最新绝对值不等式的解法教学设计
(完整版)教案含绝对值不等式的解法
含绝对值的不等式解法(一)复习思考1、复习初中学过的不等式的三条基本性质.(1)、如果b a >,那么c b c a +>+(2)、如果0,>>c b a ,那么bc ac >(3)、如果0,<>c b a .那么bc ac <注意:性质(3)是不等式两边都乘以同一个负数,不等号的方向要变。
2、复习绝对值的定义及其几何意义. {0,0,≥<-=x x x x x几何意义:x 在数轴上所对应点到原点的距离(二).探究新知1。
2=x 几何意义是什么,在数轴上在数轴上应该怎样表示?解绝对值不等式 2<x ,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?解绝对值不等 2x >,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?2x >的解集有几部分?为什么2x <-也是它的解集?2、(0)x a a <>⇔ (0)x a a >>⇔3、练习 :(1)、5x <;(2)、 7x >(3)328x -≤ (4)238x -<(一)解下列不等式:(1)51431<-x (2) 752>+x(3)5|23|3≤-<x (4)|1|2x x +>+(5)|24|3x x -<+ (6)7|52|2≤-<x(7)|9|3x -> (8)|3|1x -<9。
设A ={x | |x -2|<3},B ={x | |x -1|≥1},则A ∩B 等于( )10。
设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A U 中的元素个数是二、填空题1。
不等式|x +2|<3的解集是 ,不等式|2x —1|≥3的解集是 .2。
不等式1211<-x 的解集是___ .三、解答题1.解不等式x2- 2|x|—3>02。
人教版高中数学含绝对值的不等式教案
人教版高中数学含绝对值的不等式教案一、教学目标1. 知识与技能:(1)理解绝对值不等式的概念;(2)掌握绝对值不等式的解法;(3)能够运用绝对值不等式解决实际问题。
2. 过程与方法:(1)通过实例引导学生认识绝对值不等式;(2)利用数轴分析绝对值不等式的解集;(3)运用转化思想解决含绝对值的不等式问题。
3. 情感态度与价值观:(1)培养学生对数学的兴趣;(2)培养学生勇于探索、积极思考的科学精神;(3)提高学生解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)绝对值不等式的概念;(2)绝对值不等式的解法;(3)含绝对值的不等式在实际问题中的应用。
2. 教学难点:(1)绝对值不等式的转化;(2)含绝对值的不等式求解过程中的分类讨论。
三、教学过程1. 导入:(1)利用实例引入绝对值不等式的概念;(2)引导学生思考绝对值不等式与普通不等式的区别。
2. 新课讲解:(1)讲解绝对值不等式的定义;(2)通过数轴分析绝对值不等式的解集;(3)介绍绝对值不等式的解法。
3. 案例分析:(1)分析实际问题中的绝对值不等式;(2)引导学生运用转化思想解决含绝对值的不等式问题。
四、课后作业1. 复习本节课所学内容,整理笔记;2. 完成课后练习,巩固知识点;3. 挑选几个实际问题,尝试运用绝对值不等式解决。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 课后作业:检查学生的作业完成情况,评估学生对知识的掌握程度;3. 单元测试:进行单元测试,了解学生对含绝对值的不等式知识的运用能力。
六、教学内容与方法1. 教学内容:(1)进一步探究绝对值不等式的性质;(2)学习绝对值不等式的证明方法;(3)解决生活中的实际问题,运用绝对值不等式。
2. 教学方法:(1)采用案例分析法,让学生通过具体例子理解绝对值不等式的性质;(2)运用数形结合法,引导学生利用数轴分析绝对值不等式的解集;(3)采用问题驱动法,激发学生思考,培养学生解决实际问题的能力。
最新人教B版高中数学选修4-5《绝对值不等式的解法》教学设计
《绝对值不等式的解法》(第一课时)教学设计一、教学内容解析《绝对值不等式的解法》是选修4-5第一章第三节内容,我们这里讲解第一课时。
该内容是在初中学习了绝对值的概念,学习了一元一次不等式;高中必修1学习了绝对值函数图像的画法,必修5学习了一元二次不等式的基础上展开的。
通过本节课可渗透数形结合、分类讨论、化归与转化等数学思想方法,因此它是本章的重点之一,在整个数学学科中占有重要地位。
解含绝对值不等式问题的基本思想是设法去掉绝对值符号,转化为同解的不含绝对值符号的一般不等式去解.而去绝对值的方法主要有定义法(分类讨论法)、平方法、几何法、图像法等,实际上,这四种方法也是解绝对值不等式问题的基本思路,为下一节学习含有两个绝对值的不等式的解法做好铺垫.而本节的重点是运用绝对值的几何意义去掉绝对值符号,转化为不含绝对值的不等式求解,并从中总结规律,形成解绝对值不等式的规律公式及口诀。
本节课在求解过程中也是对集合知识的应用和巩固,同时,为以后不等式的学习打下了基础,对培养学生分析问题、解决问题的能力、理解能力、思维的灵活性有很大的帮助,同时能使学生养成多角度认识研究事物的习惯;并通过不等式变换的等价性培养思维的可容性。
二、教学目标设置【教学目标】1、知识与技能:使学生熟练掌握()()()0>≤≥aaxfaxf与型不等式的解法;2、过程与方法:培养学生观察、分析、归纳、概括的能力,渗透数形结合、分类讨论、转化与化归等数学思想方法;培养学生养成多角度认识研究事物的习惯;并通过不等式变换的等价性培养思维的可容性。
3、情感态度价值观:向学生渗透“具体-抽象-具体”辩证唯物主义的认识论观点,使学生形成良好的个性品质。
感悟形与数不同的数学形态间的和谐统一美。
【教学重点与难点】重点:()()()0>≤≥aaxfaxf与型不等式的解法;难点:利用绝对值的几何意义解绝对值不等式。
三、学生学情分析学生在初中已经学过绝对值的定义,在高中必修1中,也会画简单的绝对值函数的图像,也接触过两边平方的方法。
绝对值与不等式教案
绝对值与不等式教案一、教学目标1. 掌握绝对值与不等式的概念、性质及应用;2. 能够熟练解决含有绝对值的不等式问题;3. 培养学生的逻辑思维和解决实际问题的能力。
二、教学重点1. 学习绝对值的概念和性质;2. 掌握含有绝对值的不等式的解法;3. 理解绝对值与不等式的联系,能够熟练运用。
三、教学难点1. 含有绝对值的不等式的解法;2. 通过实例梳理不等式解题的思路。
四、教学步骤1. 导入通过一道练习题引入绝对值和不等式的内容。
2. 知识讲解(1)绝对值的概念:绝对值的本质是一个数与零点的距离,即“|x|”表示x与0之间的距离。
(2)绝对值的运算性质:①|a|≥0;②|-a|=|a|;③|ab|=|a||b|;④|a+b|≤|a|+|b|。
(3)含有绝对值的不等式解法:① x > a 或 x < -a 时的情况,需要分情况讨论,将不等式转化为简单的形式;② |x| > a 时,需要将其拆分成 x > a 或 x < -a 两种情况分别讨论。
(4)解决示例问题三、教学方法1. 复述讲解:通过对绝对值和不等式概念的深入解释,让学生可以真正理解概念的内涵。
2. 案例解析:通过算例的解析让学生对于解决实际问题的思路逐渐熟悉,从而掌握解决问题的方法和技巧。
四、教学工具1. 演示板2. 教学PPT3. 小黑板五、教学反馈简要回顾学习内容,让学生能够清晰掌握所学知识点,为进一步的学习打下坚实基础。
六、教学评估1. 给学生以身边的实例,让他们尝试应用所学的知识点,进行实战的解题能力训练。
2. 课后作业,让学生能够巩固所学的知识点并反馈出自己学习的效果。
七、拓展阅读1. 不等式研究的历史;2. 绝对值在物理学等实际领域的应用。
【笔者话】通过本教案的学习,相信学生们可以掌握不等式的解法,通过实例演练,将来能够解决不少非一次线性不等式方程的问题。
试讲教案模板(含绝对值的不等式解法)
试讲教案模板(含绝对值的不等式解法)第一章:绝对值概念介绍1.1 绝对值的定义与性质引入绝对值的概念,解释绝对值表示一个数与零点的距离。
探讨绝对值的性质,如非负性、奇偶性等。
1.2 绝对值不等式介绍绝对值不等式的概念,即含有绝对值符号的不等式。
举例说明绝对值不等式的形式,如|x| > 2 或|x 3| ≤1。
第二章:绝对值不等式的解法2.1 绝对值不等式的基本性质讲解绝对值不等式的基本性质,如|a| ≤b 可以转化为-b ≤a ≤b。
引导学生理解绝对值不等式与普通不等式的区别与联系。
2.2 绝对值不等式的解法步骤介绍解绝对值不等式的步骤,包括正确理解不等式、画出数轴、分类讨论等。
通过具体例子演示解绝对值不等式的过程,如解|x 2| ≤3。
第三章:绝对值不等式的应用3.1 绝对值不等式在实际问题中的应用通过实际问题引入绝对值不等式的应用,如距离问题、温度问题等。
引导学生运用绝对值不等式解决实际问题,培养学生的数学应用能力。
3.2 绝对值不等式的综合应用提供综合性的题目,让学生练习将实际问题转化为绝对值不等式。
引导学生运用解绝对值不等式的技巧,求解综合应用问题。
第四章:含绝对值的不等式组4.1 不等式组的定义与性质引入不等式组的概念,即由多个不等式组成的集合。
探讨不等式组的性质,如解的交集、解的传递性等。
4.2 含绝对值的不等式组的解法讲解含绝对值的不等式组的解法,如先解每个绝对值不等式,再求交集。
提供例子,演示解含绝对值的不等式组的过程。
第五章:含绝对值的不等式解的应用5.1 含绝对值的不等式在实际问题中的应用通过实际问题引入含绝对值的不等式应用,如几何问题、物理问题等。
引导学生运用含绝对值的不等式解决实际问题,培养学生的数学应用能力。
5.2 含绝对值的不等式的综合应用提供综合性的题目,让学生练习将实际问题转化为含绝对值的不等式。
引导学生运用解含绝对值的不等式的技巧,求解综合应用问题。
第六章:绝对值不等式的图形解法6.1 绝对值不等式与数轴介绍如何利用数轴来解绝对值不等式。
试讲教案模板(含绝对值的不等式解法)
试讲教案模板(含绝对值的不等式解法)第一章:绝对值的概念1.1 绝对值的定义介绍绝对值的概念,强调绝对值表示一个数的非负值。
通过实际例子解释绝对值的意义。
1.2 绝对值的性质介绍绝对值的性质,包括:绝对值的正值性质:绝对值总是非负的。
绝对值的相等性质:两个数的绝对值相等,当且仅当它们相等或互为相反数。
第二章:绝对值的不等式2.1 绝对值不等式的形式介绍绝对值不等式的标准形式,例如|x| > a 或|x| ≤b。
2.2 绝对值不等式的解法介绍绝对值不等式的解法步骤,包括:将绝对值不等式转化为两个不等式。
分别解这两个不等式。
根据原绝对值不等式的形式,确定解集的范围。
第三章:绝对值不等式的应用3.1 绝对值不等式的实际应用通过实际问题引入绝对值不等式的应用,例如距离问题、温度问题等。
3.2 绝对值不等式的解题策略介绍解决绝对值不等式应用题的策略,包括:确定变量所在的区间。
根据绝对值不等式的性质,确定解集的范围。
第四章:含绝对值的不等式4.1 含绝对值的不等式的形式介绍含有绝对值的不等式的标准形式,例如|x| + |y| > a 或|x| ≤y ≤|z|。
4.2 含绝对值的不等式的解法介绍含有绝对值的不等式的解法步骤,包括:分析绝对值符号内的表达式。
根据绝对值符号内的表达式的正负情况,确定解集的范围。
第五章:含绝对值的不等式的应用5.1 含绝对值的不等式的实际应用通过实际问题引入含有绝对值的不等式的应用,例如几何问题、物理问题等。
5.2 含绝对值的不等式的解题策略介绍解决含有绝对值的不等式应用题的策略,包括:分析绝对值符号内的表达式。
根据绝对值符号内的表达式的正负情况,确定解集的范围。
第六章:含绝对值的不等式的图像解法6.1 不等式与绝对值的关系解释不等式与绝对值之间的关系,如何通过图像来表示不等式。
强调图像解法在理解和解题中的辅助作用。
6.2 绘制绝对值不等式的图像展示如何绘制绝对值不等式的图像,例如|x| > a 或|x| ≤b。
绝对值不等式的解法优秀教学设计
绝对值不等式的解法【教学目标】1:理解并掌握ax<和ax>型不等式的解法。
2:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数学思想,并能运用绝对值三角不等式公式进行推理和证明。
【教学重点】绝对值三角不等式的含义,绝对值三角不等式的理解和运用。
【教学难点】绝对值三角不等式的发现和推导、取等条件。
【教学过程】一、复习引入:在初中课程的学习中,我们已经对不等式和绝对值的一些基本知识有了一定的了解。
请同学们回忆一下绝对值的意义。
在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。
即在此基础上,本节讨论含有绝对值的不等式。
⎪⎩⎪⎨⎧<-=>=xxxxxx,如果,如果,如果二、新课学习关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。
下面分别就这两类问题展开探讨。
1.解在绝对值符号内含有未知数的不等式(也称绝对值不等式),关键在于去掉绝对值符号,化成普通的不等式。
主要的依据是绝对值的几何意义。
2.含有绝对值的不等式有两种基本的类型。
第一种类型:设a为正数。
根据绝对值的意义,不等式ax<的解集是}|{axax<<-,它的几何意义就是数轴上到原点的距离小于a的点的集合是开区间(-a,a),如图所示。
a-图1-1 a如果给定的不等式符合上述形式,就可以直接利用它的结果来解。
第二种类型:设a 为正数。
根据绝对值的意义,不等式a x >的解集是{|x a x >或a x -<},它的几何意义就是数轴上到原点的距离大于a 的点的集合是两个开区间),(),,(∞--∞a a 的并集。
如图1-2所示。
–a a图1-2同样,如果给定的不等式符合这种类型,就可以直接利用它的结果来解。
3.c b ax ≤+和c b ax ≥+型不等式的解法。
c b ax c c b ax ≤+≤-⇔≤+c b ax c b ax c b ax ≥+-≤+⇔≥+或 4.c b x a x ≤-+-和c b x a x ≥-+-型不等式的解法。
绝对值不等式的解法优秀教学设计
绝对值不等式的解法【教课目的】(1)理解并掌握 ax b c 与 ax b c(c0) 型不等式的解法,并能初步地应用它解决问题;(2)认识数形联合,分类议论的思想,培育数形联合的能力,培育经过换元转变的思想方法,培育抽象思想的能力;(3)绝对值的几何意义的应用;(4)激发学习数学的热忱,培育勇于探究的精神,勇于创新精神,同时领会事物之间普遍联系的辩证思想。
【教课要点】x a 与 x a(a0) 型不等式的解法。
【教课难点】绝对值意义的应用,和应用xa 与 xa(a 0) 型不等式的解法解决ax b c与ax b c(c 0) 型不等式【讲课种类】新讲课【课时安排】1课时【教课准备】多媒体、实物投影仪【教课过程】一、复习引入:1.什么叫不等式?什么叫不等式组的解集?2.初中已学过的不等式的三条基天性质是什么?你能用汉语语言表达这三条性质吗?假如 a>b, 那么 a+c>b+c;假如 a>b,c>0, 那么 ac > bc;假如 a>b,c<0, 那么 ac < bC.3.实数的绝对值是如何定义的?几何意义是什么?a, a 0绝对值的定义 : | a | = 0, a 0a, a 0|a| 的几何意义:数轴上表示数 a 的点走开原点的距离 |x-a|(a ≥0) 的几何意义是 x 在数轴上的对应点 a 的对应点之间的距离。
实例:按商质量量规定,商铺销售的注明 500g 的袋装食盐,按商质量量规定,其实质数与所标数相差不可以超出 5g,设实质数是 x g,那么, x 应知足如何的数目关系呢?能不可以用绝x 5005,对值来表示?x 500 5. (由绝对值的意义,也能够表示成x 500 5. )500 x 5.企图:领会知识源于实践又服务于实践,进而激发学习热忱引出课题二、解说新课:1. x a(a 0) 与 x a(a0) 型的不等式的解法先看含绝对值的方程 |x|=2几何意义:数轴上表示数x 的点走开原点的距离等于2.∴ x= 2发问:x 2 与x 2的几何意义是什么?表示在数轴上应当是如何的?数轴上表示数 x 的点走开原点的距离小(大)于 2-2 O 2 x -2 O 2 x即不等式x 2 的解集是x 2 x 2不等式x 2的解集是x x 2,或 x 2 。
试讲教案模板(含绝对值的不等式解法)
试讲教案模板(含绝对值的不等式解法)一、教学目标:1. 理解绝对值的概念及其性质。
2. 掌握绝对值不等式的解法。
3. 能够运用绝对值不等式解决实际问题。
二、教学内容:1. 绝对值的概念及性质。
2. 绝对值不等式的解法。
3. 实际问题中的应用。
三、教学重点与难点:1. 教学重点:绝对值的概念及其性质,绝对值不等式的解法。
2. 教学难点:绝对值不等式的解法,实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生探究绝对值的性质。
2. 通过案例分析,让学生掌握绝对值不等式的解法。
3. 利用实际问题,培养学生的应用能力。
五、教学过程:1. 导入:讲解绝对值的概念,引导学生理解绝对值的含义。
2. 探究绝对值的性质:引导学生通过举例分析,总结绝对值的性质。
3. 讲解绝对值不等式的解法:结合实际例子,讲解绝对值不等式的解法。
4. 练习:布置练习题,让学生巩固绝对值不等式的解法。
5. 拓展:利用实际问题,让学生运用绝对值不等式解决实际问题。
6. 总结:对本节课的内容进行总结,强调绝对值的概念、性质和解法。
7. 作业布置:布置相关作业,巩固所学知识。
8. 板书设计:绝对值的概念:|x| = {x, x ≥0-x, x < 0}绝对值的性质:1. |x| ≥02. |x| = |-x|3. |x + y| ≤|x| + |y|绝对值不等式的解法:1. 去掉绝对值符号,转化为一般不等式。
2. 根据绝对值的性质,分情况讨论解不等式。
9. 教学反思:本节课通过问题驱动法和案例分析,使学生掌握了绝对值的概念、性质和解法。
在实际问题中的应用环节,培养了学生的动手能力。
但在讲解绝对值不等式的解法时,部分学生仍存在理解困难,需要在后续教学中加强针对性辅导。
六、教学评价:1. 课堂讲解:评价学生对绝对值概念、性质和绝对值不等式解法的理解程度。
2. 练习题:评价学生运用绝对值不等式解决实际问题的能力。
3. 小组讨论:评价学生在团队合作中的参与度和思考问题的深度。
含绝对值不等式教案
含绝对值不等式优秀教案第一章:绝对值不等式的基本概念1.1 绝对值的概念解释绝对值的概念,即一个数的绝对值是它到原点的距离。
通过图形和实例来展示绝对值的意义。
1.2 绝对值不等式介绍绝对值不等式的概念,即含有绝对值符号的不等式。
解释绝对值不等式的性质,如非负性和对称性。
第二章:绝对值不等式的解法2.1 绝对值不等式的基本性质介绍绝对值不等式的基本性质,如同号相加、异号相减等。
2.2 绝对值不等式的解法展示如何解绝对值不等式,包括分情况讨论和解不等式的步骤。
通过实例来说明解绝对值不等式的过程。
第三章:含绝对值不等式的应用题3.1 含绝对值不等式的线性应用题介绍如何将含绝对值不等式的线性应用题转化为绝对值不等式。
通过实例来说明如何解决这类问题。
3.2 含绝对值不等式的几何应用题介绍如何将含绝对值不等式的几何应用题转化为绝对值不等式。
通过实例来说明如何解决这类问题。
第四章:含绝对值不等式的综合练习4.1 含绝对值不等式的混合运算练习含绝对值不等式的混合运算,包括加减乘除等。
4.2 含绝对值不等式的综合问题解决含绝对值不等式的综合问题,包括几何和实际应用背景。
第五章:含绝对值不等式的提高练习5.1 含绝对值不等式的证明题解决含绝对值不等式的证明题,练习运用逻辑推理和数学证明。
5.2 含绝对值不等式的创新题解决含绝对值不等式的创新题,培养学生的创新思维和解题能力。
第六章:含绝对值不等式的阅读理解6.1 绝对值不等式与实际问题的结合解释如何将绝对值不等式应用于实际问题,如距离、温度等。
通过实例来展示如何从实际问题中抽象出绝对值不等式。
6.2 含绝对值不等式的阅读理解练习提供阅读理解练习题,要求学生从文段中提取关键信息,建立绝对值不等式。
引导学生学会从问题描述中识别和应用绝对值不等式的性质。
第七章:含绝对值不等式的转换与化简7.1 绝对值不等式的转换介绍如何将绝对值不等式转换为其他类型的不等式,如一元一次不等式。
《绝对值不等式的解法》 说课稿
《绝对值不等式的解法》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是《绝对值不等式的解法》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析(一)教材的地位和作用“绝对值不等式的解法”是高中数学不等式部分的重要内容。
它既是对绝对值概念和性质的深化,也是后续学习不等式证明和求解的基础。
同时,绝对值不等式的解法在数学和其他学科中都有着广泛的应用,对于培养学生的逻辑思维能力和数学运算能力具有重要意义。
(二)教材内容本节课主要包括绝对值不等式的定义、绝对值不等式的基本性质以及绝对值不等式的解法。
其中,绝对值不等式的解法是本节课的重点内容,包括形如|ax + b| < c 和|ax + b| > c (其中 a、b、c 为常数,且a ≠ 0)的不等式的解法。
二、学情分析(一)知识基础学生已经掌握了绝对值的概念和性质,以及一元一次不等式和一元二次不等式的解法,具备了一定的数学运算和推理能力。
(二)学习能力学生在之前的学习中已经积累了一定的解题经验和方法,但对于绝对值不等式这种较为抽象的数学问题,可能在理解和应用上存在一定的困难。
(三)心理特点高中学生具有较强的好奇心和求知欲,但在面对复杂问题时可能会出现畏难情绪。
因此,在教学过程中要注重激发学生的学习兴趣,引导学生积极思考,逐步克服困难。
三、教学目标(一)知识与技能目标1、理解绝对值不等式的概念和性质。
2、掌握绝对值不等式的解法,能熟练求解形如|ax + b| < c 和|ax + b| > c (其中 a、b、c 为常数,且a ≠ 0)的不等式。
(二)过程与方法目标1、通过对绝对值不等式的探究,培养学生的观察、分析和解决问题的能力。
2、经历绝对值不等式的求解过程,体会分类讨论、转化与化归等数学思想方法。
(三)情感态度与价值观目标1、让学生在自主探究和合作交流中,感受数学的严谨性和趣味性,增强学习数学的信心。
含绝对值不等式教案
含绝对值不等式优秀教案一、教学目标1. 让学生理解绝对值不等式的概念和性质。
2. 培养学生解决含绝对值不等式问题的能力。
3. 提高学生对数学逻辑思维和运算能力的培养。
二、教学内容1. 绝对值不等式的定义和性质2. 含绝对值不等式的解法3. 含绝对值不等式的应用问题三、教学重点与难点1. 绝对值不等式的性质和解法2. 含绝对值不等式的应用问题四、教学方法1. 采用讲解法,引导学生理解绝对值不等式的概念和性质。
2. 采用案例分析法,让学生通过例题掌握含绝对值不等式的解法。
3. 采用练习法,培养学生解决实际问题的能力。
五、教学准备1. 课件和教学素材2. 练习题和答案3. 黑板和粉笔教案内容:第一课时:绝对值不等式的概念和性质一、导入(5分钟)提问:什么是绝对值?绝对值有什么性质?二、新课讲解(20分钟)1. 讲解绝对值不等式的概念举例:解不等式|x| > 2分析:根据绝对值的性质,|x| > 2 等价于x > 2 或x < -22. 讲解绝对值不等式的性质性质1:如果a 是实数,|a| = a 当a ≥0,|a| = -a 当a < 0 性质2:如果a 和b 是实数,|a + b| ≤|a| + |b|性质3:如果a 和b 是实数,|ab| = |a| |b|三、案例分析(10分钟)举例:解不等式|2x 3| ≤12x 3 ≤1 和2x 3 ≥-1解得:x ≤2 和x ≥1原不等式的解集为1 ≤x ≤2四、课堂练习(5分钟)1. 解不等式|3x + 2| > 42. 解不等式|x 5| ≤3第二课时:含绝对值不等式的解法一、导入(5分钟)提问:如何解决含绝对值不等式的问题?二、新课讲解(20分钟)1. 讲解含绝对值不等式的解法步骤1:将含绝对值的不等式转化为两个不等式组步骤2:分别解出每个不等式组的解集步骤3:求出两个解集的交集,即为原不等式的解集2. 举例讲解举例:解不等式组|2x 1| ≤3 和|x + 2| > 1-1 ≤2x 1 ≤3 和x + 2 > 1 或x + 2 < -1根据步骤2和步骤3,解得:x ≤2 和x > -1原不等式组的解集为-1 < x ≤2三、案例分析(10分钟)举例:解不等式|3x 4| + |x + 1| ≤5当x ≤-1 时,3x 4 ≤-x 1当-1 < x ≤4/3 时,3x 4 + x + 1 ≤5当x > 4/3 时,3x 4 + x + 1 > 5四、课堂练习(5分钟)1. 解不等式|x 2| + |x + 3| ≥52. 解不等式|2x + 1x 3| ≤4第三课时:含绝对值不等式的应用问题一六、教学目标1. 让学生能够应用绝对值不等式的解法解决实际问题。
高中数学_绝对值不等式的解法教学设计学情分析教材分析课后反思
《绝对值不等式的解法》教学设计课题:绝对值不等式的解法科目数学教学对象学生课时1提供者单位一、教学目标熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.培养学生观察、分析、解决问题的能力二、教学内容及模块整体分析含一个或两个绝对值不等式的解法,零点分段法解绝对值不等式,函数思想的应用。
三、学情分析学生基础差,少讲多练,以基础题为主。
四、教学策略选择与设计讲练结合,多媒体展现。
五、教学重点及难点熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.六、教学过程教师活动学生活动设计意图提问的方式总结前面学过的知识问题:你能一眼看出下面两个不等式的解集吗?⑴1x<⑵1x>让学生熟练掌握一般地,可得解集规律:形如|x|<a和|x|>a (a>0)的含绝对值的不等式的解集:不等式|x|<a的解集为{x|-a<x<a}不等式|x|>a的解集为{x|x<-a或课堂练习一:试解下列不等式:熟练地掌握方法(1)|32|7x-≥x>a }注:如果0a≤,不等式的解集易得.利用这个规律可以解一些含有绝对值的不等式.解绝对值不等式的思路是转化为等价的不含绝对值符号的不等式(组),根据式子的特点可用下列解法公式进行转化:⑴()()()f x a a f x a f x a(0)>>⇔><-或;⑵()()(0)f x a a a f x a<>⇔-<<;⑶()()()f xg x f x g x f x g x()()()>⇔><-或;⑷()()()()()f xg x g x f x g x<⇔-<<;⑸()()()()22f xg x f x g x⎡⎤⎡⎤>⇔>⎣⎦⎣⎦更熟练的掌握一般情况试解不等式|x-1|+|x+2|≥5利用|x-1|=0,|x+2|=0的零点,将数轴分为三个区间,然后在这三个区间上将原不等式分别化为不含绝对值符号的不等式求解.体现了分类讨论的思想.{}23≥≤x x x-或熟练掌握零点分段法在解不等式中的应用。
试讲教案模板(含绝对值的不等式解法)
试讲教案模板(含绝对值的不等式解法)一、教学目标1. 让学生理解绝对值的概念及其性质。
2. 让学生掌握绝对值不等式的解法。
3. 培养学生运用绝对值不等式解决实际问题的能力。
二、教学内容1. 绝对值的概念及其性质。
2. 绝对值不等式的解法。
3. 实际问题中的应用。
三、教学重点与难点1. 绝对值的概念及其性质。
2. 绝对值不等式的解法。
四、教学方法1. 采用自主学习、合作探讨的方式,让学生主动参与课堂。
2. 利用多媒体课件,直观展示绝对值的概念及性质。
3. 运用例题讲解,让学生逐步掌握绝对值不等式的解法。
五、教学过程1. 引入:讲解绝对值的概念及性质。
讲解绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值。
讲解绝对值的性质:(1)正数的绝对值是它本身。
(2)0的绝对值是0。
(3)负数的绝对值是它的相反数。
2. 讲解绝对值不等式的解法。
讲解解法步骤:(1)将绝对值不等式转化为两个不等式。
(2)分别解这两个不等式。
(3)取两个不等式的解集的交集。
3. 练习:让学生独立解决实际问题中的绝对值不等式。
举例:已知数轴上点A表示-3,点B表示5,求满足|x-A|<2且|x-B|<4的x的取值范围。
解答:(1)将绝对值不等式转化为两个不等式:-3 < x A < 25 < x B < 4(2)分别解这两个不等式:-3 + A < x < 2 + A5 + B < x < 4 + B(3)取两个不等式的解集的交集:-3 + A < x < 2 + A5 + B < x < 4 + B(4)化简解集:-1 < x < 74. 总结:回顾本节课所学内容,让学生巩固绝对值的概念、性质和绝对值不等式的解法。
5. 作业:布置相关练习题,让学生巩固所学知识。
六、教学评估1. 通过课堂练习和课后作业,评估学生对绝对值概念及其性质的理解程度。
人教版高中选修4-52.绝对值不等式的解法教学设计
人教版高中选修4-52.绝对值不等式的解法教学设计一、教学目标1.理解绝对值的概念2.掌握绝对值不等式的解法3.能够将绝对值不等式应用到实际问题中二、教学内容1.绝对值的概念2.绝对值不等式的基本性质3.绝对值不等式的解法4.将绝对值不等式应用到实际问题中三、教学方法1.探究式教学法2.讲授法3.演示法4.问题解决法四、教学过程第一步:引入教师通过简单的问题引入绝对值的概念,例如:如果一只蚂蚁要从一点走到另一点,需要走多少路程?如果两点之间有障碍物,如何绕过去?第二步:探究绝对值的性质1.学生自主探究绝对值的性质,例如:|a|=|−a|,|ab|=|a||b|等等。
2.教师带领学生归纳总结绝对值的性质。
第三步:讲解绝对值不等式的基本性质1.学生听讲师讲解绝对值不等式的基本性质。
2.教师引导学生通过例题感性理解,例如:|x|<a的解集是−a<x<a。
第四步:演示绝对值不等式的解法1.教师讲解解绝对值不等式的方法,例如:分情况讨论法、代数法等。
2.教师通过例题演示解绝对值不等式的过程。
第五步:问题解决1.学生自主解决练习题。
2.学生互相交流、讨论错题、深化对知识点的理解。
第六步:综合应用1.学生通过案例分析等方式,掌握如何将绝对值不等式应用到实际问题中。
2.学生自主思考练习题,并通过小组讨论形式将自己的经验和思路分享给其他同学。
五、教学评价1.学生课堂表现情况:主动性、问答、配合。
2.学生掌握情况:考试成绩、课堂回答、练习情况等。
3.教师课堂效果:教学内容的质量、教学方法的灵活性、教学效果的可感知性等。
六、教学资源1.教材:人教版高中数学选修4。
2.多媒体教学设备:投影仪、电脑等。
七、教学延伸1.实际情境应用,例如:简单的经济问题、生活中的测量问题等。
2.创设多种多样的情境、教育游戏等形式,引导学生将所学知识应用到生活中,增强学生主动学习的意愿和兴趣。
八、教学总结1.绝对值的概念是解绝对值不等式的基础。
高中高一数学教案设计:含绝对值的不等式
高中高一数学教案设计:含绝对值的不等式一、教学目标1.理解含绝对值不等式的概念,掌握含绝对值不等式的解法。
2.能够运用含绝对值不等式解决实际问题。
3.培养学生的逻辑思维能力、分析问题和解决问题的能力。
二、教学重点与难点1.重点:含绝对值不等式的解法。
2.难点:含绝对值不等式的应用。
三、教学过程1.导入新课(1)引导学生回顾初中阶段学过的绝对值的概念和性质。
(2)提出问题:如何解含绝对值的不等式?2.授课(1)介绍含绝对值不等式的概念含绝对值不等式是指含有绝对值符号的不等式,如|ax+b|>c、|x-a|<b等。
(2)讲解含绝对值不等式的解法a.ax+b>cb.ax+b<-c分别求解这两个不等式,得到解集。
a.ax+b<cb.ax+b>-c分别求解这两个不等式,得到解集的交集。
(3)举例讲解1.解不等式:|2x-3|>1a.2x-3>1b.2x-3<-1解得:x>2或x<12.解不等式:|x-2|<3a.x-2<3b.x-2>-3解得:-1<x<53.练习与讨论1.解不等式:|3x+1|>42.解不等式:|2x-5|<1(2)学生展示讨论成果,教师点评并给出正确答案。
4.含绝对值不等式的应用(1)讲解例题:例:已知函数f(x)=|x-2|+|x+3|,求函数的最小值。
解:当x<-3时,f(x)=-2x-1;当-3≤x<2时,f(x)=5;当x≥2时,f(x)=2x+1。
因此,函数f(x)的最小值为5。
(2)学生练习:1.已知函数g(x)=|2x-1|+|x+2|,求函数的最小值。
2.已知函数h(x)=|x-3|+|x+4|,求函数的最小值。
5.课堂小结本节课我们学习了含绝对值不等式的概念和解法,以及含绝对值不等式在实际问题中的应用。
希望大家能够掌握这些知识,并在实际问题中灵活运用。
试讲教案模板(含绝对值的不等式解法)
一、教学目标:1. 让学生理解绝对值的概念及其性质。
2. 培养学生掌握绝对值不等式的解法。
3. 提高学生解决实际问题的能力。
二、教学内容:1. 绝对值的概念及性质。
2. 绝对值不等式的解法。
3. 实际问题中的应用。
三、教学重点与难点:1. 重点:绝对值的概念、性质及绝对值不等式的解法。
2. 难点:绝对值不等式在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解绝对值的概念、性质及解法。
2. 利用例题,展示解题思路。
3. 开展小组讨论,培养学生合作学习。
4. 进行练习,巩固所学知识。
五、教学过程:1. 引入:讲解绝对值的概念及性质。
2. 讲解:讲解绝对值不等式的解法,展示解题思路。
3. 练习:学生独立完成练习题,教师进行点评。
4. 应用:结合实际问题,让学生运用绝对值不等式解法解决问题。
5. 总结:对本节课内容进行总结,强调重点知识点。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估:1. 通过课堂讲解、练习和实际问题解决,评估学生对绝对值概念、性质及绝对值不等式解法的掌握程度。
2. 观察学生在小组讨论中的参与情况,评估学生的合作学习能力。
3. 收集学生作业和课后练习,评估学生的学习效果。
七、教学资源:1. 教学PPT:包含绝对值的概念、性质及解法的讲解和练习题。
2. 练习题:包括不同难度的题目,用于巩固学生对知识的掌握。
3. 实际问题案例:用于引导学生将理论知识应用于实际问题解决。
八、教学进度安排:1. 第一课时:讲解绝对值的概念及性质。
2. 第二课时:讲解绝对值不等式的解法。
3. 第三课时:练习绝对值不等式的解法。
4. 第四课时:结合实际问题,应用绝对值不等式解法。
5. 第五课时:总结本单元内容,布置作业。
九、教学反馈与调整:1. 根据学生的学习情况,及时给予反馈,鼓励学生提问和参与课堂讨论。
2. 根据学生的掌握程度,调整教学进度和难度,确保学生能够扎实掌握知识点。
3. 对于学生的作业和练习,及时批改,给予具体的指导和纠正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《绝对值不等式的解法》教学设计
富源四中朱树平
课题:绝对值不等式的解法
科目数学教学对象学生课
时
1
提供者朱树平单位富源四中
一、教学目标
熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.培养学生观察、分析、解决问题的能力
二、教学内容及模块整体分析
含一个或两个绝对值不等式的解法,零点分段法解绝对值不等式,函数思想的应用。
三、学情分析
学生基础差,少讲多练,以基础题为主。
四、教学策略选择与设计
讲练结合,多媒体展现。
五、教学重点及难点
熟练掌握含一个或两个绝对值不等式的解法,会用函数的思想来解决不等式的相关问题.
六、教学过程
教师活动学生活动设计意图
提问的方式总结前面学过的知识问题:
你能一眼看出下面两个不等式的解集吗?
⑴1
x<
⑵
1
x>
让学生熟练掌
握
一般地,可得解集规律:
形如|x|<a和|x|>a (a>0)的含绝对值的不等式的解集:
不等式|x|<a的解集为{x|-a<x<a}
不等式|x|>a的解集为{x|x<-a或课堂练习一:
试解下列不等式:
熟练地掌握方
法
(1)|32|7
x
-≥
x>a }
注:如果0
a≤,不等式的解集易得.
利用这个规律可以解一些含有绝对值的不等式.
解绝对值不等式的思路是转化为等价的不含绝对值符号的不等式(组),根据式子的特点可用下列解法公式进行转化:⑴()()()
f x a a f x a f x a
(0)
>>⇔><-
或;
⑵()()
(0)
f x a a a f x a
<>⇔-<<;
⑶()()()
f x
g x f x g x f x g x
()()()
>⇔><-
或;
⑷()()
()()()
f x
g x g x f x g x
<⇔-<<;
⑸()()()()
22
f x
g x f x g x
⎡⎤⎡⎤
>⇔>
⎣⎦⎣⎦
更熟练的掌握
一般情况
试解不等式
|x-1|+|x+2|≥5
利用|x-1|=0,|x+2|=0的零点,
将数轴分为三个区间,然后在这
三个区间上将原不等式分别化为
不含绝对值符号的不等式求
解.体现了分类讨论的思想.
{}
23
≥≤
x x x-
或熟练掌握零点分段法在解不等式中的应用。
2
(2)|3|4
x x
-< (3)|32|1
x->
学习小结:
解绝对值不等式的基本思路是去
绝对值符号转化为一般不等式来
处理。
主要方法有:
1、同解变形法:运用解法公式直
接转化;
2、分类讨论去绝对值符号:
①含一个绝对值符号直接分类;
②含两个或两个以上绝对值符
号:零点分段法确定.
3、数形结合(运用绝对值的几何
意义);
利用函数图象来分析.
1、解不等式|2x-4|-|3x+9|<1
2、对任意实数x,若不等式|x+1|-|x-2|>k恒成
立,则k的取值范围是()
()3
A k<()3
B k<-()3
C k≤()3
D k-
≤
3.不等式有解的条件是( )
七、板书设计
你能一眼看出下面两个不等式的解集吗?
(1)
1
x<
⑵
1
x>
一般地,可得解集规律:
形如|x|<a和|x|>a (a>0)的含绝对值的不等式的解集:
不等式|x|<a的解集为{x|-a<x<a}
不等式|x|>a的解集为{x|x<-a或x>a }
注:如果0
a≤,不等式的解集易得.
2、课堂练习一:
试解下列不等式:
43
x x a
-+-<
1
()0
10
A a
<<()1
B a>
1
()
10
C a<
()1
D a<-
(1)|32|7
x
-≥2
(2)|3|4
x x
-<
3、课堂练习二(挑战): 试解不等式|x-1|+|x+2|≥5
4、学习小结:
解绝对值不等式的基本思路是去绝对值符号转化为一般不等式来处理。
主要方法有:
1、同解变形法:运用解法公式直接转化;
2、分类讨论去绝对值符号: ①含一个绝对值符号直接分类;
②含两个或两个以上绝对值符号:零点分段法确定. 3、数形结合(运用绝对值的几何意义); 4、利用函数图象来分析.
5、练习:
解不等式|2x-4|-|3x+9|<1
2.对任意实数x ,若不等式|x+1||x 2|>k 恒成立,则k 的取值范围是( )
()3A k < ()3B k <-()3C k ≤ ()3D k -≤
3.不等式 有解的条件是( )
古诗词中蕴含的哲理
1、"人事有代谢,往来成古今。
"唐代诗人孟浩然这句诗体现的哲理是
(一切事物都是变化发展的)。
2、"人间四月芳菲尽,山寺桃花始盛开。
"这首诗包含的哲理是(矛盾具有特殊性,一定要具体问题具体分析)
3、"兴亡由人事,山川空地形"反映的哲理是(事物的发展变化是有规律的)。
(3)|32|1x ->43x x a -+-<1()010A a <<()1B a >1
()10
C a <()1
D a <-
4、苏轼诗曰:"横看成岭侧成峰,远近高低各不同。
不识庐山真面目,只缘身在此山中。
"这首诗主要说明(人们对客观事物的认识,总要受主观条件和客观条件制约)
5、"夕阳无限好,只是近黄昏"这一诗句说明(事物都有一个产生、发展、灭亡的过程)
6、"骏马能历险,犁田不如牛;坚车能载重,渡河不如舟。
"其哲学寓意是(矛盾双方在定条件下可以转化)
7、"天时人事日相催,冬至阳生春又来"这句诗体现了唯物辩证法(变化发展)的观点
8、朱憙《观书有感》:"昨夜江边春水生,蒙冲巨舰一毛轻。
向来枉费推移力,此日中流自在行。
"作者从自然界和社会生活中捕捉形象,说明观书的体会。
此诗中蕴含的哲理是(主观能动性的发挥受客观因素的制约;矛盾双方在一定条件下相互转化)
9、"蝉噪林逾静,鸟鸣山更幽"所包含的哲理是(要在对立中把握统一,在统一中把握对立)。