(完整版)荧光分析法习题参考答案

合集下载

荧光法习题

荧光法习题

荧光分析法一、选择题1、为了提高分子荧光光度法的灵敏度,合适的办法就是A、增加待测溶液的浓度B、增加激发光的强度C、增加待测液的体积D、另找能与待测物质形成荧光效率大的荧光化合物2、下列结构中能产生荧光的物质就是A、苯酚B、苯C、硝基苯D、碘苯3、荧光分析中,溶剂对荧光强度的影响就是A、对有π→π*跃迁者,溶剂极性增加,荧光强度增大B、对有π→π*跃迁者,溶剂极性增加,荧光强度减小C、溶剂粘度增大,荧光强度减弱D、溶剂粘度降低,荧光强度减弱4、荧光分析中,当被测物质的浓度较大时,荧光强度与浓度不成正比,其原因可能就是A、自熄灭B、自吸收C、散射光的影响D、溶剂极性增大5、在下列哪个pH值时苯胺能产生荧光(苯胺以分子形式产生荧光)?A、1B、2C、7D、146、硫酸奎宁在0、05mol/L H2SO4中,分别用320nm与350nm波长的光激发,所制得的荧光光谱A、形状与荧光强度都相同B、形状与荧光强度都不同C、形状相同,荧光强度不同D、荧光强度相同,形状不同7、荧光光谱分析中的主要光谱干扰就是A、激发光B、溶剂产生的拉曼散射光C、溶剂产生的瑞利散射光D、容器表面产生的散射光8、对分子荧光强度的测量时,要在与入射光成直角的方向上检测就是由于A、荧光就是向各个方向发射的B、只有在与入射光方向成直角的方向上才有荧光C、为了消除透射光的影响D、克服散射光的影响9、荧光法中,荧光效率Φ的计算式就是A、Φ=发射荧光的电子数/吸收激发光的电子数B、Φ=发射荧光的光量子数/吸收荧光的光量子数C、Φ=发射光的强度/吸收光的强度D、Φ=发射荧光的光量子数/吸收激发光的光量子数10、A、钨灯B、氢灯C、元素灯D、溴钨灯λ=256nm)可用作光源。

(1)光度法测乙醇中苯(m ax(2)荧光计采用作光源。

(3)原子吸收分光光度计可用作光源。

(4)光度法测定KMnO4溶液的浓度可用作光源。

11、处于第一电子单线激发态最低振动能级的分子以辐射光量子的形式回到单线基态的最低振动能级,这种发光现象称为A、分子荧光B、分子磷光C、化学发光D、拉曼散射12、三线态的电子排列应为A、全充满B、↑C、基态D、↓↑↑13、下列说法正确的就是A、溶液温度升高,荧光效率增加,荧光强度增大B、溶液温度降低,荧光效率增加,荧光强度增大C、溶液温度升高,荧光效率降低,荧光强度增大D、溶液温度降低,荧光效率降低,荧光强度增大14、在荧光分析中,以下说法错误的就是A、激发态分子通过碰撞回到同一电子激发态的最低振动能级的过程称为振动弛豫B、荧光光谱的形状随激发光波长改变而改变C、荧光激发光谱相当于荧光物质的吸收光谱D、测定任何荧光物质的荧光强度时都必须严格控制溶液的pH值15、荧光光度计中第一滤光片的作用就是A、消除杂质荧光B、得到合适的单色激发光C、消除激发光产生的反射光D、消除瑞利散射,拉曼散射16、荧光分析中,滤光片选择的原则就是A、获得最强的荧光强度B、获得最强的荧光强度与最低的荧光背景C、消除散射光的影响D、消除杂散光的影响17、 萘胺在酸性中形成铵盐离子,影响荧光的测定,这种影响就是A、共存物质的影响B、荧光的熄灭C、溶液pH对荧光的影响D、溶剂的影响E、温度的影响18、为使荧光强度与荧光物质溶液的浓度成正比,必须使A、激发光足够强B、吸光系数足够大C、试液浓度足够稀D、仪器灵敏度足够高19、如果空白溶液的荧光强度调不到零,荧光分析的计算公式就是A、C x=C s(F x—F0)/F sB、C x=C s(F x/F s)C、C x=C s(F x—F0)/(F s—F0)D、C x=C s(F s—F0)/(F x—F0)20、荧光测定时,观察荧光要在与入射光垂直方向,其原因就是A、只有在入射光垂直方向上才有荧光B、各个方向都可观察到荧光,为减少透射光的影响C、荧光波长比入射光波长小D、荧光强度比透射光强度小21、荧光物质的荧光光谱与它的吸收光谱的形状就是A、相同B、相同且重叠C、对称D、相似且成镜像E、以上都不就是22、比较荧光物质激发光谱的波长与其发射光谱的波长A、相同B、不同C、前者稍长D、前者稍短E、以上都不就是23、在同一电子激发能态内部进行能量转换的过程就是A、内部转换B、外部转换C、体系间跨越D、振动驰豫24、比较荧光的波长与入射光的波长A、前者稍长B、前者稍短C、相同D、不同E、以上都不就是25、光电荧光计的单色器就是A、棱镜B、光栅C、滤光片D、凸透镜26、荧光物质的分子一般都含有A、离子键B、共轭双键C、氢键D、金属键E、配位键27、可以改变荧光分析的灵敏度A、增强光源强度B、改换溶剂C、降低温度D、以上三种措施都28、物质分子从第一电子激发态的最低振动能级回到基态的不同振动能级以幅射形式放出的能量,称为:A、磷光B、荧光C、化学发光D、电子光谱29、在荧光分析中,利用较短的激发光进行激发,可以避免的干扰A、拉曼光B、瑞利光C、容器表面的散射光D、胶粒的散射光30、荧光物制裁发射的荧光强度与有关A、该物质的吸光能力B、照射光强度C、荧光效率D、与上述三者都31、下列哪种光的峰位与激发光波长无关A、瑞利散射光B、拉曼光C、仪器表面的散射光D、荧光32、下列哪种因素会使荧光效率下降A、激发光哟度下降B、溶剂极性变小C、温度下降D、溶剂中含有卤素的金属离子33、激发光波长固定后,荧光波长与荧光强度的关系曲线称为A、吸收光谱B、激发光谱C、分子光谱D、荧光光谱34、物制裁分子吸光后,发出的荧光就是从什么能级回到基态的不同振动能级产生的A、不同的电子激发态的各种振动能级B、不同电子激发态的最低振动能级C、第一电子激发态的最低振动能级D、第一电子激发态的各振动能级35、下列哪种因素不可能减少散射光对荧光的干扰A、改变激发光波长B、改换溶剂C、升高温度D、以上三种措施都可以减少散射光的干扰36、在同样条件下,测得浓度为0、030μg/ml的罗丹明标准液的荧光强度为60,样品的荧光强度为50,空白液的荧光强度为10,则样品中罗明的浓度为μg/mlA、0、020B、0、025C、0、026D、0、02437、一般荧光峰的浓度随着溶剂介电常数的增大A、而兰移B、而变短C、而增大D、并无变化38、就是显著的荧光熄灭剂A、CCl4B、CHCl3C、CO2D、O239、能产生荧光的物质多半就是A、级性有机化合物B、非级性有机化合物C、复杂之机物D、含有共轭体系的有机化合物40、荧光波长固定后,激发光波长与荧光强度的关系曲线称为A、荧光光谱B、激发光谱C、发射光谱D、吸收光谱41、VitB在440~500nm波长光的激发下可发出较强的荧光,而实际测定时选用400nm激发光,其目的就是A、克服溶剂的瑞利散射光B、避免拉曼散射光的干扰C、消除容器表面的散射光D、克服溶剂中荧光物质的干扰E、消除磷光干扰42、为了使荧光强度与荧光物质溶液浓度成正比,必须使A、激发光足够强B、试液足够稀C、吸光系数足够大D、仪器足够灵敏E、增大试液浓度43、下列物质中荧光强度最强的物质就是A、环己烷B、苯C、萘D、联苯E、苯甲酸COOH44、荧光就是在下述条件下产生的A、分子从基态跃迁到激发态B、原子外层价电子的能级跃迁C、分子振动能级的跃迁D、分子转动能级的跃迁E 、 分子从第一激发态最低振动能级跃迁到基态各振动能级45、 下述化合物在荧光分析中产生的荧光效率最大的就是A 、B 、C 、D 、E 、46、 一种物质能否发出荧光,主要取决于A 、 本身分子结构与具有较高的荧光效率B 、 激发光的波长C 、 本身分子吸光能力的强弱D 、 分子结构中有无极性E 、 温度高低 47、 在荧光分析中,哪种说法就是正确的A 、 溶液温度升高,荧光效率增加,荧光强度增加B 、 溶液温度降低,荧光效率增加,荧光强度增加C 、 溶液温度升高,荧光效率不变,荧光强度不变D 、 溶液温度降低,荧光效率不变,荧光强度不变48、 温度升高时,荧光物质的荧光效率与荧光强度A 、 降低B 、 增大C 、 不变D 、 无法确定49、 某荧光物质的吸收光谱有两个不同强度的吸收峰,当分别用两个最大吸收波长作激发光时,所得到的该物质的荧光光谱A 、 形状与荧光强度都相同B 、 形状相同,荧光强度不同C 、 荧光强度相同,形状不同D 、 形状与荧光强度都不同50、 荧光法中,固定激发光波长与强度,改变发射光波长进行扫描,可绘制A 、 荧光光谱B 、 激发光谱C 、 吸收光谱D 、 发射光谱51、 进行荧光分析时,固定激发光波长与强度,改变发射光波长进行扫描,可绘制A 、 fluorescence excitation spectrumB 、 fluorescence emission spectrumC 、 absorption spectrumD 、 fluorescence spectrophotometry52、 为了使荧光强度与荧光物质溶液浓度成正比,必须使A 、 激发光足够强B 、 试液足够稀C 、 吸光系数足够大D 、 仪器足够灵敏53、 荧光光谱的形状与下列哪种因素有关A 、 第一电子激发态中最低振动能级分布B 、 基态的最低振动能级分布C 、 基态的振动能级分布D 、 第一电子激发态中振动能级分布54、 一种物质能否发出荧光,主要取决于A 、 本身分子结构与具有较高的荧光效率B 、 激发光的波长C 、 本身分子吸光能力的强弱D 、 分子结构中有无极性55、 Vit 、B 在440~500nm 波长光的激发下可发出较强的荧光,而实际测定时选用400nm 激发光,其目的就是:A 、 克服溶剂的Rayleigh 散射光B 、 避免Raman 光干扰C 、 消除容器表面的散射光D 、 克服溶剂中荧光物质干扰56、 荧光法测定核黄素,采用硅镁吸附剂就是为了A 、 保持核黄素稳定B 、 使核黄素转变成具有荧光的物质C 、 将样品浓缩D 、 使杂质与核黄素分开57、 如果使激发光的波长与强度保持不变,让物质发生的荧光通过单色器,依次测定荧光强度,然后以荧光强度对波长作图,该曲线叫做A 、 荧光激发光谱B 、 荧光光谱C 、 吸收光谱D 、58、 荧光物质的分子可以选择性吸收一定波长(或频率)的光。

仪器分析练习题02附答案

仪器分析练习题02附答案

一、单选题1. UV-Vis 吸收光谱是由( ) A. 最内层原子轨道上的电子跃迁产生 B. 原子最外层电子跃迁产生 C. 分子价电子能级跃迁产生D. 分子振动和转动产生2. 下列有关有机化合物外层电子能级跃迁的哪种表述是正确的( ) A. σ→σ*有最低的能量 B. π→π*最低的能量C. n →π*有最低的能量D. n→σ*可产生波长最大的吸收3. 某化合物在己烷和乙醇中的λmax 分别为305和307 nm ,则该化合物的跃迁是下列哪种跃迁( )A. π→π*B. n →π*C. n →σ*D. σ→σ*4. 下列哪种化合物中不存在π→π*跃迁( ) A. 乙烯B. 丙酮C. 苯乙炔D. 乙醇5. 当pH 由酸性变为碱性,苯酚的最大吸波长将发生何种变化( ) A. 红移B. 蓝移C. 不变D. 不能确定6. 分光光度计中控制波长纯度的元件是( ) A. 棱镜B. 光栅C. 狭缝D. 光栅+狭缝7. 某浓度待测物的透射比为T ,若其它条件不变,浓度增大一倍后的透射比应为( ) A. 2TB. 2/TC. T 2D.T8. 在符合朗伯-比尔定律的范围内,有色物质的浓度、最大吸收波长和吸光度三者的关系为( ) A. 增大、增大、增大 B. 减小、不变、减小 C. 减小、增大、减小D. 增大、减小、不变9. 指出下列哪种因素不会产生对朗伯-比尔定律的偏差( )A. 溶质的离解作用B. 杂散光进入检测器C. 溶液的折射指数增加D. 改变吸收光程长度 10. 下列哪种化合物不太适合作为UV 光谱测定时的溶剂( )A. 环己烷B. 甲醇C. 乙腈D. 甲苯11. 质量相同的A 、B 物质(摩尔质量M A >M B ),经过显色测量后所得吸光度相等,则它们的摩尔吸光系数的关系为( ) A. εA >εBB. εA <εBC. εA =εBD. εA <1/2εB12. 在符合朗伯-比尔定律的范围内,以下说法正确的是( )A. 溶液透射比T 越大,说明对光的吸收越强B. 透射比T 与浓度成正比C. 摩尔吸光系数随λ改变,但与浓度无关D. 摩尔吸光系数随λ和浓度而改变13.以下说法正确的是()A. 透射比与浓度呈直线关系B. 助色团可使生色团的吸收波长红移C. 比色法测定FeSCN+时,应选用红色滤光片D. 玻璃棱镜适合紫外光区14.在吸收光谱曲线中,吸光度的最大值是偶数阶导数光谱曲线的()A. 极大值B. 极小值C. 零D. 极大或极小值15. 双波长分光光度计和单波长分光光度计的主要区别在于()A. 光源个数B. 检测器个数C. 吸收池个数D. 使用单色器个数16. 双波长分光光度计的输出信号是()A. 试样吸收与参比吸收之差B. 试样在λ1与λ2处的吸收之差C. 试样在λ1与λ2处的吸收之和D. 试样在λ1和参比在λ2处的吸收之差17. 示差分光光度法与普通分光光度法的不同之处是()A. 标准溶液不同 D. 所选测定波长不同B. 参比溶液不同 D. 使用的光程不同18. 用普通分光光度法测定标液c1的透射比为20%,试液透过率为12%;若以示差光度法测定,以c1为参比,则试液的透射比透光度为()A. 40%B. 50%C. 60%D. 70%19. 某分光光度计的测量误差∆T=0.01,在透射比T=70%时,由测量引起的浓度相对误差为()A. 2%B. 8%C. 6%D. 4%20. 邻二氮菲法测定铁时,应在加入盐酸羟胺摇匀后应放置至少2分钟后再加显色剂邻二氮菲,若放置时间不足,则分析结果很可能会()A. 无影响B. 不一定C. 偏低D. 偏高21. 邻二氮菲法测定水中微量铁含量的分析步骤是()A. 还原-发色-调节pH-比色-酸化B. 酸化-还原-调节pH-发色-比色C. 发色-酸化-还原-调节pH-比色D. 调节pH-发色-还原-酸化-比色22. 在吸光光度法中,有时会出现标准曲线不通过原点的情况,下列哪种情况不会引起这一现象()A. 吸收池位置放置不当B. 参比溶液选择不当C. 吸收池光学玻璃不洁净D. 显色反应灵敏度较低23.用紫外吸收光谱区别共轭烯烃和α,β-不饱和酮可根据下列哪种吸收带出现与否来判断()A. K带 B. R带 C. E带 D. B带24. 下列四种化合物λmax的顺序为()(a)CH CH CH CH2(b)CH CH2C2H5(c)CH CH CH CH2(d)CH CH2C2H5A. b>c>d>aB. a>d>c>bC. b>d>c>aD. a>c>d>b25. 下列关于荧光发射光谱的叙述中正确的是()A. 发射与激发光谱在任何情况下都是镜像关系B. 发射光谱的形状与激发波长无关C. 发射光谱位于激发光谱的左侧D. 发射光谱就是分子的吸收光谱26. 用波长300 nm的入射光激发硫酸奎宁的稀硫酸溶液时,所产生的300 nm的发射光是()A. 荧光B. 磷光C. Reyleigh散射D. 无法判断27.分子荧光分光光度计常用的光源是()A. 空心阴极灯B. 氙灯C. 氘灯D. 碳硅棒28. 荧光分析法是通过测定那种类型的光而达到对物质定性或定量分析的目的()A. 激发光B. 磷光C. 发射光D. 散射光29. 下列是化学发光仪必须的元件是()A. 光电倍增管B. 光栅C. 氘灯D. 氙灯30. 荧光物质,随溶液的温度降低,其荧光量子率将()A. 减小B. 增大C. 不变D. 不能确定31. 极性溶剂会使被测物质的UV-Vis吸收光谱()A. 消失B. 精细结构更明显C. 发生位移D. 分裂32. 分子的UV-Vis吸收光谱为带状光谱,其原因是()A. 分子中价电子运动的离域性质B. 分子中价电子能级的相互作用C. 分子振动能级的跃迁伴随着转动能级的跃迁D. 分子电极能级的跃迁伴随着振动、转动能级的跃迁33. 某化合物分子式为C5H8O,其UV光谱上有两个吸收带:λmax=204 nm(εmax=9750);λmax=314 nm (εmax=38)。

(完整版)仪器分析练习题及答案

(完整版)仪器分析练习题及答案

(完整版)仪器分析练习题及答案1. 简述仪器分析法的特点。

答:1.仪器分析法灵敏度⾼。

2.仪器分析法多数选择性较好。

3.仪器分析法分析速度较快,利于批量样品分析。

4.易于使分析⼯作⾃动化。

5.相对误差较⼤。

6.设备复杂、价格昂贵,对仪器⼯作环境要求较⾼。

光分析导论⼀、选择题1.在光学分析法中, 采⽤钨灯作光源的是( )(1)原⼦光谱(2)分⼦光谱(3)可见分⼦光谱(4)红外光谱2.可见光的能量应为( )(1) 1.24×104~1.24×106eV (2) 1.43×102~71 eV(3) 6.2 ~3.1 eV (4) 3.1 ~1.65 eV3.已知:h=6.63×10-34 J s则波长为0.01nm的光⼦能量为( )(1) 12.4 eV (2) 124 eV (3) 12.4×105eV (4) 0.124 eV4..频率可⽤下列哪种⽅式表⽰(c------光速,λ---波长,б---波数()(1)б/c (2cб (3)1/λ(4)c/б5.光量⼦的能量正⽐于辐射的()(1)频率(2)波长(3波数(4)传播速度6. 下列四个电磁波谱区中,请指出能量最⼩(),频率最⼩(),波数最⼤者(),波长最短者()(1)X射线(2)红外区(3)⽆线电波(4)紫外和可见光区⼆、填空题( 共7题12分)1.库仑滴定分析法, 实际上是⼀种___________________________电解分析法.2. 任何⼀种分析仪器都可视作由以下四部分组成:________________________、____________________、_____________________和________________________.3. 仪器分析主要分为三⼤类, 它们是、和.4.⽤pH计测定某溶液pH时, 其信号源是__________________________________;传感器是_______________________________.5.电化学分析法是建⽴在基础上的⼀类分析⽅法.6.光学分析法是建⽴在基础上的⼀类分析⽅法.三、解释术语1.电磁波谱2.发射光谱3.吸收光谱4.荧光光谱四、计算题1.计算下列辐射的频率(Hz)和波数(cm-1)(1)0.25cm的微波束;(2)324.7nm铜的发射线。

川大学仪器分析第八章 分子发光分析法答案

川大学仪器分析第八章 分子发光分析法答案

第八章分子发光分析法基本要求:了解荧光的产生和影响荧光强度的因素,掌握分子荧光光谱法的定量关系和应用特点,重点:荧光光谱法的定量关系、应用特点。

难点:荧光的产生和影响荧光强度的因素。

参考学时:3学时作业参考答案1.简述荧光法产生的基本原理。

具有什么样结构的物质最容易发荧光答:物质受电磁辐射激发后,被激发的分子从第一电子激发单重态的最低振动能级回到基态而发射荧光,基于测量化合物的荧光而建立起来的分析方法即为荧光分析法。

芳香族化合物、带有平面刚性结构的化合物、带稠环结构的化合物容易发荧光。

2.解释下列名词:单重态、三重态、荧光、振动弛豫、内转换、外转换、失活、系间窜跃、荧光量子产率、激发光谱、荧光光谱答:单重态:电子自旋都配对的分子的电子状态称为单重态。

三重态:有两个电子自旋不配对而同方向的状态。

荧光:受光激发的分子从第一激发单重态(S1)的最低振动能级回到基态(S0)所发出的辐射;振动弛豫:由于分子间的碰撞,振动激发态分子由同一电子能级中的较高振动能级失活至较低振动能级,多余的振动能以热的形式失去的过程。

内转换:在相同激发多重态的两个电子能级间,电子由高能级以无辐射跃迁方式进到较低能级的分子内过程。

外转换:激发态分子与溶剂或其他溶质间的相互作用和能量转换而使荧光或磷光强度减弱甚至消失的过程。

失活:激发态分子不稳定,他要以辐射跃迁或无辐射跃迁的方式回到基态,这就是激发态分子的失活。

系间窜跃:激发态分子的电子自旋发生倒转而使分子的多重态发生变化的无辐射跃迁过程。

荧光量子产率:表示物质分子发射荧光的能力。

荧光量子产率=发射荧光的分子数/激发态的分子数=发射的光子数/吸收的光子数激发光谱:在荧光最强的波长处测量随激发光波长的改变而变化的荧光强度,将荧光强度对激发光波长作图,即得到激发光谱,实际为荧光物质的吸收光谱。

荧光光谱:如果将激发光的波长固定在最大激发波长处,测量不同荧光波长处荧光的强度,将荧光强度对荧光波长作图便得到荧光光谱(或称发射光谱)。

著作一:荧光分析法 (第三版)许金钩 王尊本 主编

著作一:荧光分析法 (第三版)许金钩 王尊本 主编

有机化学1.David A. Evans,* Daniel Seidel, Magnus Rueping, Hon Wai Lam, Jared T. Shaw, and C. Wade Downey, A New Copper Acetate-Bis(oxazoline)-Catalyzed, Enantioselective Henry Reaction, J. AM. CHEM. SOC. 2003, 125, 12692-12693.2. Brian D. Dangel and Robin Pol,Catalysis by Amino Acid-Derived Tetracoordinate Complexes: Enantioselective Addition of Dialkylzincs to Aliphatic and Aromatic Aldehydes, Org. Lett. 2007, 2, 3003.3. Benjamin List, Proline-catalyzed asymmetric reactions, Tetrahedron, 2002, 58, 5573.4. Vishnu Maya, Monika Raj, and Vinod K. Singh, Highly Enantioselective Organocatalytic Direct Aldol Reaction in an Aqueous Medium, Org. Lett. 2007, 9, 2593.5. Sanzhong Luo, Jiuyuan Li, Hui Xu, Long Zhang, and Jin-Pei Cheng, Chiral Amine-Polyoxometalate Hybrids as Highly Efficient and Recoverable Asymmetric Enamine Catalysts, Org. Lett. 2007, 9, 3675.6. Xiao-Ying Xu, Yan-Zhao Wang, and Liu-Zhu Gong, Design of Organocatalysts for Asymmetric Direct Syn-Aldol Reactions, Org. Lett. 2007, 9, 4247.7. Jung Woon Yang, Maria T. Hechavarria Fonseca, Nicola Vignola, and Benjamin List, Metal-Free, Organocatalytic Asymmetric Transfer Hydrogenation of a,b-Unsaturated Aldehydes, Angew. Chem. Int. Ed. 2005, 44, 108–110.8. Giuseppe Bartoli, Massimo Bartolacci, Marcella Bosco, et. al., The Michael Addition of Indoles to r,â-Unsaturated Ketones Catalyzed by CeCl3â7H2O-NaI Combination Supported on Silica Gel, J. Org. Chem. 2003, 68, 4594-4597.9. Jayasree Seayad, Abdul Majeed Seayad, and Benjamin List, Catalytic Asymmetric Pictet-Spengler Reaction, J. AM. CHEM. SOC. 2006, 128, 1086-1087.10. Jingjun Yin, Matthew P. Rainka, Xiao-Xiang Zhang, and Stephen L. Buchwald, A Highly Active Suzuki Catalyst for the Synthesis of Sterically Hindered Biaryls: Novel Ligand Coordination, J. AM. CHEM. SOC. 9 VOL. 124, NO. 7, 2002 1162.11. Ulf M. Lindstro¨m, Stereoselective Organic Reactions in Water, Chem. Rev. 2002, 102, 2751-2772 .12. Sanzhong Luo, Hui Xu, Jiuyuan Li, Long Zhang, and Jin-Pei Cheng, A Simple Primary-Tertiary Diamine-Brønsted Acid Catalyst for Asymmetric Direct Aldol Reactions of Linear Aliphatic Ketones, J. AM. CHEM. SOC. 2007, 129, 3074-3075.13. Xin Cui, Yuan Zhou, Na Wang, Lei Liu and Qing-Xiang Guo, N-Phenylurea as an inexpensive and efficient ligand for Pd-catalyzed Heck and room-temperature Suzuki reactions, TL, 2007, 48, 163.14. Yoshiharu Iwabuchi, Mari Nakatani, Nobiko Yokoyama, and Susumi Hatakeyama, Chiral Amine-Catalyzed Asymmetric Baylis-Hillman Reaction: A Reliable Route to Highly Enantiomerically Enriched (r-Methylene-â-hydroxy)esters, J. Am. Chem. Soc. 1999, 121, 10219-10220.15. Satoko Kezuka, Taketo Ikeno, and Tohru Yamada, Optically Active â-Ketoiminato Cationic Cobalt(III) Complexes: Efficient Catalysts for Enantioselective Carbonyl-Ene Reaction of Glyoxal Derivatives, Org. Lett. 2001, 3, 1937.分析化学16. Lei Liu, Qin-Xiang Guo, Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation , Chem. Rev. 2001, 101, .17. Sui-Yi Lin, Shi-Wei Liu, Chia-Mei Lin, and Chun-hsien Chen,Recognition of Potassium Ion in Water by 15-Crown-5 Functionalized Gold Nanoparticles, Anal. Chem. 2002, 74, 330-33518. Mikhail V. Rekharsky and Yoshihisa Inoue, Complexation and Chiral Recognition Thermodynamics of 6-Amino-6-deoxy-â-cyclodextrin with Anionic, Cationic, and Neutral Chiral Guests: Counterbalance between van der Waals and Coulombic Interactions, J. AM. CHEM. SOC., 2002, 124: 813-82619. Yu Liu, Li Li, Zhi Fan, Heng-Yi Zhang, Xue Wu, Xu-Dong Guan, Shuang-Xi Liu, Supramolecular Aggregates Formed by Intermolecular Inclusion Complexation of Organo-Selenium Bridged Bis(cyclodextrin)s with Calix[4]arene Derivative, nano letters, 2002, 2:257-262.20. CARLITO B. LEBRILLA, The Gas-Phase Chemistry of Cyclodextrin InclusionComplexes, Acc. Chem. Res. 2001, 34: 653-66121. Jian-Jun Wu, Yu Wang, Jian-Bin Chao, Li-Na Wang, and Wei-Jun Jin. Room Temperature Phosphorescence of 1-Bromo-4-(bromoacetyl) Naphthalene Induced Synergetically by -cyclodextrin and Brij30 in the Presence of Oxygen. The Journal of Physical Chemistry: B, 2004, 108: 8915-8919.22. Xiang-feng Guo, Xu-hong Qian, and Li-hua Jia. A Highly Selective and Sensitive Fluorescent Chemosensor for Hg2+in Neutral Buffer Aqueous Solution. J. Am. Chem. Soc. 2004,126: 2272-2273.23. Yu Wang, Jian-Jun Wu, Yu-Feng Wang, Li-Pin Qin, Wei-Jun Jin. Selective Sensing of Cu (Ⅱ) at ng ml-1level Based on Phosphorescence Quenching of 1-Bromo-2-methylnaphthalene Sandwiched in Sodium Deoxycholate Dimer. Chem. Commun. 2005, 1090-1091.24. Yong-fen Chen and Zeev Rosenzweig(2002) Luminescent CdS Quantum Dots as Selective Ion Probes. Anal. Chem., 74: 5132-513825. Thorfinnur Gunnlaugsson, Mark Glynn, Gillian M. Tocci (née Hussey), Paul E. Kruger, Frederick M. Pfeffer Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews 2006, 250: 3094–3117.26. E.M. Martin Del Valle, Cyclodextrins and their uses: a review, Process Biochemistry 2004, 39 : 1033–104627. Ahmet Gu rses, Mehmet Yalcin, Cetin Dogar,Electrocoagulation of some reactive dyes: a statistical investigation of some electrochemical variables, Waste Management 22 (2002) 491–428. K. Lang, J. Mosinger, D.M. Wagnerová, V oltammetric studies of anthraquinone dyes adsorbed at a hanging mercury drop electrode using fast pulse techniques, Coordination Chemistry Reviews 248 (2004) 321–35029. You Qin Li, Yu Jing Guo, Xiu Fang Li, Jing Hao Pan, Electrochemical studies of the interaction of Basic Brown G with DNA and determination of DNA, 2007,71: 123-128.30. P.J. Almeida, J.A. Rodrigues, A.A. Barros, A.G. Fogg, Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy, Analytica Chimica Acta 385 (1999) 287-293.无机化学31. Silvia Miret, Robert J. Simpson, and Andrew T. McKie, PHYSIOLOGY ANDMOLECULAR BIOLOGY OF DIETARY IRON ABSORPTION, Annu. Rev. Nutr. 2003. 23:283–301.32. Joy J. Winzerling and John H. Law, COMPARATIVE NUTRITION OF IRON AND COPPER, Annu. Rev. Nutr. 1997. 17:501–26.33. Kurt Dehnicke and Andreas Greiner, Unusual Complex Chemistry of Rare-Earth Elements: Large Ionic Radii—Small Coordination Numbers, Angew. Chem. Int. Ed. 2003, 42, No. 12, 1341-1354.34. Todor Dudev, Principles Governing Mg, Ca, and Zn Binding and Selectivity in Proteins, Chem. Rev. 2003, 103, 773-787.35. Maria M. O. Pena, Jaekwon Lee and Dennis J. Thiele, A Delicate Balance: Homeostatic Control of Copper Uptake and Distribution, J. Nutr. 129: 1251–1260, 1999.36. Elza V. Kuzmenkina, Colin D. Heyes, and G. Ulrich Nienhaus, Single-molecule Forster resonance energy transfer study of protein dynamics under denaturing conditions, PNAS, October 25, 2005, vol. 102 _ no. 43 _ 15471–15476.37. Simon Silver, Bacterial resistances to toxic metal ions - a review, Gene 179 (1996) 9-19.38. David A Zacharias, Geoffrey S Baird and Roger Y Tsien, Recent advances in technology for measuring and manipulating cell signals, Current Opinion in Neurobiology 2000, 10:416–421.39. Edward Luk Laran T. Jensen Valeria C. Culotta, The many highways for intracellular trafficking of metals, J Biol Inorg Chem (2003) 8: 803–809.40. JOHN B. VINCENT, Elucidating a Biological Role for Chromium at a Molecular Level, Acc. Chem. Res. 2000, 33, 503-510.41. Mark D. Harrison, Christopher E. Jones, Marc Solioz, Intracellular copper routing: the role of copper chaperones, TIBS 25 – JANUARY 2000, 29-32.42. R.J.P. Williams, My past and a future role for inorganic biochemistry, Journal of Inorganic Biochemistry 100 (2006) 1908–1924.43. Gray H B., ‘Biological Inorganic Chemistry at the Beginning of the 21th Century’, PNAS, 2003, 100(7), 3563-3583.物理化学/应用化学44.Chemistry of Aerogels and Their Applications, Alain C. Pierre and Ge´rard M.Pajonk, Chem. Rev. 2002, 102, -4265.45.Mechanisms of catalyst deactivation, Calvin H. Bartholomew, Applied Catalysis A:General 212 (2001) 17–60.anic chemistry on solid surfaces, Zhen Ma, Francisco Zaera, Surface ScienceReports , 61 (2006) 229–281.47.Heterogeneous catalysis: looking forward with molecular simulation, J.W.Andzelm, A.E. Alvarado-Swaisgood, F.U. Axe, M.W. Doyle, G. Fitzgerald 等,Catalysis Today,50 (1999) 451-477.48.Current Trends in the Improvement and Development of Catalyst PreparationMethods,N. A. Pakhomov and R. A. Buyanov,Kinetics and Catalysis, V ol. 46, No. 5, 2005, pp. 669–683.49.Temperature-programmed desorption as a tool to extract quantitative kinetic orenergetic information for porous catalysts,J.M. Kanervo ∗, T.J. Keskitalo, R.I.Slioor, A.O.I. Krause,Journal of Catalysi s 238 (2006) 382–393.50.Adsorption _ from theory to practice,A. Da˛browski,Advances in Colloid andInterface Science93(2001)135-224.51.Characterization of solid acids by spectroscopy,Eike Brunner,Catalysis Today,38 (1997) 361-376.52.Chemical Strategies To Design Textured Materials: from Microporous andMesoporous Oxides to Nanonetworks and Hierarchical Structures,Galo J. de A. A.Soler-Illia, Cle´ment Sanchez等,Chem. Rev.2002, 102, 4093-4138.53.Solid-State Nuclear Magnetic Resonance,Cecil Dybowski,Shi Bai, and Scott vanBramer,Anal. Chem. 2004, 76, 3263-3268.54.Aerogel applications,Lawrence W. Hrubesh,Journal of Non-Crystalline Solids225_1998.335–342.55.Application of computational methods to catalytic systems,Fernando Ruette,Morella S´anchezb, Anibal Sierraalta, Journal of Molecular Catalysis A: Chemical 228 (2005) 211–225.56.Applications of molecular modeling in heterogeneous catalysis research,Linda J.Broadbelt1, Randall Q. Snurr,Applied Catalysis A: General 200 (2000) 23–46. 57.IR spectroscopy in catalysis,Janusz Ryczkowski,Catalysis Today 68 (2001)263–381.58.The surface chemistry of catalysis: new challenges ahead,Francisco Zaera,Surface Science 500 (2002) 947–965.药学60. Peishan Xie, Sibao Chen, Yi-zeng Liang, Xianghong Wang, Runtao Tian, Roy Upton,Chromatographic fingerprint analysis—a rational approach for quality assessment of traditional Chinese herbal medicine,J. Chromatogr. A 1112 (2006) 171–180.61. Yi-Zeng Lianga, Peishan Xieb, Kelvin Chan, Quality control of herbal medicines, Journal of Chromatography B, 812 (2004) 53–70.62. 刘昌孝, 代谢组学的发展与药物研究开发, 天津药学2005 年4 月第17 卷第2 期.63. 徐曰文,林东海,刘昌孝,代谢组学研究现状与展望,药学学报2005, 40 (9) : 769 – 774。

荧光分析法测定尿中核黄素(VB2)含量

荧光分析法测定尿中核黄素(VB2)含量

实验三荧光分析法测定尿中核黄素(VB2)含量【目的要求】1.掌握荧光分析法的基本原理及方法。

2.掌握固相萃取法对样品进行分离纯化的技术。

3.熟悉荧光分光光度计的使用方法。

【原理】核黄素(VB2)在一定波长的光波照射下发荧光。

在pH6~7的溶液中荧光最强,在其它条件恒定时,荧光强度F与VB2浓度C成正比,即F=K C;当pH>11时荧光消失。

尿中共存物质干扰VB2的测定,需将尿液通过硅镁吸附柱,使其中VB2被硅镁吸附剂吸附,再用洗脱液洗脱,测定洗脱液中VB2的荧光强度。

采用标准曲线法进行定量。

【仪器和材料】1.仪器与器皿荧光分光光度计,样品池,脱脂棉,吸附柱(内径0.8~1.0cm,柱长8cm),50ml、1000ml容量瓶,10ml比色管,2ml移液管。

2.试剂(1)VB2标准贮备液(25mg/L):准确称取25.0mg核黄素,加400ml超纯水,加冰醋酸1~2ml,加热溶解,冷却后转移至1000ml容量瓶中并用超纯水稀释定容,摇匀,贮存于棕色试剂瓶中。

(2)VB2标准应用液(0.5 g/ml):取标准贮备液1ml于50ml棕色容量瓶中,用0.1mol/LHAc溶液稀释至刻度,摇匀(现用现配)。

(3)硅镁吸附剂(60~100目)。

(4)洗脱液:按体积比丙酮:冰醋酸:双蒸水=5:2:9。

(5)0.1mol/L HAc溶液。

【操作步骤】1.装柱用一小团脱脂棉将吸附柱管下端轻轻塞住,将1.5g左右的硅镁吸附剂于适量的蒸馏水混合装柱(约占柱长的2/3左右),用双蒸水测试流速,流速控制在60~80滴/分,柱内应无气泡。

2.标准曲线的绘制(1)吸附:取VB 2标准应用液0.00、0.50、1.00、1.50、2.00和2.50ml ,分别过柱,用15~20ml 热水(60~70℃)淋洗柱子。

(2)洗脱:将10ml 比色管接在柱子下端,每个吸附柱中加入5ml 洗脱液,待流尽后再用不足5ml 的蒸馏水淋洗柱子,流出液一并盛入比色管中,用双蒸水定容至10ml ,混匀,避光保存。

荧光分析法练习题

荧光分析法练习题

第十二章荧光分析法(药学)A型题1.若需测定生物试样中的微量氨基酸应选用下述哪种分析方法()。

A、荧光光度法B、磷光光度法C、化学发光法D、X荧光光谱法E、原子荧光光谱法答案:A2.分子荧光分析比紫外-可见分光光度法选择性高的原因是()。

A、分子荧光光谱为线状光谱,而分子吸收光谱为带状光谱B、能发射荧光的物质比较少C、荧光波长比相应的吸收波长稍长D、荧光光度计有两个单色器,可以更好地消除组分间的相互干扰E、分子荧光分析线性范围更宽答案:B3荧光量子效率是指()。

A、荧光强度与吸收光强度之比B、发射荧光的量子数与吸收激发光的量子数之比C、发射荧光的分子数与物质的总分子数之比D、激发态的分子数与基态的分子数之比E、物质的总分子数与吸收激发光的分子数之比答案:B4.激发光波长和强度固定后,荧光强度与荧光波长的关系曲线称为()。

A、吸收光谱B、激发光谱C、荧光光谱D、工作曲线E、标准工作曲线答案:C5.荧光波长固定后,荧光强度与激发光波长的关系曲线称为()。

A、吸收光谱B、激发光谱C、荧光光谱D、工作曲线E、标准工作曲线答案:B6.一种物质能否发出荧光主要取决于()。

A、分子结构B、激发光的波长C、温度D、溶剂的极性E、激发光的强度答案:A7.下列结构中荧光效率最高的物质是()。

A、苯酚B、苯C、硝基苯D、苯甲酸E、碘苯答案:A8.下列因素会导致荧光效率下降的有()。

A、激发光强度下降B、溶剂极性变小C、温度下降D、溶剂中含有卤素离子E、激发光强度增大答案:D9.为使荧光强度和荧光物质溶液的浓度成正比,必须使()。

A、激发光足够强B、吸光系数足够大C、试液浓度足够稀D、仪器灵敏度足够高E、仪器选择性足够好答案:C10.在测定物质的荧光强度时,荧光标准溶液的作用是()。

A、用做调整仪器的零点B、用做参比溶液C、用做定量标准D、用做荧光测定的标度E、以上都不是答案:D11.荧光分光光度计与分光光度计的主要区别在于()。

(完整版)仪器分析习题答案-光谱分析部分

(完整版)仪器分析习题答案-光谱分析部分

(完整版)仪器分析习题答案-光谱分析部分仪器分析部分作业题参考答案第⼀章绪论1-21、主要区别:(1)化学分析是利⽤物质的化学性质进⾏分析;仪器分析是利⽤物质的物理或物理化学性质进⾏分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能⽤于组分的定量或定性分析;仪器分析还能⽤于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度⾼,适合于常量组分分析;仪器分析灵敏度⾼、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。

2、共同点:都是进⾏组分测量的⼿段,是分析化学的组成部分。

1-5分析仪器与仪器分析的区别:分析仪器是实现仪器分析的⼀种技术设备,是⼀种装置;仪器分析是利⽤仪器设备进⾏组分分析的⼀种技术⼿段。

分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的⽬的,分析仪器是仪器分析的⼯具。

仪器分析与分析仪器的发展相互促进。

1-7因为仪器分析直接测量的是物质的各种物理信号⽽不是其浓度或质量数,⽽信号与浓度或质量数之间只有在⼀定的范围内才某种确定的关系,且这种关系还受仪器、⽅法及样品基体等的影响。

因此要进⾏组分的定量分析,并消除仪器、⽅法及样品基体等对测量的影响,必须⾸先建⽴特定测量条件下信号与浓度或质量数之间的关系,即进⾏定量分析校正。

第⼆章光谱分析法导论2-1光谱仪的⼀般组成包括:光源、单⾊器、样品引⼊系统、检测器、信号处理与输出装置。

各部件的主要作⽤为:光源:提供能量使待测组分产⽣吸收包括激发到⾼能态;单⾊器:将复合光分解为单⾊光并采集特定波长的光⼊射样品或检测器;样品引⼊系统:将样品以合适的⽅式引⼊光路中并可以充当样品容器的作⽤;检测器:将光信号转化为可量化输出的信号。

信号处理与输出装置:对信号进⾏放⼤、转化、数学处理、滤除噪⾳,然后以合适的⽅式输出。

2-2:单⾊器的组成包括:⼊射狭缝、透镜、单⾊元件、聚焦透镜、出射狭缝。

各部件的主要作⽤为:⼊射狭缝:采集来⾃光源或样品池的复合光;透镜:将⼊射狭缝采集的复合光分解为平⾏光;单⾊元件:将复合光⾊散为单⾊光(即将光按波长排列)聚焦透镜:将单⾊元件⾊散后的具有相同波长的光在单⾊器的出⼝曲⾯上成像;出射狭缝:采集⾊散后具有特定波长的光⼊射样品或检测器 2-3棱镜的分光原理是光的折射。

第十一章 荧光分析法

第十一章 荧光分析法

第十一章荧光分析法一、选择题1.荧光分析法是通过测定( )而达到对物质的定性或定量分析。

A、激发光B、磷光C、发射光D、散射光2.下面( )分析方法不属于分子发射光谱法。

A、紫外一可见分光光度法B、荧光分析法C、磷光分析法D、化学发光分析法3.荧光发射光谱含有( )个发射带。

A、1B、2C、3D、不一定4.下列关于荧光光谱的叙述错误的是()A、荧光光谱的形状与激发光的波长无关B、荧光光谱与激发光谱一般是对称镜像C、荧光光谱属于分子的受激发射光谱D、荧光激发射光谱与紫外吸收光谱重合5.下列叙述错误的是()A、荧光光谱的最长波长和激发光谱的最长波长相对应B、荧光光谱的最短波长和激发光谱的最长波长相对应C、荧光光谱的形状与激发光波长无关D、荧光波长大于激发光波长6.激发态分子经过振动弛豫回到第一电子激发态的最低振动能级后,经系间窜越转移至激发三重态,再经振动弛豫降至三重态的最低振动能级,然后发出光辐射跃迁至基态的各个振动能级,这种光辐射称为( )。

A、分子荧光B、分子磷光C、瑞利散射光D、拉曼散射光7.关于振动弛豫,下列叙述中错误的是( )。

A、振动弛豫只能在同一电子能级内进行B、振动弛豫属于无辐射跃迁C、通过振动弛豫可使处于不同电子激发态的分子均返回到第一电子激发态的最低振动能级D、振动弛豫是产生Stokes位移的原因之一8.荧光寿命指的是( )。

A、从激发光开始照射到发射荧光的时间B、受激分子从第一电子激发态的最低振动能级返回到基态所需的时间C、从除去激发光光源至分子的荧光熄灭所需的时间D、除去激发光源后,分子的荧光强度降低到激发时最大荧光强度的1/e所需的时间9.关于荧光效率,下面叙述不正确的是()A、具有长共轭的π→π﹡跃迁的物质具有较大的荧光效率B、分子的刚性和共平面性越大,荧光效率越大C、顺式异构体的荧光效率大于反式异构体D、共轭体系上的取代基不同,对荧光效率的影响不同10.采用下列( )措施可使物质的荧光效率提高。

荧光分析试题答案.doc

荧光分析试题答案.doc

1、简述荧光岗位工作职责?2、荧光仪的关机顺序是怎样的?电压和电流分别调整为20kV/10mA关闭钥匙开关放掉真空关闭电源3、导致生料成分波动的原因有哪些?a原燃材料成分的变化石灰石成分的波动主要表现在CaO和MgO的含量及其杂质的变化。

或粘土成分的波动主耍表现在SiO2和A12O3含量的变化,特别是SiO2的影响,对饱和比的影响最大燃料及其它辅料的波动,煤的灰分含量及煤灰分的成分会影响SiO2和A12O3的含量变化,其它辅料的影响较小b各种物料配比的波动工艺设备不能满足配料的要求破碎工艺的不完备,使物料粒度不均匀或粒度过大喂料及计量设备精度差,不能有效的控制物料流量c物料水分的波动由于某种物料水分的变化影引起物料的下料量变化由于物料水分的变化引起间断性离析4、如何利用过程控制的检验数据指导配料?(指标KH: 1.02-1.04; SM: 2.65-2.70; IM: 1.6-1.65)(1)KH:1.00;SM:2.55;IM: 1.55(2)KH:0.85;SM:2.85;IM: 1.80(3)KH:1.06;SM:2.60;IM: 1.80(4)KH:1.15;SM:2.45;IM: 1.405、你认为如何控制进厂原材料的质量?尽可能采用同一矿点的原料,对原料进行预均化堆放处理,对不同含量的原料进行搭配使用6、简述KH、n、p的物理意义是什么?其计算公式?KH:熟料中SiO2被CaO饱和成C3S的程度n:熟料中硅酸盐矿物与溶剂型矿物的比值P:熟料中溶剂矿物C3A和C4AF的比值"口Cao - 1.65A12O3 - 0.35Fe2O3一0.7SOKH —石灰石饱和系数:2・8SiQSiO? Ag硅率:SM= A12O3 + FC2°3铝率:IM=氏2。

37、你认为应该如何提高熟料质量?有何好处?稳定配料,稳定煤,稳定生料细度强度稳定,游离钙含量稳定,安定性好8、叙述荧光分析引起测定结果误差的因素?误差主要来源是试样的基体效应及制样技术A基休效应颗粒效应:指粉末中颗粒度,颗粒度分布,颗粒形状及颗粒内部不均匀性引起的物理效应。

分析化学习题十四知识讲解

分析化学习题十四知识讲解

第十四章 荧光分析法一、单项选择题(类型说明:每一道试题下面有A 、B 、C 、D 四个备选答案,请从中选择一个最佳答案。

)1、下列哪种化学反应可以产生化学发光? ( )A .中和反应B .离子交换反应C 氧化反应D 置换反应2、分子荧光与化学发光均为第一激发态的最低振动能级跃迁至基态中各振动能量能级产生的光辐射,它们的主要区别在于 ( )A .分子中的电子层不同B .跃迁至基态中的振动能级不同C .产生光辐射的能源不同D .无辐射驰豫的能源不同3、受激单线态的平均寿命应为( )秒。

A .10-8B .10-7C .10-6D .1受激三线态的平均寿命应为( )秒。

A .10-8B .10-7C .10-6D .10-55、下列那种离子不能产生荧光?( ) A .K+ B .Mg 2+ C .Al 3+ D .V(IV)6、根据下列化合物的结构,判断那种物质的荧光效率最大?( ) A.苯 B.联苯 C.对联三苯 D.蒽7、下列结构中那一种能产生荧光的强度最大?( ) A.苯酚 B.苯 C.硝基苯 D.苯甲酸8、苯胺在下列哪个pH 值能产生荧光(苯胺以分子形式产生荧光)( ) A.1 B.2 C.7 D.139、下列那种说法是正确的( ) A.荧光物质的浓度增加,荧光强度增大。

B. 荧光物质的浓度增加,荧光强度减弱。

C. 荧光物质的浓度减弱,荧光强度减弱。

D. 荧光物质的浓度减弱,荧光强度减弱。

10、下列说法那种是正确的( ) A.溶液温度升高,荧光效率增加,荧光强度增大。

B.溶液温度降低,荧光效率增加,荧光强度增大。

C.溶液温度升高,荧光效率降低,荧光强度增大。

D.溶液温度降低,荧光效率降低,荧光强度增大。

11、下列那种基团能使单线态转让三线态( ) A. 2NH - B. OH - C. 65C H - D. I -12、下列那种溶剂对荧光的光谱干扰最小( ) A.水 B.乙醇 C.环已烷 D.四氯化碳13、荧光光度计和分光光度计的主要区别是( ) A.光源 B.光路 C.单色器 D.检测器瑞利散射是在那种情况下产生的() A.自发辐射 B.受激辐射 C.辐射能照射分子产生热运动D. 光子和物质分子发生弹性碰撞,只是光子运动方向发生了改变15、拉曼散射是在那种情况下产生的 ( )A.自发辐射B.受激辐射C.辐射能照射分子产生热运动D.辐射能照射分子产生非弹性碰撞,并发出光辐射。

原子荧光分析法试题库(判断题)

原子荧光分析法试题库(判断题)

原子荧光分析法试题(判断题)1.原子荧光分析仪器的激发光源和原子化器与单色器、检测器平行时有最高的灵敏度。

(×)2. 当灵敏度可以满足要求时应尽可能采用较低的负高压。

(√)3. 在一定范围内,荧光分析灵敏度与激发光源强度成正比。

(√)4. 原子荧光分析仪器的激发光源可以用锐线光源也可以用连续光源。

(√)5. 原子吸收光谱仪使用的空心阴极灯也可以用于原子荧光光谱仪。

(×)6. 原子荧光分析比原子吸收分析有更高的灵敏度和选择性,并可进行多元素同时测定。

(√)7. 用热能或电能激发试样所产生的发射光谱主要是分子而不是原子的特征。

(×)8. 原子荧光光谱法是一种发射光谱法。

(√)9 . 在原子荧光光谱分析中,硼氢化钾的浓度对砷的测定没有影响。

(×)10. 荧光强度正比于浓度仅限于溶液浓度极稀的情况,在较浓溶液中,该关系将不复存在。

(√)11. 与吸光度法相比,荧光分析法不具有更高的灵敏度。

(×)12. 荧光波长不同于激发波长,它不会受到激发光的影响。

(√)13.为了检测荧光信号,避免发射光谱的干扰,将原子荧光光谱仪的激发光源和原子化器置于与单色器和检测器成直角的位置。

(√)14. 原子荧光分析仪对原子化器的要求与原子吸收光谱仪基本相同。

(√)15. 原子荧光分析仪原子化器的位置对仪器的灵敏度、稳定性影响很大。

(√)16. 原子荧光测定时增大负高压和灯电流可以使灵敏度提高,但同时会使稳定性下降。

(√)17. 原子荧光测定时选择过大的灯电流不会缩短灯的寿命。

(×)18. 原子荧光分析仪原子化器的作用是将待测元素转化为原子蒸气。

(√)19. 荧光是一种光致发光现象,只有选择合适波长的激发光,才可能得到合适的荧光光谱。

(√)20. 在原子荧光光谱分析中,水样中的三价砷含量是由测得的总砷量减去五价砷量求得。

(×)21. 在原子荧光光谱分析中,硼氢化钾(钠)的浓度对砷的影响不大。

荧光分析法——精选推荐

荧光分析法——精选推荐

荧光分析法● 习题精选一、 选择题(其中1~6题为单选,7~10题为多选)1.下列化合物中荧光最强、发射波长最长的化合物是( )。

A.B.C.D.2.所谓荧光,即指某些物质经入射光照射后,吸收了入射光的能量,从而辐射出比入射光( )。

A. 波长长的光线;B. 波长短的光线;C. 能量大的光线;D. 频率高的光线3.单光束荧光分光光度计的光路图是( )。

A.B.C.D.4A. 1-氯丙烷;B. 1-溴丙烷;C. 1-碘丙烷;D. 1,2-二碘丙烷5.下列化合物荧光最强的是( );磷光最强的是( )。

Cl BrA B C D I6.下列化合物荧光量子产率最大的是( )AC DCOO H-COO O -O OH COO H O OHO O COO -O -O -7.下列说法正确的是( )A 荧光发射波长永远大于激发波长B 荧光发射波长永远小于激发波长C 荧光光谱形状与激发波长无关D 荧光光谱形状与激发波长有关8.荧光物质的荧光强度与该物质的浓度成线性关系的条件是( )A. 单色光;B. ECl ≤0.05;C. 入射光强度I 0一定;D. 样品池厚度一定9.下列化合物中可产生荧光的化合物是( )A BC DNN N N10.在相同条件下,荧光、延时荧光、磷光三者波长之间的关系为( )A. 荧光波长与延时荧光波长相等;B. 磷光波长比荧光波长、延时荧光波长长;C. 磷光波长与延时荧光波长相等;D. 磷光波长比荧光波长、延时荧光波长短二、填空题1.荧光寿命与延时荧光寿命相比,寿命短;荧光寿命与磷光寿命相比,寿命长;磷光寿命与延时荧光寿命相比,二者。

2.荧光光谱的形状与激发光谱的形状,常形成。

3.一般情况下,溶液的温度,溶液中荧光物质的荧光强度或荧光量子产率越高。

4.激发光谱的形状与光谱形状极为相似,所不同的只是。

5.荧光分光光度计中光源与检测器呈角度。

这是因为。

6.紫外分光光度计与荧光分光光度计的主要区别是(1)。

仪器分析习题课后答案

仪器分析习题课后答案
(3)由能级简并引起的概率权重称为统计权重;在磁场作用下,同一光谱支项会分裂成2J+1个不同的支能级,2J+1称为能级的简并度。
(4)由分子在振动能级间跃迁产生的光谱称为分子振动光谱;由分子在不同的转动能级间跃迁产生的光谱称为分子转动光谱。
(5)不符合光谱选择定则的跃迁叫禁戒跃迁;若两光谱项之间为禁戒跃迁,处于较高能级的原子具有较长的寿命,原子的这种状态称为亚稳态。
第五章 分子发光分析法
1.解释下列名词:
(1)振动弛豫; (2)内转化; (3)体系间窜跃; (4)荧光激发光谱;
(5)荧光发射光谱; (6)重原子效应; (7)猝灭效应。
答:(1)振动弛豫是在同一电子能级中,分子由较高振动能级向该电子态的最低振动能级的非辐射跃迁。(2)内转化是相同多重态的两个电子态之间的非辐射跃迁。
(6)用n、L、S、J四个量子数来表示的能量状态称为光谱项,符号为n2S1L;把J值不同的光谱项称为光谱支项,表示为n2S1LJ。
(7)荧光和磷光都是光致发光,是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,再由激发态回到基态而产生的二次辐射。荧光是由单重激发态向基态跃迁产生的光辐射,而磷光是单重激发态先过渡到三重激发态,再由三重激发态向基态跃迁而产生的光辐射。化学发光是化学反应物或反应产物受反应释放的化学能激发而产生的光辐射。
则ν=νC=C/λ1=3×108/2.79×10-7=1.08×1015s-1
则E=hv=6.62×10-34×1.08×1015=7.12×10-19J
E=hv=4.136×10-15×1.08×1015=4.47ev
答:л→л*跃迁的能量差为1.44×10-18J,合8.98ev;n→л*跃迁的能量差为7.12×10-19J,合4.47ev。

(完整版)荧光分析法习题参考答案

(完整版)荧光分析法习题参考答案

荧光分析法思考题和习题1.如何区别荧光、磷光、瑞利光和拉曼光?如何减少散射光对荧光测定的干扰?荧光:是某些物质吸收一定的紫外光或可见光后,基态分子跃迁到激发单线态的各个不同能级,然后经过振动弛豫回到第一激发态的最低振动能级,在发射光子后,分子跃迁回基态的各个不同振动能级。

这时分子发射的光称为荧光。

荧光的波长比原来照射的紫外光的波长更长。

磷光:是有些物质的激发分子通过振动弛豫下降到第一激发态的最低振动能层后,经过体系间跨越至激发三重态的高振动能层上,再通过振动弛豫降至三重态的最低振动能层,然后发出光辐射跃迁至基态的各个振动能层.这种光辐射称为磷光。

磷光的波长比荧光更长。

瑞利光:光子和物质分子发生弹性碰撞时.不发生能量的交换,仅是光子运动的方向发生改变,这种散射光叫做瑞利光,其波长和入射光相同。

拉曼光:光子和物质分子发生非弹性碰撞时,在光子运动方向发生改变的同时,光子与物质分子发生能量交换,使光于能量发生改变。

当光子将部分能量转给物质分子时,光子能量减少,波长比入射光更长;当光子从物质分子得到能量时,光子能量增加,波氏比入射光为短。

这两种光均称为拉曼光。

为了消除瑞利光散射的影响,荧光的测量通常在与激发光成直角的方向上进行,并通过调节荧光计的狭缝宽度来消除为消除拉曼光的影响可选择适当的溶剂和选用合适的激发光波长2.何谓荧光效率?具有哪些分子结构的物质有较高的荧光效率?荧光效率又称荧光量子效率,是物质发射荧光的量子数和所吸收的激发光量子数的比值称,用Ψf表示。

以下分子结构的物质有较高的荧光效率:(1)长共轭结构:如含有芳香环或杂环的物质。

(2)分子的刚性和共平面性:分子的刚性和共平面性越大,荧光效率就越大,并且荧光波长产生长移。

(3)取代基:能增加分子的π电子共轭程度的取代基,常使荧光效率提高,荧光长移,如-NH2、-OH、-OCH3、-CN等。

3.哪些因素会影响荧光波长和强度?(1)温度:物质的荧光随温度降低而增强。

分析化学试题

分析化学试题

紫外—可见吸收光谱是由于分子中价电子跃迁产生的
[参考答案] 正确
[我的答案]
三问答题
试题1 满分值:6.0分状态:未答实际得分:分
试题:
酚酞在酸性溶液中主要以上面结构I形式存在,在碱性溶液中主要以结构II存在,试解释为何酚酞在酸性溶液中呈无色而在碱性溶液中为红色?
[参考答案]
答:结构I 中,除有羰基C=O与苯环共轭外,分子中包括三个相互分开的小发色团苯环,对光的吸收较弱,其吸收几乎与一个苯环相当。

故无色,在II结构中,整个酚酞阴离子形成一个大的共轭体系,π电子活动能力大大增强,体系的跃迁能量大大降低,故其最大吸收波长发生红移,吸收强度增大,呈红色。

[我的答案]
试题:
由于重原于效应,下列化合物中荧光效率最低的是
碘苯
溴苯
氯苯

[参考答案] 碘苯
[我的答案]
试题2 满分值:2.0分状态:未答实际得分:分
试题:。

原子荧光光谱法考试题(1)

原子荧光光谱法考试题(1)

原子荧光光谱法培训考核试题单位:姓名:时间:得分:一、选择题(第1题—22题。

选择正确答案,将相应的字母填入题内相应的括号中。

每题2.5分,满分55分。

)1.原子荧光分析中,荧光类型有()热助线荧光和敏化原子荧光等。

A、共振荧光B、直跃线荧光C、阶跃线荧光D、共振荧光2.在以下说法中, 正确的是()。

A、原子荧光分析法是测量受激基态分子而产生原子荧光的方法B、原子荧光分析属于光激发C、原子荧光分析属于热激发D、原子荧光分析属于高能粒子互相碰撞而获得能量被激发3.原子化器的主要作用是()。

A、将试样中待测元素转化为基态原子B、将试样中待测元素转化为激发态原子C、将试样中待测元素转化为中性分子D、将试样中待测元素转化为离子4.在原子荧光法中, 多数情况下使用的是A、阶跃荧光B、直跃荧光C、敏化荧光D、共振荧光5.原子荧光的量子效率是指()A、激发态原子数与基态原子数之比B、入射总光强与吸收后的光强之比C、单位时间发射的光子数与单位时间吸收激发光的光子数之比D、原子化器中离子浓度与原子浓度之比6.下述哪种光谱法是基于发射原理?A、红外光谱法B、荧光光度法C、分光光度法D、核磁共振波谱法7.原子荧光光谱仪中,目前有()和()两类仪器。

A、色散系统B、非色散系统C、紫外检测器D、红外检测器8.七十年代末,由于()及各种高效原子化器的使用,AFS技术得到了较大发展。

A、高强度空心阴极灯B、激光器C、蠕动泵D、顺序自动进样器9.荧光猝灭的程度与()及()有关。

A、被测元素B、猝灭剂的种类C、灯电流D、载气流量10.在原子荧光分析中,原子浓度较高时容易发生(),它可使荧光信号变化和荧光谱线(),从而()峰值强度。

A、自吸B、变宽C、减少D、不变11.在原子荧光分析中,无论是连续光源或者线光源,光源强度越高,其测量线性工作范围()。

A、越宽B、越窄C、不变D、不确定12.原子荧光光谱仪的检测部分主要包括()。

A、分光系统B、光电转换装置C、放大系统D、输出装置13. 在原子荧光分析中,石英原子化器炉温过高会使()降低、()增高,但较高的炉温又有利于消除()干扰,所以应根据实际情况确定原子化温度。

(完整版)分子发光分析试卷..

(完整版)分子发光分析试卷..

分子发光分析中国·武汉 二O 一五 年 六 月应化1201杜云飞 2012310200117华中农业大学本科课程考试试卷考试课程与试卷类型:分子发光分析姓名:学年学期:2014-2015-2 学号:考试时间:班级:一、选择题(选出一个正确答案,将序号填写在【】里。

每小题1分,共12分。

)1.下列哪一项不是n→π*跃迁的最低激发单重态的性质【】A.是自旋禁阻的跃迁B.摩尔吸光系数小C.激发态寿命长D.S1到T1系间窜越的几率小2.下列哪一种分子的去激发过程是磷光过程? 【】A.分子从第一激发三重态的最低振动能级返回到基态B.分子从第二激发单重态的某个低振动能级过渡到第一激发单重态C.分子从第一激发单重态非辐射跃迁至三重态D. 分子从第一激发单重态的最低振动能级返回到基态3.荧光属于下列哪一种放光形式【】A.化学发光B.光致发光C.生物发光D.场致发光4.下列关于强荧光物质应具有的特征错误的是【】A.具有大的共轭π键结构B.具有刚性的平面结构C.取代基团为吸电子基团D.具有最低的单线电子激发态S1为π,π1*型5.喹啉在下列哪种介质中荧光强度最高【】A.乙醇B.甲醇C.水D.苯6.下列化合物磷光最强的是【】A.B.C.D.7.下列关于室温磷光法的说法错误的是【】A.固体基质室温磷光法所用的载体可以将分析物束缚在表面或基质中而增加其刚性B.胶束增稳的溶液室温磷光法利用了胶束对磷光团的约束力而减少了内转化和碰撞能量损失C.室温磷光法中分析物的磷光量子产率通常比低温磷光法中的高D.敏化溶液室温磷光法的分析物质本身并不发射磷光,而是引发受体发磷光8.分子荧光分析法比紫外-可见分光光度法的灵敏度高2~4个数量级的原因【】A.荧光物质的摩尔吸光系数大;提高激发光的强度可以提高荧光的强度B.荧光信号是在暗背景下测量的;提高激发光的强度可以提高荧光的强度C.荧光发射的量子产率高;荧光物质的摩尔吸光系数大D.荧光发射的量子产率高;9.在分子荧光分析法中,下面说法正确的是【】A.荧光发射光谱不随激发波长的变化而改变B.荧光发射光谱要随激发波长的变化而改变C.荧光激发光谱与它的紫外-可见吸收光谱互为镜像对称关系D.荧光发射光谱与它的紫外-可见吸收光谱形状相似且波长位置也一样10.在分子荧光测量中,要使荧光强度正比于荧光物质的浓度,必要的条件是什么?【】A.用高灵敏度的检测器B.在稀溶液中测量C.在最大摩尔吸光系数下测量D.在最大量子产率下测量11. Which factor has no effect on the fluorescence quantum yield molecule?【】A.molecular structureB.the presence of heavy atomsC.the concentration of the solutionD.the temperature of solution12.Which of the following group can enhance fluorescence intensity ?【】A.—NH2B.—COOHC.—NO2D.—NO二、判断正误题(正确打“√”,错误打“×”,将答案填写在【】内。

荧光分析法测定B2(wu)

荧光分析法测定B2(wu)

磷光光谱
200
260 320 380 440 500 560 室温下菲的乙醇溶液荧(磷)光光谱
620
3.激发光谱与发射光谱的关系
a.Stokes位移 激发光谱与发射光谱之间的波长差值。发射光谱的波长比 激发光谱的长,振动弛豫消耗了能量。 b.发射光谱的形状与激发波长无关 电子跃迁到不同激发态能级,吸收不同波长的能量 ( 如能级
2. 导数荧光测定法
自从二十世纪50年代初期导数光谱技术应用于分光光度测
定之后,使分光光度法的选择性得到很大的改善。直到 1974年,导数技术才引进到荧光分析,在解决荧光测定中 的背景干扰和谱带重叠问题上收到良好的效果,已被证明 是一种提高荧光分析选择性的有效手段。导数荧光测定法
的基本原理与分光光度法类似
(=0)
芴(=1)与联苯(
=0.18)。
(4)取代基: 给电子取代基增强荧光(p-共轭),如OH、-OR、-NH2、-CN、NR2等; 吸电子基降低荧光, 如 -COOH、-C=O、 -NO2、-NO、-X等;如苯环被卤素取 代,从氟苯到碘苯,荧光逐渐减弱到消失
(5)溶剂效应: 溶剂极性可增加或降低荧光强度(改变

可提供包括激发光谱、发射光谱和三维光谱以及荧光强度、荧光效 率、荧光寿命等多种物理参数。这些参数反映了分子的各种特性,能 从不同角度提供研究对象的分子的信息。 荧光分析法的缺点是应用还不够广泛,这是因为本身能发射荧光的
物质相对较少,用加入某种试剂使非荧光物质转化为荧光物质来进行
分析,其数量也还不多。此外,荧光分析的灵敏度高,测定时对环境 因素较为敏感,干扰因素较多。
在现代的高级仪器中,光导摄象管用来作为光学多道分析器
(简称OMA)的检测器。它具有检测效率高、动态范围宽、 线性响应好、坚固耐用和寿命长等优点。它的检测灵敏度虽不
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

荧光分析法
思考题和习题
1.如何区别荧光、磷光、瑞利光和拉曼光?如何减少散射光对荧光测定的干扰?
荧光:是某些物质吸收一定的紫外光或可见光后,基态分子跃迁到激发单线态的各个不同能级,然后经过振动弛豫回到第一激发态的最低振动能级,在发射光子后,分子跃迁回基态的各个不同振动能级。

这时分子发射的光称为荧光。

荧光的波长比原来照射的紫外光的波长更长。

磷光:是有些物质的激发分子通过振动弛豫下降到第一激发态的最低振动能层后,经过体系间跨越至激发三重态的高振动能层上,再通过振动弛豫降至三重态的最低振动能层,然后发出光辐射跃迁至基态的各个振动能层.这种光辐射称为磷光。

磷光的波长比荧光更长。

瑞利光:光子和物质分子发生弹性碰撞时.不发生能量的交换,仅是光子运动的方向发生改变,这种散射光叫做瑞利光,其波长和入射光相同。

拉曼光:光子和物质分子发生非弹性碰撞时,在光子运动方向发生改变的同时,光子与物质分子发生能量交换,使光于能量发生改变。

当光子将部分能量转给物质分子时,光子能量减少,波长比入射光更长;当光子从物质分子得到能量时,光子能量增加,波氏比入射光为短。

这两种光均称为拉曼光。

为了消除瑞利光散射的影响,荧光的测量通常在与激发光成直角的方向上进行,并通过调节荧光计的狭缝宽度来消除
为消除拉曼光的影响可选择适当的溶剂和选用合适的激发光波长
2.何谓荧光效率?具有哪些分子结构的物质有较高的荧光效率?
荧光效率又称荧光量子效率,是物质发射荧光的量子数和所吸收的激发光量子数的比值称,用Ψf表示。

以下分子结构的物质有较高的荧光效率:
(1)长共轭结构:如含有芳香环或杂环的物质。

(2)分子的刚性和共平面性:分子的刚性和共平面性越大,荧光效率就越大,并且荧光波长产生长移。

(3)取代基:能增加分子的π电子共轭程度的取代基,常使荧光效率提高,荧光长移,如-NH2、-OH、-OCH3、-CN等。

3.哪些因素会影响荧光波长和强度?
(1)温度:物质的荧光随温度降低而增强。

(2)溶剂:一般情况下,荧光波长随着溶剂极性的增大而长移,荧光强度也有增强。

溶剂如能与溶质分子形成稳定氢键,荧光强度减弱。

(3)pH:荧光物质本身是弱酸或弱碱时,溶液的pH对该荧光物质的荧光强度有较大影响。

(4)荧光熄灭剂:荧光熄灭是指荧光物质分子与溶剂分子或溶质分子的相互作用引起荧光强度降低或荧光强度与浓度不呈线性关系的现象。

(5)散射光的干扰:包括瑞利光和拉曼光对荧光测定有干扰。

4.请设计两种方法测定溶液Al3+的含量。

(一种化学分析方法,一种仪器分析方法)
配位滴定:利用铝与EDTA的配位反应进行滴定分析,因铝与EDTA的反应速率比较缓慢,而且铝对指示剂有封蔽作用,因此铝的测定一般用EDTA作为标准溶液,返滴定法或置换滴定法测定。

仪器分析法:利作铝离子与有机试剂如桑色素组成能发荧光的配合物,通过检测配合物的荧光强度以来测定铝离子的含量。

另可采用原子吸收分光光度法或原子发射光谱法进行测定。

5.一个溶液的吸光度为0.035,试计算式(12∙5)括号中第二项与第一项之比。

0403.0)035.03.2(2
)035.03.2(3.2!2)3.2(2
2=⨯÷⨯-=÷-ECl ECl
6.用荧光法测定复方炔诺酮片中炔雌醇的含量时,取供试品20片(每片含炔诺酮应为0.540.66mg ,含炔雌醇应为31.5~38.5μg ),研细溶于无水乙醇中,稀释至250ml ,滤过,取滤液5ml ,稀释至10ml ,在激发波长285nm 和发射波长307nm 处测定荧光强度。

如炔雌醇对照品的乙醇溶液(1.4μg/ml )在同样测定条件下荧光强度为65,则合格片的荧光读数应在什么范围内? (58.5~71.5)
测定液中炔雌醇的浓度范围在
之间应在得合格片的荧光计计数由计数为的对照品溶液的荧光计之间为合格
即5.71~5.58,65
/4.1/54.1~26.1:105250205.38~105250205.31s
x s x C C F F ml g ml g ml
ml ml g ml ml ml g =⨯⨯⨯⨯μμμμ
7.1.00g 谷物制品试样,用酸处理后分离出VB 2及少量无关杂质,加入少量KMnO 4,将VB 2氧化,过量的KMnO 4用H 2O 2除去。

将此溶液移入50ml 量瓶,稀释至刻度。

吸取25ml 放入样品池中以测定荧光强度(VB 2中常含有发生荧光的杂质叫光化黄)。

事先将荧光计用硫酸奎宁调至刻度100处。

测得氧化液的读数为6.0。

加入少量连二亚硫酸钠(Na 2S 2O 4),使氧化态VB 2(无荧光)重新转化为VB 2,这时荧光计读数为55。

在另一样品池中重新加入24ml 被氧化的VB 2溶液,以及1ml VB 2标准溶液(0.5μg/ml ),这一溶液的读数为92,计算试样中VB 2的含量。

(0.5698μg/g )
25ml 氧化液的荧光计数为6.0,相当于空白背景;测定液的荧光计数为55,其中VB 2的荧光为55-6.0=49 24ml 氧化液+ 1ml VB 2标准溶液的荧光读数为92,其中VB 2标准溶液(0.5μg/ml )的荧光读数为92-6=86, 则25ml 测定液中含VB 2 0.5×49/86 = 0.2849 (μg )
故谷物中含VB 2 0.2849×50/25 = 0.5698 (μg/g )。

相关文档
最新文档