第四章羰基化合物的反应及碳负离子

合集下载

第四章碳负离子型延伸碳链反应

第四章碳负离子型延伸碳链反应

② 尤其适用于醛的α-C烃化,用酸做催化剂,避免Aldol缩合
③ 无多烃化产物,只有单烃化产物
④ 不对称酮进行烃化时,取代产物发生在取代较少的 C上
19
O
N H
1)CH2=CHCH2Br O
N
CH2CH=CH2
2)H2O
O
CH3 +
N H
N
+
CH3
90%
N CH3
10%
20
4.3 酰基化反应
具有活泼亚甲基的化合物(如乙酰乙酸乙酯、丙二酸酯、
15
3. 含—个羰基的化合物和腈的α-碳烷基化
(1)弱酸性活泼亚甲基或甲基化合物有: ① 醛、酮以及羧酸衍生物(含—个羰基的化合物); ② 腈(含—个腈基的化合物)。
16
(2)反应条件与特征:
① 弱酸性的化合物进行碳烷化反应时,常出现如自身缩合、 多烷基化等多种副反应 ; ② 当醛、酮化合物在进行C-烷基化反应时,为了避免酯缩 合反应,应选用很强的碱或位阻较大的碱 ,如:
(2)制备:醛、酮 + 胺缩合
(3)性质
R'2' N C C R2' + R'''-X
R'
R2N C C R ''' X
R
R R'
O R'
H2O
R C C R'''
R'
羰基α-C、β-C烯胺烃化
18
O
(4)影响因素
N
H
N H
N
脱水剂:Na2CO3 、K2CO3时用苯带水
优点:
① 操作简单,原料易得,收率较高

羰基化合物的亲核加成和亲核取代反应

羰基化合物的亲核加成和亲核取代反应

Nu E
2) 羰基氧被N取代 C O
H2NY
C OE Nu
Y CN
3) 羰基氧被C取代
CO
4) 亲核取代反应
CO Y
Ph3P CR1R2
R1 CC
R2
Nu
CO + Y
Nu
一、羰基的结构及反应特性
4、亲核反应活性 烷基给电子作用和体积位阻效应
一、羰基的结构及反应特性
4、 亲核反应活性
空间位阻影响
一、羰基的结构及反应特性
MO 位阻较小
Nu
E
L
S
R
OE
M
S
+
R
Nu
L
主要产物
OE
M
S
Nu
R
L
次要产物
二、羰基的亲核加成
2. 含O, S亲核试剂
包括H2O, ROH, RSH, 和NaHSO3 (1) H2O
水合物
酸或碱催化,加快平衡的达到,但不影响平衡移动。
二、羰基的亲核加成
(1) H2O
O +
H3C CH3 99.8%
Et
CH3
1,4-加成 100%
O CH CH C
1.
MgBr
2.H3O
O CH CH2 C
1,4-加成 92%
O
1.
MgBr
CH CH C CH3
2.H3O
O CH CH2 C CH3 +
OH CH CH C H
1,4-加成 12%
1,2-加成 80%
三、羧酸及其衍生物的亲核取代反应
1.亲核取代反应的机理
4、亲核反应活性
O C RX

羰基化合物[精品ppt课件]

羰基化合物[精品ppt课件]
反应式
R H
C=O
R
+
NaHSO3
H
C
OH SO3Na
反应机理
O-Na+ SO2OH
R H
HO C=O + S O
O Na
-
+
亲核加成
R H
C
分子内的 酸碱反应 R
H
C
OH SO3Na
硫比氧有更强的亲核性
生成的加成产物在饱和的亚硫酸氢 钠溶液中不溶,析出白色结晶。
特点
只有醛、脂肪族的甲基酮、环酮能发生此反应。 乙醛(89%) 己酮(~35%)
H
CH-N
CH=N
西佛碱用酸水解可以生成原来的醛和 酮,所以可以利用此反应来保护醛基。
与氨的衍生物加成
Hydroxylamine
H2N OH
C N OH
Oxime
H2N NH2
Hydrazine
C N NH2 C O
Hydrazone
Phenylhydrazine
H2N NHPh O
Phenylhydrazone
醛的正向平衡常数大, 酮的正向平衡常数小。
五元和六元环状缩酮的产率较好。
O
+
2ROH
H+
OR OR
用二元醇与羰基反应直接生成缩醛(酮)产率较好。
CH3 CH3 HO C=O + HO H+ CH3 CH3 O O
反应机理
H
+
酸 催 化
C=O OH C OR
+ C=OH H+ C H OR C + OR
OH HOCH2CH2CHCHO
HO OH O

碳负离子的反应

碳负离子的反应

含有α氢原子的酮与酯之间也可以进行缩合 反应主要产物为β-二酮。
例如:
第二节 β-二羰基化合物的烷基化、酰基 化及其在合成中的应用
两个羰基被一个碳原子隔开的化合物称 为β-二羰基化合物。
β-二羰基化合物一般泛指β-二酮、β-酮 酸酯、丙二酸酯等含活泼亚甲基化合物 。
这类化合物主要的反应类型是亚甲基碳 上的烷基化、酰基化反应。
一、乙酰乙酸乙酯
无色,具有水果香味,沸点118℃, 微溶于水,易溶于多种有机溶剂。
反应可在不同的酯之间进行,称为交叉 酯缩合。
Claisen 缩合举例
混合酯缩合
反应机理
狄克曼(Dieckmann)缩合(也叫酯分子内 缩合)
含6个或7个碳的二元酸酯,在碱性催化 剂作用下环化生成五元或六元环为主的 -酮酯称为狄克曼反应。
分子内羟醛缩合
羟醛缩合反应不仅可以在分子间进行,含有α-氢原子的 二元醛或酮也可以进行分子内缩合,生成环状化合物, 是制备5~7元环化合物的常用方法之一。
ห้องสมุดไป่ตู้
β-羟基醛在加热时即失去一分子水,生成 α,β-不饱和醛
常用的碱性催化剂除了氢氧化钠、氢氧化钾外,还有叔 丁醇铝、醇钠等。 由此可见,通过羟醛缩合反应可以制备α,β-不饱和醛,进 一步还可以转变为其它化合物。所以羟醛缩合反应是有 机合成中用于增长碳链的重要方法之一。
含有α-氢原子的酮在稀碱作用下也 可以发生类似反应,即羟酮缩合反应, 但是反应的平衡偏向反应物一侧,例如 ,丙酮在氢氧化钡催化下,发生反应。
碳负离子的结构与碳正离子或碳自由基 不同,因为带负电荷的碳原子最外层有3对 成键电子和1对未成键电子,这样的4对电子 需要采取相互远离的方式排列,因此碳负离 子采用sp3杂化轨道成键,未成键电子对与3 个共价键形成一个四面体结构。碳正离子、 碳自由基和碳负离子的结构对比如下图所示 。

高等有机化学羰基化合物的反应

高等有机化学羰基化合物的反应

R
R
Nu CCCO H
R
Nu C C C OH
R
2) 影响加成方式的因素
a.羰基活性小;b.试剂的亲核性弱时 c.两者空间位阻大时, 一般按1,4 -加成;反之按1,2 -加成:
O PhCH CHC R EtMgBr
Et PhCHCH2COR
Et
PhCH2 CH C R OH
R
H Me Et i-Pr
无a-H的芳香醛在CN-的作用下生成a-羟基酮
OδCH
δ+

O CH CN Ⅱ
H迁移 极性反转
O OH H C C
CN
OH O CC CN H

H迁移
O OH
-CN
CC CN H

O OH C CH

六、羰基与 Wittig 试剂反应
1、Wittig 试剂制备: 膦的叶立德 (ylid)
Ph3P + X CH R Ph3P CH R
*羰基上空阻大小(空间因素)
*共轭作用存在时羰基稳定,反应活性减少
结论:脂肪醛>甲基酮>环已酮>芳香酮 芳醛>芳香酮
二、 加成-消去反应 OH
R C NHR
C=O + NH2 Y
R
C=NH
*反应机理:亲核加成-
Y
消去反应
NH2 Y 亚胺
*酸催化:控pH=6,
NH2 NH2
R 取代亚胺
(希夫碱) OH
反应需要 过量的强碱
O
O
CH3C CH COEt
无α-H的酯可和有α-H的酯或酮可交叉缩合:
O
O
1. NaH
HCOOEt

碳负离子的反应

碳负离子的反应

(二)克脑文格尔反应
定义:在弱碱性催化剂作用下,醛或酮与具 有活泼亚甲基的化合物的缩合反应,称为克 脑文格尔反应. 常用的碱性催化剂有吡啶、哌啶、胺等。 反应通式:
R R
/
C O + CH2
Y Y/
R R/ C C
Y Y/
Y或 Y/ = COR COOR COOH CN
NO 2 等
反应机理
Y H2C Y

CH2 — C
CH2—CH2
C2H5ONa -C2H5OH
-
CH2 — C CH2 CH2 CH2—CH2
=
CH2 CH2 — C CH-COOC2H5 CH2 CH2—CH2 O
Oຫໍສະໝຸດ ==反 应 特 征
反应物:具有H,并能够形成五、六元环的二元羧酸酯。 催化剂:C2H5ONa 产 物:环状-酮酸酯 过 程:-C2H5OH
抗变态反应药物曲尼司特中间体3-(3,4-二甲氧 苯基丙烯酸的合成.
CHO 丙二酸
CH = CHCOOH
CH = CHCONH COOH
OCH3 吡啶/哌啶 OCH3
OCH3 OCH3 91%
OCH3 OCH3 曲尼司特
3-(3,4-二甲氧苯基)丙烯酸
酮一般不与丙二酸与丙二酸酯作用,但可与活性 更强的氰乙酸酯反应,缩合产物经水解、脱羧也可制 得不饱和酸。
(三)达琴反应
定义:在強碱(醇钠、氨基钠)作用下,醛、酮与α-卤代 酸酯反应,生成α,β-环氧酸酯的反应称为达琴反应。 通式:
R R/(H) C=O +
ClCH2COOC2H5
C2H5O Na
R
R/(H)
O C - CHCOOC2H5

碳负离子的经典反应.

碳负离子的经典反应.
碳负离子
DESIGN BY2014.12
经典反应
碳负离子 碳原子的性质 在有机化合物中, 碳原子常采取SP、SP2和SP3三种杂化形式。我们知道与P轨道 相比较S轨道更靠近原子核, 所以S轨道中的电子离核较近,受原子核束缚的较紧, 因此当杂化轨道S 成份增加时, 其吸电子的能力增强, 电负性增大, 接纳负离子中的电子的能力增加, 从而导致负离子 的稳定性增大。
O
O
该反应的净结果是二甲氨甲基取代了α-H ,故又称为氨甲基化反应,产物 为β-氨基酮。
=
=
C C H3 + HC HO + (C H3)2NH
HCl
C C H2 C H2N(C H 3)2 HC l
Mannich反应机理
(i)
R O C H CHR' H R OH C CHR' H R OH C CHR'
O
-
ClCH2CH2COEt
CH3C-CH-COOEt CH2CH2COOC2H5 O
OH H2O
-
H
+
- CO2
O
CH3CCH2CH2CH2COH
O O CH3CCH2CH2CH2CCH3
O EtO O
O
CH3CCH2COEt
-
ClCH2CH2CCH3
O CH3C-CH-COOEt CH2CH2CCH3 O
OH H2O
-
H
+
- CO2
O
O
CH3CCH2CH2CH2CCH3 + CH3COOH
用乙酰乙酸乙酯合成二羰基化合物
O O O CH3CCH2COC2H5 NaOC2H5 O O

第四章 碱催化缩合反应和烃基化反应(6)-1

第四章 碱催化缩合反应和烃基化反应(6)-1

8
4.1.2 酯缩合反应
1. Claisen酯缩合反应 Claisen酯缩合反应:酯和含活泼甲基或亚甲基的羰基化合物在强
碱作用下缩合,生成β-羰基化合物的反应称之。
◆ 机理:
H CH2COOC2H5
乙酸乙酯
O

NaOC 2H5
O
-
O-
CH2-C-OC2H5
O-
CH2=C-OC2H5
CH3-C-O-C 2H5 + -CH COOC H 2 2 5
◆ 讨论:
① 羰基使α-H的酸性大增,在强碱(碱性大于OH-)作用下,发 生亲核加成-消除反应,最终得到β-二羰基化合物。
② 酮的酸性一般大于酯,所以在乙醇钠的作用下,酮更易生 成碳负离子。例如:
O CH3-C-CH3 O CH3-C-CH2
O OCH3-C-CH2-C-CH3 OCH2CH3
O-
第四章 碱催化缩合反应和烃基化反应
4.1.4 Stobbe 反应 丁二酸酯或α-烃基取代的丁二酸酯在碱作用下,与羰基化合物 (常用酮)进行缩合而得α-烷烃(或芳烃)亚甲基丁二酸酯的反
应称为Stobbe 反应。
CH2COOC2H5 (C6H5)2C O H+ + CH2COOC2H5 C COOC2H5 CH2COOH (CH3)3C OK (CH3)3C OH, (C6H5)2C C COOC2H5 CH2COO
C O
R'
R
C H
C O
R'
醛的缩合反应,生成碳负离子为决速步骤;酮的缩合反应,碳 负离子对酮羰基的加成是决速步骤。
第四章 碱催化缩合反应和烃基化反应 2
R
H2 C

药物合成反应第四章 缩合反应

药物合成反应第四章 缩合反应
2 2 2 2
CH2
HC
CH2Leabharlann CH2CH2 [4+2]环加成反应 1,3-偶极环加成反应
20
1. [4+2]环加成反应 共轭二烯烃与烯烃、炔烃进行环加成,生成 环己烯衍生物的反应属[4+2]环加成反应,该反应 称为Diels-Alder反应,也称“双烯加成”。 最简单的[4+2]环化加成是1,3-丁二烯与乙 烯加成反应,假定丁二烯分子与乙烯分子面对面 互相接近,丁二烯的最高占有轨道与乙烯的最低 空轨道或丁二烯的最低空轨道与乙烯的最高占有 轨道都可以重叠成键,因此,[4+2]环加成是对称 允许反应。
CH2CH3
31
催化剂的影响: 醛或酮的自身缩合反应常用碱作催化剂,酸催化剂 应用较少。
32
④应用特点 制备长链醛(醇)
例:2-乙基己醇(异辛醇)的生产 2 CH3CH2CH2CHO
CH3CH2CH2CH2-CHCHO OH CH2CH3
CH3CH2CH2CH2=CCHO CH2CH3
33
CH3CH2CH2CH2-CHCH2OH CH2CH3
性条件下可以离解,生成烯醇负离子,从而成为亲核试 剂,进攻羰基碳或卤代烃,发生亲核加成反应、亲核取 代反应。
O C C H
B
C
O C
C
O C
烯醇负离子由于羰基的共轭作用得以稳定 烯醇负离子
4
烯醇中的C=C双键接受亲电试剂进攻,发生α-卤代 反应,醛酮、羧酸和酰卤可以发生该反应。 烯醇负离子作为亲核试剂,进攻卤代烃的缺电子 碳,则发生亲核取代反应;进攻羰基碳则发生亲核 加成反应。
R' +
R
HC
C OH

碳负离子在有机合成中的应用

碳负离子在有机合成中的应用

碳负离子在有机合成中的应用翟迈豪化基7班 2013301040201摘要:在某些有机化学反应中,经常遇到C-H键的断裂的情形,裂解出来的质子为反应体系中的碱或Lewis碱所接受,所留下来的+3价的碳原子像胺类化合物一样带有一对孤对电子,这就是碳负离子。

本文综述了碳负离子的各类反应,反应机理及其在有机合成中的应用,并对一些反应做出了必要的分析。

关键词:碳负离子反应有机合成应用一、碳负离子的形成1.碳氢酸脱质子作用2.亲核试剂对活性烯烃的加成作用3.活性烯烃亲核反应逆反应逆的Michael加成、逆羟醛缩合、逆的Claisen酯缩合,都是由碱引起了原来缩合反应的逆反应而重新生成反应物和碳负离子4.还原金属化作用烷基和芳基锂化物及格氏试剂都象碳负离子那样起作用,在醚溶液中它们成离子对形式而存在5.溶解金属还原(自由基反应)金属溶解时就发生电子加成作用,首先形成负离子基,然后形成双负离子。

二、碳负离子的反应1.亲核加成反应(包括加成-消除反应)(1)羟醛缩合反应在碱的催化作用下,一分子带有α-氧的酸或酮失去质子形成碳负离子,与另一分子酸或酮发生亲核加成反应生成β-经基醛或酮,然后在高温或者强酸/碱条件下脱水而生成α,β-不饱和酸酮。

(2)普尔金(Perkin)反应由不含有α-H的芳香醛(如苯甲醛)在强碱弱酸盐(如碳酸钾、醋酸钾等)的催化下,与含有α-H的酸酐(如乙酸酐、丙酸酐等)所发生的缩合反应,并生成α,β-不饱和羧酸盐,后者经酸性水解即可得到α,β-不饱和羧酸。

(3)脑文格(Knoevenagel)反应在Perkin反应的基础上进行了改进,把产生碳负离子的酸酐换成带有吸电子基的活泼亚甲基化合物,碱由羧酸盐改为有机碱(如吡啶、六氢吡啶、一级胺、二级胺等),溶剂一般为苯和甲苯,反应得到α,β-不饱和化合物。

弱碱的使用避免了醛、酮等化合物自身羟醛缩合副反应发生,因此优化条件后底物的范围得到极大的拓展,芳香醛,酮,脂肪醛均能够发生反应。

(完整版)羰基的亲核加成及相关反应

(完整版)羰基的亲核加成及相关反应

羰基的亲核加成及相关反应羰基化合物包括醛、酮、羧酸及衍生物和CO 2。

5.1 羰基的结构CO δ+δ-亲电中心羰基碳的活性较大,易被亲核试剂进攻而发生亲核加成反应和亲核取代反应。

5.2 亲核加成反应的历程及影响因素 5.2.1 HCN 的加成 反应为碱催化。

]CN ][CO [k v ->=OH -+HCNCN -+ H 2O快-COδ+δ-CO -CNCOHCN+OH - 反应的平衡位置受电子效应和空间效应的影响。

酮正向反应的趋势较小(空阻大)。

二、亲核加成反应的一般特点 1.反应可以被酸或碱催化酸催化可提高羰基的亲电活性。

CO +H ++OH碱催化提高亲核试剂的亲核性。

NuH +OH --+H 2ONu H ->2.多数醛酮的亲核加成为可逆反应,用于分离与提纯。

5.2.2 影响羰基亲核加成反应活性的因素 一、羰基化合物的结构 1.电子效应羰基碳的正电性越大,亲核加成速度越大,反应活性越大。

羰基碳所连的吸电基(-I ,-C )使其亲核加成反应的活性增加,而供电基(+I ,+C )则使其活性降低。

活泼顺序:ClCHO > HCHO > RCHO > CH 3COR > RCOOR' > RCONR'2 > RCOO --I > +C(+C)(+C,空阻)( +C > -I)(+C)CO RR'活性极低(1)π-π共轭效应(增加其稳定性);(2)+C 效应(降低羰基碳的正电性);(3)加成产物失去共轭能,反应活化能高;(4)产物的张力大幅增加。

2.立体效应CO -sp 2活性:O CHH OC CH 3H OC CH 3CH 3O OC CH 3CH 2CH 2CH 3OC Ph Ph>>>>>二、试剂的亲核性对同一羰基化合物,试剂的亲核性越大,平衡常数越大,亲核加成越容易。

1.带负电荷的亲核试剂比起共轭酸(中性分子)的亲核性强。

羰基化合物的反应

羰基化合物的反应

K=38
ECt H3CHO + H2O
ECt H3CHO CO
+ HCN
NaHSO3
CCNH3CH(OH)2
CH3CHOH
K≈ 1 K≈ 104
Et2CCONH K=4× 10-4
Et
SO3Na
第14页/共104页
7.2 羰基加成反应
与氢氰酸的加成 与亚硫酸氢钠的加成 与金属有机物的加成
与水的加成 与醇的加成 与胺及氨的衍生物的加成 与格氏试剂的加成
CH3
S
C6H13 H
C
CH3
COOH
R
在较高温度时, 转化 很快达到平衡, 外消 旋化
第38页/共104页
2.碳负离子的生成 C-H键的异裂
C H+ B
共轭酸
碳原子酸
C + HB
共轭碱
第39页/共104页
HC CH
NaNH3 液 NH3
HC CNa
NH3
Ph3C H
NaNH3 液 NH3
Ph3CNa
能与羰基氧H形成羟基的基团时
Ph Ph
空OH间RL亲OC阻H核3S碍试CY小HO剂3L的i从N一uP含Ph边h氢H对键O羰环基LOCi的-HC加3HRL3成OS
YH
HO Nu
Ph
OH Ph
CH3 CH3
第30页/共104页
Cornforth规则
当酮的α-手性碳原子上连卤素原子 由于卤原O子与羰基的偶极作用O
9
11
10
第47页/共104页
杂化作用
C-H键中碳的s成分越多 H越易以质子形式解离
H C CH
H2C CH2

第四节 羰基化合物的卤取代反应3版

第四节 羰基化合物的卤取代反应3版

1、丙二酸酯的α-卤取代反应
COOC2H5 COOC2H5
Br2/CCl4
COOC2H5
Br
75%
COOC2H5
强碱作用,极性溶剂DMSO与CuCl2反应
COOC 2 H 5 COOC 2 H5
1 )NaH/DMS O 2)CuBr2
COOC 2 H5
Br
90%
COOC 2 H5
形成烯醇β-碳负离子的羧酸酯
Br
+
OH
CH2
CH2
CH3
-Br2
H2C
OH
CH2
CH2
CH3
OH
H3C
Br
Br
Br2 CH3
O
Br CH2
O
H3C
CH2
1. 5%
CH2
CH3
CH2
CH
CH3 58%
Br
热力学产物
*溴化剂或碘化剂/醋酸钠或吡啶等碱性物质(动力学控制产物)
*③ 羰基α-位取代基的电性效应的影响
酸催化反应:α-位有供电子基,利于反应。
CH2 H
X 2 or NBS (NCS ) H3C
O H3C
CH2X H
AcO
AcO
X=Br 70% X=Cl 25%
提高不对称酮区域选择性的一种方法 反应后生成的丙酮易于蒸馏除去 溴代产率高 烯醇酯形成
*2 烯醇硅烷醚的卤化反应
(1) 通式
R1 OSiMe 3 X2
R2
R3
(2)反应机理
X R1
(1)反应通式
O
H3C H3C CH3
CH3
1 )I 2 /Na OH/H2 O 2 )H +

碳负离子在有机合成中的应用

碳负离子在有机合成中的应用

碳负离⼦在有机合成中的应⽤碳负离⼦在有机合成中的应⽤翟迈豪化基7班 2013301040201摘要:在某些有机化学反应中,经常遇到C-H键的断裂的情形,裂解出来的质⼦为反应体系中的碱或Lewis碱所接受,所留下来的+3价的碳原⼦像胺类化合物⼀样带有⼀对孤对电⼦,这就是碳负离⼦。

本⽂综述了碳负离⼦的各类反应,反应机理及其在有机合成中的应⽤,并对⼀些反应做出了必要的分析。

关键词:碳负离⼦反应有机合成应⽤⼀、碳负离⼦的形成1.碳氢酸脱质⼦作⽤2.亲核试剂对活性烯烃的加成作⽤3.活性烯烃亲核反应逆反应逆的Michael加成、逆羟醛缩合、逆的Claisen酯缩合,都是由碱引起了原来缩合反应的逆反应⽽重新⽣成反应物和碳负离⼦4.还原⾦属化作⽤烷基和芳基锂化物及格⽒试剂都象碳负离⼦那样起作⽤,在醚溶液中它们成离⼦对形式⽽存在5.溶解⾦属还原(⾃由基反应)⾦属溶解时就发⽣电⼦加成作⽤,⾸先形成负离⼦基,然后形成双负离⼦。

⼆、碳负离⼦的反应1.亲核加成反应(包括加成-消除反应)(1)羟醛缩合反应在碱的催化作⽤下,⼀分⼦带有α-氧的酸或酮失去质⼦形成碳负离⼦,与另⼀分⼦酸或酮发⽣亲核加成反应⽣成β-经基醛或酮,然后在⾼温或者强酸/碱条件下脱⽔⽽⽣成α,β-不饱和酸酮。

(2)普尔⾦(Perkin)反应由不含有α-H的芳⾹醛(如苯甲醛)在强碱弱酸盐(如碳酸钾、醋酸钾等)的催化下,与含有α-H的酸酐(如⼄酸酐、丙酸酐等)所发⽣的缩合反应,并⽣成α,β-不饱和羧酸盐,后者经酸性⽔解即可得到α,β-不饱和羧酸。

(3)脑⽂格(Knoevenagel)反应在Perkin反应的基础上进⾏了改进,把产⽣碳负离⼦的酸酐换成带有吸电⼦基的活泼亚甲基化合物,碱由羧酸盐改为有机碱(如吡啶、六氢吡啶、⼀级胺、⼆级胺等),溶剂⼀般为苯和甲苯,反应得到α,β-不饱和化合物。

弱碱的使⽤避免了醛、酮等化合物⾃⾝羟醛缩合副反应发⽣,因此优化条件后底物的范围得到极⼤的拓展,芳⾹醛,酮,脂肪醛均能够发⽣反应。

有机合成 第四章 酸性条件反应

有机合成 第四章 酸性条件反应

皮考啉的实质是类似烯胺的N-C=C稳定结构
王鹏
六、Prins反应
Prins反应是甲醛在酸催化下与烯烃加成得到1,
3-二醇或1,3-二氧六环等的反应
产物的结构取决于烯烃的结构和反应条件
王鹏
Prins反应是制备多一个碳的醇的有效方法,如
氯霉素的合成:
王鹏
重排的概念:
4.2 酸催化分子重排
CH2N(CH3)2 N H
95 %
草绿碱
王鹏
3、制备杂环化合物
CH2
CH
CH2
CH3 N
NCH3 C=O CH2 CH CH2
O
王鹏
4、制α,β-不饱和酮、α,β-不饱和酯
O R-C-CH 2CH 2NMe2 CH 3I O R-C-CH 2CH 2NMe3
△ ,蒸馏
O R-C-CH=CH 2
酸碱反应
-H2O
王鹏
O CH 3-C-CH=C(CH3)2

反应的第一步是氢离子对羰基氧的加成,互变
后得到羰基碳正离子
随后羰基碳正离子对烯醇式碳负中心进攻而建
立碳碳键,得到带有正电荷的氧鎓盐
δ+ δ 反应的最后是脱去氢正离子得到产物β-羟基
醛酮,β-羟基醛酮可进一步发生脱水
王鹏
注意事项:
1、用来制备β-氨基酮
O CH3CCH2CH3 + CH2O + Me2NH HCl
O CH3CCHCH 2NMe2 HCl CH3
α β
不对称酮反应时,亚甲基比甲基优先反应。
王鹏
2、在芳、杂环上引入氨甲基
OH O + CH2O + N H
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ph3P CH2
(n-Bu)3P CHR
Wittig 试剂与羰基发生亲核加成反应,生成烯烃:
C O
Ph3P C
R R'
C
C R R'
Georg Wittig
反应机理:
C O + Ph3P
C O C O
CR2
C O R2C PPh3
O C C + PPh3 R
R2C PPh3 R2C PPh3
氧膦环丁烷中间体
+ +
CH2
-
Ph3 P (CH3)2S
CH2 C H2
(CH3)2S PhLi
C H2 CH2
季铵盐:(CH ) N + Cl 反应活性:
(CH3)2S
+ (CH3)3 N
+
C H2 > Ph3P
-
+
-
CH2
+ > > (CH3)3 N
CH2
2) S电子成分效应
RC
C
-
> R2C
CH ≈ Ar
-
1、烯醇:羰基化合物可互变成酮式和烯醇式,派生出的 烯醇盐和碳负离子是羰基化合物反应的中间体。
1)碱催化
O R C B O R C CH2 -H + R' R B -
OH
C -H+ O
CH
R'
CH
R'
R
C
CH
R'
例:
O HO + H CH2CH HOH +
O
CH2 CH CH2
O CH
(1)同位素跟踪
(5)形成烯醇时的动力学与热力学控制
O R2CHCCH2R' B ka O kb O B -
R2C=CCH2R'
R2CHC=CHR' B
[A] = [B]
ka
kb
A
动力学控制:取决于去质子速度(非质子溶剂、强碱、 无过量酮存在) 位阻小的H易被夺去 热力学控制:取决于产物的稳定性(过量酮存在、质子 性溶剂稳定C- ),C=C上取代基多的烯 醇稳定
共轭碱
举例:
1)E1cb消除
.. B H-CH2-CH-CH2CH3 X E1cb CH2-CH-CH2CH3 X CH2=CH-CH2CH3
2)羰基化合物的烯醇负离子互变 在碱性条件下:
O B R-C-CH-R' O O -
R-C-CH2R'
R-C=CHR'
3)通过加成-消除的亲核芳香取代反应
R
产物稳定,反应向右进行。
Wittig 试剂是鏻盐在强碱的作用下制备的:
-
Ph3P + X CH R R'
BuLi + Ph3P C R R'
Ph3P CH R X
X
鏻盐
R'
离子型的内鎓盐
Wittig 反应的应用:
R
C O: R'(H)
=Ar R,
O

ZCH2
C O, R'(H)
Z: OH, OR, NR2
+
OR
C
+
C
OR
OR H
+
OR H + H
缩酮
举例:
与其它亲核试剂的加成反应:
HCN、NaSO3H、RMgX
与亲核试剂加成-消除反应:
RNH2、HONH2、NH2NHR、 亚胺 肟 腙
羰基加成的立体化学:
1)若R、R’不含手性碳,则加成产物为外消旋体。
R
Nu
R'
C
O
R
R'
C
O
Nu
sp2杂化 平面三角型
sp3杂化 四面体
羰基加成的立体化学:
2)若羰基的邻近碳原子有手性,亲核加成遵循Cram规则
Nu
C M C OH
Cram规则-1
S
L
C M C
R
+
O
+ H Nu
L S
R
Et Ph
O
H
1) LiAlH4 2) H2O
Et HO
H
H CH3
CH3
Ph
羰基加成的立体化学:
Cram规则-2
L O R O
C -
CH3
H3C
C
CH
C
CH3
OH -H2O
O H3C C CH2
C
H H H
活性中间体烯胺在合成中应用
酮的α-烷基化
O O
CH2Ph
O H +
HO
N
-H2O
N
+
N H
+
N
PhCH2Cl
N +
CH2Ph
H2O
O CH2Ph
+
N H
+
H
+
O H5C2OOCCH2CH2
O CH2CH2COOC2H5
例2:
N
H
+
N
+
CH
C2H5OH
CH2
CH
COOC2H5
CH2
-
..
C
C6H13 H
CH3
但对三苯甲基负离子,中心碳sp2杂化,碳负离 子呈平面型,有利于三个苯环共轭,稳定碳负 离子。
桥头碳负离子,能形成稳定的棱锥形构型。
1) CO2
Cl
..
2) H3O
+ COOH
碳负离子构型证明:
BuLi 1 CO 2
C6H12 CH CH3 I
C6H12CH CH3
2 H3O
去质子速度为反应速度控制步骤。
去质子活性与电子效应和空间效应有关。
O CH3CCH2CH3 O B CH3CCH2C(CH3) 3 B O CH3CCH-CH3 H3 C H3 C
O
C CH C CH3
相对速度 41.5
CH3
< 0.1
空间位阻大,去质子速度慢; 烷基取代基多,烯醇负离子稳定性好。
举例:
O CH3 t-BuLi OLi CH3 OLi CH3
+
+
碱过量 酮过量
OCH3 O
28% 94%
CH3
72% 6%
O-
动力学平衡 热力学平衡
O CH3 CH3
+
+
2、烯胺
碳-碳双键上连有氨基取代基的化合物称烯胺。 氨基的存在使β-碳亲核性更强,可用于烷基化反应。
烯胺的制备: 仲胺与醛或酮在酸性催化剂作用下加热缩合,除去生成的水而得。
+ + OH H OH M OH -
非质子性溶剂,正极埋在溶剂分子内部,负极与亲核试剂的 正离子形成离子-偶极键,将亲核试剂正负离子隔开,使碳负 离子裸露,反应速度加快。 质子性溶剂使C- 溶剂化,反应速度降低。
冠醚的加入可将负离子亲核试剂裸露在外,促进反应。
O O
O + O M O O
R
-
二、烯醇和烯胺
NO2 O2N OR NO2 NO2
+
-
OR'
ห้องสมุดไป่ตู้
O2N
-
OR OR ' NO2 NO2
O2N
OR '
NO2
4)通过金属有机化合物异裂
RLi、RMgX、RC = CNa
2、结构
两种合理构型推测: ..
..
109°28′
C
sp3 杂化 棱锥型
C
sp2杂化 平面三角型
90°
举例:
碳负离子的空间构型取决于所连基团。 通常情形,棱锥型碳负离子的孤对电子处于sp3 杂化轨道上,斥力小,稳定。
-
> R3C
CH2
-
sp杂化
S成分: 50%
sp2
33.3%
sp3
25%
3)芳香性
符合休克尔规则的C- 稳定
B: R B: R -
反芳香性,反应速度慢
R
H
4n+2=6, 芳香性,反应速度快
H
R
4) 溶剂
非质子性的溶剂利于C- 的裸露
δδ+
R
M δ-
+ H
OH
-
O
δ+
HC
N
CH3 CH3
+ H R + H
机理2:
A C B H

A C OH Nu A C B OH
B
A C OH
B
O
A C
OH B + Nu 快
羰基质子化,可以提高羰基的亲核性。
举例:
OH C O + ROH OH C OR
+
C OR
+
半缩酮
+
H
+
OH 2 C OR
+
OH 2
C OR
+
C
OR + H2O
C
OR + ROH
OR C OR
O R2CHC-R'
B R2 C
O C
-
O
R'
R2 C O
C
R'
O
R2 C C
R'
+
S
D
R2 C D
C
R'
相关文档
最新文档