高中数学圆锥曲线知识点的总结
高中数学圆锥曲线知识点总结5篇
高中数学圆锥曲线知识点总结5篇高中数学圆锥曲线知识点总结5篇教育的现代化和大众化是推进知识普及和人才培养的重要策略。
科学科研的公正性和透明度是科研活动的重要保障。
下面就让小编给大家带来高中数学圆锥曲线知识点总结,希望大家喜欢!高中数学圆锥曲线知识点总结11、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x ,y+y )。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x ,y ) 则 a-b=(x-x ,y-y ).3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ 0时,λa与a同方向;当λ 0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上伸长为原来的∣λ∣倍;当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。
② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
(完整版)高中数学圆锥曲线知识点总结
高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数是离心率用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。
则椭圆的各性质(除切线外)均可在这个图中找到。
3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。
高中数学圆锥曲线方程知识点总结.
中心原点 O(0,0)(a,0, (─a,0, (0,b , (0,─b x 轴,y 轴;长轴长 2a,短轴长 2b 原点 O(0,0)顶点(a,0, (─a,0 (0,0 对称轴 x 轴,y 轴; 实轴长 2a, 虚轴长 2b. x轴
焦点F1(c,0, F2(─c,0 F1(c,0, F2(─c,0 p F ( ,0 2 p 2 x=± 准线 a2 c x=± a2 c x=- 准线垂直于长轴,且在椭圆外. 焦距 2c () 2 2 准线垂直于实轴,且在两顶点
的内侧. 2c () 2 2 准线与焦点位于顶点两侧,且到顶点的距离相等. 离心率【备注 1】双曲线:(1)等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率 e (2)共渐近线的双曲线系方程:为的渐近线方程为如果双曲线的渐近线 x2 y2 时,它的双曲线方程可设为【备注 2】抛物线:(1)设抛物线的标准方程为 y =2px(p>0,则抛物线的焦点到其顶点的距离为离 p ,焦点到准线的距离为 p.
2 2 p ,顶点到准线的距 2 (2)已知过抛物线 y =2px(p>0焦点的直线交抛物线于
A、B 两点,则线段 AB 称为焦点弦,设 A(x1,y1,B(x2,y2,则弦长
+p 或为直线 AB 的倾斜角, y,
叫做焦半径
弦长公式:。
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
一、圆锥曲线的基本概念
1、圆锥曲线:平面内以圆为母线的曲线,又称为圆锥线,是数学上的一类曲线。
2、离心率:圆锥曲线的离心率是有两个参数确定的:它们是焦距a和准线焦距c。
3、双曲线:双曲线是一类特殊的圆锥曲线,a>0, c>0时,它概括了圆锥曲线的一般情况,称为双曲线。
二、圆锥曲线的性质
1、改变离心率可以改变圆锥曲线的形状,当离心率大于1时,曲线呈双曲线,当离心率小于1时,曲线呈凹凸线;
2、圆锥曲线的焦点与顶点之间的距离是两个焦距的和,a+c;
3、圆锥曲线的切线方程的斜率是1/(a+c);
4、圆锥曲线的半矢量的方向是以焦点为圆心,从焦距a出发的方向;
5、圆锥曲线的曲率半径是2a+c;
6、圆锥曲线的弧长是一定积分的表达式,是确定的;
7、圆锥曲线的曲线方程是确定的,但极坐标表示法有两种形式,要根据离心率来确定;
三、圆锥曲线的应用
1、圆锥曲线的应用着重于机械设计领域,如齿轮的设计和制造;
2、圆锥曲线的半径可以用于圆弧的求解和曲线的精度检验;
3、圆锥曲线的弧长可以用于求解同轴运动的轮毂的周长;
4、圆锥曲线的曲线方程可以用于二维图形的绘制;
5、圆锥曲线的曲线方程可以用于求解曲面曲线的面积和表面积;
6、圆锥曲线的曲线方程可以用于求解椭圆锥曲线的主曲线参数,以求解椭球面的曲线参数;
7、圆锥曲线的曲率半径可以用于求解圆的曲率半径参数;
8、圆锥曲线的切线可以用于求解圆弧的切线参数;
9、圆锥曲线的球面可以用于求解曲面的曲率方向;
10、圆锥曲线的曲线可以用于运动学分析和机器学习算法中的运动路径规划。
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结一、椭圆1.平面内与两个定点 , 的距离之和等于常数(大于 )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点, 两焦点的距离称为椭圆的焦距.2.椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<二、双曲线1.平面内与两个定点 , 的距离之差的绝对值等于常数(小于 )的点的轨迹称为双曲线. 即: 。
这两个定点称为双曲线的焦点, 两焦点的距离称为双曲线的焦距.2.双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 或 ,或 ,顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性关于 轴、 轴对称, 关于原点中心对称离心率()2211c b e e a a==+>渐近线方程b y x a=±a y x b=±3.等轴双曲线: 双曲线 称为等轴双曲线, 其渐近线方程为 , 离心率 . 4、共渐近线的双曲线系方程:三、抛物线1.平面内与一个定点 和一条定直线 的距离相等的点的轨迹称为抛物线. 定点 称为抛物线的焦点, 定直线 称为抛物线的准线.2.抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率 1e =范围0x ≥ 0x ≤0y ≥ 0y ≤3.过抛物线的焦点作垂直于对称轴且交抛物线于 、 两点的线段 , 称为抛物线的“通径”, 即 .4.焦半径公式:若点 在抛物线 上, 焦点为 , 则 ; 若点 在抛物线 上, 焦点为 , 则 ; 5、焦点弦: = +p四、圆1.定义: 点集{M ||OM |=r }, 其中定点O 为圆心, 定长r 为半径.2.方程: (1)标准方程: 圆心在c(a,b), 半径为r 的圆方程是(x-a)2+(y-b)2=r2圆心在坐标原点, 半径为r 的圆方程是x2+y2=r2(2)一般方程: ①当D2+E2-4F >0时, 一元二次方程x2+y2+Dx+Ey+F=0叫做圆的一般方程, 圆心为 半径是 。
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结专题一:椭圆一、椭圆的定义平面内到两定点21,F F 的距离的和为常数(大于21F F )的动点的轨迹叫椭圆。
即a MF MF 221=+当2a ﹥2c 时,轨迹是椭当2a =2c 时,轨迹是一条线段21F F ,当2a ﹤2c 时,轨迹不存在。
椭圆的几何性质:222b c a +=(符合勾股定理的结构)【补充】过焦点做垂直与实轴且交椭圆的线段叫通径,通径的一半为ab 2专题二:双曲线知识点:1、双曲线的概念:平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线。
即a MF MF 221=- 当2a ﹤2c 时,轨迹是双曲线 当2a =2c 时,轨迹是两条射线 当2a ﹥2c 时,轨迹不存在【注】有绝对值时是两支,不含绝对值时仅一支. 2、双曲线的标准方程及几何性质:【注】焦点到渐近线的距离为b ;通径为ab 22。
3、常见双曲线的设法:(1)已知b a =的双曲线设为)0(22≠=-λλy x ; (2)已知过两点的双曲线可设为)0(122<=+AB By Ax ;(3)已知渐近线0=±nym x 的双曲线方程可设为)0(2222≠=-λλn y m x .4、两种特殊的双曲线:(1)实轴和虚轴等长的双曲线称为等轴双曲线.等轴双曲线的离心率为2.(2)双曲线()222210,0x y a b a b-=>>的共轭双曲线方程为12222=-a x b y ,它们有共同的渐近线为x aby ±=,它们的离心率21,e e 满足的关系式为1112221=+e e . 5、焦点三角形:设若双曲线方程为,F 1,F 2分别为它的左右焦点,P 为双曲线上任意一点,则有:若则2tan221θb S PF F =∆;特别地,当时,有。
6、直线与双曲线的位置关系:(注意直线与渐近线平行)思考:平面内任一点P 作直线与双曲线只有一个交点,这样的直线有几条? 几何方法:1、若P 在双曲线内,有2条(分别与渐近线平行);2、若P 在双曲线上,有3条(与渐近线平行的有两条,切线一条);3、若P 在双曲线外:①若P 在渐近线上且P 为原点时,0条;2222x y 1a b-=12FP F ,∠=θ12F P F 90∠=o122FPF S b =V 22221(0,0)x ya b a b-=>>②若P 在渐近线上且P 不为原点时,2条(与另一渐近线平行的一条,切线一条);③若P 不在渐近线上,有4条(与渐近线平行的有两条,切线两条); 代数方法:通过对直线方程与双曲线方程组成的一元二次方程组的求解来讨论它们的位置关系。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
掌握圆锥曲线的相关知识对于解决数学问题和理解数学的应用具有重要意义。
一、椭圆1、定义平面内与两个定点 F1、F2 的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。
2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
(2)焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。
3、椭圆的性质(1)对称性:椭圆关于 x 轴、y 轴和原点对称。
(2)范围:\(a \leq x \leq a\),\(b \leq y \leq b\)。
点为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点为\((0, \pm a)\),\((\pm b, 0)\)。
(4)离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e < 1\)),它反映了椭圆的扁平程度,\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。
二、双曲线1、定义平面内与两个定点 F1、F2 的距离之差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。
2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} =1\),其中\(a\)为实半轴长,\(b\)为虚半轴长,\(c\)为半焦距,满足\(c^2 = a^2 + b^2\)。
(2)焦点在 y 轴上:\(\frac{y^2}{a^2} \frac{x^2}{b^2} =1\)。
高中数学圆锥曲线知识点总结及公式大全
高中数学圆锥曲线知识点总结及公式大全一、圆锥曲线的基本概念圆锥曲线包括椭圆、双曲线和抛物线,它们是高中数学中重要的知识点之一。
圆锥曲线是由平面与圆锥的交线所形成的曲线,其基本概念包括焦点、准线和离心率等。
1. 焦点:圆锥曲线的焦点是到曲线的两个顶点距离相等的点,焦点到曲线的顶点的距离称为焦距。
椭圆和双曲线的焦点位于其对称轴上,而抛物线的焦点则位于其准轴上。
2. 准线:圆锥曲线的准线是与焦点垂直的直线,准线与曲线有两个交点。
在椭圆和双曲线中,准线是与主轴垂直的直线,而在抛物线中,准线是与主轴平行的直线。
3. 离心率:圆锥曲线的离心率是焦点到顶点的距离与准线到顶点的距离之比,离心率的大小可以反映曲线的形状。
椭圆的离心率在0和1之间,双曲线的离心率大于1,抛物线的离心率等于1。
二、圆锥曲线的公式1. 椭圆的标准方程及性质标准方程:$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ (a>b>0)性质:椭圆的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。
2. 双曲线的标准方程及性质标准方程:$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =1$ (a>0, b>0)性质:双曲线的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。
3. 抛物线的标准方程及性质标准方程:$y^{2} = 2px$ ($p > 0$)或$x^{2} = 2py$ ($p > 0$) 性质:抛物线的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。
三、圆锥曲线的应用1. 椭圆的应用:椭圆在光学、机械、工程等领域有着广泛的应用。
例如,椭圆镜片可以纠正近视和远视,椭圆形状的机械零件可以减少振动和提高稳定性。
2. 双曲线应用:双曲线在热学、光学、工程等领域有着广泛的应用。
例如,双曲线冷却塔可以优化散热效果,双曲线形状的桥梁可以增强承受能力。
高中数学圆锥曲线知识点总结
高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。
两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。
二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2 (2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(E D--半径是2422FE D -+。
配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E)2=44F-E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E); ③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。
高中数学中的圆锥曲线知识点总结
高中数学中的圆锥曲线知识点总结圆锥曲线是高中数学中重要的几何概念之一,包括椭圆、双曲线和抛物线。
在本文中,我们将对这些圆锥曲线的基本概念、性质和相关公式进行总结。
一、椭圆1. 概念:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点的轨迹。
2. 基本性质:- 长轴和短轴:椭圆的两个焦点F1和F2之间的距离为2c,椭圆的长轴为2a,短轴为2b,有关系式c^2 = a^2 - b^2。
- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。
椭圆的离心率小于1。
- 焦点与定点关系:椭圆上的任意一点P到两个焦点F1和F2的距离之和等于常数2a,即PF1 + PF2 = 2a。
- 弦与切线性质:椭圆上任意一条弦与该点处的切线垂直。
3. 相关公式:- 椭圆标准方程:(x^2)/(a^2) + (y^2)/(b^2) = 1 或 (y^2)/(a^2) +(x^2)/(b^2) = 1(其中a > b)。
- 焦点坐标公式:F1(-c,0),F2(c,0)。
- 离心率公式:e = c/a。
- 曲率半径:任意一点P在椭圆上的曲率半径为a^2/b。
二、双曲线1. 概念:双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点的轨迹。
2. 基本性质:- 长轴和短轴:双曲线的两个焦点F1和F2之间的距离为2c,双曲线的长轴为2a,短轴为2b,有关系式c^2 = a^2 + b^2。
- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。
双曲线的离心率大于1。
- 焦点与定点关系:双曲线上的任意一点P到两个焦点F1和F2的距离之差等于常数2a,即|PF1 - PF2| = 2a。
- 弦与切线性质:双曲线上任意一条弦与该点处的切线垂直。
3. 相关公式:- 双曲线标准方程:(x^2)/(a^2) - (y^2)/(b^2) = 1 或 (y^2)/(a^2) -(x^2)/(b^2) = 1(其中a > b)。
高中数学第八章圆锥曲线知识点
高中数学第八章圆锥曲线知识点第八章圆锥曲线是高中数学的一个重要章节,本章内容涵盖了圆锥曲线的基本定义、性质和相关的解题方法。
在本文档中,我们将详细介绍圆锥曲线的相关知识点,帮助同学们更好地理解和掌握这一部分内容。
一、圆锥曲线的基本定义1. 圆锥曲线的定义圆锥曲线是由一个固定点(焦点)和一个动点(在直线上移动)确定的几何图形。
根据焦点的位置和直线与曲线的交点情况,圆锥曲线分为椭圆、双曲线和抛物线三种情况。
2. 椭圆的定义椭圆是平面上与两个固定点的距离之和等于常数的点(焦点),构成的几何图形。
3. 双曲线的定义双曲线是平面上与两个固定点的距离之差等于常数的点(焦点),构成的几何图形。
4. 抛物线的定义抛物线是平面上与一个固定点的距离等于另一个固定点到直线的距离,构成的几何图形。
二、圆锥曲线的性质1. 椭圆的性质椭圆的离心率小于1,焦点在椭圆的内部。
椭圆有两个主轴,相互垂直,长度分别为2a和2b,其中2a是椭圆的长轴,2b是椭圆的短轴。
椭圆的面积为πab。
2. 双曲线的性质双曲线的离心率大于1,焦点在双曲线的外部。
双曲线有两个虚轴和两条实轴,相互垂直。
双曲线的面积无限大。
3. 抛物线的性质抛物线的离心率等于1,焦点在抛物线的内部。
抛物线有一个对称轴,与焦点和顶点的距离相等。
抛物线的面积为2/3 × a × h,其中a是焦点到顶点的距离,h是对称轴的长度。
三、圆锥曲线的解题方法1. 椭圆的解题方法(1)求解椭圆的标准方程,确定椭圆的中心、长轴和短轴;(2)求解椭圆的焦点和离心率;(3)利用椭圆的性质解题,例如求点到椭圆的距离或求椭圆上一点的坐标。
2. 双曲线的解题方法(1)求解双曲线的标准方程,确定双曲线的中心、虚轴和实轴;(2)求解双曲线的焦点和离心率;(3)利用双曲线的性质解题,例如求点到双曲线的距离或求双曲线上一点的坐标。
3. 抛物线的解题方法(1)求解抛物线的标准方程,确定抛物线的顶点、对称轴和焦点;(2)利用抛物线的性质解题,例如求点到抛物线的距离或求抛物线上一点的坐标。
高中数学圆锥曲线知识点总结
圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点、的距离的和等于常数2(大于)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。
若为椭圆上任意一点,则有。
椭圆的标准方程为:()(焦点在x轴上)或()(焦点在y轴上)。
注:①以上方程中的大小,其中;②在和两个方程中都有的条件,要分清焦点的位置,只要看和的分母的大小。
例如椭圆(,,)当时表示焦点在轴上的椭圆;当时表示焦点在轴上的椭圆。
(2)椭圆的性质①范围:由标准方程知,,说明椭圆位于直线,所围成的矩形里;②对称性:在曲线方程里,若以代替方程不变,所以若点在曲线上时,点也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲线关于轴对称。
若同时以代替,代替方程也不变,则曲线关于原点对称。
所以,椭圆关于轴、轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标。
在椭圆的标准方程中,令,得,则,是椭圆与轴的两个交点。
同理令得,即,是椭圆与轴的两个交点。
所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。
同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长。
由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,,,,且,即;④离心率:椭圆的焦距与长轴的比叫椭圆的离心率。
∵,∴,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。
当且仅当时,,两焦点重合,图形变为圆,方程为。
2.双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线()。
注意:①式中是差的绝对值,在条件下;时为双曲线的一支;时为双曲线的另一支(含的一支);②当时,表示两条射线;③当时,不表示任何图形;④两定点叫做双曲线的焦点,叫做焦距。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。
在高中数学课程中,学习圆锥曲线是必不可少的。
本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。
一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。
二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
3. 抛物线:抛物线的基本方程为:$y^2=2px$。
其中,p为抛物线的焦距。
三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。
双曲线还具有渐近线,即曲线趋近于两根直线。
2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。
此外,椭圆也具有主轴、短轴和焦距等重要概念。
3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。
四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。
2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。
例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。
3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。
例如自由落体运动、射击运动以及卫星的发射轨道等。
综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。
在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。
希望本文对你对圆锥曲线的学习有所帮助。
圆锥曲线重点知识点总结
圆锥曲线重点知识点总结圆锥曲线是高中数学中一个重要的内容,是解析几何的重点之一。
在学习圆锥曲线时,我们需要掌握一些重要的知识点。
本文将对圆锥曲线的基本概念、方程与性质进行总结。
一、圆锥曲线的基本概念圆锥曲线是由切割一个锥体的过程中所得到的曲线。
根据切割方式的不同,圆锥曲线可分为三类:椭圆、双曲线和抛物线。
1. 椭圆:通过一点F(焦点)到平面上任意一点P的距离之和恒定的点集所构成的曲线称为椭圆。
这个常数称为椭圆的焦距,用c表示。
椭圆还有一个重要的性质是焦点与准线之间的距离等于准线两焦点距离的一半。
2. 双曲线:通过一点F到平面上任意一点P的距离之差恒定的点集所构成的曲线称为双曲线。
这个常数称为双曲线的离心率,用e表示。
双曲线还有一个重要的性质是焦点与准线之间的距离等于准线两焦点距离的一半。
3. 抛物线:通过平面上任意一点P到一个定点F的距离等于点P到一条直线l的距离的点集所构成的曲线称为抛物线。
二、圆锥曲线的方程在解析几何中,我们常常使用方程描述曲线。
圆锥曲线的方程可以用多种形式表示,例如标准方程、一般方程和参数方程等。
1. 椭圆的方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1 (a > b > 0),其中a和b分别代表椭圆的长半轴和短半轴。
2. 双曲线的方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1 (a > 0,b > 0),其中a和b分别代表双曲线的距离焦点的距离和离心率。
3. 抛物线的方程:抛物线的标准方程为y^2 = 2px,其中p为抛物线的焦距。
三、圆锥曲线的性质掌握圆锥曲线的性质对于解析几何的问题求解非常重要。
1. 椭圆的性质:a) 椭圆的离心率满足0<e<1,离心率越小,椭圆越圆。
b) 长半轴和短半轴的长度之间的关系是a>b。
c) 椭圆的离心率e满足等于c/a(其中c代表焦距)。
2. 双曲线的性质:a) 双曲线的离心率满足e>1,离心率越大,双曲线越开口。
高中数学圆锥曲线知识点总结
高中数学中,圆锥曲线是重要的内容之一。
以下是对圆锥曲线的知识点进行总结:1. 圆锥曲线的定义:圆锥曲线是在平面上由一个固定点(焦点)和一个到该点的固定距离之比(离心率)确定的曲线。
2. 椭圆:-定义:椭圆是所有到两个焦点的距离之和等于常数的点的集合。
-基本方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表椭圆的半长轴和半短轴。
-离心率:$e=\frac{\sqrt{a^2-b^2}}{a}$,离心率满足$0<e<1$。
3. 双曲线:-定义:双曲线是所有到两个焦点的距离之差的绝对值等于常数的点的集合。
-基本方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表双曲线的半长轴和半短轴。
-离心率:$e=\frac{\sqrt{a^2+b^2}}{a}$,离心率满足$e>1$。
4. 抛物线:-定义:抛物线是所有到一个焦点的距离等于到直线(准线)的距离的点的集合。
-基本方程:$y^2=4ax$,其中$a$为抛物线的焦点到准线的距离的一半。
5. 圆:-定义:圆是到一个固定点的距离等于常数的点的集合。
-基本方程:$(x-h)^2+(y-k)^2=r^2$,其中$(h,k)$为圆心的坐标,$r$为半径的长度。
6. 圆锥曲线的性质:-焦点和准线:椭圆和双曲线有两个焦点和一条准线,抛物线有一个焦点和一条准线,圆只有一个焦点和没有准线。
-对称性:椭圆和双曲线关于$x$轴、$y$轴对称,抛物线关于$y$轴对称。
-焦点与离心率的关系:椭圆和双曲线的离心率小于1,抛物线的离心率等于1,圆的离心率为0。
-焦点与直径的关系:椭圆和双曲线的焦点在直径上,抛物线的焦点在对称轴上。
7. 焦点和准线的性质:-椭圆和双曲线:对于椭圆和双曲线,焦点到准线的距离等于焦点到曲线上任意点的距离之差的一半。
同时,准线也是曲线的对称轴。
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结高中数学圆锥曲线知识点总结一、基本概念1、圆锥曲线:圆锥曲线是由一系列圆及其与它们的共轭切面围成的曲线,也可以看作是由一条曲线以及一个光滑曲面所围成的曲线空间。
2、圆弧:圆弧是曲线上一定角度范围内的闭合曲线,实际中常用于表示圆的片段。
3、渐开线:渐开线是由来自同一个圆的两个圆弧构成的弧线,渐开线的共轭切面是一条直线,而此直线又可在空间上做一个新的圆锥曲线。
二、圆锥曲线的性质1、圆锥曲线的曲线部分是由圆弧和渐开线组成的,曲线上每个点都是圆切弧上的一个点;2、圆锥曲线的表面部分是一个椭圆锥曲面,其参数方程由三个椭圆锥参数函数组成,其积分可以计算出圆锥曲面上的面积;3、点P(x,y,z)在圆锥曲线上,则其有连续的x,y,z三个坐标参数,并且满足圆锥曲线的参数方程;4、圆锥曲线的曲线部分是椭圆锥曲线,并且任一点在曲线上的切线方向都是一致的;5、圆锥曲线的曲线与曲面的连接,是一条中间缝合曲线,即渐开线,渐开线也可以看作是空间曲线上的锥面的交线。
6、圆锥曲线的曲线部分与表面部分的连接,是一条中间缝合曲线,被称为椭圆锥曲线,椭圆锥曲线也是一条空间曲线上的椭圆锥面的交线。
7、圆锥曲线的曲线部分与表面部分之间的交点的曲线,也被称为椭圆锥曲线,它也可以看作是圆锥曲线上的椭圆锥线的交点的曲线。
三、圆锥曲线的应用1、圆锥曲线在建筑学上常用于建造拱顶、圆顶、屋顶等,这些曲线具有很好的象征性;2、圆锥曲线在航空和航天工程上常用于设计飞机、火箭的运动轨迹;3、圆锥曲线在汽车制造上常用于设计汽车的底盘,以实现更好的操控性能;4、圆锥曲线在计算机渲染上常用于设计三维物体,以获得更加逼真的渲染效果;5、圆锥曲线在绘画上常用于创作凹凸有致的曲线,以实现更加自然的线条。
总之,圆锥曲线是一种非常有用的曲线,它在不同领域有着广泛的应用。
高中数学_圆锥曲线知识点小结
高中数学_圆锥曲线知识点小结《圆锥曲线》知识点小结一、椭圆:(1)椭圆的定义:平面内与两个定点F1,F2的距离的和等于常数(大于|其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意:2a |F1F2|表示椭圆;2a |F1F2|表示线段F1F2;2a |F1F2|没有轨迹;(2F1F2|)的点的轨迹。
22xy3.常用结论:(1)椭圆1(a b 0)的两个焦点为F1,F2,过F1的直线交椭圆于A,B两a2b2点,则ABF2的周长= (2)设椭圆x2y22 1(a b 0)左、右两个焦点为F1,F2,过F1且垂直于对称轴的直线2ab交椭圆于P,Q两点,则P,Q的坐标分别是|PQ|二、双曲线:(1)双曲线的定义:平面内与两个定点F1,F2|迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意:|F1F2|PF1| |PF2| 2a与|PF2| |PF1| 2a(2a |F1F2|)表示双曲线的一支。
2a |F1F2|表示两条射线;2a |F1F2|没有轨迹;(2)双曲线的标准方程、图象及几何性质:标准方程中心在原点,焦点在x轴上中心在原点,焦点在y轴上x2y21(a 0,b 0) a2b2y2x22 1(a 0,b 0) 2ab图形B1(0, a),B2(0,a)顶点对称轴焦点焦距离心率渐近线通径(3)双曲线的渐近线:A1( a,0),A2(a,0)x轴,y轴;虚轴为2b,实轴为2aF1( c,0),F2(c,0)|F1F2| 2c(c 0) ceF1(0, c),F2(0,c)a2 b2c(e 1)(离心率越大,开口越大)aybx a2b2 ayax b2222①求双曲线x y 1的渐近线,可令其右边的1为0,即得x y 0,因式分解得到x y 0。
aba2b2a2b2x2y2x2y2②与双曲线2 2 1共渐近线的双曲线系方程是2 ;2ab(4)等轴双曲线为x2y2 t2,其离心率为yx(4)常用结论:(1)双曲线2 1(a 0,b 0)的两个焦点为F1,F2,过F1的直线交双曲线的2ab同一支于A,B两点,则ABF2的周长x2y22 1(a 0,b 0)左、右两个焦点为F1,F2,过F1且垂直于对称轴的2ab(2)设双曲线直线交双曲线于P,Q两点,则P,Q的坐标分别是|三、抛物线:PQ|(1)抛物线的定义:平面内与一个定点的距离和一条定直线的距离相等的点的轨迹。
高中数学圆锥曲线总结
数学圆锥曲线总结1、圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值”与<|F F|不可忽视。
若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
Attention:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。
4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
(2)(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;⑥两条渐近线:。
(3)抛物线(以为例):①范围:;②焦点:一个焦点,其中的几何意义是:焦点到准线的距离;③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线;⑤离心率:,抛物线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学知识点大全—圆锥曲线
一、考点(限考)概要:
1、椭圆:
(1)轨迹定义:
①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:
;
②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:;
(2)标准方程和性质:
注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
(3)参数方程:(θ为参数);
3、双曲线:
(1)轨迹定义:
①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:
②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:
(2)标准方程和性质:
注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
4、抛物线:
(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为
:
(2)标准方程和性质:
①焦点坐标的符号与方程符号一致,与准线方程的符号相反;
②标准方程中一次项的字母与对称轴和准线方程的字母一致;
③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;
二、复习点睛:
1、平面解析几何的知识结构:
2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。
则椭圆的各性质(除切线外)均可在这个图中找到。
3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为
圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。
4、利用焦半径公式计算焦点弦长:若斜率为k的直线被圆锥曲线所截得的弦为AB,A、B两点的坐标分别为,则弦长
这里体现了解析几何“设而不求”的解题思想。
5、若过椭圆左(或右)焦点的焦点弦为AB,则
;
6、结合下图熟记双曲线的:“四点八线,一个三角形”,即:四点:顶点和焦点;八线:实轴、虚轴、准线、渐进线、焦点弦、垂线PQ。
三角形:焦点三角形。
7、双曲线形状与e的关系:,e越大,即渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔。
由此可知,双曲线的离心率越大,它的开口就越阔。
8、双曲线的焦点到渐近线的距离为b。
9、共轭双曲线:以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线。
区别:三常数a、b、c中a、b不同(互换)c相同,它们共用一对渐近线。
双曲线和它的共轭双曲线的焦点在同一圆上。
确定双曲线的共轭双曲线的方法:将1
变为-1。
10、过双曲线外一点P(x,y)的直线与双曲线只有一个公共点的情况如下:
(1)P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;
(2)P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;
(3)P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;
(4)P为原点时不存在这样的直线;
11、结合图形熟记抛物线:“两点两线,一个直角梯形”,即:两点:顶点和焦点;两线:准线、焦点弦;梯形:直角梯形ABCD。
12、对于抛物线上的点的坐标可设为,以简化计算;
13、抛物线的焦点弦(过焦点的弦)为AB,且,则有如下结论:
14、过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线;
15、处理椭圆、双曲线、抛物线的弦中点问题常用代点相减法:即设
为曲线上不同的两点,是的中点,则可得到弦中点与两点间关系:
16、当涉及到弦的中点时,通常有两种处理方法:一是韦达定理,即把直线方程代入曲线方程,消元后,用韦达定理求相关参数(即设而不求);二是点差法,即设出交点坐标,然后把交点坐标代入曲线方程,两式相减后,再求相关参数。
在利用点差法时,必须检验条件△>0是否成立。
5、圆锥曲线:
(1)统一定义,三种圆锥曲线均可看成是这样的点集:,其中F 为定点,d为点P到定直线的l距离,,e为常数,如图。
(2)当0<e<1时,点P的轨迹是椭圆;当e>1时,点P的轨迹是双曲线;当e=1时,点P的轨迹是抛物线。
(3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的、固有的性质,不因为位置的
改变而改变。
①定性:焦点在与准线垂直的对称轴上
ⅰ椭圆及双曲线:中心为两焦点中点,两准线关于中心对称;
ⅱ椭圆及双曲线关于长轴、短轴或实轴、虚轴为轴对称,关于中心为中心对称;
ⅲ抛物线的对称轴是坐标轴,对称中心是原点。
②定量:
(4)圆锥曲线的标准方程及解析量(随坐标改变而变)
以焦点在x轴上的方程为例:
6、曲线与方程:
(1)轨迹法求曲线方程的程序:
①建立适当的坐标系;
②设曲线上任一点(动点)M的坐标为(x,y);
③列出符合条件p(M)的方程f(x,y)=0;
④化简方程f(x,y)=0为最简形式;
⑤证明化简后的方程的解为坐标的点都在曲线上;
(2)曲线的交点:
由方程组确定,方程组有几组不同的实数解,两条曲线就有几个公共点;方程组没有实数解,两条曲线就没有公共点。