双管正激变换器设计之一变压器篇(1.2KW)
【我是工程师】单端正激双管式开关电源设计之变压器设计
【我是工程师】单端正激双管式开关电源设计之变压器设计(cjhk完成于江苏泰州)最近电源网举行我是工程师这个活动,看到礼品这么丰富,我也忍不住想凑个热闹,准备把以前自己动手设计的一款电源贴出来和大家共享,其中借鉴了一些资料,难免会有一些差错,希望大家能及时指证。
因为有两个月左右的时间,所以我自己的规划是:首先分析单端正激式变换器拓扑结构,接着根据我自己的项目分析单端正激式电路的高频变压器设计方法,再其次是分析使用到的电源管理芯片的特性及功能,同时分析功率MOS的选择与计算功率损耗,最后是各功能电路的分析并贴出原理图。
整个项目大概的时长差不多1个半月。
主要是工作比较忙,只能抽晚上的时间来和大家分享,很多地方分析的会不到位,计算的公式以及原理什么的都只是自己的理解,会有错误,望大家及时指正。
单端正激式开关电源,一般适用与200W以下的开关电源(至于为什么是200W,我没有真正去验证过,找了好些资料,都是这么说的,希望有高手能解释一下为什么不能超过200W)。
我以前见过1200W的单端正激式开关电源,功率模块用的是IGBT,不过效率不高。
常见的单端拓扑结构,通常都是带有去磁绕组。
去磁绕组的圈数和初级绕组的圈数相同,主要目的是为了防止变压器磁饱和。
理想的正激拓扑结构的高频变压器磁芯是不需要有去磁绕组的,因为初级获得的能量都会完全传递到次级。
但是实际的情况是因为磁芯工作的区间的第一象限,每次初级获得能量在传递到次级时,磁芯都会有一些能量的残留,当残留的能量不断累加到达磁芯饱和的阙值点时,变压器发生磁饱和(磁通量为零,电流无穷大,至此变压器就会烧毁)。
为了防止变压器磁饱和,需要加入去磁绕组(也称复位绕组)。
去磁绕组的方向和初级绕组的方向正好相反,每次初级将能量传递到次级时,残余的能量和去磁绕组中的能量方向相反,正好抵消。
至于去磁绕组和初级绕组是如何绕制的,查了几本书,都说是紧密绕制。
在《变压器与电感器设计》(龚绍文翻译)这本书中写道是双线并绕,我想了很长时间没有搞懂。
正激式变换器(正激开关电源)的设计实例
正激式变换器(正激开关电源)的设计实例作为功率变压器的一个设计实例,下面我们将设计正激式变换器中的变压器。
显然,这种变压器也不是用于我们的buck变换器中。
现在,我们考虑设计要求:输入电压为直流48V(简便起见,不需要考虑进线电压的波动范围),输出电压为5V,功率100W,开关频率为250kHz,基本电路图如图所示。
容易得到,输出电流为100W/5V=20A。
这个电流值是比较大的,为了减少绕组电阻,副边的线圈匝数应该尽量取小。
这意味着取变比(原边匝数除以副边匝数)的时候,副边最少匝数取为1。
我们来看看变比为整数时会出现什么问题。
1 匝数比=1:1匝数比=1:1,即原边与副边的匝数相等。
当开关导通时,48V输入电压全部加在变压器的原边。
同样,副边也得到48V的电压(忽略漏感),并加于续流二极管两端。
实际上,具有低通态电压的肖特基功率二极管其最大阻断电压为45V左右。
48V的电路中,至少要采用电压为60V的器件,如果电压有过冲或者输入电压有波动,那么要求采用更高电压的器件。
二极管的反向阻断电压越高,其通态电压也越高,变换器的效率将会降低。
在低输出电压的变换器中,整流二极管的通态电压是一个常见的问题。
原因很明显:电感中的电流要么流过整流二极管,要么流过续流二极管,无论哪种情况,在二极管中总会产生一个大小为VfI的损耗。
二极管的损耗使变换器效率进一步下降。
这部分功率不在总功率V outI之中。
解决这个问题的唯一方法是采用同步整流器,但是其驱动非常复杂(同样的道理,当输出Vout降到3.3V,甚至更低时,必须使用同步整流器)。
不管怎么样,对于一个高效率的变换器而言,如果不采用同步整流器,1:1的变压器匝数变比不是一个很好的选择(对我们的例子而言)。
2 匝数比=2:1这时原边匝数是副边的2倍,所以加在原边的电压为48V,副边和二极管上的电压为24V,可以使用肖特基功率二极管。
正激式变换器占空比近似为DC=V out/Vsec=5V/24V=21%(忽略肖特基功率二极管的通态电压Vf)。
双开关正激转换器及其应用设计
双开关正激转换器及其应用设计双开关正激转换器及其应用设计单开关(或称单晶体管)正激转换器是一种最基本类型的基于变压器的隔离降压转换器,广泛用于需要大降压比的应用。
这种转换器的优点包括只需单颗接地参考晶体管,及非脉冲输出电流减小输出电容的均方根纹波电流含量等。
但这种转换器的功率能力小于半桥或全桥拓扑结构,且变压器需要磁芯复位,使这种转换器的最大占空比限制在约50%。
此外,金属氧化物半导体场效应管(MOSFET)开关的漏电压变化达输入电压的两倍或更多,使这种拓扑结构较难于用在较高输入电压的应用。
正激转换器中,变压器的磁芯单方向磁化,在每个开关周期都需要采用相应的措施来使磁芯复位到初始值,否则励磁电流会在每个开关周期增大,经历几个周期后会使磁芯饱和,损坏开关器件。
相对而言,如果有磁芯复位,电流就不会在每个开关周期增大,电压会基于励磁电感(Lmag)反相并使磁芯复位。
图1以单开关正激转换器为例,简要对比了无磁芯复位与有磁芯复位的电路图及励磁电感电流波形。
有3种常见的标准磁芯复位技术,分别是三次绕组,电阻、电容、二极管(RCD)钳位和双开关正激。
三次绕组磁芯复位技术的电路示意图参见图1b),这种技术能够提供大于50%的占空比,但开关Q1的峰值电压可能大于输入电压的2倍,而且变压器有三次绕组,使变压器结构更复杂。
RCD钳位磁芯复位技术也能使占空比大于50%,但需要写等式和仿真,以检验复位的正确性,让设计过程更复杂。
RCD钳位技术的成本比三次绕组技术低,但由于复位电路中的钳位电阻消耗能量,影响了电源转换效率。
图1:正激转换器不带磁芯复位与带磁芯复位之对比。
与前两种磁芯复位技术相比,双开关正激更易于实现,而且开关Q1上的峰值电压等于输入电压,降低了开关所承受的电压应力。
这种技术需要额外的MOSFET (Q2)和高端驱动器,且需要2个高压低功率二极管(D3和D4),参见图2。
双开关正激技术的每个开关周期包含3步:第1步,开关Q1、Q2及二极管D1导通,二极管D2、D3及D4关闭;第2步,开关Q1、Q2及二极管D1关闭,而二极管D2、D3及D4导通;第3步,开关Q1、Q2及二极管D1仍然关闭,二极管D2仍然导通,而二极管D3及D4则关闭。
双开关正激转换器及其应用设计
双开关正激转换器及其应用设计单开关(或称单晶体管)正激转换器是一种最基本类型的基于变压器的隔离降压转换器,广泛用于需要大降压比的应用。
这种转换器的优点包括只需单颗接地参考晶体管,及非脉冲输出电流减小输出电容的均方根纹波电流含量等。
但这种转换器的功率能力小于半桥或全桥拓扑结构,且变压器需要磁芯复位,使这种转换器的最大占空比限制在约50%。
此外,金属氧化物半导体场效应管(MOSFET)开关的漏电压变化达输入电压的两倍或更多,使这种拓扑结构较难于用在较高输入电压的应用。
图1:正激转换器不带磁芯复位与带磁芯复位之对比正激转换器中,变压器的磁芯单方向磁化,在每个开关周期都需要采用相应的措施来使磁芯复位到初始值,否则励磁电流会在每个开关周期增大,经历几个周期后会使磁芯饱和,损坏开关器件。
相对而言,如果有磁芯复位,电流就不会在每个开关周期增大,电压会基于励磁电感(Lmag)反相并使磁芯复位。
图1以单开关正激转换器为例,简要对比了无磁芯复位与有磁芯复位的电路图及励磁电感电流波形。
有3种常见的标准磁芯复位技术,分别是三次绕组,电阻、电容、二极管(RCD)钳位和双开关正激。
三次绕组磁芯复位技术的电路示意图参见图1b),这种技术能够提供大于50%的占空比,但开关Q1的峰值电压可能大于输入电压的2倍,而且变压器有三次绕组,使变压器结构更复杂。
RCD钳位磁芯复位技术也能使占空比大于50%,但需要写等式和仿真,以检验复位的正确性,让设计过程更复杂。
RCD钳位技术的成本比三次绕组技术低,但由于复位电路中的钳位电阻消耗能量,影响了电源转换效率。
图2:双开关正激转换器电路原理图与前两种磁芯复位技术相比,双开关正激更易于实现,而且开关Q1上的峰值电压等于输入电压,降低了开关所承受的电压应力。
这种技术需要额外的MOSFET (Q2)和高端驱动器,且需要2个高压低功率二极管(D3和D4),参见图2。
双开关正激技术的每个开关周期包含3步:第1步,开关Q1、Q2及二极管D1导通,二极管D2、D3及D4关闭;第2步,开关Q1、Q2及二极管D1关闭,而二极管D2、D3及D4导通;第3步,开关Q1、Q2及二极管D1仍然关闭,二极管D2仍然导通,而二极管D3及D4则关闭。
1KW磁集成双管正激变换器的初步研究
t t(b) 磁柱1和3的电压和交变磁通波形 图1 采用磁性元件集成的双管正激电路1KW 磁集成双管正激变换器的初步研究摘要—为了减小传统的双管正激变换器中输出的电流脉动,本文将磁集成技术应用于该变换器,将电感和变压器进行集成。
通过合理的设计磁件的磁阻,不仅可以减小磁件的体积和重量,还可以减小输出电流的脉动。
文中详细分析了集成后变换器的工作原理,给出了设计依据,并以270V 输入、28.5V/1KW 输出的直流电源为例进行了初步的实验验证。
Abstract —The large output ripple current impaired the performance of Two Transistors Forward Converter (TTFC). By the ac flux positive coupling of the inductor and transformer, the output ripple current can be reduced. The improved TTFC with integrated magnetics is proposed in this paper. The design consideration for the integrated magnetics is discussed along with the effect on the ripple currents. Two 1000W TTFC prototype converters, with integrated magnetics and without, are built to verify the operation principle. 关键词—双管正激变换器,磁件集成技术,电流纹波最小化.1.简介双管正激变换器由于其结构简单,开关管电压应力低,可靠性高,在中大功率场合的应用非常广泛,许多文献对其进行研究[1-3]。
经验总结:关于正激变压器的设计
经验总结:关于正激变压器的设计正激变压器由于储能装置在后面的BUCK电感上,所以没有Flyback变压器那么复杂,其作用主要是电压、电流变换,电气隔离,能量传递等。
所以,我们计算正激变压器的时候,一般都是首先以变压次级后端的BUCK电感为研究对象的,BUCK电感的输入电压就是正激变压器次级输出电压减去整流二极管的正向压降,所以我们又称正激电源是BUCK的隔离版本。
首先说说初次级匝数的选择:以第三绕组复位正激变压器为例,一旦匝比确定之后,接下来就是计算初次级的匝数,论坛里有个帖子里的工程师认为,正激变压器在满足满负载不饱和的情况下,匝数越小越好。
其实这是个误区,匝数的多少决定了初级的电感量(在不开气隙,或开同样的气隙情况下),而电感量的大小就决定了初级的励磁电流大小,这个励磁电流虽不参与能量的传递,但也是需要消耗能量的,所以这个励磁电流越小电源的效率越高;再说了,过少的匝数会导致deltB变大,不加气隙来平衡的话,变压器容易饱和。
无论是单管正激还是双管正激,都存在磁复位的问题。
且都可以看成是被动方式的复位。
复位的电流很重要,如果太小了复位效果会被变压器自身分布参数(主要是不可控的电容,漏感)的影响。
复位电流是因为电感电流不能突变,初级MOSFET关断之后,初级绕组的反激作用,又复位绕组跟初级绕组的相位相反,所以在复位绕组中有复位电流产生复位电流关系到磁芯能否可靠的退磁复位,其重要性不言自喻;当变压器不加气隙时,其初级电感量较大,复位电流自然就小。
但在大功率的单管正激和双管正激的实际应用中,往往需要增加一点小小的气隙,否则设计极不可靠,大功率的电源,一次侧电流很大,漏感引起的磁感应强度变化,B=I*Llik/nAe,就大,加气隙是为了减小漏感Llik。
正激的占空比主要是取决于次级续流电感的输入与输出,次级则就是一个BUCK电路,而CCM的BUCK线路Vo=Vin*D,跟次级的电流无关Vo=Vin*DVo:输出电压,Vin:BUCK的输入电压,即正激变压器的输出电压减去整流管的正向压降,D:占空比在此,输出电压是已知的我们只要确定一个合适的占空比,就可以计算出BUCK电感的Vin,也就是说变压器的输出电压基本就定下来了。
双管正激变换器
双管正激变换器
作者:时间:2007-12-11 来源:电子元器件网浏览评论推荐给好友我有问题个性化定制关键词:正激变换器电源
图1为双管正激变换器主电路,其变压器二次侧电路和单管正激变换器一样,但一次绕组与S1、S2(两个开关晶体管)串联,S1、S2在PWM脉冲作用下同时导通或关断,在每个晶体开关管和一次绕组之间,各并联一个续流二极管VD1、VD2,使得S1、S2关断时,变压器储能有一个释放通路,经过VD1、VD2回馈到直流输入电源。
因此双管正激变换器无需另加磁复位措施。
VD1、VD2还起钳位作用,将S1、S2承受的电压钳位于输入电压V i。
图1双管正激变换器
有的文献称这种电路为混合桥式(Hybrid bridge)电路,其中S1、VD2组成一个桥臂,VD1、S2组成另一个桥臂。
双管正激变换器可应用于较高电压输入(例如V i=800V或1000V)、较大功率输出场合(例如10KW)。
每个开关管承受的最大电压为V i。
和单管正激变换器相比,开关管承受的电压应力降低一半。
正激、反激式、双端开关电源高频变压器设计详解
一、正激式开关电源高频变压器:No待求参数项 详细公式1 副边电压Vs Vs = Vp*Ns/Np2 最大占空比θonmax θonmax = Vo/(Vs-0.5)1、θonmax的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。
2、0.5是考虑输出整流二极管压降的调整值,以下同。
3 临界输出电感Lso Lso = (Vs-0.5)*(Vs-0.5-Vo)*θonmax2/(2*f*Po)1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Lso]}dt = Po2、Ton=θon/f4 实际工作占空比θon 如果输出电感Ls≥Lso:θon=θonmax否则: θon=√{2*f*Ls*Po /[(Vs-0.5)*(Vs-0.5-Vo)]}1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Ls]}dt = Po2、Ton=θon/f5 导通时间Ton Ton =θon /f6 最小副边电流Ismin Ismin = [Po-(Vs-0.5)*(Vs-0.5-Vo)*θon2/(2*f*Ls)]/[(Vs-0.5)*θon]1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Ls+Ismin]}dt = Po2、Ton=θon/f7 副边电流增量ΔIs ΔIs = (Vs-0.5-Vo)* Ton/ Ls8 副边电流峰值Ismax Ismax = Ismin+ΔIs9 副边有效电流Is Is = √[(Ismin2+ Ismin*ΔIs+ΔIs2/3)*θon]1、Is=√[(1/T)*∫0ton(Ismin+ΔIs*t/Ton)2dt]2、θon= Ton/T10 副边电流直流分量Isdc Isdc = (Ismin+ΔIs/2) *θon11 副边电流交流分量Isac Isac = √(Is2- Isdc2)12 副边绕组需用线径Ds Ds = 0.5*√Is电流密度取5A/mm213 原边励磁电流Ic Ic = Vp*Ton / Lp14 最小原边电流Ipmin Ipmin = Ismin*Ns/Np15 原边电流增量ΔIp ΔIp = (ΔIs* Ns/Np+Ic)/η16 原边电流峰值Ipmax Ipmax = Ipmin+ΔIp17 原边有效电流Ip Ip = √[(Ipmin2+ Ipmin*ΔIp+ΔIp2/3)*θon]1、Ip=√[(1/T)*∫0ton(Ipmin+ΔIp*t/Ton)2dt]2、θon= Ton/T18 原边电流直流分量Ipdc Ipdc = (Ipmin+ΔIp/2) *θon19 原边电流交流分量Ipac Ipac = √(Ip2- Ipdc2)20 原边绕组需用线径Dp Dp = 0.55*√Ip电流密度取4.2A/mm221 最大励磁释放圈数Np′ Np′=η*Np*(1-θon) /θon22 磁感应强度增量ΔB ΔB = Vp*θon / (Np*f*Sc)23 剩磁Br Br = 0.1T24 最大磁感应强度Bm Bm = ΔB+Br25标称磁芯材质损耗P Fe(100KHz 100℃ KW/m3)磁芯材质PC30:P Fe = 600磁芯材质PC40:P Fe = 45026 选用磁芯的损耗系数ωω= 1.08* P Fe / (0.22.4*1001.2)1.08为调节系数27 磁芯损耗Pc Pc = ω*Vc*(ΔB/2)2.4*f1.228 气隙导磁截面积Sg 方形中心柱:Sg= [(a+δ′/2)*( b+δ′/2)/(a*b)]*Sc 圆形中心柱:Sg= {π*(d/2+δ′/2)2/[π*(d/2)2]} *Sc29 有效磁芯气隙δ′ δ′=μo*(Np2*Sc/Lp-Sc/AL)1、根据磁路欧姆定律:H*l = I*Np 有空气隙时:Hc*lc + Ho*lo = Ip*Np又有:H = B/μ Ip = Vp*Ton/Lp 代入上式得:ΔB*lc/μc +ΔB*δ/μo = Vp*Ton*Np /Lp 式中:lc为磁路长度,δ为空气隙长度,Np为初级圈数,Lp为初级电感量,ΔB为工作磁感应强度增量;μo为空气中的磁导率,其值为4π×10-7H/m;2、ΔB=Vp*Ton/Np*Sc3、μc为磁芯的磁导率,μc=μe*μo4、μe为闭合磁路(无气隙)的有效磁导率,μe的推导过程如下:由:Hc*lc=Ip*Np Hc=Bc/μc=Bc/μe*μo Ip=Vp*Ton/Lpo 得到:Bc*lc/(μe*μo)=Np*Vp*Ton/Lpo又根据:Bc=Vp*Ton/Np*Sc 代入上式化简 得:μe = Lpo*lc/μo*Np2*Sc5、Lpo为对应Np下闭合磁芯的电感量,其值为:Lpo = AL*Np26、将式步骤5代入4,4代入3,3、2 代入1得:Lp =Np2*Sc/(Sc/AL +δ/μo)30 实际磁芯气隙δ如果δ′/lc≤0.005: δ=δ′如果δ′/lc>0.03: δ=μo*Np2*Sc/Lp 否则 δ=δ′*Sg/Sc31 穿透直径ΔD ΔD = 132.2/√f32 开关管反压Uceo Uceo = √2 *Vinmax+√2 *Vinmax*Np/ Np′33 输出整流管反压Ud Ud = Vo+√2 *Vinmax*Ns/Np′34 副边续流二极管反压Ud′ Ud′=√2 *Vinmax*Ns/Np二、双端开关电源高频变压器设计步骤:No待求参数项 详细公式1 副边电压Vs 如果为半桥:Vs = Vp*Ns/(2*Np) 否则: Vs = Vp*Ns/Np2 最大占空比θonmax θonmax = Vo/(Vs-0.5)1、θonmax的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。
600W双管正激变换器中高频变压器的设计方案
600W双管正激变换器中高频变压器的设计方案高频变压器是600W双管正激变换器中的核心组件,其设计方案的合理与否直接影响到整个变换器的性能和稳定性。
以下是一个设计高频变压器的一般步骤以及一些重要的设计考虑因素。
1.确定输入输出参数:设计高频变压器的第一步是确定输入输出参数,包括输入电压、输出电压和输出电流。
这些参数将直接决定变压器的设计规格和尺寸。
2.确定磁芯材料:选择适当的磁芯材料对于高频变压器的设计非常重要。
常用的磁芯材料有Ui、U、E、N、Mn、FeSi、FeCo和NiZn等。
需要根据设计要求和工作频率选择磁芯材料,并考虑磁芯的损耗、饱和磁感应强度和剩磁等因素。
3.计算变压器的参数:根据输入输出参数,计算变压器的参数,包括匝数比、磁感应强度和磁路饱和电流等。
这些参数可以通过一系列公式和计算方法得到,也可以通过电磁仿真软件进行模拟计算。
4.设计主线圈和辅线圈:根据计算结果设计主线圈和辅线圈。
主线圈是连接输入和输出的线圈,而辅助线圈主要用于调节输出电压和电流的稳定性。
线圈的匝数和绕组方式需要根据变压器的参数和使用场景来确定。
5.选择绝缘材料和绕组方式:绝缘材料的选择对于变压器的工作稳定性和安全性至关重要。
常见的绝缘材料有聚酯薄膜、纸板、气缸绝缘和涂漆。
在选定绝缘材料后,需要选择合适的绕组方式,包括层式绕组和环式绕组等。
6.优化设计:在设计过程中,需要不断进行优化,以提高变压器的性能和效率。
可以通过调整线圈的结构、优化磁芯的形状以及选择适当的电路连接方式来实现优化设计。
7.进行样品测试:完成设计后,制作样品进行测试和验证,包括输入输出电压波形、效率、温升和电气性能等。
根据测试结果进行调整和改进,以达到设计要求。
8.制造和组装:根据最终确定的设计方案,进行变压器的制造和组装。
需要注意的是,在制造过程中保证绕组的质量和精度,并进行适当的绝缘处理。
总结:设计高频变压器需要考虑诸多因素,包括输入输出参数、磁芯材料、线圈设计、绕组方式、绝缘材料等。
双管正激同步整流变换器
本科毕业设计(论文)双管正激同步整流变换器***燕山大学2012年6月本科毕业设计(论文)双管正激同步整流变换器学院(系):里仁学院专业:08应电2班学生姓名:***学号:***指导教师:***答辩日期:2012/6/17燕山大学毕业设计(论文)任务书Abstract摘要随着电力电子变换器在通讯系统的广泛应用,低压大电流功率变换器成为一个重要的研究方向。
文章详细介绍了双管正激变换器的拓扑结构及工作原理,阐述了其拓扑结构的特点。
利用状态空间平均法推导出该变换器的小信号模型,以此为基础设计出电压控制模式的闭环设计思想,并指出了如何进行反馈补偿器的设计。
本文采用电压型控制,对该控制方案做了详细的分析和设计。
对于高频整流环节,由于传统的二极管整流电路正向压降大而导致损耗大,极大地影响整个变换器的工作效率,而无法满足低电压大电流开关电源高效率、小体积的需要。
新一代的功率MOSFET由于具有导通电阻极低的特点而成为低电压大限流功率变换器的首选整流器件。
本文介绍了利用功率MOSFET构成同步整流电路的工作原理、驱动方式,并对整流MOSFET的双向导电特性进行了说明。
关键词双管正激;电压型控制;同步整流II摘要With the power electronic converters in communication systems widely used, low-voltage high-current power converters to become an important research direction. The article describes in detail a two-transistor forward converter topology structure and working principle, the characteristics of its topology. State space averaging method to derive the small-signal model of the converter, as the basis for the closed-loop voltage control mode design ideas, and pointed out how the design of feedback compensators. In this paper, voltage control, the control program to do a detailed analysis and design.The link for the high-frequency rectifier, the forward voltage drop of the diode rectifier circuit big lead to loss, which greatly affect the efficiency of the converter, unable to meet the needs of low-voltage high-current switching power supply high efficiency, small volume. A new generation of power MOSFET with low-resistance characteristics to become the preferred deadline flow of low-voltage power converter rectifiers. This article describes the use of power MOSFET synchronous rectifier circuit works, drive way, two-way electrical properties and rectifier MOSFET are described.Keywords tow-transistor forward converter;V oltage mode controlSynchronous rectificationI目录摘要 (VII)Abstract ............................................................................................................. V III 第1章绪论.. (11)1.1开关电源的发展 (11)1.2低电压、大电流的开关电源的开发 (11)1.3本章小结 (13)第2章双管正激的拓扑结构及原理分析 (14)2.1主电路构成 (14)2.2工作原理 (14)2.3电容C的作用 (15)2.4正激变换器的小信号模型的推导与分析 (15)2.5电压型控制 (21)2.6开关电源的频域建模 (22)2.6.1 电气系统建模 (22)2.6.2 系统的稳定性和稳定裕度 (23)2.6.3电压型控制正激变换器 (24)2.6.4 普通误差放大补偿器的设计 (26)2.6.5 极点——零点补偿器 (26)2.7本章小结 (29)第3章同步整流管双向导电特性及整流损耗分析 (30)3.1同步整流技术介绍 (30)3.2肖特基整流管的损耗分析 (30)3.3同步整流的工作原理和特性 (31)3.3.1 同步整流的基本工作原理 (31)3.3.2同步整流管的主要参数 (33)3.4同步整流的驱动方式 (34)3.4.1 外驱动与自驱动同步整流 (34)3.4.2电压型自驱动同步整流 (35)3.4.3 电流型自驱动同步整流 (38)3.5SR的控制时序与同步整流电路 (39)3.6本章小结 (41)第4章主电路及控制电路参数的设计 (42)4.1主电路参数设计 (42)4.2控制电路参数设计 (44)4.3补偿网络(误差放大器) (48)4.4本章小结 (49)第5章实验结果及分析 (50)结论 (53)参考文献 (54)致谢 (55)附录1 (56)附录2 (59)附录3 (62)附录4 (69)附录5 (85)第1章绪论1.1 开关电源的发展按电力电子的习惯称谓,AC-AC称为整流,DC-DC称为逆变,AC-AC 称为交流-交流直接变频,DC-DC称为直流-直流变换器。
双管正激变换器设计之一变压器篇(1.2KW)
1200W双管正激变换器设计之一——变压器设计正激变换器通常使用无气隙的磁芯,电感值较高,初次级绕组峰值电流较小,因而铜损较小,开关管峰值电流较低,开关损耗较小,其高可靠高稳定性使得其在很多领域和苛刻环境得到应用.下面举例给大家分享下对正激变换器的设计方法:规格:输入电压Vin=400V(一般在输入端会有CCM APFC将输入电压升压在稳定的DC400V左右)输出电压Vout=12V输出功率Pout=1200W效率η=85%开关频率Fs=68KHz最大占空比Dmax=0.35第一,第一,选择磁芯的材质选择高μ低损,高Bs材质,一般常采用TDK PC40或同等材,其相关参数如下:因为正激电路的磁芯单向磁化,要让磁芯不饱和,磁芯中的磁通密度最大变化量需满足ΔB<Bs-Br,得ΔB=390-55=335mT,但实际应用中由于温度效应和瞬变情况会引起Bs和Bs的变化,导致ΔB的动态范围变小而出现饱和,因此,设计时需保留一定裕量,通常取60%~80%(Bs-Br), ΔBc 选得过高磁芯损耗会增加,易饱和,选得过小会使匝数增加,铜损增大,产品体积增大,通常选择60%(Bs-Br),则最大磁通变化量ΔB=(390-55)*0.6=201mT,即0.201T第二,确定磁芯规格根据公式AP=Aw*Ae=(Ps*104)/(2ΔB*Fs*J*Ku)其中:Aw为磁芯的铜窗口截面积(cm2),Ae为磁芯的有效截面积(cm2),Ps为变压器的视在功率(W),J为电流密度(A),Ku为铜窗口占用系数对正激变换器,视在功率Ps=Pout/η+Pout电流密度J根据不同的散热方式取值不同,一般采用300~600A/cm2,此处考虑到趋肤效应采用多股纱包线,取600A/cm2铜窗口占用系数Ku取0.2ΔB=0.20T,J=600A/cm2,Ku=0.2代入公式得AP=[(1200/0.85+1200)*104]/(2*0.201*68*103*600*0.2)=7.962cm4查磁芯规格书,选用磁芯ETD49,其相关参数如下:ETD49的AP=Aw*Ae=375*213=79875mm4=7.9875cm4<7.962cm4,即,OK。
双管正激变换器电路解说
双管正激变换器電路解說
1、电路拓扑图
2、电路原理
其变压器T1起隔离和变压的作用,在输出端要加一个电感器Lo(续流电感)起能量的储存及传递作用,变压器初级无需再有复位绕组,因为D1、D2的导通限制了两个调整管关断时所承受的电压。
输出回路需有一个整流二极管D3和一个续流二极管D4(其中D3、D4均最好选用恢复时间快的整流管)。
输出滤波电容Co应选择低ESR(等效电阻)大容量,有利于降低纹波电压(当然这对于其它拓扑结构的也是这样要求)。
3、工作特点
a、在任何工作条件下,为使两个调整管所承受的电压不会超过Vs+Vd (Vs:输入电压;
Vd:D1、D2的正向压降,),D1、D2必须是快恢复管(当然用恢复时间越短越好,我在实际设计和调试中多使用MUR460)。
b、在与单端正激变换器相比,无需复位电路,有利于简化电路和变压器设计;功率器件
可选择较低的耐压值;功率等级也会很大,据我所知现在很多大功率等级的通信电源及电力操作电源都选用了这种电路。
c、两个调整管工作状态一致,同时处通态或断态。
我个人建议在大功率等级电源中选用
此种电路,主要是调整管好选,比如IRFP460、IRFP460A等调整管即可。
4、变压器计算
在实际设计和调试中,与单管正激变换器变换器中变压器设计方法相同,不过省去了复位绕组。
5、输出电感计算
单端正激、双管正激、半桥、推挽、全桥、BUCK等电路设计方法相同。
我实际设计和调试中一般仅以公式计算值作参考,适当的可以调整匝数以达到最佳状态(我个人认为)。
交错双管正激变换器的研究
而随着电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通和家 庭中的应用日益广泛,而谐波所造成的危害也日益严重。谐波使电能的生产、传输和利 用的效率降低,使得电气设备过热、产生振动和噪声并使绝缘老化,使用寿命缩短,甚 至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串连谐振,使谐波含量放大, 造成电容器等设备烧毁,在三相电路中,中线流过三相三次谐波电流的叠加,使得中线 过流而损坏。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。谐波对 通讯设备和电子设备会产生严重的干扰[4]。
双管电压模式正激开关变换器设计
实验二题目双管电压模式正激开关变换器设计第周星期_第_ 节一. 实验目的本实验的设计过程分为四个步骤,与每一步相应的目的如下:(1) 学习利用给定的条件设计主电路(功率变换)中的主要元件,如占空比、变压器匝比、输出滤波器以及开关频率等等。
(2) 利用平均电路设计变换器的反馈补偿。
(3) 使用闭环电路设计调制电路,初步验证开关电源设计(4) 包含所有元器件的器件级双端正激变换器设计,包括缓冲器、晶体管模型开关和驱动电路等等,通过仿真验证设计的正确性。
二. 实验方法、步骤及结果测试(1)开环设计(功率电路设计)1、确定占空比和变压器匝比2、计算最大、最小和额定的占空比3、设计输出滤波器4、使用Saber 验证开环增益结果如下:(二)使用平均模型设计补偿器:使用Saber 验证平均模型,开环交流分析,设计补偿电路,使用Saber 验证补偿电路设计,使用Saber验证闭环电路参数。
1、计算控制电压2、使用Saber 验证平均模型结果如下结果如下:4、设计反馈补偿电路5、验证反馈补偿网络的频域响应结果如下:6、验证系统闭环参数(三)调制器设计和闭环仿真1、设计调制电路2、验证调制电路结果如下:3、验证闭环反馈回路瞬态响应结果如下:(四)最后的元件级设计结果如下:下图所示的波形分别为误差放大器(1825 PWM) 的反相输入端“eai”、输出端“comp”以及1825 PWM 模型“ct”引脚的斜坡波形。
在1825 PWM 内部,“ct” 引脚的斜坡波形加在一个值为1.25V的偏置电压上,再与误差放大器输出端“comp” 比较得到占空比。
下图所示为输出电压以及通过输出滤波电感的电流,它们的波形形状与前面的闭环仿真波形看上去非常相似。
四. 思考题(1) 输出滤波电容大小对输出电压波形的影响?答:1、滤波电容的大小,应该根据负载情况来选择。
过小会使输出电压的“交流纹波”加大;过大也不经济。
2、选择滤波电容时,还应该注意耐压、和温度环境,尤其是后者,很容易被忽视。
双管正激小功率电源的设计与实现
双管正激小功率电源的设计与实现
正激变换由于拓扑简单,升/ 降压范围宽,广泛应用于中小功率电源变换场合。
正激变换器的输出功率不象反激变换器那样受变压器储能的限制,
因此输出功率较反激变换器大,但是正激变换器的开关管电压应力高,为两倍输入电压,有时甚至超过两倍输入电压。
过高的开关管电压应力成为限制正激变换器容量继续增加的一个关键因素。
驱动芯片T L494 是一种价格便宜、驱动能力强、死区时间可控,同时带有两个误差放大器,当负载变化时来进行电压和电流反馈PI 调节,这样进一步加强了电源的稳定性。
1 双管正激变换器电路
双管正激变换器电路如
该主电路拓扑结构有三个优点:
(1)克服了单端正激变换器中开关电压应力高的缺点。
(2)不需要采用特殊的磁通复位技术,避免复杂的去磁绕组的设计和减少高频变压器的体积,使电路变得简洁,也不需要加RCD 来进行复磁箝位,并能对电源进行馈电,提高了效率。
(3)与全桥变换器和半桥变换器相比,每一个桥臂都是由一个二极管和一个开关管串联组成,不存在桥臂直通的问题,可靠性高。
2 PWM 驱动芯片TL494 的特点
TL494 是典型的固定频率脉宽调制控制集成电路,它包含了控制开关电源所需的全部功能,可作为双管正激式、半桥式、全桥式开关电源的控制系统。
它的工作频率为1~ 300 kHz,输入电压达40 V,输出电流为200 mA,其内部原理
TL494 内部设置了线性锯齿波振荡器,振荡频率f = 1. 1/ (R C),。
双管正激拓扑的工作原理和设计举例
双管正激拓扑一.概述双管正激拓扑电路是一种在单端正激拓扑上衍生出来的一种拓扑电路。
经过实践证明,这种拓扑的电路具有电路简单,可靠性高,元器件较单端电路容易选取等特点。
是一种非常优秀的拓扑电路。
二.简介双管正激变换器拓扑结构由两个功率开关管和两个二极管构成,当两个开关管和同时关断时,磁通复位电路的两个二极管和同时导通,输入的电流母线电压Vin反向加在变压器的初级的励磁电感上,初级的励磁电感在Vin的作用下励磁电流从最大值线性的减小到0,从而完成变压器磁通的复位,并将储存在电感中的能量返回到输入端,没有功率损耗,从而提高电源的效率;此外,每个功率开关管理论的电压应力为直流母线电压,这样就可以选取相对较低耐压的功率MOSFET管,成本低,而且较低耐压的功率MOSFET的导通电阻小,可以进一步提高效率。
三.应用范围双管正激变换器广泛的应用于台式计算机的主电源,中等功率的通信电源及大功率通信电源、变频器等三相电路的辅助电源中。
四.基本工作原理和关键点的波形双管正激变换器的拓扑结构如图1所示,其中Cin为输入直流滤波电解电容,Q1和Q2为主功率开关管,D1、D2和C1、C2分别为Q1和Q2的内部寄生的反并联二极管和电容,D3、C3和D4、C4分别为变压器磁通复位二极管及其寄生的并联电容,不考虑Q2的漏极与散热片间的寄生电容,T为主变压器,DR和DF为输出整流及续流二极管,Lf和Co输出滤波电感和电容。
图1 双管正激变换器的拓朴结构首先,下面分几个工作模式来讨论其磁通复位的工作过程:(1)模式1:t0~t1在t0 时刻Q1 和Q2 关断,此时D3 也是关断的。
初级的励磁电感电流和漏感的电流不能突变,必须维持原方向流动,因此C1,Ch (散热片寄生电容)和C2充电,其电压从0 逐渐上升, C3 和 C4 放电,其电压由Vin 逐渐下降。
4231C C Lp C C i i i i i -==-in c C V u u =+31in C C V u u =+4223C C Lpu u dt di Lp -=333C C i dtdu C = 111C C i dtdu C = 222C C i dtdu C = 444C C i dt du C = 初始值:()001=C u ,()002=C u ,()in C V u =03,()in C V u =04,()00M Lp I i =由上面公式可得:423132C C C C u u C C ++=∆∆ (1) 在理想的模型下,21C C =,43C C =,4231C C C C +=+所以在t1时刻C3和C4的电压下降到0,同时 C1 和C1 的电压上升到Vin ,D3和D4 将导通,系统进入下一个过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1200W双管正激变换器设计之一——变压器设计
正激变换器通常使用无气隙的磁芯,电感值较高,初次级绕组峰值电流较小,因而铜损较小,开关管峰值电流较低,开关损耗较小,其高可靠高稳定性使得其在很多领域和苛刻环境得到应用.下面举例给大家分享下对正激变换器的设计方法:
规格:
输入电压Vin=400V(一般在输入端会有CCM APFC将输入电压升压在稳定的DC400V左右)
输出电压Vout=12V
输出功率Pout=1200W
效率η=85%
开关频率Fs=68KHz
最大占空比Dmax=0.35
第一,
第一,选择磁芯的材质
选择高μ低损,高Bs材质,一般常采用TDK PC40或同等材,其相关参数如下:
因为正激电路的磁芯单向磁化,要让磁芯不饱和,磁芯中的磁通密度最大变化量需满足ΔB<Bs-Br,得ΔB=390-55=335mT,但实际应用中由于温度效应和瞬变情况会引起Bs和Bs的变化,导致ΔB
的动态范围变小而出现饱和,因此,设计时需保留一定裕量,通常取60%~80%(Bs-Br), ΔBc 选得过高磁芯损耗会增加,易饱和,选得过小会使匝数增加,铜损增大,产品体积增大,通常选择60%(Bs-Br),则最大磁通变化量ΔB=(390-55)*0.6=201mT,即0.201T
第二,确定磁芯规格
根据公式AP=Aw*Ae=(Ps*104)/(2ΔB*Fs*J*Ku)
其中:
Aw为磁芯的铜窗口截面积(cm2),Ae为磁芯的有效截面积(cm2),Ps为变压器的视在功率(W),J为电流密度(A),Ku为铜窗口占用系数
对正激变换器,视在功率Ps=Pout/η+Pout
电流密度J根据不同的散热方式取值不同,一般采用300~600A/cm2,此处考虑到趋肤效应采用多股纱包线,取600A/cm2
铜窗口占用系数Ku取0.2
ΔB=0.20T,J=600A/cm2,Ku=0.2
代入公式得AP=[(1200/0.85+1200)*104]/(2*0.201*68*103*600*0.2)=7.962cm4
查磁芯规格书,选用磁芯ETD49,其相关参数如下:
ETD49的AP=Aw*Ae=375*213=79875mm4=7.9875cm4<7.962cm4,即,OK。
第三,计算匝比、匝数
1. 根据公式N=Np/Ns=Vin/Vout=(Vin*Dmax)/(Vo+Vf)
其中Vf为输出二极管正向压降,取0.8V
得匝比N=(400*0.35)/(12+0.8)=10.9375,
取匝比N=11验算最大占空比Dmax,
最大占空比Dmax=N(Vout+Vf)/Vin=11*(12+0.8)/400=0.352
2. 根据公式Np=Vin*Ton/(ΔB*Ae)
导通时间Ton=Dmax*Ts,周期Ts=1/Fs*106
得初级匝数
NP=[Vin*Dmax*(1/Fs*106)]/(ΔB*Ae)={400*0.352*[1/(68*103)*106]}/(0.201*213)=48.36Ts,取49Ts
3. 次级匝数Ns=Np/N=49/11=
4.45Ts
4. 取次级匝数Ns=5Ts验算初级匝数Np,
初级匝数Np=Ns*N=5*11=55Ts
考虑到输入电压较高,采用双管正激比采用单管正激可以大幅减小MOS的电压应力,无需消磁绕组。
7. 再通过初级匝数Np来验算最大磁通变化量ΔB,最大磁通变化量
ΔB=(Vin*Dmax*Ts)/(Np*Ae)={400*0.352*[1/(68*103)*106]}/(55*213)=0.1767T
根据ΔB+Br<Bs得0.1767+0.055=0.2317<0.39, OK
8. 根据L=N2*Al得,
初级电感量最小值Lmin=Np2*[AL*(1-0.25)]=552*[4440*(1-0.25)]/106=10.0mH
第四,计算各绕组线径
1. 输入电流Ip=Pout/(Vin*Dmax*η)=1200/(400*0.352*0.85)=10.0A
初级线圈电流有效值Ip_rms=Ip*SQRT(Dmax)=10.0*SQRT(0.352)=5.9A
则,初级线圈截面积Swp=Ip_rms/J=5.9/600=0.0098cm2=0.98mm2
多股纱包线单根直径为0.1mm,其单根面积为Sw=3.14*(0.1/2)2=0.00785mm2
得,初级所需纱包线股数Nwp=Swp/Sw=0.98/0.00785=124.8PCS,约125PCS。
即,初级线圈采用125根单根直径0.1mm的纱包线。
2. 次级线圈电流有效值Is_rms=Iout*SQRT(Dmax)=100*SQRT(0.352)=59.3A
次级线圈截面积Sws=Is_rms/J=59.3/600=0.0988cm2=9.88mm2
次级所需纱包线股数Nws=Sws/Sw=9.88/0.00785=1258.6PCS,约1260PCS。
即,次级线圈采用1260根单根直径0.1mm的纱包线。
通常纱包线的电流密度可取范围较大,一般为400~1200A/CM2,结合常用规格,取:
初级线圈采用120根单根直径0.1mm的纱包线绕55Ts;
次级线圈采用1200根单根直径0.1mm的纱包线绕5Ts。
1、频率只有68K,犯不着用利兹线,直接0.6mm的线4根并绕就好
2、次级电流算错了,有效值就是100A,峰值大约为170A,这个得用铜箔了
3、最好回头验算一下能不能绕下
次级线圈有效值电流是100A??
多股漆包线的电流密度最大可达1000~1200A/CM2,就算再大电流采用多股漆包线也是可以的,并不一定要用铜箔,按ETD49的幅宽,需采用0.6mm厚的铜箔才可以,0.6mm的铜箔并不一定比多股漆包线好绕吧
1000~1200A/CM2不就是10~12A/MM2吗?
能绕下当然用利兹线好点,铜箔厚了不好出线。
根据L=N2*Al得(请问这个公式怎么来的)
初级电感量最小值Lmin=Np2*[AL*(1-0.25)] (请问1-0.25是怎么来的)
实际证明ETD49做不了1200W,就算按楼主所说,电流密度可以12A/mm2,也要1000股0.1MM的丝包线,而且还只能走94A,绕5T,用掉39.25MM2,那么粗的线,加上间隙,加上外面的丝,磁芯利用率最多0.1,39.25/0.1=392.25MM2,已经超过磁芯面积了,绕不下的,ETD49撑死也就500W
好,有空自己也搞一台试试,刚好又450A的IGBT和PQ105的磁芯,器件够用了
既然电压是稳定的DC400V左右,最大占空比Dmax=0.35就不是合适的参数,可以适度加大,能降低铜损,提升效率。
在负载一定的情况下,加大占空比,可同时降低变压器原付边的电流有效值。
还可以降低整流二极管的反向电压;还可以降低输出电抗器的储能能量;还可以降低输出电压的纹波;还可以降低输出纹波电流。
还可以降低整流二极管正向电流有效值。
以上说的都是好处,有一个坏处是会稍微增加一点原边激磁电流,显然,好处很多,坏处很少。
整体效率肯定提高。
不仅仅是经验,通过计算就可以得到以上结论。