(完整版)红外测温传感器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外光电传感器测温仪
1红外测温传感器结构
红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内的算法和目标发射率校正后转变为被测目标的温度值。
2红外测温传感器工作原理
在自然界中,一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射量。根
据基尔霍夫定律、普朗克定律、维恩公式这三大辐射定律,物体的红外辐射能量的大小及其按波长的分布与其表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。
三大辐射定律均是以“黑体”作为研究对象分析得出的。但是,自然界中存在的实际物体都不是黑体,所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法以及表面状态和环境条件等因素有关。因此,为了使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在0-1之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。物体表面发射率主要决定于材料性质和表面状态( 如表面氧化情况,涂层材料,粗糙程度及污秽状态等)。
当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中的红外线在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质成为黑体,其他的波段的最大值成为灰体。事实上,自然界中并不存在黑体,只是为了获得红外线的分布规律才提出的,从而导出了普朗克黑体辐射定律。
普朗克黑体辐射定律是用于描述在任意温度下从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础用公式可表达为:
E=δε(T-To ) E 是辐射出射度.单位是W /m3;
δ是斯蒂芬一波尔兹曼常数,5.67x10-8W /(m2·K4); ε是物体的辐射率: T 是物体的温度(K );
To 是物体周围的环境温度(K )。
红外测温仪电路比较复杂, 包括前置放大, 选频放大, 温度补偿, 线性化, 发射率ε (比辐射率 )调节等。目前已有一种带单片机的智能红外测温仪, 利用单片机与软件的功能, 大大简化了硬件电路, 提高了仪表的稳定性、可靠性和准确性。
红外测温仪的光学系统可以是透射式, 也可以是反射式。 反射式光学系统多采用凹面玻璃反射镜, 并在镜的表面镀金、 铝、镍或铬等对红外辐射反射率很高的金属材料。
3红外测温理论基础
3.1红外辐射(红外线、红外光)
红外线是电磁波谱中,波长0.76μm -1000μm 范围的电磁辐射,位于红外光与无线电波之间。与可见光的反射、折射、干涉、衍射和偏振等特性相同。同时具有粒子性。对人的眼睛不敏感,要用对红外敏感的探测器才能接收到。红外辐射的本质是热辐射,热辐射包括紫外光、可见光辐射,但是在0.76μm -40μm 红外辐射热效应最大。
自然界中一切温度高于绝对零度的有生命和无生命的物体,时时刻刻都在不停地辐射红外线。辐射的量主要由物体的温度和材料本身的性质决定;特别热辐射的强度及光谱成份取决于辐射体的温度。 3.2黑体辐射规律
黑体红外辐射的基本规律揭示的是黑体发射的红外热辐射随温度及波长的定量关系。黑体一种理想物体,它们在相同的温度下都发出同样的电磁波谱,而与黑体的具体成分和形状特性无关。斯特藩和玻耳兹曼通过实验和计算得出黑体辐射定律:
4
0)(T
T M σ=
式中:)(0T M —— 温度为T 时,单位时间从黑体单位面积上辐射出的总辐射能,称为总辐出度;σ一—斯特藩玻耳兹曼常量;T 一—物体温度。
上式是黑体的热辐射定律。实际物体(非黑体)的辐射定律一般比较复杂,需借助于黑体的辐射定律来研究。
设被测物体的温度为T 时,总辐出度为M 等于黑体在温度为F T 时的总辐出度Mo ,即:
44
0,T T M M F εσσ==
化简得
4
1
ε
F
T T =
其中ε为发射率,不同物体的发射率不同,具体材料的ε值可通过查表或实验得到,T 为被测物体的辐射温度,所以已知被测物体的ε和F T ,就可算出物体的真实温度。
4红外测温传感器特性
当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目标的温度。单色测温仪与波段内的辐射量成比例;双色测温仪与两个波段的辐射量之比成比例。
红外线波长范围是0.78μm-100μm 。然而,红外辐射自目标发射出来,总是要在大气中传播一段距离才能到达观测仪器,除几何发散外,红外辐射在大气中传播会有很大衰减,主要因素是大气中各种气体对辐射的吸收。
组成大气的主要气体是氮气.氧气.氩气,它们占99%以上。有幸的是,它们不吸收15μm 以下的红外线,否则红外技术在野外就无法使用。能引起红外吸收的气体是水汽,二氧化碳,臭氧(O3),它们在不同波段针对红外线形成吸收带,再加上甲烷,一氧化碳等吸收作用,造成了红外辐射的衰减。
通过1μm-15μm 的红外辐射通过一海里长度的大气透射比试验,证明只有处于红外吸收带之间的红外辐射能够透过大气向远处传输,其中有三个透过大气的红外波段,1-2.5μm,3-5μm,8-13μm ,这三个波段被称作“大气窗口”,红外测温系统常常在这三个窗口内工作。 3-5μm,8-13μm 两个波段的范围都有不同特性的控制可选用。这两个波段分别称为“短波”和“长波”窗口。从原理上计,这两个窗口都敏感,但大多数设计者都选择了短波段,原因是该波段范围中,能在较宽的范围内提供最佳功能,达到良好的测温要求;而长波窗口则更多地用于低温及远距离的检查(AGENA570就有此功能)。
只有对热成像系统的原理及构成有了一定的了解后,才能实现对热像仪的正确操作,从而进一步实现对温度的精确测量。