学生回顾比较各公式的结构特征,说出它们的区别和联系,以及公式的正用、逆用及变形用,以利于对公式的深刻理解.这节课我们将进一步探究两角和与差的正弦、余弦、正切公式的灵活应用.思路2.(问题导入)教师可打出幻灯,出示一组练习题让学生先根据上节课所学的公式进行解答.1.化简下列各式(1)cos (α+β)cos β+sin (α+β)sin β;(2)cos sin 1tan cos sin cos sin sin 22---+--x x xx x x x ; (3).tan tan cos sin )sin()sin(2222αββαβαβα+-+ 2.证明下列各式(1);tan tan 1tan tan )cos()sin(βαβαβαβα++=-+(2)tan (α+β)tan (α-β)(1-tan 2tan 2β)=tan 2α-tan 2β; (3).sin sin )cos(2sin )2sin(αββααβα=+-+答案:1.(1)cos α;(2)0;(3)1.2.证明略.教师根据学生的解答情况进行一一点拨,并对上节课所学的六个公式进行回顾复习,由此展开新课.(二)推进新课、新知探究、提出问题①请同学们回忆这一段时间我们一起所学的和、差角公式.②请同学们回顾两角和与差公式的区别与联系,可从推导体系中思考.活动:待学生稍做回顾后,教师打出幻灯,出示和与差角公式,让学生进一步在直观上发现它们内在的区别与联系,理解公式的推导充分发挥了向量的工具作用,更要体会由特殊到一般的数学思想方法.教师引导学生观察,当α、β中有一个角为90°时,公式就变成诱导公式,所以前面所学的诱导公式其实是两角和与差公式的特例.在应用公式时,还要注意角的相对性,如α=(α+β)-β,)2()2(2βαβαβα---=+等.让学生在整个的数学体系中学会数学知识,学会数学方法,更重要的是学会发现问题的方法,以及善于发现规律及其内在联系的良好习惯,提高数学素养.sin (α±β)=sin αcos β±cos αsin β〔S(α±β)〕; cos (α±β)=cos αcos βsin αsin β〔C (α±β)〕;tan (α±β)=βαβαtan tan 1tan tan ±〔T (α±β)〕.讨论结果:略.(三)应用示例思路1例1 利用和差角公式计算下列各式的值.(1)sin72°cos42°-cos72°sin42°; (2)cos20°cos70°-sin20°sin70°;(3)15tan 115tan 1-+活动:本例实际上是公式的逆用,主要用来熟悉公式,可由学生自己完成.对部分学生,教师点拨学生细心观察题中式子的形式有何特点,再对比公式右边,马上发现(1)同公式S (α-β)的右边,(2)同公式C (α+β)右边形式一致,学生自然想到公式的逆用,从而化成特殊角的三角函数,并求得结果.再看(3)式与T (α+β)右边形式相近,但需要进行一定的变形.又因为tan45°=1,原式化为15tan 45tan 115tan 45tan -+,再逆用公式T (α+β)即可解得.解:(1)由公式S (α-β)得 原式=sin(72°-42°)=sin30°=21. (2)由公式C (α+β)得原式=cos(20°+70°)=cos90°=0. (3)由公式T (α+β)得原式=15tan 45tan 115tan 45tan -+=tan(45°+15°)=tan60°=3. 点评:本例体现了对公式的全面理解,要求学生能够从正、反两个角度使用公式.与正用相比,反用表现的是一种逆向思维,它不仅要求有一定的反向思维意识,对思维的灵活性要求也高,而且对公式要有更全面深刻的理解.变式训练 1.化简求值:(1)cos44°sin14°-sin44°cos14°; (2)sin14°cos16°+sin76°cos74°;(3)sin(54°-x)cos(36°+x)+cos(54°-x)sin(36°+x).解:(1)原式=sin(14°-44°)=sin(-30°)=-sin30°=21-. (2)原式=sin14°cos16°+cos14°sin16°=sin(14°+16°)=sin30°=21. (3)原式=sin [(54°-x)+(36°+x)]=sin90°=1.2.计算.75tan 175tan 1+- 解:原式=75tan 45tan 175tan 45tan +-=tan(45°-75°)=tan(-30°)=-tan30°=33-.例2 已知函数f(x)=sin(x+θ)+cos (x-θ)的定义域为R ,设θ∈[0,2π],若f(x)为偶函数,求θ的值.活动:本例是一道各地常用的、基础性较强的综合性统考题,其难度较小,只需利用偶函数的定义,加上本节学到的两角和与差的三角公式展开即可,但不容易得到满分.教师可先让学生自己探究,独立完成,然后教师进行点评.解:∵f(x)为偶函数,∴f(-x)=f(x),即sin(-x+θ)+cos(-x-θ)=sin(x+θ)+cos(x-θ), 即-sinxcos θ+cosxsin θ+cosxcos θ-sinxsin θ =sinxcos θ+cosxsin θ+cosxcos θ+sinxsin θ. ∴sinxcos θ+sinxsin θ=0.∴sinx(sin θ+cos θ)=0对任意x 都成立.∴2sin(θ+4π)=0,即sin(θ+4π)=0. ∴θ+4π=k π(k ∈Z ).∴θ=k π-4π(k ∈Z ).又θ∈[0,2π),∴θ=43π或θ=47π.点评:本例学生可能会根据偶函数的定义利用特殊值来求解.教师应提醒学生注意,如果将本例变为选择或填空,可利用特殊值快速解题,作为解答题利用特殊值是不严密的,以此训练学生逻辑思维能力.变式训练 已知:2π<β<α<43π,cos(α-β)=1312,sin(α+β)=54-,求cos2β的值.解:∵2π<β<α<43π,∴0<α-β<4π,π<α+β<23π.又∵cos(α-β)=1312,sin(α+β)= 54-,∴sin(α-β)=135,cos(α+β)=53-.∴cos2β=cos [(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β) =53-×1312+(54-)×135=6556-.例3 求证:cos α+3sin α=2sin(6π+α). 活动:本题虽小但其意义很大,从形式上就可看出来,左边是两个函数,而右边是一个函数,教师引导学生给予足够的重视.对于此题的证明,学生首先想到的证法就是把等式右边利用公式S (α+β)展开,化简整理即可得到左边此为证法,这是很自然的,教师要给予鼓励.同时教师可以有目的的引导学生把等式左边转化为公式S (α+β)的右边的形式,然后逆用公式化简即可求得等式右边的式子,这种证明方法不仅仅是方法的变化,更重要的是把两个三角函数化为一个三角函数.证明:方法一:右边=2(sin6πcos α+cos 6πsin α)=2(21cos α+23sin α)=cos α+3sin α=左边.方法二:左边=2(21cos α+23sin α)=2(sin 6πcos α+cos 6πsin α)=2sin(6π+α)=右边. 点评:本题给出了两种证法,方法一是正用公式的典例,而方法二则是逆用公式证明的,此法也给了我们一种重要的转化方法,要求学生熟练掌握其精神实质.本例的方法二将左边的系数1与3分别变为了21与23,即辅助角6π的正、余弦.关于形如asinx+bcosx (a ,b 不同时为零)的式子,引入辅助角变形为Asin(x+φ)的形式,其基本想法是“从右向左”用和角的正弦公式,把它化成Asin(x+φ)的形式.一般情况下,如果a=AC os φ,b=Asin φ,那么asinx+bcosx=A(sinxcos φ+cosxsin φ)=Asin(x+φ).由sin 2φ+cos 2φ=1,可得 A 2=a 2+b 2,A=±22b a +,不妨取A=22b a +,于是得到cos φ=22ba a +,sin φ=22b a b +,从而得到tan φ=ba ,因此asinx+bcosx=22b a +sin(x+φ),通过引入辅助。
高一数学人教A版必修四教案:简单的三角恒等变换
3.2簡單的三角恒等變換(2)一、教學目標1、通過三角恒等變形,形如x b x a cos sin +的函數轉化為)sin(ϕ+=x A y 的函數;2、靈活利用公式,通過三角恒等變形,解決函數的最值、週期、單調性等問題。
二、教學重點與難點重點:三角恒等變形的應用。
難點:三角恒等變形。
三、教學過程(一)復習:二倍角公式。
(二)典型例題分析例1:.54sin ,20=<<απα已知的值求αααα2cos cos 2sin sin )1(22++;的值求)45tan()2(πα-. 解:(1)由,54sin ,20=<<απα得,53cos =α .201cos 3cos sin 2sin 2cos cos 2sin sin 2222=-+=++∴αααααααα (2).71tan 11tan )45tan(,34cos sin tan =+-=-==ααπαααα 例2..10tan 3150sin )(利用三角公式化简︒+︒ 解:)(原式︒︒+︒=10cos 10sin 3150sin ︒︒+︒⋅︒=10cos )10sin 2310cos 21(250sin ︒︒︒+︒︒⋅︒=10cos 10sin 30cos 10cos 30sin 50sin 2︒︒⋅︒=10cos 40sin 40cos 2 110cos 10cos 10cos 80sin =︒︒=︒︒=. 例3.已知函數x x x x x f 44sin cos sin 2cos )(--=(1) 求)(x f 的最小正週期,(2)當]2,0[π∈x 時,求)(x f 的最小值及取得最小值時x 的集合.點評:例3是三角恒等變換在數學中應用的舉例,它使三角函數中對函數()sin y A x ωϕ=+的性質研究得到延伸,體現了三角變換在化簡三角函數式中的作用.例4.若函數]20[cos 22sin 3)(2π,m x x x f 在区间++=上的最大值為6,求常數m 的值及此函數當R x ∈時的最小值及取得最小值時x 的集合。
第三章三角恒等变换教案
高中数学必修4 第3章 三角恒等变换 3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单使用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础. 二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不但有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,使用已学知识和方法的水平问题,等等. 三、教学设想: (一)导入:问题1: 我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家能够猜测,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜测是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-= (二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也能够用角α的余弦线来表示。
思考?.1角函数线来探求公式怎样联系单位圆上的三(1) 怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)?)2(的余弦线和余弦线的正弦线怎样作出角βαβα-,、、思考2:怎样联系向量的数量积探求公式?(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的?(2)怎样利用向量的数量积的概念的计算公式得到探索结果? 两角差的余弦公式:βαβαβαsin sin cos cos )cos(⋅+⋅=-(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值. 解:分析:把75、15构造成两个特殊角的和、差.()231cos75cos 4530cos 45cos30sin 45sin 30222=+=-=⨯=()231cos15cos 4530cos 45cos30sin 45sin 302222=-=+=⨯=点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活使用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===-所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.思考:此题中没有),2ππα⎝⎛∈,呢? (四)练习:不查表计算以下各式的值:︒︒+︒︒20sin 80sin 20cos 80cos 1)(︒+︒15sin 2315cos 212)(解: ︒︒+︒︒20sin 80sin 20cos 80cos 1)( 2160cos )2080cos(=︒=︒-︒= (五)小结:两角差的余弦公式,首先要理解公式结构的特征,理解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角α、β的象限,也就是符号问题,学会灵活使用.(1)牢记公式.S S C C C ⋅+⋅=-)(βα(2)在“给值求值”题型中灵活处理已、未知关系. (六)作业3.1.2两角和与差的正弦、余弦、正切公式一、教材分析本节的主要内容是两角和与差的正弦、余弦和正切公式,为了引起学生学习本章的兴趣,理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用从而激发学生对本章内容的学习兴趣和求知欲。
苏教版高中数学必修四几个三角恒等式教案(1)(1)
3.3 几个三角恒等式三维目标 知识与技能掌握和差化积、积化和差公式的推导方法. 过程与方法通过和差化积和积化和差公和公式的推导,提高学生三角变换的能力. 情感、态度、价值观让学生经历数学探索和发现的欲望和信心,体验成功的感觉.重点难点重点:积化和差、和差化积公式的推导方法. 难点:三角恒等式的证明.教学过程一、创设情境sin(α+β)=sin αcos β+cos αsin β.sin(α-β)=sin αcos β-cos αsin β.以上是用α,β的正余弦表示它们和或者差的正弦,反之,sin αcos β如何用sin(α+β)和sin(α-β)来表示呢?二、讲解新课数学理论:sin αcos β=12[sin(α+β)+sin(α-β)],cos αsin β=12[sin(α+β)-sin(α-β)],cos αcos β=12[cos(α+β)+cos(α-β)],sin αsin β=-12[cos(α+β)-cos(α-β)].以上这些表达式把三角函数的乘积化为同名的三角函数的和或者差,统称积化和差公式,对于这些结论不必加以记忆和运用.问题:由sin(α+β)+sin(α-β)=2sin αcos β试推导sin α+sin β. 令A =α+β,B =α-β,可得sin A +sin B =2sin A +B2cosA -B2,sin A -sin B =2cosA +B2sinA -B2, cos A +cos B =2 cosA +B2cosA -B2, cos A -cos B =-2sinA +B2sinA -B2.以上过程体现的换元的数学方法,这些表达式把同名的三角函数的和或者差化为三角函数的乘积,统称和差化积公式,对于这些结论也不必加以记忆和运用.例题讲解: 例1 运用三角函数变换证明:tan α2=sin α1+cos α=1-cos αsin α.证明:tan α2=sin α2 cos α2=2sin2α22sin α2cosα2=1-cos αsin α.tan α2=sin α2cos α2=2sin α2cosα22cos2α2=sin α1+cos α.例2 已知sin(α+β)=12,sin(α-β)=13,求tan(α+β)-tan α-tan βtan 2βtan(α+β)的值. 解:由已知可得sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13.两式相加得sin αcos β=512,相减得cos αsin β=112.tan(α+β)-tan α-tan βtan 2βtan(α+β)=tan(α+β)-(1-tan αtan β)tan(α+β)tan 2βtan(α+β)=tan αtan β=sin αcos βcos αsin β=5.课堂训练: 1.设α,β,α+β均为锐角,a =sin(α+β),b =sin α+sin β,c =cos α+cos β,则( ) A .a <b <c B .b <a <c C .a <c <b D .b <c <a 答案:A .2.已知α是第三象限角,且sin α=-2425,则tan α2的值为 ( )A .43B .34C .-34D .-43答案:D .3.在△ABC 中,求证:sin2A +sin2B -sin2C =2sin A sin B sin C .证明:sin 2A +sin 2B -sin 2C=sin 2(B +C )+1-cos2B 2-1-cos2C2=sin 2(B +C )+12(cos 2C -cos 2B )=sin 2(B +C )+sin(B +C )sin(B -C ) =sin(B +C )[sin(B +C )+sin(B -C )] =sin A·2sin B sin C =2sin A sin B sin C .三、课堂小结。
高中数学教案《三角恒等变换》
教学计划:《三角恒等变换》一、教学目标知识与技能:学生能够理解并掌握三角恒等变换的基本公式,包括和差化积、积化和差、二倍角公式等。
学生能够熟练运用三角恒等变换公式进行化简、求值及证明。
培养学生的逻辑推理能力和代数运算能力。
过程与方法:通过观察、分析、归纳等数学活动,引导学生发现三角恒等变换的规律。
采用“公式推导—例题讲解—练习巩固”的教学模式,帮助学生逐步掌握三角恒等变换的方法。
鼓励学生自主探究,通过小组合作解决复杂问题,培养团队协作能力。
情感态度与价值观:激发学生对数学学习的兴趣,感受数学的美妙与和谐。
培养学生的耐心和细心,养成严谨的科学态度。
引导学生认识到数学在解决实际问题中的重要性,增强应用数学的意识。
二、教学重点和难点重点:三角恒等变换的基本公式及其推导过程;运用公式进行化简、求值及证明。
难点:灵活运用三角恒等变换公式解决复杂问题;理解并记忆众多公式的内在联系。
三、教学过程1. 导入新课(5分钟)情境引入:通过展示一些与三角恒等变换相关的实际问题(如天文学中的角度计算、物理学中的波动分析等),引导学生思考这些问题背后可能涉及的数学知识,从而引出三角恒等变换的主题。
复习旧知:简要回顾三角函数的基本性质、图像及诱导公式,为学习三角恒等变换做好铺垫。
明确目标:介绍本节课的学习目标,即掌握三角恒等变换的基本公式及其应用。
2. 公式推导(15分钟)和差化积公式推导:通过图形展示和代数运算相结合的方式,引导学生推导出和差化积公式。
强调公式的推导过程,帮助学生理解公式的来源和含义。
积化和差公式推导:类比和差化积公式的推导过程,引导学生自主推导积化和差公式。
鼓励学生提出疑问和见解,促进课堂互动。
二倍角公式推导:利用三角函数的倍角关系,引导学生推导出二倍角公式。
强调公式的记忆方法和应用技巧。
3. 例题讲解(10分钟)基础例题:选取具有代表性的基础例题进行讲解,如利用三角恒等变换公式化简表达式、求三角函数值等。
人教版高中必修4(B版)第三章三角恒等变换教学设计
人教版高中必修4(B版)第三章三角恒等变换教学设计一、教学目标1.理解三角恒等变换的概念和性质。
2.掌握正弦、余弦、正切的恒等变换公式。
3.能够使用三角函数的恒等变换公式求解三角函数的值。
二、教学重点难点1.三角恒等变换概念和性质的理解。
2.正弦、余弦、正切的恒等变换公式的记忆和应用。
三、教学内容及方法1. 教学内容1.三角恒等变换的概念和性质。
2.正弦、余弦、正切的恒等变换公式。
2. 教学方法1.给出例题,并通过例题引出概念和性质。
2.讲解正弦、余弦、正切的恒等变换公式,并进行示例演练。
3.练习题的讲解和答疑。
四、教学过程设计1. 导入环节1.介绍本节课的主题和目标。
2.提问学生对三角恒等变换的了解和认识,引出三角恒等变换的概念和性质。
2. 讲解环节1.以例题的形式引出正弦、余弦、正切的恒等变换公式,讲解公式的推导过程和应用方法。
2.通过多组例题演示如何使用恒等变换公式求解三角函数的值。
3. 练习环节1.发放练习题,让学生进行练习并自行检验答案。
2.推广题目,让学生进行自主探究,并对想法进行讨论和答疑。
五、教学评估1.通过课后作业检查和测试等方式进行评估,考察学生对三角恒等变换的掌握情况。
2.针对评估结果进行适当调整和讲解,弥补学生掌握不足和漏洞。
六、教学资源1.PowerPoint演示文稿。
2.练习题和解答。
3.可视化三角恒等变换的工具软件,如GeoGebra或Desmos。
七、反思总结三角恒等变换是高中数学中比较基础而又重要的概念之一。
因此,在教学过程中,既要重视学生的掌握程度,也要注意教学内容和方式的生动和丰富。
此次教学中,我结合多组例题,并使用工具软件进行可视化演示,使学生可以更加深入地理解三角恒等变换的概念和性质,同时也更好地掌握了正弦、余弦、正切的恒等变换公式。
最后课后的总结和评估,也能帮助学生更深入地理解和记忆知识点。
数学教案三角恒等变换
数学教案三角恒等变换数学教案:三角恒等变换引言:三角恒等变换是高中数学中的重要内容,它在解题过程中具有广泛的应用。
本教案将通过多种实例,引导学生理解三角恒等变换的概念、性质及应用,提高学生解决三角函数相关问题的能力。
一、知识导入:基本概念与性质(500字左右)1. 引入:提出实际中的三角形问题,引发学生思考三角形之间的关系。
2. 提出三角恒等变换的概念,并解释其意义和用途。
3. 结合基本三角函数的定义,介绍三角恒等变换的性质和基本公式。
二、基本恒等变换(500字左右)1. 说明三角恒等变换的基本形式,并给出示例。
2. 推导和解释基本恒等变换的推导过程,帮助学生理解其中的数学原理。
3. 针对不同类型的三角函数,列举相应的基本恒等变换公式。
三、应用实例一:解三角方程(500字左右)1. 提供一些实际问题,通过三角恒等变换的方法,将其转化为解方程的问题。
2. 引导学生通过恒等变换的方式,解决多种类型的三角方程。
3. 鼓励学生总结解题方法和技巧,帮助他们深入理解三角恒等变换的实际应用。
四、应用实例二:三角函数的求值与简化(500字左右)1. 提供一些实际问题,要求学生利用三角恒等变换简化复杂的三角函数式子。
2. 引导学生通过代入不同的角度值,比较不同的三角函数值,推导出恒等变换的结果。
3. 帮助学生发现并总结三角函数简化的一般规律。
五、综合应用:证明三角恒等式(500字左右)1. 提出一些已知的三角恒等式,要求学生通过恒等变换的方式来证明其正确性。
2. 指导学生进行恒等变换的证明过程,注重逻辑推理和数学推导的合理性。
3. 提供一些挑战性问题,鼓励学生运用恒等变换证明复杂的三角恒等式。
六、总结与拓展(200字左右)1. 总结三角恒等变换的基本思想和方法,强调其在解题中的重要性。
2. 提供一些额外的拓展问题,引导学生进一步思考和应用所学的三角恒等变换知识。
3. 引导学生关注数学以及实际生活中的三角形相关问题,并从中发现和解决问题的方法。
高二数学简单的三角恒等变换教案(通用11篇)
高二数学简单的三角恒等变换教案(通用11篇)高二数学简单的三角恒等变换教案 1教学目标1、理解并掌握基本的三角恒等式,如和差化积、积化和差公式。
2、能够运用三角恒等式进行简单的三角恒等变换。
3、培养学生的逻辑推理能力和数学运算能力。
教学重点1、三角恒等式的理解和记忆。
2、三角恒等变换的方法和步骤。
教学难点三角恒等式的灵活运用和复杂三角表达式的化简。
教学准备1、多媒体课件,包含三角恒等式、例题和练习题。
2、黑板和粉笔。
教学过程一、导入新课复习上节课内容,回顾三角函数的定义和性质。
提出问题:如何利用已知的三角函数公式推导出新的三角恒等式?二、新课讲解1、讲解三角恒等式的基本概念,介绍和差化积、积化和差等公式。
2、通过实例演示如何使用三角恒等式进行三角恒等变换。
3、引导学生总结三角恒等变换的.一般方法和步骤。
三、课堂练习布置一些简单的三角恒等变换练习题,让学生尝试运用所学知识解决问题。
教师巡视指导,及时纠正学生的错误,并给予适当的提示和帮助。
四、巩固提升分析一些较复杂的三角恒等变换问题,引导学生思考如何灵活运用三角恒等式进行化简。
鼓励学生相互讨论,分享解题思路和方法。
五、课堂小结总结本节课的重点内容,强调三角恒等变换的重要性和应用价值。
布置课后作业,要求学生完成一些三角恒等变换的练习题,以巩固所学知识。
教学反思本节课通过实例演示和课堂练习,使学生初步掌握了三角恒等变换的基本方法和步骤。
但在处理较复杂问题时,部分学生仍显得不够熟练,需要进一步加强练习和指导。
在今后的教学中,可以设计更多具有针对性的练习题,帮助学生巩固和提高三角恒等变换的能力。
同时,也要注重培养学生的逻辑思维能力和数学运算能力,为后续的数学学习打下坚实的基础。
高二数学简单的三角恒等变换教案 2理解并掌握三角恒等变换的基本公式,包括正弦、余弦、正切的和差公式,二倍角公式,半角公式等。
能够运用三角恒等变换解决一些简单的三角函数化简、求值及证明问题,培养学生的逻辑推理能力和数学运算能力。
高中数学教案三角恒等变换
高中数学教案三角恒等变换高中数学教案:三角恒等变换一、引言在高中数学中,三角恒等变换是重要的内容之一。
本教案旨在帮助学生深入理解三角恒等变换的概念、性质以及运用方法,以提升他们在解决相关数学问题时的能力。
二、基础知识概述1. 三角函数的定义- 正弦函数sin(x):在直角三角形中,对边与斜边的比值。
- 余弦函数cos(x):在直角三角形中,邻边与斜边的比值。
- 正切函数tan(x):在直角三角形中,对边与邻边的比值。
2. 三角恒等变换的基本概念- 三角恒等变换是指将一个三角函数转化为另一个三角函数的等价关系。
- 常见的三角恒等变换包括正弦函数、余弦函数和正切函数的互换关系。
三、三角恒等变换的性质1. 基本恒等变换a)正弦函数的互换:- sin(x) = cos(90° - x)- cos(x) = sin(90° - x)b)余弦函数的互换:- cos(x) = cos(-x)c)正切函数的互换:- tan(x) = cot(90° - x)- cot(x) = tan(90° - x)2. 辅助恒等变换a)正弦函数的辅助恒等变换:- sin²(x) + cos²(x) = 1- 1 + tan²(x) = sec²(x)b)余弦函数的辅助恒等变换:- 1 + cot²(x) = csc²(x)四、三角恒等变换的运用方法1. 化简复杂的三角表达式a)使用基本恒等变换来替换特定的三角函数,将复杂的表达式化简为简洁的形式。
b)利用辅助恒等变换将三角函数关系转化为其他形式的等式。
2. 证明三角恒等式a)基于已知三角函数的定义和性质,运用三角恒等变换的知识进行变换和推导,证明给定的三角恒等式。
b)通过使用辅助线、反证法等数学方法,辅助完成恒等式的证明过程。
3. 解决三角函数方程和不等式根据题目给出的条件和问题,结合三角恒等变换的知识,将方程或不等式中的三角函数改写为相同或相关的三角函数,从而简化问题的求解。
必修4第三章三角恒等变换单元教学设计
弦 公 式 求 求值
用,,并进一步
cos1050 及
熟悉公式的特
cos15 的值
征,为以后灵活
应用作铺垫。
归纳小 从知识、方 公式推导中向量的应用
使学生对本节
结
法两个方面 公式的结构特征
知识有一个清
对本节课的 在三角变换时, 本公式应用中, 首先应考虑根据题 晰完整地认识,
内容进行归 目的条件与结论来进行角的变换
然后相
只 剩 下 cos xcos y sin x sin y 问 题 得
通过这个 练习,培养 学生良好 的发现问 题解决问 题的能力.
解.思维过程可以逆向, (考虑由 cos( x y)
入手,寻找 cos x cos y,sin xsin y 想到平
方.)
归纳小 结
从知识, 方法两个方面来对本节课的内 容进行归纳总结.
(四)教学过程
教学 环节
教学内容
师生互 动
设计意图
复
习 复习公式
cos
引
cos
入
先让学生默写两角和与差的余弦公式, 然后
指出这两个公式是讨论复角
与单角
cos cos cos cos
sin sin sin sin
, 的余弦函数间的关系,且此关系对任
意角 , 均成立,并且要注意
cos
cos cos
是错误
情感目标: 培养学生探索和创新的意识, 构建良好的数学思维品质. (二)教学重点,难点
本节课的重点是使学生掌握两角和与差的余弦公式. 难点是两角差的余弦公式的推导与证 明.
(三) 学法与教学用具
1. 学法:启发式教学
2. 教学用具:多媒体
(四)教学过程
高一数学人教A版必修四教案:简单的三角恒等变换
數學 3.2簡單的三角恒等變換(1)教案一、教學分析本節主要包括利用已有的十一個公式進行簡單的恒等變換,以及三角恒等變換在數學中的應用.本節的內容都是用例題來展現的,通過例題的解答,引導學生對變換對象和變換目標進行對比、分析,促使學生形成對解題過程中如何選擇公式,如何根據問題的條件進行公式變形,以及變換過程中體現的換元、逆向使用公式等數學思想方法的認識,從而加深理解變換思想,提高學生的推理能力.本節把三角恒等變換的應用放在三角變換與三角函數間的內在聯繫上,從而使三角函數性質的研究得到延伸.三角恒等變換不同於代數變換,後者往往著眼於式子結構形式的變換,變換內容比較單一.而對於三角變換,不僅要考慮三角函數是結構方面的差異,還要考慮三角函數式所包含的角,以及這些角的三角函數種類方面的差異,它是一種立體的綜合性變換.從函數式結構、函數種類、角與角之間的聯繫等方面找一個切入點,並以此為依據選擇可以聯繫它們的適當公式進行轉化變形,是三角恒等變換的重要特點.二、三維目標1.知識與技能:通過經歷二倍角的變形公式推導出半角的正弦、余弦和正切公式,能利用和與差的正弦、余弦公式推導出積化和差與和差化積公式,體會化歸、換元、方程、逆向使用公式等數學思想,提高學生的推理能力.2.過程與方法:理解並掌握二倍角的正弦、余弦、正切公式,並會利用公式進行簡單的恒等變形,體會三角恒等變換在數學中的應用.3.情感態度與價值觀:通過例題的解答,引導學生對變換對象目標進行對比、分析,促使學生形成對解題過程中如何選擇公式,如何根據問題的條件進行公式變形,以及變換過程中體現的換元、逆向使用公式等數學思想方法的認識,從而加深理解變換思想,提高學生的推理能力.三、重點難點教學重點:1.半角公式、積化和差、和差化積公式的推導訓練.2.三角變換的內容、思路和方法,在與代數變換相比較中,體會三角變換的特點.教學難點:認識三角變換的特點,並能運用數學思想方法指導變換過程的設計,不斷提高從整體上把握變換過程的能力.四、課時安排2課時五、教學設想第1課時(一)導入新課思路 1.我們知道變換是數學的重要工具,也是數學學習的主要對象之一,三角函數主要有以下三個基本的恒等變換:代數變換、公式的逆向變換和多向變換以及引入輔助角的變換.前面已經利用誘導公式進行了簡單的恒等變換,本節將綜合運用和(差)角公式、倍角公式進行更加豐富的三角恒等變換.思路2.三角函數的化簡、求值、證明,都離不開三角恒等變換.學習了和角公式,差角公式,倍角公式以後,我們就有了進行三角變換的新工具,從而使三角變換的內容、思路和方法更加豐富和靈活,同時也為培養和提高我們的推理、運算、實踐能力提供了廣闊的空間和發展的平臺.對於三角變換,由於不同的三角函數式不僅會有結構形式方面的差異,而且還會有所包含的角,以及這些角的三角函數種類方面的差異,因此三角恒等變換常常首先尋找式子所包含的各個角之間的聯繫,並以此為依據選擇可以聯繫它們的適當公式,這是三角式恒等變換的重要特點.(二)推進新課、新知探究、提出問題 ①α與2a有什麼關係? ②如何建立cos α與sin22a之間的關係? ③sin 22a =2cos 1a -,cos 22a =2cos 1a +,tan 22a =aa cos 1cos 1+-這三個式子有什麼共同特點?④通過上面的三個問題,你能感覺到代數變換與三角變換有哪些不同嗎?⑤證明(1)sin αcos β=21[sin(α+β)+sin(α-β)]; (2)sin θ+sin φ=2sin 2cos2ϕθϕθ-+. 並觀察這兩個式子的左右兩邊在結構形式上有何不同?活動:教師引導學生聯想關於余弦的二倍角公式cos α=1-2sin22a ,將公式中的α用2a代替,解出sin 22a 即可.教師對學生的討論進行提問,學生可以發現:α是2a 的二倍角.在倍角公式cos2α=1-2sin 2α中,以α代替2α,以2a 代替α,即得cos α=1-2sin 22a , 所以sin 22a =2cos 1a -. ① 在倍角公式cos2α=2cos 2α-1中,以α代替2α,以2a 代替α,即得cos α=2cos 22a -1, 所以cos 22a =2cos 1a +. ② 將①②兩個等式的左右兩邊分別相除,即得 tan22a =aa cos 1cos 1+-. ③ 教師引導學生觀察上面的①②③式,可讓學生總結出下列特點: (1)用單角的三角函數表示它們的一半即是半角的三角函數;(2)由左式的“二次式”轉化為右式的“一次式”(即用此式可達到“降次”的目的).教師與學生一起總結出這樣的特點,並告訴學生這些特點在三角恒等變形中將經常用到.提醒學生在以後的學習中引起注意.同時還要強調,本例的結果還可表示為:sin2a =±2cos 1a -,cos 2a =±2cos 1a +,tan 2a=±a a cos 1cos 1+-,並稱之為半角公式(不要求記憶),符號由2a所在象限決定. 教師引導學生通過這兩種變換共同討論歸納得出:對於三角變換,由於不同的三角函數式不僅會有結構形式方面的差異,而且還有所包含的角,以及這些角的三角函數種類方面的差異.因此,三角恒等變換常常先尋找式子所包含的各個角間的聯繫,並以此為依據,選擇可以聯繫它們的適當公式,這是三角恒等變換的重要特點.代數式變換往往著眼於式子結構形式的變換.對於問題⑤:(1)如果從右邊出發,僅利用和(差)的正弦公式作展開合併,就會得出左式.但為了更好地發揮本例的訓練功能,把兩個三角式結構形式上的不同點作為思考的出發點,引導學生思考,哪些公式包含sin αcos β呢?想到sin(α+β)=sin αcos β+cos αsin β.從方程角度看這個等式,sin αcos β,cos αsin β分別看成兩個未知數.二元方程要求得確定解,必須有2個方程,這就促使學生考慮還有沒有其他包含sin αcos β的公式,列出sin(α-β)=sin αcos β-cos αsin β後,解相應的以sin αcos β,cos αsin β為未知數的二元一次方程組,就容易得到所需要的結果.(2)由(1)得到以和的形式表示的積的形式後,解決它的反問題,即用積的形式表示和的形式,在思路和方法上都與(1)沒有什麼區別.只需做個變換,令α+β=θ,α-β=φ,則α=2ϕθ+,β=2ϕθ-,代入 (1)式即得(2)式.證明:(1)因為sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 將以上兩式的左右兩邊分別相加,得 sin(α+β)+sin(α-β)=2sin αcos β, 即sin αcos β=21[sin(α+β)+sin(α-β)]. (2)由(1),可得sin(α+β)+sin(α-β)=2sin αcos β.① 設α+β=θ,α-β=φ,那麼α=2ϕθ+,β=2ϕθ-.把α,β的值代入①, 即得sin θ+sin φ=2sin2ϕθ+cos2ϕθ-.教師給學生適時引導,指出這兩個方程所用到的數學思想,可以總結出在本例的證明過程中用到了換元的思想,如把α+β看作θ,α-β看作φ,從而把包含α,β的三角函數式變換成θ,φ的三角函數式.另外,把sin αcos β看作x,cos αsin β看作y,把等式看作x,y 的方程,通過解方程求得x,這就是方程思想的體現.討論結果:①α是2a的二倍角. ②sin 22a =1-cos 2cos 1a -.③④⑤略(見活動).(三)應用示例思路1例1 化簡:.cos sin 1cos sin 1xx xx ++-+.活動:此題考查公式的應用,利用倍角公式進行化簡解題.教師提醒學生注意半角公式和倍角公式的區別,它們的功能各異,本質相同,具有對立統一的關係.解:原式=)2sin 2(cos 2cos 2)2cos 2(sin 2sin 22cos 2sin 22cos 22cos 2sin 22sin 222x x x x x x x x x x x x ++=++=tan 2x . 點評:本題是對基本知識的考查,重在讓學生理解倍角公式與半角公式的內在聯繫.變式訓練化簡:sin50°(1+3tan10°).解:原式=sin50°10cos )10sin 2310cos 21(250sin 10cos 10sin 31+•=+ =2sin50°·10cos 10sin 30cos 10cos 30sin +=2cos40°·10cos 10cos 10cos 80sin 10cos 40sin ===1.例2 已知sinx-cosx=21,求sin 3x-cos 3x 的值. 活動:教師引導學生利用立方差公式進行對公式變換化簡,然後再求解.由於(a-b)3=a 3-3a 2b+3ab2-b 3=a 3-b 3-3ab(a-b),∴a 3-b 3=(a-b)3+3ab(a-b).解完此題後,教師引導學生深挖本例的思想方法,由於sinx ·cosx 與sinx ±cosx 之間的轉化.提升學生的運算.化簡能力及整體代換思想.本題也可直接應用上述公式求之,即sin 3x-cos 3x=(sinx-cosx)3+3sinxcosx(sinx-cosx)=1611.此方法往往適用於sin 3x ±cos 3x 的化簡問題之中.解:由sinx-cosx=21,得(sinx-cosx)2=41, 即1-2sinxcosx=41,∴sinxcosx=83.∴sin 3x-cos 3x=(sinx-cosx)(sin 2x+sinxcosx+cos 2x) =21(1+83)=1611. 點評:本題考查的是公式的變形、化簡、求值,注意公式的靈活運用和化簡的方法. 變式訓練(2007年高考浙江卷,12) 已知sin θ+cos θ=51,且2π≤θ≤43π,則cos2θ的值是______________. 答案:257-例1 已知1sin sin cos cos :1sin sin cos cos 24242424=+=+ABA B B A B A 求证. 活動:此題可從多個角度進行探究,由於所給的條件等式與所要證明的等式形式一致,只是將A,B 的位置互換了,因此應從所給的條件等式入手,而條件等式中含有A,B 角的正、余弦,可利用平方關係來減少函數的種類.從結構上看,已知條件是a 2+b 2=1的形式,可利用三角代換.證明一:∵1sin sin cos cos 2424=+BAB A , ∴cos 4A ·sin 2B+sin 4A ·cos 2B=sin 2B ·cos+B.∴cos 4A(1-cos 2B)+sin 4A ·cos 2B=(1-cos 2B)cos 2B,即cos 4A-cos 2B(cos 4A-sin 4A)=cos 2B-cos 4B.∴cos 4A-2cos 2Acos 2B+cos 4B=0.∴(cos 2A-cos 2B)2=0.∴cos 2A=cos 2B.∴sin 2A=sin 2B.∴=+A BA B 2424sin sin cos cos cos 2B+sin 2B=1. 證明二:令BAa B A sin sin ,cos cos cos 22==sin α,則cos 2A=cosBcos α,sin 2A=sinBsin α.兩式相加,得1=cosBcos α+sinBsin α,即cos(B-α)=1. ∴B-α=2k π(k ∈Z ),即B=2k π+α(k ∈Z ). ∴cos α=cosB,sin α=sinB.∴cos 2A=cosBcos α=cos 2B,sin 2A=sinBsin α=sin 2B.∴BB B B A B A B 24242424sin sin cos cos sin sin cos cos +=+=cos 2B+sin 2B=1. 點評:要善於從不同的角度來觀察問題,本例從角與函數的種類兩方面觀察,利用平方關係進行了合理消元. 變式訓練在銳角三角形ABC 中,ABC 是它的三個內角,記S=BA tan 11tan 11+++,求證:S<1. 證明:∵S=BA B A BA B A B A tan tan tan tan 1tan tan 1)tan 1)(tan 1(tan 1tan 1+++++=+++++又A+B>90°,∴90°>A>90°-B>0°. ∴tanA>tan(90°-B)=cotB>0, ∴tanA ·tanB>1.∴S<1.思路2例1 證明x x cos sin 1+=tan(4π+2x).活動:教師引導學生思考,對於三角恒等式的證明,可從三個角度進行推導:①左邊→右邊;②右邊→左邊;③左邊→中間條件←右邊.教師可以鼓勵學生試著多角度的化簡推導.注意式子左邊包含的角為x,三角函數的種類為正弦,余弦,右邊是半角2x,三角函數的種類為正切.解:方法一:從右邊入手,切化弦,得tan(4π+2x )=2sin2cos 2sin2cos 2sin 2sin 2cos 2cos 2sin 4cos 2cos 4sin )24cos()22sin(x x x x x x x x x x -+=-+=++ππππππ,由左右兩邊的角之間的關係,想到分子分母同乘以cos 2x +sin 2x,得x x x x x x x x cos sin 1)2sin 2)(cos 2sin 2(cos )2sin 2(cos 2+=-++ 方法二:從左邊入手,分子分母運用二倍角公式的變形,降倍升冪,得2sin2cos 2sin2cos )2sin 2)(cos 2sin 2(cos )2sin 2(cos cos sin 12x x xx x x x x x x xx -+=-++=+ 由兩邊三角函數的種類差異,想到弦化切,即分子分母同除以cos2x,得 2tan4tan 12tan 4tan 2tan 12tan1x xx x ππ-+=-+=tan(4π+2x ). 點評:本題考查的是半角公式的靈活運用,以及恒等式的證明所要注意的步驟與方法.變式訓練 已知α,β∈(0,2π)且滿足:3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求α+2β的值. 解法一:3sin 2α+2sin 2β=1⇒3sin 2α=1-2sin 2β,即3sin 2α=cos2β,① 3sin2α-2sin2β=0⇒3sin αcos α=sin2β,② ①2+②2:9sin 4α+9sin 2αcos 2α=1,即9sin 2α(sin 2α+cos 2α)=1, ∴sin 2α=91.∵α∈(0,2π),∴sin α=31. ∴sin(α+2β)=sin αcos2β+cos αsin2β=sin α·3sin 2α+cos α·3sin αcos α=3sin α(sin 2α+cos 2α)=3×31=1. ∵α,β∈(0,2π),∴α+2β∈(0,23π).∴α+2β=2π.解法二:3sin 2α+2sin 2β=1⇒cos2β=1-2sin 2β=3sin 2α,3sin2α-2sin2β=0⇒sin2β=23sin2α=3sin αcos α, ∴cos(α+2β)=cos αcos2β-sin αsin2β=cos α·3sin 2α-sin α·3sin αcos α=0.∵α,β∈(0,2π),∴α+2β∈(0,23π).∴α+2β=2π.解法三:由已知3sin 2α=cos2β,23sin2α=sin2β,兩式相除,得tan α=cot2β,∴tan α=tan(2π-2β).∵α∈(0,2π),∴tan α>0.∴tan(2π-2β)>0.又∵β∈(0,2π),∴2π-<2π-2β<2π.結合tan(2π-2β)>0,得0<2π-2β<2π.∴由tan α=tan(2π-2β),得α=2π-2β,即α+2β=2π.例2 求證:αββαβαβ2222tan tan 1cos sin )sin()sin(-=-+a 活動:證明三角恒等式,一般要遵循“由繁到簡”的原則,另外“化弦為切”與“化切為弦”也是在三角式的變換中經常使用的方法. 證明:證法一:左邊=βαβαβαβαβ22cos sin )sin cos cos )(sin sin cos cos (sin -+ ==-=-=-a a a a 222222222222tan tan 1cos sin sin cos 1cos sin sin cos cos sin ββββββ=右邊.∴原式成立. 證法二:右邊=1-βββββ2222222222cos sin sin cos cos sin cos sin sin cos a a -= =βββββ22cos sin )sin cos cos )(sin sin cos cos (sin a a a a -+ =βββ22cos sin )sin()sin(++a a =左邊.∴原式成立.點評:此題進一步訓練學生三角恒等式的變形,靈活運用三角函數公式的能力以及邏輯推理能力. 變式訓練 1.求證:θθθθθθ2tan 14cos 4sin 1sin 24cos 4sin 1-++=-+.分析:運用比例的基本性質,可以發現原式等價於θθθθθθ2tan 1tan 24cos 4sin 14cos 4sin 1-=++-+,此式右邊就是tan2θ. 證明:原等式等價於θθθθθ2tan 4cos 4sin 14cos 4sin 1=++-+.而上式左邊θθθθθθθθθθ2cos 22cos 2sin 22sin 22cos 2sin 2)4cos 1(4sin )4cos 1(4sin 22++=++-+=)2cos 2(sin 2cos 2)2sin 2(cos 2sin 2θθθθθθ++==tan2θ右邊.∴上式成立,即原等式得證.2.已知sin β=m ·sin(2α+β),求證:tan(α+β)=mm-+11tan α. 分析:仔細觀察已知式與所證式中的角,不要盲目展開,要有的放矢,看到已知式中的2α+β可化為結論式中的α+β與α的和,不妨將α+β作為一整體來處理. 證明:由sin β=msin(2α+β)⇒sin[(α+β)-α]=msin[(α+β)+α]⇒sin(α+β)cos α-cos(α+β)sin α=m0[sin(α+β)cos α+cos(α+β)sin α]⇒(1-m)·sin(α+β)cos α=(1+m)·cos(α+β)sin α⇒tan(α+β)=mm-+11tan α.(四)知能訓練1.若sin α=135,α在第二象限,則tan 2a的值為( )A.5B.-5C.51D.51-2.設5π<θ<6π,cos 2θ=α,則sin 4θ等於( )A.21a + B.21a - C.21a +- D.21a-- 3.已知sin θ=53-,3π<θ<27π,則tan 2θ_________________.解答:1.A2.D3.-3(五)課堂小結1.先讓學生自己回顧本節學習的數學知識:和、差、倍角的正弦、余弦公式的應用,半角公式、代數式變換與三角變換的區別與聯繫.積化和差與和差化積公式及其推導,三角恒等式與條件等式的證明.2.教師畫龍點睛總結:本節學習了公式的使用,換元法,方程思想,等價轉化,三角恒等變形的基本手段.(六)作業。
高中数学必修四教案-简单的三角恒等变换
数学 3.2简单的三角恒等变换(1)教案一、教学分析本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.本节的内容都是用例题来展现的,通过例题的解答,引导学生对变换对象和变换目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.本节把三角恒等变换的应用放在三角变换与三角函数间的内在联系上,从而使三角函数性质的研究得到延伸.三角恒等变换不同于代数变换,后者往往着眼于式子结构形式的变换,变换内容比较单一.而对于三角变换,不仅要考虑三角函数是结构方面的差异,还要考虑三角函数式所包含的角,以及这些角的三角函数种类方面的差异,它是一种立体的综合性变换.从函数式结构、函数种类、角与角之间的联系等方面找一个切入点,并以此为依据选择可以联系它们的适当公式进行转化变形,是三角恒等变换的重要特点.二、三维目标1.知识与技能:通过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力.2.过程与方法:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.3.情感态度与价值观:通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、重点难点教学重点:1.半角公式、积化和差、和差化积公式的推导训练.2.三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.四、课时安排2课时五、教学设想第1课时(一)导入新课思路1.我们知道变换是数学的重要工具,也是数学学习的主要对象之一,三角函数主要有以下三个基本的恒等变换:代数变换、公式的逆向变换和多向变换以及引入辅助角的变换.前面已经利用诱导公式进行了简单的恒等变换,本节将综合运用和(差)角公式、倍角公式进行更加丰富的三角恒等变换.思路2.三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点.(二)推进新课、新知探究、提出问题①α与2a 有什么关系? ②如何建立cos α与sin 22a 之间的关系? ③sin 22a =2cos 1a -,cos 22a =2cos 1a +,tan 22a =a a cos 1cos 1+-这三个式子有什么共同特点? ④通过上面的三个问题,你能感觉到代数变换与三角变换有哪些不同吗?⑤证明(1)sin αcos β=21[sin(α+β)+sin(α-β)]; (2)sin θ+sin φ=2sin 2cos 2ϕθϕθ-+. 并观察这两个式子的左右两边在结构形式上有何不同?活动:教师引导学生联想关于余弦的二倍角公式cos α=1-2sin 22a ,将公式中的α用2a 代替,解出sin 22a 即可.教师对学生的讨论进行提问,学生可以发现:α是2a的二倍角.在倍角公式cos2α=1-2sin 2α中,以α代替2α,以2a 代替α,即得cos α=1-2sin 22a , 所以sin 22a =2cos 1a -. ① 在倍角公式cos2α=2cos 2α-1中,以α代替2α,以2a 代替α,即得cos α=2cos 22a -1, 所以cos 22a =2cos 1a +. ② 将①②两个等式的左右两边分别相除,即得tan 22a =aa cos 1cos 1+-. ③ 教师引导学生观察上面的①②③式,可让学生总结出下列特点:(1)用单角的三角函数表示它们的一半即是半角的三角函数;(2)由左式的“二次式”转化为右式的“一次式”(即用此式可达到“降次”的目的). 教师与学生一起总结出这样的特点,并告诉学生这些特点在三角恒等变形中将经常用到.提醒学生在以后的学习中引起注意.同时还要强调,本例的结果还可表示为:sin2a =±2cos 1a -,cos 2a =±2cos 1a +,tan 2a =±a a cos 1cos 1+-,并称之为半角公式(不要求记忆),符号由2a 所在象限决定. 教师引导学生通过这两种变换共同讨论归纳得出:对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还有所包含的角,以及这些角的三角函数种类方面的差异.因此,三角恒等变换常常先寻找式子所包含的各个角间的联系,并以此为依据,选择可以联系它们的适当公式,这是三角恒等变换的重要特点.代数式变换往往着眼于式子结构形式的变换.对于问题⑤:(1)如果从右边出发,仅利用和(差)的正弦公式作展开合并,就会得出左式.但为了更好地发挥本例的训练功能,把两个三角式结构形式上的不同点作为思考的出发点,引导学生思考,哪些公式包含sin αcos β呢?想到sin(α+β)=sin αcos β+cos αsin β.从方程角度看这个等式,sin αcos β,cos αsin β分别看成两个未知数.二元方程要求得确定解,必须有2个方程,这就促使学生考虑还有没有其他包含sin αcos β的公式,列出sin(α-β)=sin αcos β-cos αsin β后,解相应的以sin αcos β,cos αsin β为未知数的二元一次方程组,就容易得到所需要的结果.(2)由(1)得到以和的形式表示的积的形式后,解决它的反问题,即用积的形式表示和的形式,在思路和方法上都与(1)没有什么区别.只需做个变换,令α+β=θ,α-β=φ,则α=2ϕθ+,β=2ϕθ-,代入 (1)式即得(2)式.证明:(1)因为sin(α+β)=sin αcos β+cos αsin β,sin(α-β)=sin αcos β-cos αsin β,将以上两式的左右两边分别相加,得sin(α+β)+sin(α-β)=2sin αcos β,即sin αcos β=21[sin(α+β)+sin(α-β)].(2)由(1),可得sin(α+β)+sin(α-β)=2sin αcos β.①设α+β=θ,α-β=φ,那么α=2ϕθ+,β=2ϕθ-. 把α,β的值代入①,即得sin θ+sin φ=2sin 2ϕθ+cos 2ϕθ-.教师给学生适时引导,指出这两个方程所用到的数学思想,可以总结出在本例的证明过程中用到了换元的思想,如把α+β看作θ,α-β看作φ,从而把包含α,β的三角函数式变换成θ,φ的三角函数式.另外,把sin αcos β看作x,cos αsin β看作y,把等式看作x,y 的方程,通过解方程求得x,这就是方程思想的体现.讨论结果:①α是2a 的二倍角. ②sin 22a =1-cos 2cos 1a -. ③④⑤略(见活动).(三)应用示例思路1例1 化简:.cos sin 1cos sin 1xx x x ++-+. 活动:此题考查公式的应用,利用倍角公式进行化简解题.教师提醒学生注意半角公式和倍角公式的区别,它们的功能各异,本质相同,具有对立统一的关系. 解:原式=)2sin 2(cos 2cos 2)2cos 2(sin 2sin 22cos 2sin 22cos 22cos 2sin 22sin 222x x x x x x x x x x x x ++=++=tan 2x . 点评:本题是对基本知识的考查,重在让学生理解倍角公式与半角公式的内在联系. 变式训练化简:sin50°(1+3tan10°). 解:原式=sin50° 10cos )10sin 2310cos 21(250sin 10cos 10sin 31+∙=+ =2sin50°·10cos 10sin 30cos 10cos 30sin + =2cos40°·10cos 10cos 10cos 80sin 10cos 40sin ===1. 例2 已知sinx-cosx=21,求sin 3x-cos 3x 的值. 活动:教师引导学生利用立方差公式进行对公式变换化简,然后再求解.由于(a-b)3=a 3-3a 2b+3ab2-b 3=a 3-b 3-3ab(a-b),∴a 3-b 3=(a-b)3+3ab(a-b).解完此题后,教师引导学生深挖本例的思想方法,由于sinx ·cosx 与sinx ±cosx 之间的转化.提升学生的运算.化简能力及整体代换思想.本题也可直接应用上述公式求之,即sin 3x-cos 3x=(sinx-cosx)3+3sinxcosx(sinx-cosx)=1611.此方法往往适用于sin 3x ±cos 3x 的化简问题之中.解:由sinx-cosx=21,得(sinx-cosx)2=41, 即1-2sinxcosx=41,∴sinxcosx=83. ∴sin 3x-cos 3x=(sinx-cosx)(sin 2x+sinxcosx+cos 2x) =21(1+83)=1611. 点评:本题考查的是公式的变形、化简、求值,注意公式的灵活运用和化简的方法. 变式训练(2007年高考浙江卷,12) 已知sin θ+cos θ=51,且2π≤θ≤43π,则cos2θ的值是______________.答案:257- 例1 已知1sin sin cos cos :1sin sin cos cos 24242424=+=+AB A B B A B A 求证. 活动:此题可从多个角度进行探究,由于所给的条件等式与所要证明的等式形式一致,只是将A,B 的位置互换了,因此应从所给的条件等式入手,而条件等式中含有A,B 角的正、余弦,可利用平方关系来减少函数的种类.从结构上看,已知条件是a 2+b 2=1的形式,可利用三角代换. 证明一:∵1sin sin cos cos 2424=+BA B A , ∴cos 4A ·sin 2B+sin 4A ·cos 2B=sin 2B ·cos+B.∴cos 4A(1-cos 2B)+sin 4A ·cos 2B=(1-cos 2B)cos 2B,即cos 4A-cos 2B(cos 4A-sin 4A)=cos 2B-cos 4B.∴cos 4A-2cos 2Acos 2B+cos 4B=0.∴(cos 2A-cos 2B)2=0.∴cos 2A=cos 2B.∴sin 2A=sin 2B. ∴=+A B A B 2424sin sin cos cos cos 2B+sin 2B=1. 证明二:令BA aB A sin sin ,cos cos cos 22==sin α, 则cos 2A=cosBcos α,sin 2A=sinBsin α.两式相加,得1=cosBcos α+sinBsin α,即cos(B-α)=1.∴B-α=2k π(k ∈Z ),即B=2k π+α(k ∈Z ).∴cos α=cosB,sin α=sinB.∴cos 2A=cosBcos α=cos 2B,sin 2A=sinBsin α=sin 2B. ∴BB B B A B A B 24242424sin sin cos cos sin sin cos cos +=+=cos 2B+sin 2B=1. 点评:要善于从不同的角度来观察问题,本例从角与函数的种类两方面观察,利用平方关系进行了合理消元.变式训练在锐角三角形ABC 中,ABC 是它的三个内角,记S=B A tan 11tan 11+++,求证:S<1. 证明:∵S=B A B A B A B A B A tan tan tan tan 1tan tan 1)tan 1)(tan 1(tan 1tan 1+++++=+++++ 又A+B>90°,∴90°>A>90°-B>0°.∴tanA>tan(90°-B)=cotB>0,∴tanA ·tanB>1.∴S<1.思路2例1 证明x x cos sin 1+=tan(4π+2x ). 活动:教师引导学生思考,对于三角恒等式的证明,可从三个角度进行推导:①左边→右边;②右边→左边;③左边→中间条件←右边.教师可以鼓励学生试着多角度的化简推导.注意式子左边包含的角为x,三角函数的种类为正弦,余弦,右边是半角2x ,三角函数的种类为正切.解:方法一:从右边入手,切化弦,得 tan(4π+2x )=2sin 2cos 2sin 2cos 2sin 2sin 2cos 2cos 2sin 4cos 2cos 4sin )24cos()22sin(x x x x x x x x x x -+=-+=++ππππππ,由左右两边的角之间的关系,想到分子分母同乘以cos 2x +sin 2x ,得 x x x x x x x x cos sin 1)2sin 2)(cos 2sin 2(cos )2sin 2(cos 2+=-++ 方法二:从左边入手,分子分母运用二倍角公式的变形,降倍升幂,得 2sin 2cos 2sin 2cos )2sin 2)(cos 2sin 2(cos )2sin 2(cos cos sin 12x x x x x x x x x x x x -+=-++=+ 由两边三角函数的种类差异,想到弦化切,即分子分母同除以cos 2x ,得 2tan 4tan 12tan 4tan 2tan 12tan 1x x x x ππ-+=-+=tan(4π+2x ). 点评:本题考查的是半角公式的灵活运用,以及恒等式的证明所要注意的步骤与方法. 变式训练已知α,β∈(0,2π)且满足:3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求α+2β的值. 解法一:3sin 2α+2sin 2β=1⇒3sin 2α=1-2sin 2β,即3sin 2α=cos2β, ①3sin2α-2sin2β=0⇒3sin αcos α=sin2β, ②①2+②2:9sin 4α+9sin 2αcos 2α=1,即9sin 2α(sin 2α+cos 2α)=1,∴sin 2α=91.∵α∈(0,2π),∴sin α=31. ∴sin(α+2β)=sin αcos2β+cos αsin2β=sin α·3sin 2α+cos α·3sin αcos α=3sin α(sin 2α+cos 2α)=3×31=1. ∵α,β∈(0,2π),∴α+2β∈(0,23π).∴α+2β=2π. 解法二:3sin 2α+2sin 2β=1⇒cos2β=1-2sin 2β=3sin 2α,3sin2α-2sin2β=0⇒sin2β=23sin2α=3sin αcos α, ∴cos(α+2β)=cos αcos2β-sin αsin2β=cos α·3sin 2α-sin α·3sin αcos α=0. ∵α,β∈(0,2π),∴α+2β∈(0,23π).∴α+2β=2π. 解法三:由已知3sin 2α=cos2β,23sin2α=sin2β, 两式相除,得tan α=cot2β,∴tan α=tan(2π-2β). ∵α∈(0,2π),∴tan α>0.∴tan(2π-2β)>0. 又∵β∈(0,2π),∴2π-<2π-2β<2π. 结合tan(2π-2β)>0,得0<2π-2β<2π. ∴由tan α=tan(2π-2β),得α=2π-2β,即α+2β=2π. 例2 求证:αββαβαβ2222tan tan 1cos sin )sin()sin(-=-+a 活动:证明三角恒等式,一般要遵循“由繁到简”的原则,另外“化弦为切”与“化切为弦”也是在三角式的变换中经常使用的方法.证明:证法一:左边=βαβαβαβαβ22cos sin )sin cos cos )(sin sin cos cos (sin -+ ==-=-=-a a a a 222222222222tan tan 1cos sin sin cos 1cos sin sin cos cos sin ββββββ=右边.∴原式成立. 证法二:右边=1-βββββ2222222222cos sin sin cos cos sin cos sin sin cos a a -= =βββββ22cos sin )sin cos cos )(sin sin cos cos (sin a a a a -+ =βββ22cos sin )sin()sin(++a a =左边.∴原式成立. 点评:此题进一步训练学生三角恒等式的变形,灵活运用三角函数公式的能力以及逻辑推理能力.变式训练1.求证:θθθθθθ2tan 14cos 4sin 1sin 24cos 4sin 1-++=-+. 分析:运用比例的基本性质,可以发现原式等价于θθθθθθ2tan 1tan 24cos 4sin 14cos 4sin 1-=++-+,此式右边就是tan2θ.证明:原等式等价于θθθθθ2tan 4cos 4sin 14cos 4sin 1=++-+. 而上式左边 θθθθθθθθθθ2cos 22cos 2sin 22sin 22cos 2sin 2)4cos 1(4sin )4cos 1(4sin 22++=++-+=)2cos 2(sin 2cos 2)2sin 2(cos 2sin 2θθθθθθ++==tan2θ右边.∴上式成立,即原等式得证. 2.已知sin β=m ·sin(2α+β),求证:tan(α+β)=m m -+11tan α. 分析:仔细观察已知式与所证式中的角,不要盲目展开,要有的放矢,看到已知式中的2α+β可化为结论式中的α+β与α的和,不妨将α+β作为一整体来处理.证明:由sin β=msin(2α+β)⇒sin[(α+β)-α]=msin[(α+β)+α]⇒sin(α+β)cos α-cos(α+β)sin α=m0[sin(α+β)cos α+cos(α+β)sinα]⇒(1-m)·sin(α+β)cos α=(1+m)·cos(α+β)sin α⇒tan(α+β)=mm -+11tan α. (四)知能训练1.若sin α=135,α在第二象限,则tan 2a 的值为( ) A.5 B.-5 C.51 D.51- 2.设5π<θ<6π,cos 2θ=α,则sin 4θ等于( ) A.21a + B.21a - C.21a +- D.21a -- 3.已知sin θ=53-,3π<θ<27π,则tan 2θ_________________. 解答:1.A2.D3.-3(五)课堂小结1.先让学生自己回顾本节学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2.教师画龙点睛总结:本节学习了公式的使用,换元法,方程思想,等价转化,三角恒等变形的基本手段.(六)作业。
高中数学必修4教案-三角恒等变换
第三章三角恒等变换本章教材分析本章知识框图本章学习的主要内容是两角和与差的正弦、余弦和正切公式,以及运用这些公式进行简单的恒等变换.变换是数学的重要工具,也是数学学习的主要对象之一.在本册第一章,学生接触了同角三角函数公式.在本章,学生将运用向量方法推导两角差的余弦公式,由此出发导出其他的三角变换公式,并运用这些公式进行简单的三角恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,并体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.本章内容安排按两条线进行,一条明线是建立公式,学习变换;一条暗线就是发展推理能力和运算能力,并且发展能力的要求不仅仅体现在学习变换过程之中,也体现在建立公式的过程之中.因此在本章教学中,教师要特别注意恰时恰点地提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,使学生能依据三角函数式的特点,逐渐明确三角函数恒等变换不仅包括式子的结构形式变换,还包括式子中角的变换,以及不同三角函数之间的变换,强化运用数学思想方法指导设计变换思路的意识.突出数学思想方法的教学,在类比、推广、特殊化等一般逻辑思考方法上进行引导,本章不仅关注使学生得到和(差)角公式,而且还特别关注公式推导过程中体现的数学思想方法.例如,在两角差的余弦公式这一关键性问题的解决中体现了数形结合思想以及向量方法的应用;从两角差的余弦公式推出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,在这个过程中,始终引导学生体会化归思想;在应用公式进行恒等变换的过程中,渗透了观察、类比、推广、特殊化、化归等思想方法,特别是充分发挥了“观察”“思考”“探究”等栏目的作用,对学生解决问题的一般思路进行引导,这对学生养成科学的数学思考习惯能起到积极的促进作用.另外,还在适当的时候对三角变换中的数学思想方法作了明确的总结.例如,在旁白中有“倍是描述两个数量之间关系的,2α是α的二倍,4α是2α的二倍,这里蕴含着换元的思想”等,都是为了加强思想方法而设置的.两角和与差的正弦、余弦、正切公式和二倍角公式是历届高考考查的“重点”和“热点”,在高考中占有重要的地位,主要考查对这十一个公式的正用、逆用、变形用,考查对公式的熟练掌握程度和灵活运用能力,其考查难度属低档,这就要求我们不要过分引导学生去挖掘一些特殊的变化技巧,应把主要精力放在学生掌握数学规律和通性通法上.教师在教学中,要注意控制好难度.因为近几年的高考中对三角部分的考查难度降低,但教材中部分习题却有一定难度,因此教师要把握好难度.节次标题课时3.1.1 两角差的余弦公式1课时3.1.2 两角和与差的正弦、余弦、正切公式2课时3.1.3 二倍角的正弦、余弦、正切公式1课时3.1 两角和与差的正弦、余弦和正切公式3.1.1 两角差的余弦公式整体设计教学分析本节是以一个实际问题做引子,目的在于从中提出问题,引入本章的研究课题.在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:①实际问题中存在研究像tan(45°+α)这样的包含两个角的三角函数的需要;②实际问题中存在研究像sinα与tan(45°+α)这样的包含两角和的三角函数与α、45°单角的三角函数的关系的需要.以实例引入课题也有利于体现数学与实际问题的联系,增强学生的应用意识,激发学生学习的积极性,同时也让学生体会数学知识产生、发展的过程.本节首先引导学生对cos(α-β)的结果进行探究,让学生充分发挥想象力,进行猜想,给出所有可能的结果,然后再去验证其真假.这也展示了数学知识的发生、发展的具体过程,最后提出了两种推导证明“两角差的余弦公式”的方案.方案一,利用单位圆上的三角函数线进行探索、推导,让学生动手画图,构造出α-β角,利用学过的三角函数知识探索存在一定的难度,教师要作恰当的引导.方案二,利用向量知识探索两角差的余弦公式时,要注意推导的层次性:①在回顾求角的余弦有哪些方法时,联系向量知识,体会向量方法的作用;②结合有关图形,完成运用向量方法推导公式的必要准备;③探索过程不应追求一步到位,应先不去理会其中的细节,抓住主要问题及其线索进行探索,然后再反思,予以完善;④补充完善的过程,既要运用分类讨论的思想,又要用到诱导公式.本节是数学公式的教学,教师要遵循公式教学的规律,应注意以下几方面:①要使学生了解公式的由来;②使学生认识公式的结构特征,加以记忆;③使学生掌握公式的推导和证明;④通过例子使学生熟悉公式的应用,灵活运用公式进行解答有关问题.三维目标1.通过让学生探索、猜想、发现并推导“两角差的余弦公式”,了解单角与复角的三角函数之间的内在联系,并通过强化题目的训练,加深对两角差的余弦公式的理解,培养学生的运算能力及逻辑推理能力,提高学生的数学素质.2.通过两角差的余弦公式的运用,会进行简单的求值、化简、证明,体会化归思想在数学当中的运用,使学生进一步掌握联系的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节的学习,使学生体会探究的乐趣,认识到世间万物的联系与转化,养成用辩证与联系的观点看问题.创设问题情境,激发学生分析、探求的学习态度,强化学生的参与意识,从而培养学生分析问题、解决问题的能力和代换、演绎、数形结合等数学思想方法.重点难点教学重点:通过探究得到两角差的余弦公式.教学难点:探索过程的组织和适当引导.课时安排1课时教学过程导入新课思路1.(问题导入)播放多媒体,出示问题,让学生认真阅读课本引例.在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:①实际问题中存在研究像tan(45°+α)这样的包含两个角的三角函数的需要;②实际问题中存在研究像sinα与tan(45°+α)这样的包含两角和的三角函数与α、45°单角的三角函数的关系的需要.在此基础上,再一般化而提出本节的研究课题进入新课.思路2.(复习导入)我们在初中时就知道cos45°=22,cos30°=23,由此我们能否得到cos15°=cos(45°-30°)=?这里是不是等于cos45°-cos30°呢?教师可让学生验证,经过验证可知,我们的猜想是错误的.那么究竟是个什么关系呢?cos(α-β)等于什么呢?这时学生急于知道答案,由此展开新课:我们就一起来探讨“两角差的余弦公式”.这是全章公式的基础. 推进新课新知探究提出问题①请学生猜想cos(α-β)=?②利用前面学过的单位圆上的三角函数线,如何用α、β的三角函数来表示cos(α-β)呢? ③利用向量的知识,又能如何推导发现cos(α-β)=?④细心观察C (α-β)公式的结构,它有哪些特征?其中α、β角的取值范围如何?⑤如何正用、逆用、灵活运用C (α-β)公式进行求值计算?活动:问题①,出示问题后,教师让学生充分发挥想象能力尝试一下,大胆猜想,有的同学可能就首先想到cos(α-β)=cosα-cosβ的结论,此时教师适当的点拨,然后让学生由特殊角来验证它的正确性.如α=60°,β=30°,则cos(α-β)=cos30°=23,而cosα-cosβ=cos60°-cos30°=231 ,这一反例足以说明cos(α-β)≠cosα-cosβ.让学生明白,要想说明猜想正确,需进行严格证明,而要想说明猜想错误,只需一个反例即可.问题②,既然cos(α-β)≠cosα-cosβ,那么cos(α-β)究竟等于什么呢?由于这里涉及的是三角函数的问题,是α-β这个角的余弦问题,我们能否利用单位圆上的三角函数线来探究呢?图1如图1,设角α的终边与单位圆的交点为P 1,∠POP 1=β,则∠POx=α-β.过点P 作PM 垂直于x 轴,垂足为M,那么OM 就是角α-β的余弦线,即OM=cos(α-β),这里就是要用角α、β的正弦线、余弦线来表示OM.过点P 作PA 垂直于OP 1,垂足为A,过点A 作AB 垂直于x 轴,垂足为B,过点P 作PC 垂直于AB,垂足为C.那么,OA 表示cosβ,A P 表示sinβ,并且∠PAC=∠P 1Ox=α.于是,OM=OB+BM=OB+CP=OAcosa+APsina =cosβcosα+sinβsinα,所以,cos(α-β)=cosαcosβ+sinα sinβ.教师引导学生进一步思考,以上的推理过程中,角α、β、α-β是有条件限制的,即α、β、α-β均为锐角,且α>β,如果要说明此结果是否对任意角α、β都成立,还要做不少推广工作,并且这项推广工作的过程比较繁琐,由同学们课后动手试一试.图2问题③,教师引导学生,可否利用刚学过的向量知识来探究这个问题呢?如图2,在平面直角坐标系xOy 内作单位圆O,以Ox 为始边作角α、β,它们的终边与单位圆O 的交点分别为A 、B,则=(cosα,sinα),=(cosβ,sinβ),∠AOB =α-β.由向量数量积的定义有OA ·OB =|OA ||OB |·cos (α-β)=cos(α-β),由向量数量积的坐标表示有·=(cosα,sinα)(cosβ,sinβ)=cosαcosβ+sinαsinβ, 于是,cos(α-β)=cosαcosβ+sinαsinβ.我们发现,运用向量工具进行探究推导,过程相当简洁,但在向量数量积的概念中,角α-β必须符合条件0≤α-β≤π,以上结论才正确,由于α、β都是任意角,α-β也是任意角,因此就是研究当α-β是任意角时,以上公式是否正确的问题.当α-β是任意角时,由诱导公式,总可以找到一个角θ∈[0,2π),使cosθ=cos(α-β),若θ∈[0,π],则·=cosθ=cos(α-β).若θ∈[π,2π],则2π-θ∈[0,π],且·=cos(2π-θ)=cosθ=cos(α-β). c os(α-β)=cosαcosβ+sinαsinβ(C (α-β))此公式给出了任意角α、β的正弦、余弦值与其差角α-β的余弦值之间的关系,称为差角的余弦公式,简记为C (α-β).有了公式C (α-β)以后,我们只要知道cosα、cosβ、sinα、sinβ的值,就可以求得cos(α-β)的值了.问题④,教师引导学生细心观察公式C (α-β)的结构特征,让学生自己发现公式左边是“两角差的余弦”,右边是“这两角的余弦积与正弦积的和”,可让学生结合推导过程及结构特征进行记忆,特别是运算符号,左“-”右“+”.或让学生进行简单填空,如:cos(A-B)=__________,cos(θ-φ)= __________等.因此,只要知道了sinα、cosα、sinβ、cosβ的值就可以求得cos(α-β)的值了. 问题⑤,对于公式的正用是比较容易的,关键在于“拆角”的技巧,而公式的逆用则需要学生的逆向思维的灵活性,特别是变形应用,这就需要学生具有较强的观察能力和熟练的运算技巧.如cos75°cos45°+sin75°sin45°=cos(75°-45°)=cos30°=23, cosα=cos [(α+β)-β]=cos(α+β)cosβ+sin(α+β)sinβ.讨论结果:①—⑤略.应用示例思路1例1 利用差角余弦公式求cos15°的值.活动:先让学生自己探究,对有困难的学生教师可点拨学生思考题目中的角15°,它可以拆分为哪些特殊角的差,如15°=45°-30°或者15°=60°-45°,从而就可以直接套用公式C (α-β)计算求值.教师不要包办,充分让学生自己独立完成,在学生的具体操作下,体会公式的结构,公式的用法以及把未知转化为已知的数学思想方法.对于很快就完成的同学,教师鼓励其换个角度继续探究.解:方法一:cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30° =.42621222322+=⨯+⨯ 方法二:cos15°=cos(60°-45°)=cos60°cos45°+sin60°sin45° =21×.426232222+=⨯+ 点评:本题是指定方法求cos15°的值,属于套用公式型的,这样可以使学生把注意力集中到使用公式求值上.但是仍然需要学生将这个非特殊角拆分成两个特殊角的差的形式,灵活运用公式求值.本例也说明了差角余弦公式也适用于形式上不是差角,但可以拆分成两角差的情形.至于如何拆分,让学生在应用中仔细体会.变式训练1.不查表求sin75°,sin15°的值.解:sin75°=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=.42621322322+=⨯+⨯ sin15°=ο15cos 12-=2)426(1+-=.426162628-=⨯- 点评:本题是例题的变式,比例题有一定的难度,但学生只要细心分析,利用相关的诱导公式,不难得到上面的解答方法.2.不查表求值:cos110°cos20°+sin110°sin20°.解:原式=cos(110°-20°)=cos90°=0.点评:此题学生一看就有似曾相识而又无从下手的感觉,需要教师加以引导,让学生细心观察,再结合公式C (α-β)的右边的特征,逆用公式便可得到cos(110°-20°).这就是公式逆用的典例,从而培养了学生思维的灵活性.例2 已知sin α=54,α∈(2π,π),cosβ=135-,β是第三象限角,求cos(α-β)的值. 活动:教师引导学生观察题目的结构特征,联想到刚刚推导的余弦公式,学生不难发现,欲求cos(α-β)的值,必先知道sinα、cosα、sinβ、cosβ的值,然后利用公式C (α-β)即可求解.从已知条件看,还少cosα与sinβ的值,根据诱导公式不难求出,但是这里必须让学生注意利用同角的平方和关系式时,角α、β所在的象限,准确判断它们的三角函数值的符号.本例可由学生自己独立完成.解:由sinα=54,α∈(2π,π),得 cosα=.53)54(1sin 122-=--=--a又由cosβ=135-,β是第三象限角,得 sinβ=.1312)135(1cos 122-=---=--β 所以cos(α-β)=cosαcosβ+sinαsinβ =.6533)1312(54)135()53(-=-⨯+-⨯- 点评:本题是直接运用公式C (α-β)求值的基础练习,但必须思考使用公式前应作出的必要准备.特别是运用同角三角函数平方关系式求值时,一定要弄清角的范围,准确判断三角函数值的符号.教师可提醒学生注意这点,养成良好的学习习惯.变式训练已知sinα=54,α∈(0,π),cosβ=135-,β是第三象限角,求cos(α-β)的值. 解:①当α∈[2π,π)时,且sinα=54,得cosα=53)54(1sin 122-=--=--a , 又由cosβ=135-,β是第三象限角,得 sinβ=22)135(1cos 1---=--β=1312-. 所以cos(α-β)=cosαcosβ+sinαsinβ =.6533)1312(54)135()53(-=-⨯+-⨯-. ②当α∈(0,2π)时,且sinα=54,得 cosα=53)54(1sin 122=-=-a , 又由cosβ=135-,β是第三象限角,得 sinβ=.1312)135(1cos 122-=---=--β 所以cos(α-β)=cosαcosβ+sinαsinβ =.6563)1312(54)135(53-=-⨯+-⨯ 点评:本题与例2的显著的不同点就是角α的范围不同.由于α∈(0,π),这样cosα的符号可正、可负,需讨论,教师引导学生运用分类讨论的思想,对角α进行分类讨论,从而培养学生思维的严密性和逻辑的条理性.教师强调分类时要不重不漏.思路2例1 计算:(1)cos(-15°);(2)cos15°cos105°+sin15°sin105°;(3)sinxsin(x+y)+cosxcos(x+y).活动:教师可以大胆放给学生自己探究,点拨学生分析题目中的角-15°,思考它可以拆分为哪些特殊角的差,如-15°=15°-30°或-15°=45°-60°,然后套用公式求值即可.也可化cos(-15°)=cos15°再求值.让学生细心观察(2)(3)可知,其形式与公式C (α-β)的右边一致,从而化为特殊角的余弦函数.解:(1)原式=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30° =.42621222322+=⨯+⨯ (2)原式=cos(15°-105°)=cos(-90°)=cos90°=0.(3)原式=cos [x-(x+y)]=cos(-y)=cosy.点评:本例重点是训练学生灵活运用两角差的余弦公式进行计算求值,从不同角度培养学生正用、逆用、变形用公式解决问题的能力,为后面公式的学习打下牢固的基础. 例2 已知cosα=71,cos(α+β)=1411-,且α、β∈(0, 2π),求cosβ的值. 活动:教师引导学生观察题目中的条件与所求,让学生探究α、α+β、β之间的关系,也就是寻找已知条件中的角与所求角的关系.学生通过探究、讨论不难得到β=(α+β)-α的关系式,然后利用公式C (α-β)求值即可.但还应提醒学生注意由α、β的取值范围求出α+β的取值范围,这是很关键的一点,从而判断sin(α+β)的符号进而求出cosβ.解:∵α、β∈(0,2π),∴α+β∈(0,π). 又∵cosα=71,cos(α+β)=1411-, ∴sinα=,734cos 12=-a sin(α+β)=.1435)(cos 12=+-βa 又∵β=(α+β)-α,∴cosβ=cos(α+β)cosα+sin(α+β)sinα =.21734143571)1411(=⨯+⨯- 点评:本题相对于例1难度大有提高,但是只要引导适当,学生不难得到β=(α+β)-α的关系式,继而运用公式解决.但值得注意的是α+β的取值范围确定,也是很关键的,这是我们以后解题当中常见的问题.变式训练1.求值:cos15°+sin15°.解:原式=22(2cos15°+22sin15°)=2(cos45°cos15°+sin45°sin15°) =2cos(45°-15°)= 2cos30°=26.2.已知sinα+sinβ=53,cosα+cosβ=54,求cos(α-β)的值. 解:∵(sinα+sinβ)2=(53)2,(cosα+cosβ)2=(54)2, 以上两式展开两边分别相加得2+2cos(α-β)=1,∴cos(α-β)=21-. 点评:本题又是公式C (α-β)的典型应用,解决问题的关键就是将已知中的两个和式两边平方,从而得到公式C (α-β)中cosαcosβ和sinαsinβ的值,即可求得cos(α-β)的值,本题培养了学生综合运用三角函数公式解决问题的能力.3.已知锐角α、β满足cosα=54,tan(α-β)=31-,求cosβ. 解:∵α为锐角,且cosα=54,得sinα=53. 又∵0<α<2π,0<β<2π, ∴-2π<α-β<2π. 又∵tan(α-β)= 31-<0, ∴cos(α-β)=103.从而sin(α-β)=tan(α-β)cos(α-β)=101-.∴cosβ=cos [α-(α-β)]=cosαcos(α-β)+sinαsin(α-β) =54×).101(53103-⨯+ =50109. 知能训练课本本节练习.解答: 1.(1)cos(2π-α)=cos 2πcosα+sin 2πsinα=sinα. (2)cos(2π-α)=cos2πcosα+sin2πsinα=cosα. 2.102. 3..348315-4.125372 . 课堂小结1.先由学生自己思考、回顾公式的推导过程,观察公式的特征,特别要注意公式既可正用、逆用,还可变用及掌握变角和拆角的思想方法解决问题.然后教师引导学生围绕以下知识点小结:(1)怎么联系有关知识进行新知识的探究?(2)利用差角余弦公式方面:对公式结构和功能的认识;三角变换的特点.2.教师画龙点睛:本节课要理解并掌握两角差的余弦公式及其推导,要正确熟练地运用公式进行解题,在解题时要注意分析三角函数名称、角的关系,准确判断三角函数值的符号.多对题目进行一题多解,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.作业课本习题3.1 A 组2、3、4、5.设计感想1.本节课是典型的公式教学模式,因此本节课的设计流程为“实际问题→猜想→探索推导→记忆→应用”.它充分展示了公式教学中以学生为主体,进行主动探索数学知识发生、发展的过程.同时充分发挥教师的主导作用,引导学生利用旧知识推导、证明新知识,并学会记忆公式的方法,灵活运用公式解决实际问题,从而培养学生独立探索数学知识的能力,增强学生的应用意识,激发学生学习的积极性.2.纵观本教案的设计,学生发现推导出公式C (α-β)后就是应用,同时如何训练公式的正用、逆用、变形用也是本节的重点难点.而学生从探究活动过程中学会了怎样去发现数学规律,又发现了怎样逆用公式及活用公式,那才是深层的,那才是我们中学数学教育的最终目的.3.教学矛盾的主要方面是学生的学,学是中心,会学是目的,根据高中三角函数的推理特点,本节主要是教给学生“研究问题、猜想探索公式、验证特殊情形、推导公式、学习应用”的探索创新式学习方法.这样做增强了学生的参与意识,教给了学生发现规律、探索推导,获取新知的途径,让学生真正尝到探索的喜悦,真正成为教学的主体.学生体会到数学的美,产生一种成功感,从而提高了学习数学的兴趣.。
苏教版高中数学必修四几个三角恒等式教案(3)
第 8 课时:§3.3 几个三角恒等式【三维目标】:一、知识与技能1. 能运用两角和的正弦、余弦、正切公式、二倍角的正弦、余弦、正切公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆). 揭示知识背景,培养学生的应用意识与建模意识.2.能够推导“和差化积”及“积化和差”公式,并对此有所了解.3.能较熟练地运用公式进行化简、求值、探索和证明一些恒等关系,进一步体会这些三角恒等变形公式的意义和作用,体会如何综合利用这些公式解决问题.4.梳理公式体系,通过本章知识结构图,进一步加强对各公式之间内在联系的理解。
5.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.二、过程与方法1.让学生自己导出“和差化积”及“积化和差”公式,领会这些三角恒等变形公式的意义和作用,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;同时让学生初步体会如何利用三角函数研究简单的实际问题.通过例题讲解,总结方法.通过做练习,巩固所学知识.2.通过总结知识结构图,发展学生推理能力和运算能力,进一步培养学生观察、类比、推广、特殊化和化归思想方法。
3.通过解决问题,引导学生明确三角变换是三角函数式的结构形式变换;角的变换;不同三角函数之间的变换。
4.通过恒等变换公式的简单应用,提升解决问题的基本能力。
5.提高三角变换的能力三、情感、态度与价值观1.通过本节的学习,使同学们对三角恒等变形公式的意义和作用有一个初步的认识;理解并掌握三角函数各个公式的灵活变形,体会公式所蕴涵的和谐美,增强学生灵活运用数学知识解决实际问题的能力.2.让学生经历数学探索和发现的欲望和信心,体验成功的感觉.3.通过公式的推导和应用培养学生严谨规范的思维品质和辩证唯物主义观点.4.通过知识结构图和公式应用使学生了解三角恒等变换及三角函数与数学变换的内在联系,培养学生严谨,规范的数学思维品质,发展正向、逆向思维和发散思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角恒等式
1.能运用所学知识,推导积化和差与和差化积公式、万能公式.(重点)
2.能利用所学公式进行三角恒等变换.(重点、难点)
[基础·初探]
教材整理1降幂公式
阅读教材P121例3,完成下列问题.
sin2α=1-cos 2α
2,
cos2α=1+cos 2α
2,
tan2α=1-cos 2α1+cos 2α
.
1.若cos α=-3
5,且π<α<
3π
2,则cos
α
2=________.
【解析】∵π<α<3π
2,∴
π
2<
α
2<
3π
4,
∴cos α
2=-
1+cos α
2=-
5
5.
【答案】-
5 5
2.若tan α
2=3,则cos α=________.
【解析】∵tan2α
2=
1-cos α
1+cos α
=9,
∴cos α=-4 5.
【答案】-4 5
教材整理2积化和差与和差化积公式
阅读教材P126链接以上内容,完成下列问题.
判断(正确的打“√”,错误的打“×”)
(1)sin(A+B)+sin(A-B)=2sin A cos B.()
(2)cos(A+B)-cos(A-B)=2sin A cos B.()
(3)cos(α+β)cos(α-β)=cos2α-cos2β.() 【解析】(1)正确.
(2)cos(A+B)-cos(A-B)=-2sin A sin B,故错.
(3)cos(α+β)cos(α-β)=1
2(cos 2α+cos 2β),故错.
【答案】(1)√(2)×(3)×
教材整理3万能公式
阅读教材P126~P127的“链接”内容,完成下列问题.
设tan α
2=t,则sin α=
2t
1+t
,cos α=
1-t2
1+t
,tan α=
2t
1-t
.
1.若tan α=3,则sin 2α=________,cos 2α=________.
【解析】∵tan α=3,∴sin 2α=
2tan α
1+tan2α
=
3
5,cos 2α=
1-tan2α
1+tan2α
=-
4
5.
【答案】3
5-
4
5
2.若tan α=1,则tan α
2=________.
【解析】 tan α=
2tan α
2
1-tan 2 α2,∴tan 2 α2+2tan
α2-1=0, 解得tan α
2=-1±2. 【答案】 -1±
2
[小组合作型]
【精彩点拨】 先降幂;再和差化积,或积化和差求解. 1-cos 40°2+1+cos 100°2
+1
2(sin 70°-sin 【自主解答】 原式=30°)
=1+12(cos 100°-cos 40°)+12sin 70°-14 =34+12(-2sin 70°sin 30°)+12sin 70° =
34-12sin 70°+1
2sin 70°=34.
套用和差化积公式的关键是记准、记牢公式,为了能够把三角函数式化为积的形式,有时需要把常数首先化为某个角的三角函数,然后再化积,有时函数不同名,要先化为同名再化积,化积的结果能求值则尽量求出值来.
[再练一题]
1.已知cos α-cos β=12,sin α-sin β=-1
3,求sin(α+β)的值.
【解】 ∵cos α-cos β=1
2, ∴-2sin α+β2sin α-β2=1
2.① 又∵sin α-sin β=-1
3, ∴2cos α+β2sin α-β2=-13.②
∵sin α-β2≠0,∴由①②,得-tan α+β2=-32, 即tan α+β2=32.
∴sin(α+β)=2sin α+β2cos α+β2sin 2α+β2+cos 2α+β2=2tan α+β21+tan 2α+β
2
=2×32
1+94=12
13.
设tan 2=t ,求证:
1+sin θ+cos θ
=1
2(t +1).
【精彩点拨】 利用万能公式,分别用t 表示sin θ,cos θ,代入待证等式的左端即可证明.
【自主解答】 由sin θ=2tan θ2
1+tan 2θ2及cos θ=1-tan 2θ
2
1+tan 2θ2,得1+sin θ=
⎝ ⎛
⎭
⎪⎫1+tan θ221+tan 2θ
2=(1+t )2
1+t 2
, 1+sin θ+cos θ=2⎝ ⎛
⎭
⎪⎫1+tan θ21+tan 2θ2=2(1+t )1+t 2,
故
1+sin θ1+sin θ+cos θ
=1
2(t +1).
在万能代换公式中不论α的哪种三角函数(包括sin α与cos α)都可以表示成
tan α
2=t 的“有理式”,将其代入式子中,就可将代数式表示成t 的函数,从而就可以进行相关代数恒等式的证明或三角式的求值
.
[再练一题]
2.已知cos θ=-35,且180°<θ<270°,求tan θ
2.
【解】 ∵180°<θ<270°,∴90°<θ2<135°,∴tan θ2<0.
由cos θ=1-tan 2
θ21+tan 2θ2,得1-tan 2
θ
21+tan 2θ2
=-
3
5, 解得tan 2θ
2=4.
又tan θ2<0,∴tan θ
2=-2.
[探究共研型]
【提示】 把f (x )化成A sin(ωx +φ)+B 的形式. 探究2 在上述转化过程中,要用到哪些公式? 【提示】 降幂公式:sin 2α=
1-cos 2α2,cos 2
α=
1+cos 2α2
. 辅助角公式:a sin α+b cos α=a 2+b 2sin(α+θ),其中tan θ=b
a .
求函数f
(x )=53cos 2x +3sin 2x -4sin x cos x ,x ∈⎣⎢⎡⎦
⎥⎤
π4,7π24的最小值,
并求其单调减区间.
【自主解答】 f (x )=53·1+cos 2x 2+3·1-cos 2x
2-2sin 2x =33+23cos 2x -2sin 2x =33+4⎝ ⎛⎭⎪⎫32cos 2x -1
2sin 2x
=33+4⎝ ⎛⎭⎪⎫
sin π3cos 2x -cos π3sin 2x
=33+4sin ⎝ ⎛⎭⎪⎫
π3-2x
=33-4sin ⎝ ⎛
⎭⎪⎫2x -π3,
∵π4≤x ≤7π24,∴π6≤2x -π3≤π
4. ∴sin ⎝ ⎛
⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤12,22.
∴当2x -π3=π4,即x =7π24时,f (x )取最小值为33-2 2.
∵y =sin ⎝ ⎛
⎭⎪⎫2x -π3在⎣⎢⎡⎦⎥⎤π4,7π24上单调递增,
∴f (x )在⎣⎢⎡⎦
⎥⎤
π4,7π24上单调递减.
1.研究函数性质的一般步骤: (1)对函数式化简;
(2)借用函数图象,运用数形结合法研究函数的性质. 2.对三角函数式化简的常用方法: (1)降幂化倍角; (2)升幂角减半;
(3)利用f (x )=a sin x +b cos x =a 2
+b 2
sin(x +φ)⎝ ⎛
⎭
⎪⎫其中tan φ=b a ,化为“一个
角”的函数.
[再练一题]。