动点问题题型方法归纳
七年级数学动点题型归纳
七年级数学动点题型归纳一、直线运动1.速度与时间的关系2.当物体做直线运动时,速度是一个重要的概念。
通常用v表示速度,t表示时间。
在匀速直线运动中,速度是一个常数,不随时间改变。
但在变速运动中,速度会随时间变化。
速度与时间的关系可以用以下方程表示:v = v0 + at,其中v0是初速度,a是加速度。
3.距离与时间的关系4.在直线运动中,距离是另一个重要的概念。
通常用s表示距离,t表示时间。
距离是速度和时间的乘积。
在匀速直线运动中,距离与时间的关系可以用以下方程表示:s = v0t + 1/2at^2。
5.追及问题6.追及问题是直线运动中的一类常见问题。
两个物体在同一时间出发,沿同一直线运动,一个在前,一个在后。
后一个物体要追上前一个物体,求所需时间。
这类问题通常用速度和距离的关系来解决。
二、圆周运动1.速度与角度的关系2.在圆周运动中,速度与角度的关系是一个重要的概念。
通常用v表示速度,θ表示角度。
在匀速圆周运动中,速度是一个常数,不随角度改变。
但在变速圆周运动中,速度会随角度变化。
速度与角度的关系可以用以下方程表示:v = rω = r2π/T,其中r是半径,ω是角速度,T是周期。
3.半径与角度的关系4.在圆周运动中,半径与角度的关系也是一个重要的概念。
通常用r表示半径,θ表示角度。
在匀速圆周运动中,半径和角度的关系可以用以下方程表示:θ = ωt = 2πt/T,其中ω是角速度,t是时间,T是周期。
5.圆内运动问题在圆内做圆周运动的物体需要满足向心力的条件才能保持做圆周运动。
向心力是由半径和速度的平方之间的比例关系决定的:F=mv2/r,其中F是向心力,m是物体的质量,v是速度,r是半径。
如果物体的速度过大或者半径过小,向心力不足,物体就会做离心运动;如果物体的速度过小或者半径过大,向心力过大,物体就会做向心运动。
在求解这类问题时需要注意对应物体的质量、速度和半径之间关系的考虑。
三、坐标几何1.点坐标的确定2.在坐标几何中,点坐标是一个基本概念。
八年级数学动点题型归纳
八年级数学动点题型归纳一、动点与三角形相关题型1. 动点在三角形边上运动求线段长度或周长题目:在等腰三角形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
当公式时,求公式的长度。
解析:过点公式作公式于点公式。
因为公式,等腰三角形三线合一,所以公式。
在公式中,根据勾股定理公式。
当公式时,公式,则公式。
在公式中,根据勾股定理公式。
2. 动点运动过程中三角形面积的变化题目:在公式中,公式,公式,公式,点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,同时点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,设运动时间为公式秒公式,求公式的面积公式与公式的函数关系式。
解析:已知公式,则公式,公式。
根据三角形面积公式公式,对于公式,底为公式,高为公式。
所以公式。
二、动点与四边形相关题型1. 动点在四边形边上运动判断四边形形状题目:在矩形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
当公式时,四边形公式是什么四边形?解析:当公式时,公式,公式。
因为四边形公式是矩形,所以公式,公式。
则公式,公式。
在四边形公式中,公式(因为公式),公式,公式(此时公式运动到公式点),公式。
因为公式且公式,所以四边形公式是梯形。
2. 动点运动过程中四边形面积的变化题目:在平行四边形公式中,公式,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
求四边形公式的面积公式与公式的函数关系式。
解析:四边形公式的面积公式。
过点公式作公式于点公式,在公式中,公式,公式,则公式,公式。
所以公式。
因为公式,则公式。
公式。
所以公式。
三、动点与函数图象相关题型1. 根据动点运动情况确定函数图象题目:如图,在边长为公式的正方形公式中,点公式以每秒公式个单位长度的速度从点公式出发,沿公式的路径运动,到点公式停止。
动点问题的方法归纳
动点问题的方法归纳
动点问题是指在一段时间内,某个物体或者某个点的位置或者速度的变化问题。
解决动点问题的方法可以归纳为以下几类:
1. 利用公式计算:对于简单的动点问题,可以根据已知条件,利用物理公式或者数学公式计算出所求的位置或者速度。
比如,如果已知物体的初始位置和速度,可以使用匀加速度公式来计算物体在任意时刻的位置。
2. 利用图像分析:对于复杂的动点问题,可以将物体的运动过程绘制成图像,然后通过分析图像中的几何关系,来推导出所求的位置或者速度。
比如,可以绘制出物体在不同时刻的位置,然后通过观察图像的形状和变化趋势,来推导物体的速度。
3. 利用微积分方法:对于连续的动点问题,可以使用微积分的方法来解决。
通过求导或者积分,可以得到物体的速度和加速度与时间的函数关系,然后再根据已知条件,求出所求的位置或者速度。
4. 利用矢量方法:对于多维空间中的动点问题,可以使用矢量的方法进行求解。
通过将问题转化为矢量的形式,可以简化计算过程,并且可以更直观地描述物体的运动过程。
比如,可以将物体在不同时刻的位置表示为矢量函数,然后通过对矢量函数进行求导或者积分,来求得所求的位置或者速度。
以上是解决动点问题的一些常见方法,根据具体问题的情况选择合适的方法进行求解。
中考动点问题题型方法归纳
图(3)B图(1)B 图(2)动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.提示:第(2)问按点P到拐点B所有时间分段分类;第(3)问是分类讨论:已知三定点O、P、Q,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60o.(1)求⊙O的直径;(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为)2)((<<tst,连结EF,当t为何值时,△BEF为直角三角形.提示:第(3)问按直角位置分类讨论3、如图,已知抛物线33)1(2+-=xay(0≠a)经过点(2)A-,0,抛物线的顶点为D,过O作射线OM AD∥D 平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()t s.问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB=,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQOM BH A Cxy 图O M B H ACxy 图(2)PQA CD值及此时PQ 的长.提示:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
七年级下册数学动点问题解题技巧
七年级下册数学动点问题解题技巧一、动点问题解题技巧概述。
1. 分析动点的运动轨迹。
- 明确动点是在直线(如数轴、坐标轴上的直线)上运动,还是在平面图形(如三角形、四边形的边或内部)中运动。
例如,在数轴上的动点,其位置可以用一个数来表示,而动点在平面直角坐标系中的坐标则需要用一对数(x,y)来表示。
2. 用含时间t(或其他变量)的代数式表示相关线段的长度。
- 若动点在数轴上,设动点的初始位置为a,速度为v,运动时间为t,则经过t时间后动点的位置为a + vt(当向右运动时v为正,向左运动时v为负),两点间的距离可以根据它们在数轴上的坐标相减的绝对值来表示。
- 在平面直角坐标系中,如果动点P(x,y)从点A(x_1,y_1)出发,沿x轴方向速度为v_x,沿y轴方向速度为v_y,运动时间为t,则x = x_1+v_xt,y=y_1 + v_yt。
对于线段长度,可以利用两点间距离公式d=√((x_2 - x_1)^2+(y_2 - y_1)^2),将坐标用含t 的式子代入来表示线段长度。
3. 根据题目中的等量关系列方程求解。
- 常见的等量关系有:线段相等、面积相等、三角形相似对应边成比例等。
例如,若两个三角形相似,根据相似三角形对应边成比例的性质列出方程,然后求解方程得到关于t(或其他变量)的值。
二、题目及解析。
1. 已知数轴上A、B两点对应的数分别为 - 1和3,点P为数轴上一动点,其对应的数为x。
- 若点P到点A、点B的距离相等,求点P对应的数x。
- 解析:因为点P到点A、点B的距离相等,所以| x - (-1)|=| x - 3|,即| x + 1|=| x - 3|。
当x+1=x - 3时,方程无解;当x + 1=-(x - 3)时,x+1=-x + 3,2x=2,解得x = 1。
- 若点P在点A、点B之间,且PA+PB = 4,求点P对应的数x。
- 解析:因为点P在A、B之间,PA=| x+1|=x + 1,PB=| x - 3|=3 - x,由PA+PB = 4可得x + 1+3 - x=4,恒成立,所以-1中的任意数都满足条件。
七年级数轴动点问题题型归纳
七年级数轴动点问题题型归纳
一、动点位置确定
在数轴上,动点的位置可以根据其相对于参考点的位置来确定。
在解题时,我们需要先确定参考点,然后根据题目中给出的条件来确定动点的位置。
二、动点运动规律
动点在数轴上的运动往往遵循一定的规律,如匀速运动、加速运动等。
在解决这类问题时,我们需要根据题目中给出的条件,建立动点运动的时间模型,从而求解出动点的位置。
三、动点与定点距离
在数轴上,动点与定点之间的距离可以通过绝对值或模运算来求解。
在解题时,我们需要先确定定点和动点的位置,然后根据绝对值或模运算的公式来求解。
四、动点与静点距离
在数轴上,动点与静点之间的距离也可以通过绝对值或模运算来求解。
在解题时,我们需要先确定静点的位置,然后根据题目中给出的条件来确定动点的位置,最后通过绝对值或模运算来求解。
五、动点与动点距离
在数轴上,两个动点之间的距离可以通过坐标运算来求解。
在解题时,我们需要先确定两个动点的位置,然后根据坐标运算的公式来求解。
六、动点与数轴交点
在数轴上,动点与数轴的交点可以通过求解方程得到。
在解题时,我们需要先确定动点的位置,然后建立方程求解交点的位置。
七、动点与坐标关系
在数轴上,动点的坐标与时间之间存在一定的关系。
在解题时,我们需要先确定动点的位置和时间的关系,然后建立坐标和时间的函数关系式,最后通过求解函数关系式来得到答案。
初二动点问题的方法归纳
初二动点问题的方法归纳动点问题是在数学中常见的一种题型,其中涉及到的知识点包括函数、方程、不等式等。
解决动点问题需要学生具备一定的数学思维和逻辑推理能力。
本文将就初二动点问题的解决方法进行归纳,主要包括以下五个方面:一、理解题意解决动点问题的第一步是理解题意。
学生需要仔细阅读题目,明确题目所给的条件和要解决的问题。
在理解题意的过程中,学生需要注意以下几点:1.确定题目中涉及到的知识点和公式;2.弄清楚各个变量之间的关系;3.判断是否需要分类讨论。
二、画图分析画图分析是解决动点问题的重要步骤。
通过画图可以帮助学生更好地理解题意,将抽象的问题具体化。
在画图分析的过程中,学生需要注意以下几点:1.根据题目所给条件画出图形;2.在图形上标注出已知量和未知量;3.根据问题要求,在图形上标出必要的点和线。
三、建立模型建立模型是解决动点问题的关键步骤。
通过建立数学模型,可以将实际问题转化为数学问题,从而更好地解决问题。
在建立模型的过程中,学生需要注意以下几点:1.根据题意确定需要的方程或不等式;2.根据图形关系建立方程或不等式;3.对于多个变量的情况,需要考虑分类讨论。
四、求解模型求解模型是解决动点问题的核心步骤。
在求解模型的过程中,学生需要注意以下几点:1.选择合适的方法进行求解;2.对于多个变量的情况,需要分别求解并综合结果;3.对于实际问题需要考虑实际情况,如是否有解、解是否合理等。
五、整合答案整合答案是解决动点问题的最后一步。
在整合答案的过程中,学生需要注意以下几点:1.将求解结果进行整理和归纳;2.根据题目要求给出答案;3.对于实际问题需要考虑实际情况,如是否有解、解是否合理等。
初中动点问题的方法归纳
初中动点问题的方法归纳初中动点问题是初中物理学习中非常重要的内容,它涉及到物体在运动中所具有的一系列特性和规律。
在学习过程中,我们经常会遇到一些与动点问题相关的题目,这些题目需要我们运用一定的方法和技巧来解决。
下面将对初中动点问题的解决方法进行归纳总结。
一、描述物体的运动状态1.位置、速度和加速度在解决动点问题时,首先要对物体在运动过程中的状态进行描述,这包括物体的位置、速度和加速度。
位置是物体所处的空间位置,速度是物体在单位时间内所移动的距离,加速度是物体在单位时间内速度的变化量。
在描述物体的运动状态时,我们需要了解物体的初始位置、初速度、加速度等参数,这可以帮助我们解决动点问题。
2.坐标系的选择在描述物体的运动状态时,我们通常会选择合适的坐标系来进行描述。
常见的坐标系有直角坐标系和极坐标系。
在选择坐标系时,应该根据具体情况确定物体的运动方向和位置,选择合适的坐标系可以简化问题的分析和解决过程。
二、分析物体的运动规律1.运动图象的绘制在解决动点问题时,通常会涉及到物体的位移-时间图象、速度-时间图象和加速度-时间图象。
这些图象可以帮助我们直观地了解物体在运动过程中的变化规律。
绘制这些图象需要根据物体的运动状态和参数,通过计算得出相应的数值,并将其表示在坐标系中,从而得到相应的运动图象。
2.运动规律的表达物体在运动过程中,其运动规律可以用公式来表示。
常见的运动规律有匀速直线运动、匀变速直线运动和曲线运动。
在解决动点问题时,需要根据具体情况选用相应的运动规律,将其与物体的运动参数相结合,从而得出问题的解决方法。
三、解决动点问题的方法和技巧1.运动的方程在解决动点问题时,我们通常会使用位移、速度和加速度之间的关系来求解。
位移-时间关系、速度-时间关系和加速度-时间关系都可以用来描述物体的运动规律,通过这些关系可以得到相应的运动方程,从而求解出问题的答案。
2.分段计算在解决复杂的动点问题时,有时需要将问题分段计算,分别求解不同阶段的运动情况,然后综合得出整体的运动规律。
动点问题解题技巧总结
动点问题解题技巧总结一、 动点选择题(中考选择最后一道) 1排除法:(1)首先看趋势,排除明显不可能的(2)看图像上面的特殊点,算出特殊点的横纵坐标,排除错误的选项(3)求解析式:如果选项出现二次函数的图像,特别需要确定开口方向,有时候可以不用完全算出解析式,确定了开口方向就可以确定正确选项(4)如果解析式不好求,可以取分段函数的每一段的中点,如果这一段的端点坐标是,x y x y ,,1122)()( 确定纵坐标比+y y 212大还是小 中考再现1.(2017•天水)如图,在等腰△ABC 中,AB=AC=4cm ,∠B=30°,点P 从点B 出发,以cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .【分析】第一步看趋势,四个选项都是先增大后减小,均符合 第二步,看特殊点,四个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了两个区间,<<x 04和<<x 48,区间中点x =2和x =6,x =2时,长段线垂,线垂的作过,===<BQ BP Q BP y 2223,1343则易得答案为D .2.(2017•铁岭)如图,在射线AB 上顺次取两点C ,D ,使AC=CD=1,以CD 为边作矩形CDEF ,DE=2,将射线AB 绕点A 沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF 的边CF ,DE 于点G ,H .若CG=x ,EH=y ,则下列函数图象中,能反映y 与x 之间关系的是( )A. B. C. D.【分析】第一步看趋势,均符合第二步,看特殊点,A,B选项是过(2,0),C,D选项是过(1,0),当x=1时,由矩形知CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,当x=1时,即GC=1,求出DH=2,EH=y=0,排除A,B,由0°<α<45°不含等号,所以不能取到(1,0),因此是D选项3.(2017•葫芦岛)如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.【分析】第一步看趋势,A,B,C都是增大,只有D是先增大后减小,随着P,Q向右运动面积一直增大,所以排除D 选项第二步,看特殊点,A,B,C 三个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了一个区间,<<x 02,区间中点x =1,x =1时,,长段,线垂,线垂的作过,====<S CQ BQ BH H BP 14823 1.5,33333则易得答案为A .二、 动点解答题几何图形动点问题(包括三角形,四边形,圆):此类问题动点是有运动速度和运动路径的,解决问题的步骤如下:第一步,确定动点运动的阶段(如果是在折线上面运动,每一个线段是一个阶段)为了方便理解,每一个阶段都任意画出动点的一个可能位置(动点解答题的解题关键是化动为静,这个“为静”指的是在每一个阶段里任意选一个位置,用t 把相关线段表示出来,这样运动的点在这个阶段内就是“静止”的了),画出对应的图第二步,根据路程=速度⨯时间把动点运动的路程表示出来,进而将每一个阶段涉及到的线段表示出来第三步,根据具体问题列出等量关系式,例如:涉及到面积问题,用21底⨯高表示出面积,根据题目条件列出等量关系式 中考再现1.(2015江苏省)如图所示,在中,,,,点从点出发沿边向点以的速度移动,点从点出发沿边向点以的速度移动,若、同时出发:(1)几秒钟后,可使?(2)几秒钟后,可使四边形的面积占的面积三分之二?1. 【分析】(1)第一步:确定分段,本题两个动点都只在一条线段移动,因此不用分段第二步,根据路程=速度 时间把动点运动的路程表示出来,设运动时间为t秒,P点从A出发,沿着AC运动,运动路程是AP= t,Q点从C出发,沿着CB运动,运动路程是CQ=2t ,第三步,根据具体问题列出等量关系式,即 AC-AP=CQ,即解得,,则秒钟后,.(2)第二问因为前两步已经在第一问解决,直接进入第三步的面积为:,四边形的面积占的面积三分之二,的面积占的面积三分之一,,解得,,,答:秒或秒钟后,可使四边形的面积占的面积三分之二.2. (2015湖北省)如图,在矩形中,,E 是AD 的中点.动点从A 点出发,沿路线以秒的速度运动,运动的时间为秒.将以EP 为折痕折叠,点A 的对应点记为. 当点在边AB 上,且点在边BC 上时,求运动时间;【分析】第一步:确定分段,本题只有一个动点P ,P 在线段AB 运动,不用分段 第二步,根据路程=速度⨯时间把动点运动的路程表示出来,运动时间为t 秒,P 点从A 出发,沿着AB 运动,运动路程是AP= t ,第三步,根据具体问题列出等量关系式当点在边AB 上,且点在边BC 上时,根据折叠不变性,为因又,,。
中考动点问题题型方法归纳
图(3)B图(1)B图(2) 动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.提示:第(3)问按直角位置分类讨论3、如图,已知抛物线33)1(2+-=x a y (0≠a )经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.提示:发现并充分运用特殊角∠DAB=60° 当△OPQ 面积最大时,四边形BCPQ 的面积最小。
动点题解法
动点题解法
动点问题的解题方法主要有三种:以静制动、以动制动和动静互化。
以静制动主要是以已知的静止条件来解决问题。
这种方法在解决等边三角形问题、将军饮马问题等题型时非常有效。
例如,在等边三角形问题中,可以通过寻找与固定值相关的三角形边长来解决。
在将军饮马问题中,可以通过连接两点得到最短线段来解决。
以动制动的解题思路主要是借助函数图像描述动点变化轨迹,深入研究运动函数,建立图形变量函数关系,通过分析函数关系解决动点问题。
动静互化的解题思路主要是抓住图形运动变化中隐含静的瞬间,将问题特殊化,将动点在某些特殊位置形成的特殊关系明确展示,寻求问题中动静之间的内在联系。
这种方法在解决数轴上动点问题、三角形中的动点问题等题型时非常有效。
以上是解决动点问题的一些方法,可以根据具体的题目类型选择合适的方法来解答。
中考数学动点问题题型方法归纳
图(3)B图(1)B图(2)动点问题题型方法归纳动态几何特点———-问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨.一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A(8,0) B(0,6)2、当0<t <3时,S=t 2当3<t <8时,S=3/8(8—t )t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-————①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标. 2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm, ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论 3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .图(1)图(2)(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1位和2个长度单位的速度沿OC 和BO 停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
专题03 数轴上动点问题的答题技巧与方法(方法清单)(7个题型解读+提升训练)(原卷版)
专题03 数轴上动点问题的答题技巧与方法(方法清单)(7个题型解读+提升训练)【方法清单】【关键】化动为静,分类讨论。
抓住动点,化动为静,以不变应万变寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等) 建立所求的等量代数式,求出未知数等等。
动点问题定点化是主要思想。
比如以某个速度运动,设出时间后即可表示该点位置:再如函数动点,尽量设一个变量,y 尽量用来表示,可以把该点当成动点,来计算。
【步骤】1.画图形2.表线段3.列方程4.求正解1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数一左边点表示的数2,点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b 个单位后表示的数为 a b; 向右运动b个单位后所表示的数为a+b。
3,分析数轴上点的运动要是数形结合进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系题型一、数轴上与速度、时间、距离有关问题【例1】.(2022秋•代县期中)如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,从图中可以看出,终点表示的数是﹣2,已知A,B是数轴上的点.请参照图并思考,完成下列填空:(1)如果点A表示数3,将点A向右移动7个单位长度,那么终点B表示的数是,A,B两点间的距离是.(2)如果点B表示数2,将点B向左移动9个单位长度,再向右移动5个单位长度,那么终点A表示的数是,A,B两点间的距离是.(3)如果点A表示的数是﹣4,将点A向右移动168个单位长度;再向左移动2个单位长度,那么终点B表示的数是,A,B两点间的距离是.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示的数是,A,B两点间的距离是.【变式1】.(2022秋•博罗县期中)如图,点A,B,C是数轴上三点,点C表示的数为6,BC=4,AB=12.(1)写出数轴上点A,B表示的数:,;(2)动点P,Q同时从A,C出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.①当t=2时,求出此时P,Q在数轴上表示的数;②t为何值时,点P,Q相距2个单位长度,并写出此时点P,Q在数轴上表示的数.【变式2】.(2022秋•历下区期中)为宣传健康知识,某社区居委会派车按照顺序为7个小区(分别记为A,B,C,D,E,F,G)分发防疫安全手册.社区工作人员乘车从服务点(原点)出发,沿东西向公路行驶,如果约定向东为正,向西为负,当天的行驶记录如下(单位:百米):+10,﹣18,+14,﹣30,+6,+22,﹣6(1)请你在数轴上标记出这D,E,F这三个小区的位置(在相应位置标记字母即可).(2)服务车最后到达的地方距离服务点多远?若该车辆油耗为0.01升/百米,则这次分发工作共耗油多少升?(3)为方便附近居民进行核酸检测,现居委会计划在这七个小区中选一个作为临时核酸检测点,为使七个小区所有居民步行到检测点的路程总和最小,假设各小区人数相等,那么检测点的位置应设在小区.题型二、数轴上点之间的位置关系问题【例2】(2022秋•余江区期中)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)原点在第部分;(2)若AC=5,BC=3,b=﹣1,求a的值;(3)在(2)的条件下,数轴上一点D表示的数为d,若BD=2OC,直接写出d的值.【变式1】.(2022秋•南溪区期中)如图,在数轴上有三个点A,B,C,请回答下列问题:(1)将点B向左移动4个单位长度后,哪个字母所表示的数最小?是多少?(2)将点C向左移动6个单位长度后,这时点B表示的数比点C表示的数大多少?(3)怎样移动A、B、C中的两个点才能使三个点表示的数相同?有几种移法?【变式2】.(2022秋•惠济区期中)如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.【变式3】.(2022秋•庐阳区校级期中)根据课堂所学知识我们知道:数轴上两点A、B对应的数分别为a,b(a<b),那么A,B两点之间距离可以用代数式b﹣a来表示.已知:如图,数轴上两点M、N对应的数分别为﹣8、4,点P为数轴上任意一点,其对应的数为x.(1)M,N两点之间的距离是;(2)当点P到点M、点N的距离相等时,求x的值;(3)当点P到点M、点N的距离之和是16时,求出此时x的值.题型三、数轴上动点定值问题【例3】.(2022秋•灞桥区校级期中)如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上,点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是,点C在数轴上表示的数是;(2)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度秒的速度也向左匀速运动,设运动时间为t秒,当t为何值时,点B与点C之间的距离为1个单位长度?(3)若线段AB、线段CD分别以1个单位长度/秒、2个单位长度/秒的速度同时向左匀速运动,与此同时,动点P从﹣15出发,以4个单位长度/秒的速度向右匀速运动.设运动时间为t秒,当0<t<5时,2AC﹣PD的值是否发生变化?若不变化,求出这个定值,若变化,请说明理由.【变式1】.(2022秋•河北区期中)在数轴上有三点A,B,C分别表示数a,b,c,其中b是最小的正整数,且|a+2|与(c﹣7)2互为相反数.(1)a=,b=,c=;(2)若将数轴折叠,使点A与点C重合,则点B与表示数的点重合;(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度的速度和4个单位长度的速度向右运动,若点A与点B的距离表示为AB,点A 与点C的距离表示为AC,点B与点C的距离表示为BC,则t秒钟后,AB=,AC=,BC =;(用含t的式子表示)(4)请问:3BC﹣2AB的值是否随时间t的变化而变化?若变化,请说明理由;若不变,请直接写出其值.【变式2】.(2022秋•上林县期中)已知点A、B在数轴上对应的数分别为a、b,且a=﹣2,b=10,点A、B之间的距离记作AB.(1)线段AB的长为;(直接写出结果)(2)若动点P在数轴上对应的数为x,①当点P是线段AB上一点,P A=2PB,则点P表示的数为;此时P A+PB=;(直接写出结果)②当P A+PB=14时,求x的值;③当动点P在点A的左侧,M、N分别是P A、PB的中点,在运动过程中的值是否发现变化?若不变,求出其值;若变化,请求出变化范围.题型四、数轴上折叠问题【例4】(2022秋•仁怀市期中)如图,在数轴上A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数对应的点重合;(3)若点A、B、C是数轴上的动点,点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,那么3BC﹣2AB的值是否随着运动时间t(秒)的变化而改变?若变化,请说明理由;若不变,请求出其值.【变式1】(2022秋•濮阳县期中)如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣3的点与表示的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣3的点与表示的点重合;②若数轴上A,B两点的距离为6(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为,点B表示的数为.【变式2】.(2022秋•桓台县期中)如图所示的数轴中,点A表示1,点B表示﹣2,试回答下列问题:(1)A、B两点之间的距离是;(2)观察数轴,与点A的距离为5的点表示的数是;(3)若将数轴折叠,使点A与表示﹣3的点重合,则点B与表示数的点重合;(4)若数轴上M,N两点之间的距离为2022(点M在点N的左侧),且M,N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是和.【变式3】.(2022秋•南山区校级期中)学习完数轴以后,喜欢探索的小聪在纸上画了一个数轴(如图所示),并进行下列操作探究:(1)操作一:折叠纸面,使表示1的点与表示﹣1的点重合,则表示﹣4的点与表示的点重合.操作二:折叠纸面,使表示﹣3的点与表示1的点重合,回答以下问题:(2)表示2的点与表示的点重合;(3)若数轴上A、B两点之间距离是a(a>0)(A在B的左侧),且折叠后A、B两点重合.求A、B两点表示的数是多少?题型五、数轴上探究问题【例5】(2022秋•宛城区期中)【问题探索】如图,将一根木棒放在数轴(单位长度为lcm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30:若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长度为cm.(2)图中点A所表示的数是,点B所表示的数是.【实际应用】由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:(3)一天,丽丽去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要32年才出生;你若是我现在这么大,我就106岁啦!”根据对话可知丽丽现在的岁数是,奶奶现在的岁数是.【变式】.(2022秋•和平区校级期中)阅读并解决相应问题:(1)问题发现:在数轴上,点A表示的数为﹣2,点B表示的数为3,若在数轴上存在一点P,使得点P到点A的距离与点P到点B的距离之和等于n,则称点P为点A、B的“n节点”.如图1,若点P表示的数为,有点P到点A的距离与点P到点B的距离之和为+=5,则称点P为点A、B的“5节点”.填空:①若点P表示的数为0,则n的值为.②数轴上表示整数的点称为整点,若整点P为A、B的“5节点”,请直接写出整点P所表示的数.(2)类比探究:如图2,若点P为数轴上一点,且点P到点A的距离为1,请你求出点P表示的数及n的值,并说明理由.(3)拓展延伸:在(1)(2)的条件下,若点P在数轴上运动(不与点A、B重合),满足点P到点B的距离等于点P到点A的距离的,且此时点P为点A、B的“n的节点”,求点P表示的数及n的值,并说明理由.题型六、数轴上新定义问题【例6】(2022秋•永安市期中)[阅读理解]点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离2倍,那么我们就称点C是{A,B}的关联点.例如,如图1,点A表示的数为﹣4,点B表示的数为2.表示0的点C到点A的距离是4,到点B的距离是2,那么点C是{A,B}的关联点;又如,表示﹣2的点D到点A的距离是2.到点B的距离是4,那么点D就不是{A,B}的关联点,但点D是{B,A}的关联点.[知识运用](1)如图2,M、N为数轴上两点,点M所表示的数为﹣4,点N所表示的数为5.数所表示的点是{M,N}的关联点;数所表示的点是{N,M}的关联点;[拓展提升](2)如图3,A、B为数轴上两点,点A所表示的数为﹣60,点B所表示的数为30.现有一动点从点P 出发向左运动.P点运动到数轴上的什么位置时,点P、点A和点B中恰有一个点为其余两点的关联点?【变式1】.(2022秋•衢州期中)点A,B,C为数轴上的三点,如果点C在点A,B之间,且到点A的距离是点C到点B的距离的3倍,那么我们就称点C是{A,B}的奇妙点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇妙点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇妙点,但点D是{B,A}的奇妙点.(1)点A表示的数为1,点B表示的数为2,点C表示的数为5,B是否为{C,A}的奇妙点?请说明理由.(2)如图2,M,N为数轴上的两点,点M所表示的数为﹣2,点N所表示的数为6.表示数的点是{M,N}的奇妙点;表示数的点是{N,M}的奇妙点;(3)如图3,A,B为数轴上的两点,点A所表示的数为﹣10,点B所表示的数为50.现有一动点P从点A出发向右运动,点P运动到数轴上的什么位置时,B为其余两点的奇妙点?【变式2】.(2022秋•平遥县期中)阅读下列材料:我们给出一个新定义:数轴上给定不重合两点A,B,若数轴上存在一点M,使得点M到点A的距离等于点M到点B的距离,则称点M为点A与点B的“平衡点”.解答下列问题:(1)若点A表示的数为﹣3,点B表示的数为1,点M为点A与点B的“平衡点”,则点M表示的数为;(2)若点A表示的数为﹣3,点A与点B的“平衡点M”表示的数为﹣5,则点B表示数为;操作探究:如图,已知在纸面上有一条数轴.操作一:(3)折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣5的点与表示的点重合.操作二:(4)折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣2的点与表示的点重合;②若数轴上A,B两点的距离为7(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为.【变式3】.(2022秋•高青县期中)数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数﹣2,点B表示数1,下列各数﹣1,2,4,6所对应的点分别是C1,C2,C3,C4,其中是点A,B的“关联点”的是;(2)点A表示数﹣10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P表示的数.【变式4】.(2022秋•朝阳区校级期中)已知数轴上两点A、B,若在数轴上存在一点C,使得AC+BC=nAB,则称点C为线段AB的“n倍点”.例如图1所示:当点A表示的数为﹣2,点B表示的数为2,点C表示的数为0,有AC+BC=2+2=4=AB,则称点C为线段AB的“1倍点”.请根据上述规定回答下列问题:已知图2中,点A表示的数为﹣3,点B表示的数为1,点C表示的数为x.(1)当﹣3≤x≤1时,点C(填“一定是”或“一定不是”或“不一定是”)线段AB的“1倍点”;(2)若点C为线段AB的“n倍点”,且x=﹣4,求n的值;(3)若点D是线段AB的“2倍点”,则点D表示的数为;(4)若点E在数轴上表示的数为t,点F表示的数为t+12,要使线段EF上始终存在线段AB的“3倍点”,求t的取值范围(用不等号表示)题型七:数轴上存在性问题【例7】(2022秋•蓝山县期中)已知数轴上三点A、B、C对应的数分别是﹣1,1,4,点P为数轴上任意一点,且表示的数是x.(1)点A到点B的距离AB为多少个单位长度?(2)点P到B的距离PB可以表示为;(3)如果点P到点A和到点C的距离相等,那么x的值是多少?(4)数轴上是否存在点P,使点P到点A与到点C的距离之和是8?若存在,请直接写出x的值;若不存在,请说明理由.【变式1】(2022春•南岗区校级期中)若数轴上A、B两点对应的数分别为﹣5、4,P为数轴上一点,对应数为x.(1)若P为线段AB的三等分点,直接写出P点对应的数.(2)数轴上是否存在点P,使P点到A点、B点的距离和为11?若存在,求出x值;若不存在,请说明理由.(3)若点P从点A出发向右运动,速度是2个单位/分,点Q从点B出发向左运动,速度是3个单位/分,它们同时出发,经过几分钟,Q、B、P三点中,其中一点是另外两点连成线段的中点?【变式2】(2022秋•定远县期中)对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣4,点B表示数5,点M是点A,B的“联盟点”,点M在A、B之间,且表示一个负数,则点M表示的数为;(2)若点A表示数﹣2,点B表示数2,下列各数,0,4,6所对应的点分别为C1,C2,C3,C4,其中是点A,B的“联盟点”的是;(3)点A表示数﹣15,点B表示数25,P为数轴上一点:①若点P在点B的左侧,且点P是点A,B的“联盟点”,此时点P表示的数是;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P表示的数.【变式3】(2022秋•鱼台县期中)如图,已知A、B、C是数轴上的三点,点C表示的数是6,点B与点C 之间的距离是4,点B与点A的距离是12,点P为数轴上一动点.(1)数轴上点A表示的数为,点B表示的数为;(2)数轴上是否存在一点P,使点P到点A、点B的距离和为16,若存在,请求出此时点P所表示的数;若不存在,请说明理由.【提升训练】1.(2022秋•桥西区期中)在一条不完整的数轴上标出若干个点,每相邻两点相距一个单位长度,其中点A,B,C对应的分别是整数a,b,c.(1)若以B为原点,写出a,c的值;(2)若c﹣2a=14,判断并说明A,B,C中哪个点是数轴的原点;(3)在(2)的条件下,M点从A点以每秒0.5个单位的速度向右运动,点N从点C以每秒1.5个单位的速度向左运动,点P从点B以每秒2个单位的速度先向左运动碰到点M后立即返回向右运动,碰到点N后又立即返回向左运动,碰到点M后又立即返回向右运动,三个点同时开始运动,当三个点聚于一点时停止运动.直接写出点P在整个运动过程中,移动了多少个单位.2.(2022秋•肥西县校级期中)如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是﹣3,已知A、B是数轴上的点,请参照如图并思考,完成下列各题.(1)如果点A表示的数是﹣2,将点A向右移动5个单位长度到点B,那么点B表示的数是.A、B两点间的距离是.(2)如果点A表示的数是4,将点A向左移动8个单位长度,再向右移动3个单位长度到点B,那么点B表示的数是,A、B两点间的距离是.(3)如果点A表示的数是m,将点A向左移动n个单位长度,再向右移动p个单位长度到点B,那么点B表示的数是.3.(2022秋•沙坪坝区校级期中)数轴上给定两点A、B,点A表示的数为﹣1,点B表示的数为3,若数轴上有两点M、N,线段MN的中点在线段AB上(线段MN的中点可以与A或B点重合),则称M点与N 点关于线段AB对称,请回答下列问题:(1)数轴上,点O为原点,点C、D、E表示的数分别为﹣3、6、7,则点与点O关于线段AB对称;(2)数轴上,点F表示的数为x,G为线段AB上一点,若点F与点G关于线段AB对称,则x的最小值为,最大值为;(3)动点P从﹣9开始以每秒4个单位长度,向数轴正方向移动时,同时,线段AB以每秒1个单位长度,向数轴正方向移动,动点Q从5开始以每秒1个单位长度,向数轴负方向移动;当P、Q相遇时,分别以原速立即返回起点,回到起点后运动结束,设移动的时间为t,则t满足时,P 与Q始终关于线段AB对称.4.(2022秋•泊头市期中)如图是某一条东西方向直线上的公交线路的部分路段,西起A站,东至L站,途中共设12个上下车站点.某天,小明参加该路线上的志愿者服务活动,从C站出发,最后在某站结束服务活动.如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,﹣3,+4,﹣5,+8,﹣2,+1,﹣3,﹣4,+1.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米,求这次小明志愿服务期间乘坐公交车行进的总路程约是多少千米?5.(2022秋•夏津县期中)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.6.(2022秋•文成县期中)如图,在数轴上,点A表示﹣4,点B表示﹣1,点C表示8,P是数轴上的一个点.(1)求点A与点C的距离;(2)若PB表示点P与点B之间的距离,PC表示点P与点C之间的距离,当点P满足PB=2PC时,请求出在数轴上点P表示的数.7.(2022秋•新郑市期中)如图,已知在纸面上有一条数轴.操作一:(1)折叠纸面,使表示1的点与表示﹣1的点重合,则表示﹣2的点与表示的点重合.操作二:(2)折叠纸面,使表示﹣1的点与表示3的点重合,回答以下问题:①表示5的点与表示的点重合;②若数轴上A,B两点之间的距离为9(点A在点B的左侧),且A,B两点折叠后重合,求A,B两点表示的数.8.(2022秋•昆明期中)问题探究:(1)如图①,将两根长度为6cm的木棒放置在数轴(单位长度为1cm)上,第一根的两端分别与数轴上表示2的点和点A重合,第二根的两端分别与数轴上点A和点B重合,则图中点A所表示的数是,点B所表示的数是;(2)如图②,将一根未知长度的木棒放置在数轴(单位长度为1cm)上,木棒的左端与数轴上的点C重合,右端与数轴上的点D重合.若将木棒沿数轴向右移动,当它的左端移动到点D时,右端在数轴上所对应的数为26;若将木棒沿数轴向左移动,当它的右端移动到点C时,左端在数轴上所对应的数为2.由此可得这根木棒的长为cm;(3)在(2)的条件下,若数轴上有一点P,点P到木棒CD中点的距离为16个单位长度,则点P所表示的数是.9.(2022秋•嘉祥县期中)定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为﹣7,点N所表示的数为2.(1)点E,F,G表示的数分别是﹣3,6.5,11,其中是【M,N】美好点的是;写出【N,M】美好点H所表示的数是.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?10.(2022秋•承德期中)如图所示,在数轴上点A,B,C表示的数分别为﹣2,0,6.点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)AB=,BC=,AC=;(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.①设运动时间为t,请用含有t的算式分别表示出AB,BC,AC;②在①的条件下,请问:BC﹣AB的值是否随着运动时间t的变化而变化?若变化,请说明理由;若不变,请求其值.11.(2022秋•霍邱县期中)如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?12.(2022秋•秦淮区校级期中)如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm;(2)图中点A所表示的数是,点B所表示的数是;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?。
动点问题题型方法归纳
图(3)B图(1)B图(2) 动点问题题型方法归纳一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形. 注意:第(3)问按直角位置分类讨论3、如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值图(1)时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
初一数学动点问题答题技巧与方法
初一数学动点问题答题技巧与方法
初一数学中的动点问题主要是指在平面上有一个或多个点按照一定规律移动的问题。
解决这类问题的技巧和方法可以总结如下:
1. 确定动点的运动规律:首先要仔细阅读题目,理解动点的运动规律。
常见的运动方式有匀速直线运动、匀速圆周运动、加速度运动等。
根据题目提供的信息,确定动点的运动方式。
2. 绘制示意图:根据题目所描述的动点运动情况,将其在平面上进行绘制。
可以使用坐标系来帮助理清思路,标出初始位置和各个时刻的位置。
3. 列出方程或条件:根据题目中提供的条件,列出相应的方程或条件。
例如,如果动点做匀速直线运动,可以利用速度、时间和位移之间的关系列出方程;如果动点做圆周运动,可以利用角度、半径和弧长之间的关系列出方程。
4. 解方程求解:根据所列出的方程或条件,进行求解。
可以利用代数方法或几何方法进行求解,得到问题所要求的答案。
5. 检查结果:在求解过程中,要时刻注意计算的准确性和合理性。
最后得到的结果应与题目所要求的答案相符合。
需要注意的是,动点问题的解决过程中要注重思维的灵活性和创造性。
根据具体情况选择合适的方法,并进行适当的简化和近似处理,以提高解题效率。
另外,在解题过程中要注意理解题意、分析问题和建立模型的能力,这些是解决动点问题的关键。
中考动点问题题型方法归纳
中考动点问题题型方法归纳Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】BB动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o . (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.提示:第(3)问按直角位置分类讨论3、如图,已知抛物线33)1(2+-=x a y (0≠a )经过点O 作(2)A -,0,抛物线的顶点为D ,射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形直角梯形等腰梯形(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的长.提示:发现并充分运用特殊角∠DAB=60° 当△OPQ 面积最大时,四边形BCPQ 的面积最小。
初中动点问题的方法归纳
初中动点问题的方法归纳初中动点问题是指在空间移动的过程中,需要确定一个或多个点的位置。
这种问题需要运用几何知识和分析能力来解决。
下面将对初中动点问题的方法进行归纳。
一、直线运动问题直线运动是最简单的动点问题之一,常见的例子包括匀速直线运动和匀变速直线运动。
1.匀速直线运动问题的解法:假设动点的速度为v,则可以根据速度和时间的关系确定动点在某个时刻t的位置:距离=速度×时间。
例如,问题描述为“某动点从A点出发,以60km/h的速度匀速向B点行进,已行进2小时,请问此时该动点距离A点多远?”解法:距离=速度×时间= 60km/h × 2h = 120km。
2.匀变速直线运动问题的解法:如果动点的速度随着时间的变化而变化,可以应用速度-时间图像或速度-时间关系的知识来解决问题。
例如,问题描述为“一辆汽车以10m/s^2的加速度匀加速,在10s 内的位移是多少?”解法:根据匀变速运动中的公式s = (初速度+末速度) ×时间/ 2,代入已知条件初速度为0,加速度为10m/s^2,时间为10s,计算得到位移为(0 + 10) × 10 / 2 = 50m。
二、曲线运动问题1.匀速圆周运动问题的解法:当动点以恒定速度绕固定的圆周运动时,可以应用圆的性质来解决问题。
例如,问题描述为“一个半径为5cm的圆正好需要6秒完成一周,求圆周的长度。
”解法:根据圆的性质,圆周长= 2π ×半径= 2π × 5cm =10πcm ≈ 31.4cm。
2.曲线运动问题的解法:在一些特殊的曲线运动问题中,可以利用对称性、角度关系和距离比例等方法来解决。
例如,问题描述为“一个人从A点出发,按其速度向直线BC行进,当经过点B时,BC边所形成的角度是90°,请问此时人到底B点的距离是BC边长的多少?”解法:利用角度关系,已知∠B = 90°,可以得出AB与BC互补,所以AB : BC = 1 : 1,即人到B点的距离等于BC边长的一半。
动点题的解题技巧
动点题的解题技巧动点题是数学中常见的一种题型,主要考察学生的空间思维能力和问题解决能力。
解决动点问题需要一定的技巧和策略,以下是一些解题技巧:1. 建立坐标系:首先,为方便分析,我们通常会建立一个坐标系。
根据题目的描述,选择一个合适的点作为原点,确定x轴、y轴的方向。
2. 标记关键点:在动点运动路径上,标记关键的点,如起点、终点、转折点等。
这些关键点在解题过程中可能会起到重要的作用。
3. 找出变量和参数:明确题目中的变量和参数,理解它们之间的关系和变化规律。
这些变量和参数通常与动点的位置、速度、加速度等有关。
4. 运用函数思想:在许多动点问题中,我们需要运用函数的思想来描述和解决。
例如,可以用一次函数、二次函数、三角函数等来表示动点的运动规律。
5. 运用几何知识:动点问题常常涉及到几何图形的形状、大小、位置关系等。
因此,我们需要运用几何知识来分析问题,如平行线、垂直线、角相等、距离相等等等。
6. 寻找等量关系:在解决动点问题时,我们需要寻找等量关系,如时间相等、距离相等、角度相等等等。
这些等量关系可以帮助我们建立方程或方程组。
7. 数形结合:数形结合是解决动点问题的重要方法之一。
通过将数学表达式与几何图形相结合,我们可以更直观地理解问题,找到解题的突破口。
8. 分类讨论:对于一些复杂的动点问题,我们需要进行分类讨论。
根据不同的条件或情况,将问题分解成若干个子问题,然后分别解决。
9. 检验答案:在解决问题后,我们需要对答案进行检验。
检查答案是否符合题目的要求,是否符合实际情况等等。
通过掌握这些解题技巧,我们可以更好地解决动点问题,提高数学思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.提示:第(2)问按点P到拐点B所有时间分段分类;第(3)问是分类讨论:已知三定点O、P、Q,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。
然后画出各类的图形,根据图形性质求顶点坐标。
图(3)B图(1)B图(2)2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的运动.面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
二、 特殊四边形边上动点 4、(2009年吉林省)如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题: (1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒; (3)求y 与x 之间的函数关系式.提示:第(3)问按点Q 到拐点时间B 、C 所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。
5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3-,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y图(1)图(2)轴于点H .(1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (0S ),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);(3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.注意:第(2 第(3)问发现∠MBC=90°,∠BCO 与∠ABM 互余,画出点P 运动过程中, ∠MPB=∠ABM 的两种情况,求出t 值。
利用OB ⊥AC,再求OP 与AC 夹角正切值.6、(2009年温州)如图,在平面直角坐标系中,点A(3,0),B(33,2),C (0,2).动点D 以每秒1个单位的速度从点0出发沿OC 向终点C 运动,同时动点E 以每秒2个单位的速度从点A 出发沿AB 向终点B 运动.过点E 作EF 上AB ,交BC 于点F ,连结DA 、DF .设运动时间为t 秒.(1)求∠ABC 的度数;(2)当t 为何值时,AB∥DF; (3)设四边形AEFD 的面积为S . ①求S 关于t 的函数关系式;②若一抛物线y=x 2+mx 经过动点E ,当S<23时,求m 的取值范围(写出答案即可).注意:发现特殊性,DE ∥OA7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO 是菱形,且∠AOC=60°,点B的坐标是,点P 从点C 开始以每秒1个单位长度的速度在线段CB 上向点B 移动,同时,点Q 从点O 开始以每秒a (1≤a ≤3)个单位长度的速度沿射线OA 方向移动,设(08)t t <≤秒后,直线PQ 交OB 于点D. (1)求∠AOB 的度数及线段OA 的长;(2)求经过A ,B ,C 三点的抛物线的解析式;(3)当3,a OD ==时,求t 的值及此时直线PQ 的解析式; (4)当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆相似?当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆不相似?请给出你的结论,并加以证明.8、(08黄冈)已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. (1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;(4)当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?请求出此时动点P 的坐标;若不能,请说明理由.9、(09年黄冈市)如图,在平面直角坐标系xoy 中,抛物线21410189y x x =--与x 轴的交点为点A,与y 轴的交点为点B . 过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t (单位:秒) (1)求A,B,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <92时,△PQ F 的面积是否总为定值?若是,求出此定值, 若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程. 提示:第(3)问用相似比的代换,得PF=OA (定值)。
第(4)问按哪两边相等分类讨论 ①PQ=PF,②PQ=FQ,③QF=PF.(此题备用)三、 直线上动点8、(2009年湖南长沙)如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标; (3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.2)问发现特殊角∠CAB=30°,∠CBA=60°特殊图形四边形BNPM 为菱形;画出与△ABC相似的△BNQ ,再判断是否在对称轴上。
9、(2009眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
⑴求该抛物线的解析式;⑵动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标P 。
⑶在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标。
提示:第(2)问按直角位置分类讨论后画出图形----①P 为直角顶点AE 为斜边时,以AE为直径画圆与x轴交点即为所求点P,②A为直角顶点时,过点A作AE垂线交x轴于点P,③E为直角顶点时,作法同②;第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。
10、(2009年兰州)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.注意:第(4)问按点P分别在AB、BC、CD边上分类讨论;求t值时,灵活运用等腰三角形“三线合一”。