高考数学二项式定理专项练习题

合集下载

二项式定理高考题(含答案)精选全文

二项式定理高考题(含答案)精选全文

精选全文完整版(可编辑修改)二项式定理高考题(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2二项式定理 高考真题一、选择题1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2x 的系数是( D )(A )42 (B )35 (C )28 (D )212.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B )(A )80 (B )40 (C )20 (D )103.(2012·天津高考理科·T5)在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为 ( D ) (A)10 (B)-10(C)40 (D)-40 4.(2011.天津高考理科.T5)在6的二项展开式中,2x 的系数为 ( C )(A )154- (B )154(C )38- (D )38 5.(2012·重庆高考理科·T4)821⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A )(A)270- (B)90- (C)90 (D)2707. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22x y 的系数是 ( D )A.56B.84C.112D.1688.(2011·新课标全国高考理科·T8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20(D )409. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n ( B ) (A)6 (B)7 (C)8(D)93 10.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C )(A )20- (B )15- (C )15 (D )20二、填空题11. (2013·天津高考理科·T10)6x ⎛- ⎝ 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11)18x ⎛ ⎝的展开式中含15x 的项的系数为 17 .13.(2011·全国高考理科·T13)20的二项展开式中,x 的系数与x 9的系数之差为 0 .14.(2011·四川高考文科·T13)91)x +(的展开式中3x 的系数是 84 (用数字作答).15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是 240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则1110a a += 0 .17.(2011·广东高考理科·T10)72()x x x-的展开式中,4x 的系数是___84___ (用数字作答)18.(2011·山东高考理科·T14)若62x x ⎛- ⎝⎭的展开式的常数项为60,则常数a 的值为 4 .19.(2012·大纲版全国卷高考理科·T15)若n xx )1(+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__56_____. 20.(2013·安徽高考理科·T11)若8⎛+ ⎝x 的展开式中4x 的系数为7,则实数a ____12_____。

二项式定理历年高考试题荟萃

二项式定理历年高考试题荟萃

二项式定理历年高考试题荟萃1、(1+2x)5的展开式中x2的系数是10.2、已知展开式为,求a+b=2+3=5.3、已知展开式为,求n=6.4、(1+2x2)(1+x8)的展开式中常数项为1.5、展开式中含的整数次幂的项的系数之和为63.6、(1+2x2)(x-1)8的展开式中常数项为-256.7、(1+x)8的二项展开式中常数项是1.8、(x2+1)6的展开式中常数项是1.9、若展开式中系数为5,则n=3.10、若(2x3+1)n的展开式中含有常数项,则最小的正整数n等于3.11、(x+1)9展开式中x3的系数是84.12、若展开式的各项系数之和为32,则n=5,其展开式中的常数项为1.13、(1+2x)6的展开式中的系数为1,12,48,96,80,32,6,1.14、a1=-32,a2=80,a3=-80,a4=40,a5=-10.15、(1+2x)3(1-x)4展开式中x2的系数为-12.16、展开式为1+7x+21x2+35x3+35x4+21x5+7x6+x7,常数项为1,各项系数之和为119.17、(x+1)5的二项展开式中x2的系数是10.18、(1+x3)(x+1)6展开式中的常数项为1.19、若x>0,则(2+x)(2-x)-4(x-1)=0.20、已知展开式中x8的系数小于120,则k=2.21、b3=2b4,n=7.22、(x+1)5的二项展开式中x3的系数为10.23、已知(1+x+x2)(x+1)n的展开式中没有常数项,n=4.24、展开式中x的系数为0,∴(1+2x)2展开式中常数项为-4.解析:1.将数字和符号之间加上空格,使得文章更加清晰易读。

2.删除明显有问题的第3段,因为其中的公式无法正确显示。

3.对每段话进行小幅度改写,使得表达更加准确简洁。

改写后的文章如下:3、-256解析:$(1-x)^5=a_2^3+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5$。

高考数学专题《二项式定理》练习

高考数学专题《二项式定理》练习

专题11.3 二项式定理1.(2021·河北·藁城新冀明中学高二月考)已知()1nx +=a 0+a 1x +a 2x 2+…+a n x n ,若a 0+a 1+a 2+…+a n =16,则自然数n 等于( )A .6B .5C .4D .32.(2021·福建宁德·高三期中)对任意实数x ,有423401234(2)(2)(2)(2)x a a x a x a x a x =+⋅-+⋅-+⋅-+⋅-,则3a =()A .6B .7C .8D .103.(2017·全国高考真题(理))(+)(2-)5的展开式中33的系数为( )A.-80B.-40C.40D.804.(2021·上海·闵行中学高三期中)62⎛⎫+ ⎪⎝⎭ax x 展开式的常数项为20,则实数a =_____________.5.(2021·上海·曹杨二中高三期中)在22nx x ⎛⎫+ ⎪⎝⎭的展开式中,二项式系数之和为256,则展开式中4x 项的系数为___________.6.(2021·广东福田·高三月考)已知多项式()()34432123411x x x a x a x a x a ++-=++++,则1a =________.7.(2021·浙江·模拟预测)已知()()()5455410212121x a x a x a x a =+++++++ ,则4a =___________.8.(2021·浙江·模拟预测)已知88018(1)x a a x a x +=+++…,2x 的系数为______;系数最大的项是第______项.9.(2020·上海市浦东中学高三月考)在1)2nx的二项式中,所有项的二项式系数之和为256,则常数项等于__________.10.(2021·山东师范大学附中高三月考)在二项式1nx x ⎛⎫- ⎪⎝⎭的展开式中恰好第3项的二项式系数最大,则展开式中的常数项是___________.1.(2021·河北·唐山市第十中学高三期中)若()()()()34520122201201220121111x x x x a a x a x a x ++++++++=++++ ,则3a 等于()x y x y x y 练基础练提升A .42012C B .32013C C .42013C D .52012C 2.【多选题】(2021·贵州遵义·高二期末(理))将杨辉三角中的每一个数rn C 都换成分数()11r n n C +,可得到如图所示的分数三角形,成为“莱布尼茨三角形”,从莱布尼茨三角形可以看出,存在x 使得()()111111r xr n n n n C n C nC -+=++,则x 的值是().11121213 16 1314 1121121415120 130 120 151613016016013016A .rB .1r -C .1r +D .2r +3.【多选题】(2021·湖北武汉·高三期中)已知二项式6ax ⎛⎝,则下列说法正确的是( )A .若2a =,则展开式的常数为60B .展开式中有理项的个数为3C .若展开式中各项系数之和为64,则3a =D .展开式中二项式系数最大为第4项4.(2021·全国·模拟预测)()6213x x x ⎛⎫-- ⎪⎝⎭的展开式中,2x 项的系数是___________.(用数字作答)5.(2021·浙江·学军中学高三期中)在nx ⎛⎝的展开式中,所有项的系数和为64,则n =___________.常数项的系数为___________.6.(2021·河南·高三月考(理))若512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为0,则该展开式的常数项为___________.7.(2021·全国·高二课时练习)在杨辉三角中,它的开头几行如图所示,则第______行会出现三个相邻的数的比为3:4:5.8.(2021·浙江·模拟预测)二项式61x ⎫⎪⎭的展开式中,常数项为___________,系数最大的项为______________.9.(2021·全国·高二课时练习)求31||2||x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项.10.(2021·全国·高二课时练习)求3451920(1)(1)(1)(1)(1)x x x x x ++++++++++ 的展开式中含3x 的项.1.(2019·全国高考真题(理))(1+2x 2 )(1+x )4的展开式中x 3的系数为( )A .12B .16C .20D .242.(2020·北京高考真题)在52)-的展开式中,2x 的系数为( ).A .5-B .5C .10-D .103.(2020·全国高考真题(理))25()()x x y xy ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .204.(2021·北京高考真题)341()x x-展开式中常数项为__________.5.(2021·浙江高考真题)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________.6.(2019·浙江高考真题)在二项式9)x +的展开式中,常数项是________;系数为有理数的项的个数是_______.练真题。

二项式定理(习题含答案)

二项式定理(习题含答案)

二项式定理一、 求展开式中特定项 1、在的展开式中,的幂指数是整数的共有( ) A .项 B .项 C .项 D .项 【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C . 3、若展开式中的常数项为 .(用数字作答) 【答案】10【解】由题意得,令,可得展示式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、二项式的展开式中的常数项为 . 【答案】112【解析】由二项式通项可得,(r=0,1,,8),显然当时,,故二项式展开式中的常数项为112.5、的展开式中常数项等于________. 【答案】.【解析】因为中的展开式通项为,当第一项取时,,此时的展开式中常数为;当第一项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是 . 【答案】30x 4567()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=30......2,1,0=r =r 2531()x x +1x =232n =5n =2531()x x+10515r r r T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r r x -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰()622x ⎛⋅+ ⎝332=-332,的展开式的通项为,所以所求常数项为.二、 求特定项系数或系数和7、的展开式中项的系数是( )A .B .C .D . 【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15【解】的通项,令可得.则中的系数为15. 9、在的展开式中含的项的系数是 . 【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为 . 【答案】135【解析】根据题意,,则中,由二项式定理的通项公式,可设含项的项是,可知,所以系数为. 11、已知,则等于( )A .-5B .5C .90D .180【答案】D 因为,所以等于选D. 12、在二项式 的展开式中,只有第5项的二项式系数最大,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-⋅⋅3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r rr T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -⋅-3x 6(1)(2)x x -⋅-3x 336)(2x C -226)(x -x C -⋅)(3x 552-2636-=-C C dx xn 16e1⎰=nx x )(3-2x 66e 111ln |6e n dx x x=⎰==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ⨯=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a 8210(2)454180.C -=⨯=1)2nx =n【答案】,.【解析】由二项式定理展开通项公式,由题意得,当且仅当时,取最大值,∴,第4项为. 13、如果,那么的值等于( )(A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代入二项式,得,令,代入二项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7=﹣1,15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于 .【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0.81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-⋅=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++017a a a +++1x =7270127(12)x a a x a x a x -=++++70127(12)1a a a a -=++++=-0x =7270127(12)x a a x a x a x -=++++70(10)1a -==12711a a a ++++=-1272a a a +++=-*3)()n n N -∈32-1x 270-1=x ()322--=n5=n x 1()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯0(sin cos )k x x dxπ=-⎰8822108)1(x a x a x a a kx ++++=- 1238a a a a +++⋅⋅⋅+=【解析】由,令得:,即再令得:,即所以18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n=4n.再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4.(5x ﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r?(﹣1)r ?=(﹣1)r ??54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r ??54﹣r =1×6×25=150,19、设,则 .【答案】 【解析】,所以令,得到, 所以 三、 求参数问题20、若的展开式中第四项为常数项,则( )A .B .C .D .(sin cos )(cos sin)k x x dxx x ππ=-=--⎰(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -⨯=++++01281a a a a ++++=0x =80128(120)000a a a a -⨯=+⨯+⨯++⨯01a =12380a a a a +++⋅⋅⋅+=8877108)1(x a x a x a a x ++++=- 178a a a +++=255178a a a +++=87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =4567【答案】B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、二项式的展开式中的系数为15,则 ( ) A 、5 B 、 6 C 、8 D 、10 【答案】B【解析】二项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数( ) A或1 B .或1 C .2或 D . 【答案】B .【解析】由题意得的一次性与二次项系数之和为14,其二项展开通项公式, ∴或,故选B .24、设,当时,等于( )A .5B .6C .7D .8 【答案】C . 【解析】令,则可得,故选C . 四、 其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.2533333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =n )()1(*N n x n ∈+k n kn k x C T -+⋅=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=⇒=53-23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+012254n a a a a +++⋅⋅⋅+=n 1x =2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣?20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(二项式定理)练习一. 基础小题练透篇1.已知(2x +1)n 的展开式中,第三项和第四项的二项式系数相等,则n =( ) A .7 B .6 C .5 D .42.[2023ꞏ上海市月考]在⎝⎛⎭⎫x -1x 7的二项展开式中,系数最大的是第( )项A .3B .4C .5D .63.[2023ꞏ福建省莆田第一中学高三考试]在⎝⎛⎭⎫x -2x 6的展开式中,常数项为( )A .80B .-80C .160D .-160 4.[2023ꞏ福建省福州第八中学高三训练](x +2y )(x -y )5的展开式中的x 3y 3项系数为( ) A .30 B .10 C .-30 D .-105.[2023ꞏ重庆市检测]若(x 2+1)(4x +1)8=a 0+a 1(2x +1)+a 2(2x +1)2+…+a 10(2x +1)10,则a 1+a 2+…a 10等于( )A .2B .1C .54D .-146.[2023ꞏ江西省联考]已知(x +1)4+(x -2)8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,则a 3=( )A .64B .48C .-48D .-647.[2023ꞏ湖南省高三第一次大联考]设(1+2x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 5=a 6,则n =( )A .6B .7C .8D .98.[2023ꞏ云南省昆明市高三检测]若(3x +x )n 的展开式的所有项的系数和与二项式系数和的比值是32,则展开式中x 3项的系数是__________.二. 能力小题提升篇1.[2023ꞏ辽宁省凤城市月考]在(x -1)n 的二项展开式中,仅有第6项的二项式系数最大,则n =( )A .8B .9C .10D .112.[2023ꞏ江苏省常州市高三模拟 ]若(1-ax +x 2)(1-x )8的展开式中含x 2的项的系数为21,则a =( )A .-3B .-2C .-1D .13.[2023ꞏ上海市一模]二项式(x +13x)30的展开式中,其中是有理项的项数共有( )A .4项B .7项C .5项D .6项4.[2023ꞏ吉林省吉林市月考]若二项式⎝⎛⎭⎫12-x n 的展开式中所有项的系数和为164 ,则展开式中二项式系数最大的项为( )A .-52 x 3B .154 x 4 C .-20x 3 D .15x 45.[2023ꞏ浙江省高三联考](x-23x)6的展开式的中间一项的系数是__________.(用数字作答).6.[2023ꞏ浙江嘉兴检测]已知⎝⎛⎭⎫3x 2+1x n展开式中的各二项式系数的和比各项系数的和小240,则n =__________;展开式中的系数最大的项是________.三. 高考小题重现篇1.[2020ꞏ北京卷]在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10 D .102.[2019ꞏ全国卷Ⅲ](1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20 D .243.[2022ꞏ新高考Ⅰ卷]⎝⎛⎭⎫1-yx (x +y )8的展开式中x 2y 6的系数为________________(用数字作答).4.[2020ꞏ全国卷Ⅲ]⎝⎛⎭⎫x 2+2x 6的展开式中常数项是______(用数字作答).5.[2021ꞏ上海卷]已知二项式(x +a )5展开式中,x 2的系数为80,则a =________. 6.[2021ꞏ浙江卷]已知多项式(x -1)3+(x +1)4=x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 1=________,a 2+a 3+a 4=________.四. 经典大题强化篇1.已知(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.求下列各式的值: (1)a 0+a 1+a 2+…+a 5; (2)|a 0|+|a 1|+|a 2|+…+|a 5|; (3)a 1+a 3+a 5.2.[2023ꞏ江西省景德镇一中考试]已知函数f (n ,x )=⎝⎛⎭⎫2m +m x n (m >0,x >0).(1)当m =2时,求f (7,x )的展开式中二项式系数最大的项;(2)若f (10,x )=a 0+a 1x +a 2x 2 +…+a 10x 10 ,且a 2=180,参考答案一 基础小题练透篇1.答案:C答案解析:因为(2x +1)n的展开式中,第三项和第四项的二项式系数相等,所以C 2n =C 3n ,由组合数的性质可得n =2+3=5.2.答案:C答案解析:在二项式⎝ ⎛⎭⎪⎫x -1x 7 的展开式中,通项公式为T r +1=C r 7 ·x 7-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r C r7 x 7-2r,故第r +1项的系数为(-1)r C r7 ,当r =0,2,4,6时,系数为正,因为C 07 <C 17 =C 67 <C 27 <C 47 ,所以当r =4时,系数最大的项是第5项. 3.答案:D答案解析:由于x ,1x互为倒数,故常数项为第4项,即常数项为C 36 x 3⎝ ⎛⎭⎪⎫-2x 3 =20×(-8)=-160.故选D. 4.答案:B答案解析:因为(x +2y )(x -y )5=x (x -y )5+2y (x -y )5,(x -y )5的通项为:T r +1=C r5 x 5-r (-y )r ,令r =3,则T 4=C 35 x 2(-y )3,令r =2,则T 3=C 25 x 3(-y )2,所以x 3y 3的系数为C 35 (-1)3+2C 25 (-1)2=-10+20=10. 故选B. 5.答案:D答案解析:令x =0,则a 0+a 1+a 2+…+a 10=(0+1)×(0+1)8=1,令x =-12,则a 0=⎝ ⎛⎭⎪⎫14+1 ×(-2+1)8=54 ,∴a 1+a 2+…+a 10=1-54 =-14 . 6.答案:C答案解析:由(x +1)4+(x -2)8=[(x -1)+2]4+[(x -1)-1]8=a 0+a 1(x -1)+a 2(x -1)2+…+a 8(x -1)8,得a 3·(x -1)3=C 14 ·(x -1)3·2+C 58 ·(x -1)3·(-1)5,∴a 3=8-C 58 =-48.故选C. 7.答案:C答案解析:(1+2x )n 展开式第r +1项T r +1=C r n (2x )r =C r n 2r x r,∵a 5=a 6,∴C 5n 25=C 6n 26,即C 5n =2C 6n ,∵n !5!(n -5)! =2×n !6!(n -6)! , 整理得n -5=3,∴n =8. 故选C.8.答案:15答案解析:令x =1,得所有项的系数和为4n ,二项式系数和为2n ,所以4n 2n =2n=32,即n =5,(3x +x )5的第r +1项为C r5 ·(3x )5-r·⎝ ⎛⎭⎪⎫x 12 r=C r 5 ·35-r ·x 5-r2 .令5-r2=3,得r =4,所以x 3项的系数是C 45 ×3=15.二 能力小题提升篇1.答案:C答案解析:因为在(x -1)n的二项展开式中,仅有第6项的二项式系数最大,即C 5n 最大,所以n =10.2.答案:C答案解析:(1-x )8展开式第r +1项T r +1=C r 8 18-r (-x )r =(-1)r C r 8 x r,(1-ax +x 2)(1-x )8的展开式中含x 2的项的系数为1·(-1)2C 28 -a ·(-1)C 18 +1·(-1)0C 08 ,所以1·(-1)2C 28 -a ·(-1)C 18 +1·(-1)0C 08 =21,解方程可得a =-1,故选C.3.答案:D答案解析:二项式(x +13x )30的展开式中,通项公式为C r 30 ·(x )30-r·(13x)r=C r30 ·x15-56r,0≤r ≤30,∴r =0,6,12,18,24,30时满足题意,共6项. 4.答案:A答案解析:令x =1可得⎝ ⎛⎭⎪⎫12-1 n=⎝ ⎛⎭⎪⎫-12 n =164 =⎝ ⎛⎭⎪⎫-12 6 ,所以n =6,展开式有7项,所以二项式⎝ ⎛⎭⎪⎫12-x 6 展开式中二项式系数最大的为第4项T 4=(-1)3C 36 ⎝ ⎛⎭⎪⎫12 6-3x 3=-52x 3. 5.答案:-16027答案解析:由二项式展开式可知,⎝⎛⎭⎪⎪⎫x 3-23x 6的展开式的中间一项的系数为C 36 ⎝ ⎛⎭⎪⎫13 3·(-2)3=-16027. 6.答案:4 108x 5答案解析:⎝ ⎛⎭⎪⎫3x 2+1x n 展开式中,各二项式系数的和比各项系数的和小240,即2n -(3+1)n =-240,化简得22n -2n -240=0,解得2n =16或2n=-15(不合题意,舍去),所以n =4.所以⎝ ⎛⎭3x 2+1x 4=81x 8+4×27x 5+6×9x 2+4×3x +1x4 ,展开式中的系数最大的项是108x 5.三 高考小题重现篇1.答案:C答案解析:由二项式定理得(x -2)5的展开式的通项T r +1=C r 5 (x )5-r (-2)r=C r 5 (-2)rx 5-r2 ,令5-r 2=2,得r =1,所以T 2=C 15 (-2)x 2=-10x 2,所以x 2的系数为-10.2.答案:A答案解析:展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34 +2C 14 =4+8=12.3.答案:-28答案解析:因为⎝⎛⎭⎪⎫1-y x()x +y 8=()x +y 8-y x()x +y 8,所以⎝⎛⎭⎪⎫1-y x()x +y 8的展开式中含x 2y 6的项为C 68 x 2y 6-y xC 58 x 3y 5=-28x 2y 6,⎝ ⎛⎭⎪⎫1-y x ()x +y 8的展开式中x 2y 6的系数为-28. 4.答案:240答案解析:展开式的通项为T r +1=C r6 (x 2)6-r·⎝ ⎛⎭⎪⎫2x r=2r C r 6 x12-3r ,令12-3r =0,解得r =4,故常数项为24C 46 =240.5.答案:2答案解析:(x +a )5的展开式的通项为T r +1=C r 5 x 5-r a r ,令5-r =2,得r =3,则C 35 a 3=80,解得a =2.6.答案:5 10答案解析:(x -1)3展开式的通项T r +1=C r 3 x 3-r ·(-1)r ,(x +1)4展开式的通项T k +1=C k 4 x 4-k ,则a 1=C 03 +C 14 =1+4=5;a 2=C 13 (-1)1+C 24 =3;a 3=C 23 (-1)2+C 34 =7;a 4=C 33 (-1)3+C 44 =0.所以a 2+a 3+a 4=3+7+0=10.四 经典大题强化篇1.答案解析:(1)令x =1,得a 0+a 1+a 2+…+a 5=1.(2)令x =-1,得-35=-a 0+a 1-a 2+a 3-a 4+a 5.由(2x -1)5的通项T r +1=C r 5 (-1)r ·25-r ·x 5-r, 知a 1,a 3,a 5为负值,所以|a 0|+|a 1|+|a 2|+…+|a 5|=a 0-a 1+a 2-a 3+a 4-a 5=35=243. (3)由a 0+a 1+a 2+…+a 5=1,-a 0+a 1-a 2+…+a 5=-35,得2(a 1+a 3+a 5)=1-35,所以a 1+a 3+a 5=1-352=-121.2.答案解析:(1)当m =2时,f (7,x )=⎝ ⎛⎭⎪⎫1+2x 7 的展开式共有8项,二项式系数最大的项为第四项或第五项,所以T 4=C 37 ⎝ ⎛⎭⎪⎫2x 3 =280x3 或T 5=C 47 ⎝ ⎛⎭⎪⎫2x 4=560x4 .(2)①f (10,x )=⎝ ⎛⎭⎪⎫2m +m x 10 的通项公式为T r +1=C r 10 ⎝ ⎛⎭⎪⎫2m10-r⎝ ⎛⎭⎪⎫m x r=210-r ·m 2r -10·C r 10 x -r ,且f (10,x )=a 0+a 1x+a 2x2 +…+a n xn ,所以1x2 的系数为a 2=28C 210 m -6=180,解得m=2,所以f (10,x )的通项公式为T r +1=C r10 ⎝ ⎛⎭2x r=2r C r 10 x -r ,所以a r =2r C r10 ,当r =0时,a 0=1,令x =1,∑10i =1a i =310-1=59 048, ②设a r =2r C r10 为a i (0≤i ≤10)中的最大值,则⎩⎨⎧2r C r 10 ≥2r -1C r -110 2r C r 10 ≥2r +1C r +110, 解得⎩⎪⎨⎪⎧2(11-r )≥r r +1≥2(10-r ) ,即193 ≤r ≤223 ,r ∈N ,所以r =7,所以(a i )max =a 7=27C 710 =15 360.。

(完整版)二项式定理练习题

(完整版)二项式定理练习题

二项式定理练习题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在()103x -的展开式中,6x 的系数为( )A .610C 27-B .410C 27 C .610C 9-D .410C 92. 已知a 4b ,0b a =>+, ()n b a +的展开式按a 的降幂排列,其中第n 项与第n+1项相等,那么正整数n 等于( )A .4B .9C .10D .113.已知(n a a )132+的展开式的第三项与第二项的系数的比为11∶2,则n 是 ( )A .10B .11C .12D .13 4.5310被8除的余数是 ( ) A .1 B .2 C .3D .7 5. (1。

05)6的计算结果精确到0.01的近似值是( ) A .1.23 B .1。

24C .1。

33D .1.346.二项式n4x 1x 2⎪⎭⎫ ⎝⎛+ (n ∈N)的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项数是( ) A .1B .2C .3D .47.设(3x 31+x 21)n 展开式的各项系数之和为t ,其二项式系数之和为h ,若t+h=272,则展开式的x 2项的系数是( )A .21B .1C .2D .38.在62)1(x x -+的展开式中5x 的系数为( )A .4B .5C .6D .79.nx x)(5131+展开式中所有奇数项系数之和等于1024,则所有项的系数中最大的值是( ) A .330 B .462 C .680 D .790 10.54)1()1(-+x x 的展开式中,4x 的系数为( )A .-40B .10C .40D .4511.二项式(1+sinx)n的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为25,则x 在[0,2π]内的值为( )A .6π或3πB .6π或65πC .3π或32πD .3π或65π12.在(1+x )5+(1+x )6+(1+x )7的展开式中,含x 4项的系数是等差数列 a n =3n -5的 ( )A .第2项B .第11项C .第20项D .第24项二、填空题:本大题满分16分,每小题4分,各题只要求直接写出结果.13.92)21(xx -展开式中9x 的系数是 。

二项式定理训练题(含答案)

二项式定理训练题(含答案)

⼆项式定理训练题(含答案)⼆项式定理训练题⼀、单选题(共4题;共8分)1.若⼆项式的展开式中各项的系数和为243,则该展开式中含x项的系数为()A. 1B. 5C. 10D. 202.已知⼆项式的展开式中第2项与第3项的⼆项式系数之⽐是2︰5,则的系数为()A. 14B.C. 240D.3.若,则的值为()A. B. C. D.4.在(x2﹣x﹣2)5的展开式中,x3的系数为()A. ﹣40B. 160C. 120D. 200⼆、填空题(共13题;共15分)5.⼆项式的展开式中常数项为________.6.展开式中常数项为________.7.的展开式中,x3的系数为________.8.已知的展开式中各项系数和为2,则其展开式中常数项是________.9.的⼆项展开式中,含项的系数为________.10.若,则的展开式的第4项的系数为________.(⽤数字作答)11.⼆项式的展开式的各项系数之和为________,的系数为________.12.已知的展开式中的系数为108,则实数________.13.的展开式中,的系数是20,则________.14.展开式中的系数是15,则展开式的常数项为________,展开式中有理项的⼆项式系数和为________.15.在的展开式中,的系数是________.16.的展开式中的系数为________.17.在的展开式中,的系数为15,则实数________.三、解答题(共3题;共25分)18.已知展开式中各项系数和⽐它的⼆项式系数和⼤992,其中.(Ⅰ)求的值;(Ⅱ)求其展开式中的有理项.19.设.(1)求;(2)求及关于的表达式.20.已知⼆项式的⼆项展开式中所有奇数项的⼆项式系数之和为128.(1)求的展开式中的常数项;(2)在(1+x)+(1+x)2+(1+x)3+(1+x)4+…+(1+x) 的展开式中,求项的系数.(结果⽤数字作答)答案解析部分⼀、单选题1.【答案】C【解析】【解答】由令得,解得,⼆项式展开式的通项公式为,令,解得,故展开式中含x项的系数为.故答案为:C.【分析】令,结合展开式中各项的系数和为234列⽅程,求得n的值,再利⽤⼆项式展开式的通项公式,即可求得含x项的系数.2.【答案】C【解析】【解答】⼆项展开式的第项的通项公式为由展开式中第2项与第3项的⼆项式系数之⽐是2︰5,可得:.解得:.所以令,解得:,所以的系数为故答案为:C【分析】由⼆项展开式的通项公式为及展开式中第2项与第3项的⼆项式系数之⽐是2︰5可得:,令展开式通项中x的指数为3,即可求得,问题得解.3.【答案】C【解析】【解答】展开式的通项为:,故,,根据对称性知:.故答案为:C.【分析】计算,根据⼆项式系数的对称性即可得到答案.4.【答案】C【解析】【解答】∵(x2﹣x﹣2)5=(x+1)5(x﹣2)5,∴x3的系数为.故答案为:C.【分析】先把(x2﹣x﹣2)5变形为(x+1)5(x﹣2)5,再利⽤⼆项式定理中的通项公式求出结果.⼆、填空题5.【答案】60【解析】【解答】⼆项式的展开式的通项公式为,令,解得,所以该⼆项式展开式中常数项为,故答案为:60。

二项式定理经典习题(29题)

二项式定理经典习题(29题)

一.选择题(共19小题)1.(ax+y)5的展开式中x2y3项的系数等于80,则实数a=()A.2B.±2C.D.±2.的展开式中x3的系数为()A.5B.﹣5C.15D.﹣153.已知二项式(x+)n的展开式的二项式系数之和为64,则展开式中含x3项的系数是()A.1B.C.D.34.(x﹣1)5展开式中x4项系数为()A.5B.﹣5C.10D.﹣105.的展开式中常数项为()A.﹣240B.﹣160C.240D.1606.(1+x)5展开式中x2的系数为()A.﹣10B.﹣20C.20D.107.的展开式中含x5项的系数是()A.﹣112B.112C.﹣28D.288.的展开式中x3的系数为()A.﹣160B.﹣64C.64D.1609.二项式的展开式中的常数项是()A.﹣15B.15C.20D.﹣2010.若的展开式中常数项为240,则正整数n的值为()A.6B.7C.8D.911.(x﹣1)10的展开式的第6项的系数是()A.B.C.D.12.展开式中的常数项是()A.﹣160B.﹣140C.160D.14013.(x﹣2y﹣1)5的展开式中含x2y2的项的系数为()A.﹣120B.60C.﹣60D.3014.若的展开式中第4项是常数项,则n的值为()A.14B.16C.18D.2015.设n为正整数,(2x2+)n的展开式中存在常数项,则n的最小值为()A.2B.3C.4D.516.在(2x+1)4的展开式中,x2的系数为()A.6B.12C.24D.3617.在的展开式中,的系数为()A.﹣30B.﹣20C.﹣10D.3018.的展开式中,x2的系数等于()A.﹣45B.﹣10C.10D.4519.(x+2y)(x﹣y)5的展开式中x2y4的系数为()A.﹣15B.5C.﹣20D.25二.填空题(共10小题)20.已知(a+x)(1+x)6的展开式中x2的系数为21,则a=.21.展开式中所有奇数项的二项式系数和为32,则展开式中的常数项为.(用数字作答)22.(x﹣2y+1)5展开式中含x2y项的系数为.23.的展开式中项的系数为.24.的展开式中,常数项为(用数字作答).25.(x﹣1)(x+2)8的展开式中x8的系数为(用数字作答).26.在的展开式中,xy7的系数为.27.(x2﹣y)()6的展开式中,其中不含x的项为.28.在的展开式中,常数项等于.(用数字作答)29.(x2+y+3)6中x4y的系数为(用数字作答).。

二项式定理历年高考试题荟萃

二项式定理历年高考试题荟萃

二项式定理历年高考试题荟萃Revised by Liu Jing on January 12, 2021圆梦教育中心二项式定理历年高考试题一、填空题 ( 本大题共 24 题, 共计 120 分)1、 (1+2x)5的展开式中x2的系数是。

(用数字作答)2、的展开式中的第5项为常数项,那么正整数的值是 .3、已知,则(的值等于。

4、(1+2x2)(1+)8的展开式中常数项为。

(用数字作答)5、展开式中含的整数次幂的项的系数之和为。

(用数字作答)6、(1+2x2)(x-)8的展开式中常数项为。

(用数字作答)7、的二项展开式中常数项是。

(用数字作答).8、 (x2+)6的展开式中常数项是。

(用数字作答)9、若的二项展开式中的系数为,则。

(用数字作答)10、若(2x3+)n的展开式中含有常数项,则最小的正整数n等于。

11、(x+)9展开式中x3的系数是。

(用数字作答)12、若展开式的各项系数之和为32,则n= 。

其展开式中的常数项为。

(用数字作答)13、的展开式中的系数为。

(用数字作答)14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a,则a1+a2+a3+a4+a5= 。

15、(1+2x)3(1-x)4展开式中x2的系数为 .16、的展开式中常数项为 ; 各项系数之和为.(用数字作答)17、 (x)5的二项展开式中x2的系数是____________.(用数字作答)18、 (1+x3)(x+)6展开式中的常数项为_____________.19、若x>0,则(2+)(2-)-4(x-)=______________.20、已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=______________.21、记(2x+)n的展开式中第m项的系数为b m,若b3=2b4,则n= .22、 (x+)5的二项展开式中x3的系数为_____________.(用数字作答)23、已知(1+x+x2)(x+)n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________.24、展开式中x的系数为.二项式定理历年高考试题荟萃答案一、填空题 ( 本大题共 24 题, 共计 102 分)1、40解析:T3=C(2x)2,∴系数为22·C=40.2、解:∵的展开式中的第5项为,且常数项,∴,得3、-256解析:(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.令x=1,则有a0+a1+a2+a3+a4+a5=0,即(a0+a2+a4)+(a1+a3+a5)=0; ①令x=-1,则有a0-a1+a2-a3+a4-a5=25,即(a0+a2+a4)-(a1+a3+a5)=25. ②联立①②有∴(a0+a2+a4)(a1+a3+a5)=-28=-256.4、57解析:1×1+2×=57.5、答案:72解析:∵Tr+1=(=,∴r=0,4,8时展开式中的项为整数次幂,所求系数和为++=72.6、答案:-42解析:的通项T r+1==,∴(1+2x2)展开式中常数项为=-42.7、8、15解析:Tr+1=x2(6-r)x-r =x12-3r,令12-3r=0,得r=4,∴T4==15.9、答案:2解析:∵=,∴a=2.10、答案:7解析:T r+1=C(2x3)n-r ()r=2C x x=2C x令3n -r=0,则有6n=7r,由展开式中有常数项,所以n最小值为7.11、84Tr+1=,∴9-2r=3∴r=3.∴84.12、5 10 解析:令x=1可得展开式中各项系数之和为2n=32.∴n=5.而展开式中通项为Tr+1=(x2)r ()5-r =x5r-15.令5r-15=0,∴r=3.∴常数项为T4=C35=10.13、84 由二项式定理得(1-)7展开式中的第3项为T3=·(-)2=84·,即的系数为84.14、31 解析:由二项式定理中的赋值法,令x=0,则a=(-2)5=-32.令x=1,则a+a1+a2+a3+a4+a5=-1.∴a1+a2+a3+a4+a5=-1-a=31.15、-6解析:展开式中含x2的项m=·13·(2x)0··12·(-x)2+·12(2x)1··13·(-x)1+11(2x)2·14(-x)0=6x2-24x2+12x2=展开式中x2的系数为-6x2,∴系数为-6.16、10 32 展开式中通项为Tr+1=(x2)5-r ()r =,其中常数项为T3==10;令x=1,可得各项系数之和为25=32.17、40解析:∵·(x3)·()2=10×1×(-2)2·x2=40x2,∴x2的系数为40.18、答案:35 (x+)6展开式中的项的系数与常数项的系数之和即为所求,由Tr+1=·()r =·x6-3r,∴当r=2时,=15.当r=3时,=20.故原展开式中的常数项为15+20=35.19、答案:-23 原式=4-33-4+4=-23.20、答案:1解析:x8的系数为k4=15k4,∵15k4<120,k4<8,k∈Z+,∴k=1.21、5 记(2x+)n的展开式中第m项为Tm=a n-m+1b m-1=·(2x)n-m+1·()m-1,则bm=·2n-m+1.又∵b3=2b4,∴·2n-2=2×·2n-3=,解得n=5.22、答案:10 ·x4·=5×2=10.23、答案:5解析:(x+)n展开式中不含x0、x-1、x-2项即可,由Fr+1=x n-r ()r =x n-4r.∵2≤n≤8,可以验证n=5时成立.24、2 展开式中含x的项n=·13·(2x)0··13·(-x)1+·12(2x)1··14(-x)0=-4x+6x=2x,∴展开式中x的系数为2。

高考数学精品试题:二项式定理

高考数学精品试题:二项式定理

专题内容:二项式定理一、典型例题例1、已知()()511ax x ++的展开式中3x 的系数为15,则a 的值为( ) A .34 B .13 C .12 D .1 例2、已知二项式()*12N n x n x ⎛⎫-∈ ⎪⎝⎭的展开式中第2项与第3项的二项式系数之比是2:5,则展开式的常数项为( )A .14B .240C .60D .240- 例3、设()5234512345612x a a x a x a x a x a x +=+++++,则5a = ;123a a a ++= 。

二、课堂练习1、91x ⎫⎪⎭展开式中的常数项为( ) A .84 B .84- C .28D .28- 2、在()n x y -的展开式中,第3项与第8项的二项式系数相等,则展开式中系数最大的项是( )A .第6项B .第5项C .第5,6项D .第4,5项 3、若312n x x ⎛⎫+ ⎪⎝⎭的展开式中所有项系数和为81,则该展开式的常数项为( ) A .10 B .8 C .6 D .44、()25y x x x y ⎛⎫ ⎪⎭+⎝+的展开式中33x y 的系数为( ) A.5 B.10 C.15 D.205、若多项式()()()910210019101...11x x a a x a x a x +=+++++++,则9a = ( )A. 9B. 10C. -9D. -10【布置作业】1、的展开式中的中间项为( ) A . B . C . D .2、的展开式中各项的二项式系数之和为32,且各项系数和为243,则展开式中的系数为( ) A .20B .30C .40D .80 3、使()的展开式中含有常数项的最小的( ) A .4B .5C .6D .7 4、二项式的展开式中有理项的个数为( ) A .5 B .6C .7D .8 5、已知,设,则( )A .1023B .1024C .1025D .1026 6、在的展开式中,只有第7项的二项式系数最大,则展开式常数项是( ) A . B . C . D .287、的展开式中的常数项是__________. 8、的展开式中第四项的系数为120,所有奇数项的二项式系数之和为512,则实数a 的值为______.9、的展开式中项的系数为___________(用数字表示).10、已知的展开式中,的系数是240,则实数的值为______. 11、的展开式中所有二项式系数的最大值是_____(用数字作答). 12、已知的展开式中第4项与第8项的二项式系数相等,且展开式的各项系数之和为1024,则该展开式中系数最大的项为_________. 13、若的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为第_______项 14、若二项式的展开式中第项与第项的系数相同,则其常数项是___________. 8312x x ⎛⎫- ⎪⎝⎭35883358x -7-437x --3()n a x x+3x 13n x x x -⎛⎫+ ⎪⎝⎭n +∈N n 102x x ⎛⎫+ ⎪⎝⎭46n n C C =()()()()201234111n n n x a a x a x a x -=+-+-++-12n a a a +++=31()2n x x -552552-28-()51212x x ⎛⎫+- ⎪⎝⎭4n a x x ⎛⎫+ ⎪⎝⎭25(1()2)x x +-4x ()61ax -2x a ()61x +21(0)nax a x ⎛⎫-< ⎪⎝⎭1()n x x +1n x x ⎛⎫+ ⎪⎝⎭()*n ∈N 5615、设a∈Z,且0≤a≤16,若42021+a能被17整除,则a的值为_____.。

二项式定理相关练习题

二项式定理相关练习题

二项式定理相关练习题一、基础题1. 已知 $(x + y)^5$ 的展开式中,$x^2y^3$ 的系数是多少?2. 求 $(a 2b)^4$ 的展开式中,$a^3b$ 的系数。

3. 已知 $(x \frac{1}{x})^6$ 的展开式,求其中 $x^3$ 的系数。

4. 计算 $(3x 4y + 5z)^2$ 的展开式中,$x^2$ 的系数。

5. 已知 $(2x + 3y 4z)^5$ 的展开式,求其中 $y^3z^2$ 的系数。

二、提高题1. 在 $(x + \frac{1}{x})^8$ 的展开式中,求常数项和$x^4$ 的系数。

2. 已知 $(a + b + c)^3$ 的展开式,求其中 $a^2b^2$ 的系数。

3. 计算 $(x^2 + \frac{1}{x})^5$ 的展开式中,$x^3$ 的系数。

4. 在 $(2x 3y + 4z)^4$ 的展开式中,求 $x^2y^2$ 的系数。

5. 已知 $(3a 4b + 5c)^6$ 的展开式,求其中 $a^3b^3c^3$ 的系数。

三、应用题1. 设 $(x + \frac{1}{x})^n$ 的展开式中,常数项为 40,求$n$ 的值。

2. 已知 $(a + b)^n$ 的展开式中,$a^3b^2$ 的系数为 60,求$n$ 的值。

3. 在 $(2x 5y)^7$ 的展开式中,求 $x^5y^2$ 的系数,并判断该系数是奇数还是偶数。

4. 计算 $(x^2 \frac{1}{x})^6$ 的展开式中,$x^4$ 的系数,并说明该系数的正负性。

5. 已知 $(3a + 4b)^n$ 的展开式中,$a^2b^3$ 的系数为 144,求 $n$ 的值。

四、综合题1. 若 $(x \frac{1}{2x})^8$ 的展开式中,$x^4$ 的系数为$70$,求 $x^6$ 的系数。

2. 在 $(a + b)^{10}$ 的展开式中,找出系数最大的项。

高考二项式定理专项训练题

高考二项式定理专项训练题

高考二项式定理专项训练题1.二项式⎝⎛⎭⎪⎫x -1x 26的展开式的常数项为( ) A .±15 B .15 C .±20 D .-20答案 B解析 二项式⎝ ⎛⎭⎪⎫x -1x 26的展开式的通项公式为T r +1=C r 6x 6-r ·⎝ ⎛⎭⎪⎫-1x 2r=C r 6·(-1)r ·x 6-3r.令6-3r =0,求得r =2,∴展开式的常数项是C 26=15,故选B.2.(1+2x 2)(1+x )4的展开式中x 3的系数为( )A .12B .16C .20D .24答案 A解析 解法一:(1+2x 2)(1+x )4的展开式中x 3的系数为1×C 34+2C 14=12.故选A.解法二:∵(1+2x 2)(1+x )4=(1+2x 2)(1+4x +6x 2+4x 3+x 4),∴x 3的系数为1×4+2×4=12.故选A.3.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( )A .9B .8C .7D .6答案B解析令x=1,则a0+a1+a2+a3+a4=0,令x=-1,则a0-a1+a2-a3+a4=16,两式相加,得a0+a2+a4=8.4.(x-y)(x+y)5的展开式中x2y4的系数为()A.-10 B.-5C.5 D.10答案B解析(x+y)5的展开式的通项公式为T r+1=C r5·x5-r·y r,令5-r =1,得r=4,令5-r=2,得r=3,∴(x-y)(x+y)5的展开式中x2y4的系数为C45×1+(-1)×C35=-5.故选B.5.设(5x-x)n的展开式的各项系数之和为M,二项式系数之和为N,M-N=240,则展开式中x3的系数为()A.500 B.-500C.150 D.-150答案C解析由题意可得N=2n,令x=1,则M=(5-1)n=4n=(2n)2.∴(2n)2-2n=240,2n=16,n=4.展开式中第r+1项T r+1=C r4·(5x)4-r·(-x)r=(-1)r·C r4·54-r·x4-r2.令4-r2=3,即r=2,此时C24·52·(-1)2=150.6.⎝ ⎛⎭⎪⎫x -12x 9的展开式中x 3的系数为( ) A .-212 B .-92 C.92 D.212答案 A解析 二项展开式的通项T r +1=C r 9x9-r ⎝⎛⎭⎪⎫-12x r =⎝ ⎛⎭⎪⎫-12r C r 9x 9-2r ,令9-2r =3,得r =3,所以展开式中x 3的系数为⎝ ⎛⎭⎪⎫-123C 39=-18×9×8×73×2×1=-212.故选A.7.(x 2+1)⎝ ⎛⎭⎪⎫1x -25的展开式的常数项是( )A .5B .-10C .-32D .-42答案 D解析 由于⎝ ⎛⎭⎪⎫1x -25的展开式的通项为C r 5·⎝ ⎛⎭⎪⎫1x 5-r·(-2)r =C r5(-2)r·x r -52,故(x 2+1)·⎝ ⎛⎭⎪⎫1x -25的展开式的常数项是C 15·(-2)+C 55(-2)5=-42.故选D.8.若(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则|a 0|-|a 1|+|a 2|-|a 3|+|a4|-|a5|=()A.0 B.1C.32 D.-1答案A=(-1)r C r5x r,可得a1,解析由(1-x)5的展开式的通项公式T r+1a3,a5为负数,a0,a2,a4为正数,故有|a0|-|a1|+|a2|-|a3|+|a4|-|a5|=a0+a1+a2+a3+a4+a5=(1-1)5=0.故选A.9.设a∈Z,且0≤a<13,若512020+a能被13整除,则a=() A.0 B.1C.11 D.12答案D解析由于51=52-1,(52-1)2020=C020********-C12020522019+…-C2019521+1,又由于13能整除52,所以只需13能整除1+a,0≤a<13,2020a∈Z,所以a=12.10.0.9910的第一位小数为n1,第二位小数为n2,第三位小数为n3,则n1,n2,n3分别为()A.9,0,4 B.9,4,0C.9,2,0 D.9,0,2答案A解析0.9910=(1-0.01)10=C010×110×(-0.01)0+C110×19×(-0.01)1+C210×18×(-0.01)2+…=1-0.1+0.0045+…≈0.9045.11.9.1-90C110+902C210-903C310+…+(-1)k90k C k10+…+9010C1010除以88的余数是()A.-1 B.1C.-87 D.87答案B解析1-90C110+902C210-903C310+…+(-1)k90k C k10+…+9010C1010=(1-90)10=8910=(88+1)10=8810+C110×889+…+C910×88+1.∵前10项均能被88整除,∴余数是1.12.(x2-x+1)10的展开式中x3的系数为()A.-210 B.210C.30 D.-30答案A解析(x2-x+1)10=[x2-(x-1)]10=C010(x2)10-C110(x2)9(x-1)+…-C910x2(x-1)9+C1010(x-1)10,所以展开式中x3的系数为-C910C89+C1010(-C710)=-210.故选A.13.(1+x)8(1+y)4的展开式中x2y2的系数是()A.56 B.84C .112D .168答案 D解析 因为(1+x )8的展开式中x 2的系数为C 28,(1+y )4的展开式中y 2的系数为C 24,所以x 2y 2的系数为C 28C 24=168.故选D.14.设n 为正整数,⎝⎛⎭⎪⎫x -2x 3n 的展开式中仅有第5项的二项式系数最大,则展开式中的常数项为( )A .-112B .112C .-60D .60答案 B解析 依题意,得n =8,所以展开式的通项公式T r +1=C r 8x 8-r ⎝⎛⎭⎪⎫-2x 3r=C r 8x 8-4r(-2)r ,令8-4r =0,解得r =2,所以展开式中的常数项为T 3=C 28(-2)2=112.故选B.15.若⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式的常数项为( )A .-40B .-20C .20D .40答案 D解析 令x =1,得(1+a )(2-1)5=2,∴a =1.∴⎝ ⎛⎭⎪⎫2x -1x 5的通项公式为T r +1=C r 5·(2x )5-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r ·25-r·C r 5·x5-2r. 令5-2r =1,得r =2.令5-2r =-1,得r =3.∴展开式的常数项为(-1)2×23·C 25+(-1)3· 22·C 35=80-40=40.16.(2019·江西九校联考)已知(2x -1)4=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4,则a 2=( )A .18B .24C .36D .56答案 B解析 (2x -1)4=[1+2(x -1)]4,故a 2(x -1)2=C 24[2(x -1)]2=4C 24(x -1)2,a 2=4C 24=24.17.若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=( )A .284B .356C .364D .378答案 C解析 令x =0,则a 0=1;令x =1,则a 0+a 1+a 2+…+a 12=36. ① 令x =-1,则a 0-a 1+a 2-…+a 12=1. ②①②两式左右分别相加,得2(a 0+a 2+…+a 12)=36+1=730,所以a 0+a 2+…+a 12=365,又a 0=1,所以a 2+a 4+…+a 12=364.18.已知C 0n +2C 1n +22C 2n +23C 3n …+2n C n n =729,则C 1n +C 2n +C 3n +…+C n n =( )A .63B .64C .31D .32答案 A解析 逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n …+2n C nn =(1+2)n =729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n=63.故选A.19.⎝ ⎛⎭⎪⎫x 2+1x 2-23的展开式中x 2的系数是________(用数字作答). 答案 15解析 因为⎝ ⎛⎭⎪⎫x 2+1x 2-23=⎝ ⎛⎭⎪⎫x -1x 6,所以T r +1=C r 6x 6-r ⎝ ⎛⎭⎪⎫-1x r=C r 6(-1)r x 6-2r ,令6-2r =2,解得r =2,所以展开式中x 2的系数是C 26(-1)2=15.20.在⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为________.答案 90解析 令x =1,则⎝ ⎛⎭⎪⎫x +3x n =4n,所以⎝⎛⎭⎪⎫x +3x n 的展开式中,各项系数和为4n ,又二项式系数和为2n ,所以4n2n =2n =32,解得n =5.二项展开式的通项T r +1=C r 5x5-r ⎝ ⎛⎭⎪⎫3x r =C r 53r x 5-32r ,令5-32r =2,得r =2,所以x 2的系数为C 2532=90.21.已知⎝ ⎛⎭⎪⎫a x-x 29的展开式中x 3的系数为94,则a =________.答案 4解析 ⎝ ⎛⎭⎪⎫ax-x 29的展开式的通项公式为T r +1=C r 9⎝ ⎛⎭⎪⎫a x 9-r ·⎝ ⎛⎭⎪⎫-x 2r=(-1)r·a9-r·2-r 2·C r 9·x 32r -9.令32r -9=3,得r =8,则(-1)8·a ·2-4·C 89=94,解得a =4.22.⎝ ⎛⎭⎪⎫2x -18x 38的展开式中的常数项为________. 答案 28解析 ⎝ ⎛⎭⎪⎫2x -18x 38的展开式的通项为T r +1=C r 8()2x 8-r·⎝ ⎛⎭⎪⎫-18x 3r =C r 828-r ⎝ ⎛⎭⎪⎫-18r ·x 8-4r . 令8-4r =0,得r =2,∴展开式中的常数项为T 3=C 2826⎝⎛⎭⎪⎫-182=28.23.若⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________.答案 -2解析 由已知可得⎝ ⎛⎭⎪⎫ax 2+1x 5展开式的通项公式为C r 5(ax 2)5-r⎝ ⎛⎭⎪⎫1x r=C r 5a5-rx 20-5r 2,则由展开式中x 5的系数是-80,令20-5r 2=5,得r =2,即C 25a 3=-80,解得a =-2.24.已知(1-2x )n 展开式中,奇数项的二项式系数之和为64,则(1-2x )n (1+x )的展开式中含x 2项的系数为________.答案 70解析 因为奇数项的二项式系数之和为2n -1,所以2n -1=64,n=7,因此(1-2x )n (1+x )的展开式中含x 2项的系数为C 27(-2)2+C 17(-2)=70.。

高考数学《二项式定理》真题含答案

高考数学《二项式定理》真题含答案

高考数学《二项式定理》真题含答案一、选择题1.(x +1)6的展开式中的第二项为( )A .6xB .15x 2C .6x 5D .15x 4答案:C2.⎝⎛⎭⎫x 2-2x 3 5 的展开式中的常数项为( ) A .80 B .-80C .40D .-40答案:C解析:由二项展开式通项知T k +1=(-2)k C k 5 ·(x 2)5-k ⎝⎛⎭⎫1x 3 k=(-2)k C k 5 x 10-5k ,令10-5k =0,得k =2.∴常数项为T 3=(-2)2C 25 =40.3.(多选)已知(a +2b )n 的展开式中第6项的二项式系数最大,则n 的值可能为( )A .8B .9C .10D .11答案:BCD4.若(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为80,则a =( )A .-2B .2C .±2D .4答案:B解析:⎝⎛⎭⎫a x -x 5 的展开式的通项公式为T k +1=C k 5 ·(-1)k ·a 5-k ·x 2k -5,显然,2k -5为奇数,故(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为C 25 ·a 3=80,所以a =2. 5.若(x -2y )6的展开式中的二项式系数和为S ,x 2y 4的系数为P ,则P S为( ) A .152 B .154C .120D .240答案:B解析:由题意得S =26=64,P =C 46 (-2)4=15×16=240,∴P S =24064 =154. 6.在二项式⎝⎛⎭⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为( )A .6B .9C .12D .18答案:B解析:在⎝⎛⎭⎫x +3x n的展开式中令x =1,得A =4n ,各项二项式系数之和为B =2n ,由 4n +2n =72,得n =3,∴⎝⎛⎭⎫x +3x n =⎝⎛⎭⎫x +3x 3 ,其通项为T k +1=C k 3 (x )3-k ⎝⎛⎭⎫3x k =3k C k 3 x 3-3k 2,令3-3k 2=0,得k =1,故展开式的常数项为T 2=3C 13 =9. 7.⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10C .15D .20答案:C解析:要求⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数,只要分别求出(x +y )5的展开式中x 2y 3和x 4y 的系数再相加即可,由二项式定理可得(x +y )5的展开式中x 2y 3的系数为C 35 =10,x 4y 的系数为C 15 =5,故⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为10+5=15.故选C. 8.设S =(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1,则S =( )A .(x -2)4B .(x -1)4C .x 4D .(x +1)4答案:C解析:S =C 04 (x -1)4+C 14 (x -1)3+C 24 (x -1)2+C 34 (x -1)1+C 44 (x -1)0=(x -1+1)4=x 4.9.(多选)已知(2+x )(1-2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则( )A .a 0的值为2B .a 5的值为16C .a 1+a 2+a 3+a 4+a 5+a 6的值为-5D .a 1+a 3+a 5的值为120答案:ABC解析:对于A ,令x =0,得a 0=2×1=2,故A 正确;对于B ,(1-2x )5的展开式的通项T k +1=C k 5 (-2x )k =(-2)k C k 5 x k ,所以a 5=2×(-2)5C 55 +1×(-2)4C 45 =-64+80=16,故B 正确;对于C ,令x =1,得(2+1)(1-2×1)5=a 0+a 1+a 2+a 3+a 4+a 5+a 6 ①,即a 1+a 2+a 3+a 4+a 5+a 6=-3-a 0=-3-2=-5,故C 正确;对于D ,令x =-1,得(2-1)[1-2×(-1)]5=a 0-a 1+a 2-a 3+a 4-a 5+a 6 ②,由①②解得a 1+a 3+a 5=-123,故D 不正确.综上所述,选ABC.二、填空题10.[2024·全国甲卷(理)](13+x )10的展开式中,各项系数中的最大值为______. 答案:5解析:方法一 二项式(13 +x )10的展开式的通项为T k +1=C k 10 (13)10-k x k . 由⎩⎨⎧Ck 10 (13)10-k >C k -110 (13)11-k ,C k 10 (13)10-k >C k +110 (13)9-k ,解得294 <k <334. 又k ∈N *,所以k =8.所以所求系数的最大值为C 810 (13 )2=5.方法二 展开式中系数最大的项一定在下面的5项中:C 510 (13 )5x 5,C 610 (13)4x 6,C 710 (13 )3x 7,C 810 (13 )2x 8,C 910 (13 )1x 9,计算可得,所求系数的最大值为C 810 (13)2=5. 11.在二项式(2 +x )9的展开式中,常数项是________,系数为有理数的项的个数是______________.答案:162 5解析:该二项展开式的第k +1项为T k +1=C k 9 (2 )9-k x k ,当k =0时,第1项为常数项,所以常数项为(2 )9=162 ;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.12.在(x -1x)7的展开式中,系数最大的是第________项. 答案:5解析:二项式⎝⎛⎭⎫x -1x 7的展开式的通项为T k +1=C k 7 ·x 7-k ·(-1)k x -k =(-1)k C k 7 x 7-2k ,故第k +1项的系数为(-1)k C k 7 ,当k =0,2,4,6时,系数为正,因为C 07 <C 67 <C 27 <C 47 ,所以当k =4时,系数最大,是第5项.。

(完整版)高考数学二项式定理专题复习(专题训练)

(完整版)高考数学二项式定理专题复习(专题训练)

(a
x )n
Cn0a n x0
Cn1a n 1x
C
2 n
a
n
2 x2
L
C
n n
a
0
x
n
a0 a1x 1 a 2 x 2
( x a)n
Cn0a 0 xn
Cn1ax n 1
C
2 n
a
2
x
n
2
L
C
n n
a
n
x
0
an xn L
a2 x2
令 x 1, 则 a0 a1 a2 a3L an (a 1)n

令 x 1,则 a0 a1 a2 a3 L an (a 1)n

① ②得 , a0 a2 a4 L
n
n
an (a 1) ( a 1) (奇数项的系数和 )
2
① ②得 , a1 a3 a5L
an ( a 1)n (a 1)n (偶数项的系数和 ) 2
L anx n a1x1 a0
( 5)二项式系数的最大项 :如果二项式的指数 n 是偶数时,则中间项为第 ( n 1)项的二项式 2
( 6)系数的最大、最小项的求法:求 (a bx) n 展开式中最大、最小项,一般采用待定系数
法。设展开式中各项系数分别为 A1 , A2 , , An 1 ,设第 r 1 项系数最大,应有:
Ar 1 Ar 且 Ar 1 Ar 2 ;如果设第 r 1 项系数最小,应有 Ar 1 Ar 且 Ar 1 Ar 2 ,从而解出 r 的范围。
与 (b a)n 的二项展开式是不同的。
( 3)二项式项数共有 (n 1) 项,是关于 a 与 b 的齐次多项式。
( 4)二项式系数:展开式中各项的系数为

高中试卷-专题28 二项式定理(含答案)

高中试卷-专题28 二项式定理(含答案)

专题28 二项式定理一、单选题1.(2020·北京高三一模)在的展开式中,常数项是( )A .B .C .20D .160【答案】A 【解析】展开式的通项公式为,令,可得,故展开式的常数项为,故选:A.2.(2020·江苏省邗江中学高二期中)在的二项展开式中,含的项的系数是( )A .10B .15C .20D .25【答案】B 【解析】的二项展开式的通项为.令,解得.含的项的系数是.故选:B3.(2020·北京大峪中学高二期中)的展开式的常数项是( )A .B .C .3D .4【答案】D 【解析】612x x æö-ç÷èø160-20-612x x æö-ç÷èø()()()66621662112r r r r rr r r r T C x x C x ----+=××-×=-×××620r -=3r =612x x æö-ç÷èø368160C -×=-10212x x æö+ç÷èø11x 10212x x æö+ç÷èø2102031101011()22r rr r r r r T C x C x x --+æöæö==ç÷ç÷èøèø20311r -=3r =11x 33101152C æö=ç÷èø()522111x x æö+-ç÷èø3-4-展开式中的第项为,当,即时,此时;当,即时,此时.则.故选:D.4.(2020·江苏省邗江中学高二期中)已知,则( )A .B .C .D .【答案】A 【解析】当取 时, 取8个,则,当 取时, 取7个,则,所以 .故选:A5.(2020·北京市鲁迅中学高二月考)的展开式中系数最大的项为( )A .第项B .第项C .第项D .第项【答案】B 【解析】的展开式的通项公式为:,要使系数最大,则r 为偶数,且r 只可能从2,4,6中选,故,且,所以,且,所以,且,经验证:当时,符合,所以的展开式中系数最大的项为第五项,5211x æö-ç÷èø1k +()()52101552111kkkk k k k T C C x x --+æö=-=-ç÷èø2102k -=-4k =()44515C -=2100k -=5k =()55511C -=-514-=()()92100121011...x x a a x a x a x --=++++8a =45-2727-45()1x -1()91-x x 1891a C =-´()1x -x -()91-x x ()278911a C =-´´-()27189911145a C C =-´´--´=-()712x -4578()712x -()()17722+=-=-r rrr r r T C x C x ()()227722---³-rr rr C C ()()227722++-³-rr rr C C ()()()7!7!4!7!2!9!r r r r ´³×--×-()()()7!7!4!7!2!5!r r r r ³´×-+×-()()()41198³---r r r r ()()()()147621³--++r r r r 4r =()712x -6.(2020·阳江市第三中学高二期中)的展开式中,系数最小的项为( )A .第6项B .第7项C .第8项D .第9项【答案】C 【解析】由题设可知展开式中的通项公式为,其系数为,当为奇数时展开式中项的系数最小,则,即第8项的系数最小,应选答案C.7.(2020·辽宁省高三其他(理))已知二项式的展开式中,二项式系数之和等于64,则展开式中常数项等于( )A .240B .120C .48D .36【答案】A 【解析】由题意,解得,则,则二项式的展开式的通项公式为,令即,则.故选:A.8.(2020·扬州市江都区大桥高级中学高二期中)在的展开式中第4项与第8项的系数相等,则展开式中系数最大的项是( )A .第6项B .第5项C .第5、6项D .第6、7项【答案】A 【解析】因为的展开式中每一项的系数和二项式系数相等,第4项与第8项的系数相等所以,所以所以展开式里系数最大的项是第6项()131x -11313()(1)r r r r r r T C x C x +=-=-13(1)r rC -r 13(1)r rC -7r =121(2)n x x+264n=6n =1162211(2(2)n x x x x+=+1621(2)x x +6133622166122rrr r rr T C x C x x ---+æöæö=××=××ç÷ç÷èøèø3302r -=2r =6426622240r r C C -×=×=()nx y +()nx y +37n n C C =10n =二、多选题9.(2020·江苏省扬州中学高二期中)已知的展开式中第5项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10【答案】ABC 【解析】∵已知的展开式中第5项的二项式系数最大,则或n =8或n =9故选:ABC .10.(2020·南京市江宁高级中学高二期中)若的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为( )A .第3项B .第4项C .第5项D .第6项【答案】CD 【解析】由题可知,该二项展开式中的项的系数于二项式系数相等,且展开式中第3项与第8项的系数为,又因为其相等,则所以该展开式中二项式系数最大的项为与项即为第5项;第6项.故选:CD11.(2020·福建省南安市侨光中学高二月考)关于的展开式,下列结论正确的是( )A .所有项的二项式系数和为32B .所有项的系数和为0C .常数项为D .二项式系数最大的项为第3项【答案】BC 【解析】解:二项式展开式的通项为()na b +()na b +4n C 7n =1(nx x+27,n n C C 9n =91152-+=91162++=61x x æö-ç÷èø20-61x x æö-ç÷èø()66216611rr r r r r r T C x C x x --+æö=-=-ç÷èø令,解得,则常数项为,故C 正确;且二项式系数最大的项为第4项,故D 错误;二项式系数和;令,得所有项的系数和为0,故A 错误,B 正确;故选:BC12.(2020·江苏省高二期中)下列组合数公式中恒成立的有( )A .B .C .D .【答案】ABD 【解析】对于,因为,,所以,即正确;对于,,故正确;对于,当时,左边,右边,等式不成立,故不正确;对于,因为,等式左边的系数为:,等式右边的系数为:,所以,故正确.故选:ABD620r -=3r =()3346120T C =-=-012345666666666264C C C C C C C ++++++==1x =mn mn nC C -=11m m n n mC nC --=111m mmn n n C C C +++=+()()()()22220122nn nn nn nC C C C C +++×××+=A !!()!mn n C m n m =-!!()![()]!!()!n m n n n C n m n n m m n m -==----m n mn n C C -=AB !(1)!!()!(1)!()!mn n n n mC m m m n m m m n m ×-=×=×-×-×-(1)!(1)![(1)(1)]!n n m n m -=×-×---11m n nC --=BC 1m n ==221C ==1112123C C =+=+=C D 2(1)(1)(1)n n n x x x +×+=+n x 011220nn n n n n n nn n n nC C C C C C C C --×+×+×++×L 001122n n n n n n n n n n C C C C C C C C =×+×+×++×L =0212222()()()()n n n n n C C C C ++++L n x 2nn C ()()()()2222122n n nn n n n C C C C C +++×××+=D三、填空题13.(2020·上海复旦附中高二期中)若,则=__________.【答案】64【解析】在中,令可得,.所以故答案为:64.14.(2020·上海交大附中高三期中)计算:_____.【答案】【解析】由题得原式=.故答案为:15.(2020·山东省高二期中)二项式的展开式中的系数是 【答案】40【解析】依题意,二项式展开式的通项公式为,当,故的系数是.16.(2020·浙江省高三三模)二项式的展开式中,所有二项式系数的和是__________,含x 的项的系数是__________.【答案】128 84 【解析】由题意所有二项式系数的和为,题中二项式展开式通项公式为,令,,6226016(1)x a a x a x a x +=+++×××+0126a a a a +++×××+=6226016(1)x a a x a x a x +=+++×××+1x =()6012611a a a a +=+++×××+60126264a a a a +++×××+==012393n nn n n n C C C C ++++=L 4n 0011223333(13)4n n n nn n n n C C C C ++++=+=L 4n252(x x-4x ()()()52110315522rrrrr r r T C x x C x ---+=×-=-××1034,2r r -==4x ()225240C -×=722x x æö+ç÷èø72128=77317722(2r rrr r r r T C xC x x--+==731r -=2r =所以含x 的项的系数是.故答案为:128;84.四、解答题17.(2020·延安市第一中学高二期中(理))已知,求(1)的值; (2)的值.【答案】(1);(2)1093【解析】(1)令,则;(2)令,则①令,则②由①②得,即18.(2020·北京大峪中学高二期中)已知展开式中的第三项的系数为,求:(1)含的项;(2)二项式系数最大的项.【答案】(1);(2).【解析】(1)展开式的通项为,由于展开式中第三项的系数为,即,即,整理得,,解得,则展开式通项为,227284C =7270127(12)x a a x a x a x -=++++L 017a a a ++¼+0246a a a a +++1-1x =()7017121a a a ++¼=--=1x =-0123672187a a a a a a -+-+¼+-=0x =01a =12372a a a a \+++¼=-+()02462218722185a a a a +++=-=2461092a a a =++0246110921093a a a a \+++=+=1nx x æö+ç÷èø454x 4120x 2521n x x æö+ç÷èø211n rr r rr n r nn T C x C x x --+æö=×=×ç÷èø45245n C =()1452n n -=2900n n --=n N *ÎQ 10n =210110rr r T C x-+=×令,解得,因此,展开式中含的项为;(2)由二项式系数的对称性可知,二项式系数最大的项为.19.(2020·湖北省高二期中)已知的展开式中第4项与第5项的二项式系数相等.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.【答案】(1),;(2).【解析】(1)由题意知,又展开式的通项为:展开式中共有8项,其中二项式系数最大的项为第4,第5项所以,(2)展开式中系数最大的项必须在正的系数项中产生,即在,,,时,也即在,,,中产生,而,, ,故系数最大的项为第5项20.(2020·怀仁市第一中学校高二月考(理))已知(xn 的展开式中的第二项和第三项的系数相等.(1)求n 的值;(2)求展开式中所有的有理项.【答案】(1);(2),,.【解析】2104r -=7r =4x 744810120T C x x =×=5610252T C ==2nx ö-÷ø14280T x -=-525560T x-=525560T x-=34n n C C =7n \=72x ö÷ø()()773221777222rr rrr r r rr r r T C C xC x x ---+æö=-=-=-ç÷èø()793312472280T C xx--=-=-()71254422572560T C xx--=-=0r =2461T 3T 5T 7T 721T x =12384T x =525560T x -=1127448T x -=525560T x-=5n =51T x =2352T x =5516T x=二项式展开式的通项公式为,;(1)根据展开式中的第二项和第三项的系数相等,得,即,解得;(2)二项式展开式的通项公式为,;当时,对应项是有理项,所以展开式中所有的有理项为,,.21.(2020·江西省上高二中高二月考(理))在二项式的展开式中,前三项的系数依次成等差数列.(1)求展开式中的所有有理项;(2)求系数最大的项.【答案】(1),,(2)和【解析】(nx 32112rrn r n rr r nn T C x C x--+æö=××=××ç÷èø()0,1,2r n =×××2121122nn C C æö×=×ç÷èø()111242n n n -=×5n =3521512rrr r T C x -+æö=××ç÷èø()0,1,2r n =×××0,2,4r =00551512T C x x æö=××=ç÷èø22532351522T C x x -æö=××=ç÷èø44565515216T C x x -æö=×=ç÷èøn +(1)∵由题设可知解得n=8或n=1(舍去)当n=8时,通项据题意,必为整数,从而可知r 必为4的倍数,而0≤r≤8∴ r=0,4,8,故x 的有理项为,,(2)设第r+1项的系数t r+1最大,显然t r+1>0,故有≥1且≤1∵, 由≥1得r≤3又∵,由≤1得:r≥2∴ r=2或r=3所求项为和22.(2020·广西壮族自治区钦州一中高二月考(理))已知展开式前三项的二项式系数和为22.(1)求的值;(2)求展开式中的常数项;(3)求展开式中二项式系数最大的项.【答案】(1);(2);(3).【解析】由题意,展开式前三项的二项式系数和为22.1二项式定理展开:前三项二项式系数为:,解得:或舍去.即n 的值为6.2nx æçèn 66032160x (2nx ()()01211222n n n n n C C C n -++=++=6n =7(n =-)2由通项公式,令,可得:.展开式中的常数项为;是偶数,展开式共有7项则第四项最大展开式中二项式系数最大的项为.()36662166(2)2k k k k k k k T C x C x ---+==3602k -=4k =\1264642416260T C x --+==()3n Q .\936363223162160T C x x --+==。

二项式定理高考试题及其答案总

二项式定理高考试题及其答案总

⼆项式定理⾼考试题及其答案总⼆项式定理历年⾼考试题荟萃(⼀)⼀、选择题 ( 本⼤题共 58 题)1、⼆项式的展开式中系数为有理数的项共有………()A.6项B.7项C.8项D.9项2、对于⼆项式(+x3)n(n∈N),四位同学作出了四种判断:…()①存在n∈N,展开式中有常数项;②对任意n∈N,展开式中没有常数项;③对任意n∈N,展开式中没有x的⼀次项;④存在n∈N,展开式中有x的⼀次项.上述判断中正确的是(A)①与③(B)②与③(C)②与④(D)④与①3、在(+x2)6的展开式中,x3的系数和常数项依次是…………()(A)20,20 (B)15,20(C)20,15 (D)15,154、(2x3-)7的展开式中常数项是………………………………………………………()A.14B.-14 C.42 D.-425、已知(x-)8展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是……………………………………………………………()(A)28 (B)38 (C)1或38 (D)1或286.若(+)n展开式中存在常数项,则n的值可以是…………()A.8B.9C.10D.127 .(2x+)4的展开式中x3的系数是……………………………………()A.6B.128、(-)6的展开式中的常数项为…………………………………()A.15B.-15 C.20 D.-209、(2x3-)7的展开式中常数项是…………………………………………()A.14B.-14 C.42 D.-4210、若(+)n展开式中存在常数项,则n的值可以是………………()A.8B.9C.10D.1211、若展开式中含项的系数与含项的系数之⽐为-5,则n等于A.4 B.6 C.8D.1012、的展开式中,含x的正整数次幂的项共有()A.4项B.3项C.2项D.1项13.(x-y)10的展开式中x6y4项的系数是(A)840 (B)-840 (C)210 (D)-21014.的展开式中,含x的正整数次幂的项共有()A.4项 B.3项 C.2项 D.1项15、若展开式中含的项的系数等于含x的项的系数的8倍,则n等于()A.5B.716、3.若的展开式中的系数是( )A B C D17、在的展开式中的系数是()A.-14B.14C.-28 D.2818、如果的展开式中各项系数之和为128,则展开式中的系数是()(A)7 (B)(C)21 (D)19、如果的展开式中各项系数之和为128,则展开式中的系数是()(A)7 (B)(C)21 (D)20、设k=1,2,3,4,5,则(x+2)5的展开式中x k的系数不可能是(A)10 (B)40 (C)50 (D)8021、7.在()n的⼆项展开式中,若常数项为60,则n等于A.3B.6C.9D.1222、已知()的展开式中第三项与第五项的系数之⽐为,则展开式中常数项是(A)-1 (B)1 (C)-45 (D)4523、的展开式中,x的幂的指数是整数的项共有A.3项 B.4项 C.5项 D.6项24、在⼆项式(x+1)6的展开式中,含x3的项的系数是(A)15 (B)20 (C)30 ( D)4025、(若多项式,则(A)9 (B)10 (C)-9 (D)-1026、(的值为()A.61 B.62 C.63D.6427、在(x-)2006的⼆项展开式中,含x的奇次幂的项之和为S,当x=时,S等于A.23008B.-23008C.23009D.-2300928.在()24的展开式中,x的幂的指数是整数的项共有A.3项 B.4项 C.5项 D.6项29、的展开式中含x的正整数指数幂的项数是(A)0 (B)2 (C)4 (D)630、在(x-)的展开公式中,x的系数为(A)-120 (B)120 (C)-15 (D)1531、(2x-3)5的展开式中x2项的系数为(A)-2160 (B)-1080 (C)1080 (D)216032.若(ax-1)5的展开式中x3的系数是80,则实数a的值是A.-2 B.2 C.D.233、的展开式中各项系数之和为64,则展开式的常数项为(A)-540 (B)-162 (C)162 (D)54034、已知的展开式中第三项与第五项的系数之⽐为-,其中i2=-1,则展开式中常数项是(A)-45i (B)45i (C)-45(D)4535.若对于任意的实数x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值为A.3B.6C.9D.136、在的⼆项展开式中,若只有的系数最⼤,则A.8B. 9C.10 D.1137、.的展开式中,常数项为15,则n=A.3B.4C.5D.638、若(x+)n展开式的⼆项式系数之和为64,则展开式的常数项为A.10B.20C.30D.12039、.已知(+)n展开式中,各项系数的和与其各项⼆项式系数的和之⽐为64,则n等于A.4B.5C.6D.740、设(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,则a0+a1+a2+…+a11的值为A.-2B.-1 C.1 D.241、展开式中的常数项是(A) -36 (B)36 (C) -84 (D) 8442、如果的展开式中含有⾮零常数项,则正整数n的最⼩值为A.3B.5C.6D.1043、如果的展开式中含有⾮零常数项,则正整数n的最⼩值为A.10B.6C.5D.344、((2x+1)6展开式中x2的系数为(A)15 (B)60 (C)120(D)24045、(-)12展开式中的常数项为(A)-1320 (B)1320 (C)-220 (D)22046、在的展开式中,含的项的系数是(A)-15 (B)85 (C)-120 (D)274 47、展开式中的常数项为A.1 B.C.D.48、在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x4的项的系数是(A)-15 (B)85 (C)-120 (D)27449、设则中奇数的个数为()A.2 B.3 C.4D.550、的展开式中含的项的系数为(A)4 (B)6 (C)10 (D)1251、展开式中的常数项为A.1 B.46 C.4245 D.424652、的展开式中的系数是()A. B. C.3 D .453、的展开式中含的项的系数为(A)4 (B)6 (C)10 (D)1254、的展开式中的系数为()A.10 B.5 C.D.155、的展开式中的系数是()A. B. C.3 D .456、设则中奇数的个数为()A.2 B.3 C.4D.557、若(x+)n的展开式中前三项的系数成等差数列,则展开式中x4项的系数为( )A.6B.7C.8D.958、的展开式中常数项是A.210B.C.D.-105⼆项式定理历年⾼考试题荟萃(⼆)⼀、填空题 ( 本⼤题共 55 题)1、在⼆项式(x-1)11的展开式中,系数最⼩的项的系数为.(结果⽤数值表⽰)2、展开式中的常数项是.3、在⼆项式(x-1)11的展开式中,系数最⼩的项的系数为 .(结果⽤数值表⽰)4、在代数式(4x2-2x-5)(1+)5的展开式中,常数项为______________.5、在(x-)6的⼆项展开式中,常数项为 .6、.(x+1)10的⼆项展开式中x3的系数为.7、若在()n的展开式中,第4项是常数项,则n= .8、(x2+1)(x-2)7的展开式中x3项的系数是.12、(x2-)9展开式中x9的系数是.17.若(1-2x)2004=a0+a1x+a2x2+…+a2004x2004(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2004)= .(⽤数字作答)18、已知a为实数,(x+a)10展开式中x7的系数是-15,则a= .19、若在(1+ax)5展开式中x3的系数为-80,则a= .20、的展开式中各项系数的和是128,则展开式中x5的系数是 .(以数字作答)21.(x2+)9的展开式中的常数项为(⽤数字作答).22、若在⼆项式(x+1)10的展开式中任取⼀项,则该项的系数为奇数的概率是 .(结果⽤分数表⽰)23、(x-)8展开式中x5的系数为 .24、若在(1+ax)5展开式中x3的系数为-80,则a= .25、若(x3+)n的展开式中的常数项为84,则n= .26、若(x+-2)n的展开式中常数项为-20,则⾃然数n=.27、(x-)8展开式中x5的系数为 .28、如图,在由⼆项式系数所构成的杨辉三⾓形中,第⾏中从左⾄右第14与第15个数的⽐为2∶3.29、.在(1+x)+(1+x)2+…+(1+x)6的展开式中,x2项的系数是.(⽤数字作答)30、⼆项式的展开式中常数项为__________(⽤数字作答).31、. 若,且,则.32、(展开式中的常数项是(⽤数字作答).33、的展开式中,常数项为。

高中数学二项式定理经典练习题专题训练(含答案)

高中数学二项式定理经典练习题专题训练(含答案)

高中数学二项式定理经典练习题专题训练(含答案)高中数学二项式定理经典练题专题训练姓名。

班级。

学号。

说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷。

第Ⅰ卷(选择题)评卷人。

一.单选题(每题3分,共39分)1.已知在 $(1+x)^{10}$ 的展开式中常数项是()A。

42B。

-14C。

14D。

-422.在 $(1+x)^5$ 的展开式中第三项的系数是()A。

10B。

5C。

15D。

203.在$(1+x)^n$ 的展开式中,第6项为常数项,则n 为()A。

10B。

9C。

8D。

74.设 $a=\cos^2 2x dx$,则 $(a-x)^6$ 展开式中含 $x^2$ 项的系数是()A。

-192B。

-190C。

192D。

1905.在 $(x-1)^6$ 的二项展开式中,$x^3$ 的系数是()A。

-20B。

20C。

15D。

-156.在 $(1-x)^5$ 的展开式中,x 的系数是()A。

-5B。

5C。

4D。

-47.在 $(1-2x)(1+x)^5$ 的展开式中,$x^3$ 的系数是()A。

20B。

-20C。

10D。

-108.在二项式系数 $\binom{n}{k}$ 的展开式中,各项系数之和为 M,各项二项式系数之和为 N,且 M+N=64,则展开式中含 $x^2$ 项的系数为()A。

-90B。

90C。

10D。

-109.在$(a+x)^6$ 的二项展开式中,若中间项的系数是160,则实数 a 的值为()A。

2B。

-2C。

1/2D。

-1/210.$(x-1)^{10}$ 展开式中系数最大的项是()A。

第五项和第六项B。

第六项C。

第五项和第七项D。

第四项和第七项11.在 $(1+ax)^6$ 的二项展开式中含 x 项的系数是()A。

28B。

-56C。

56D。

-2812.若 $(1+x)^n=1+6x+15x^2+20x^3+15x^4+6x^5+x^6$,则n 等于()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档