药物代谢动力学精品PPT课件

合集下载

第3章 药物代谢动力学PPT课件

第3章 药物代谢动力学PPT课件
进入体循环的药量 吸收率=─────────×100%
给药量
由于血管内用药,药物100%进而血液循环,故:
AUC血管外给药量 吸收率=────────×100%
AUC血管内给药量
3、药物消除动力学
恒比消除(一级动力学消除): 每单位 时间内消除恒定比例的药物,每单位时间 血浆药物浓度按等比例衰减,绝大多数药 物属此类消除。 恒量消除(零级动力学消除): 单位时 间内消除的药量相等,血浆药物单位时间 恒量减少。恒量消除多数情况下是药量过 大,超出机体最大消除能力所致。
第3章 药物代谢动力学
一、药物的跨膜转运 二、药物的吸收 三、与血浆蛋白结合 四、分布 五、生物转化 六、排泄 七、药物代谢动力学有关基本概念
五、生物转化
生物转化(biotransformation)或代谢指药物 在机体内被作用发生化学结构的改变,是 药物被体内消除的重要途径。 体内各组织均有不同程度的代谢药物的能 力,其中肝脏是药物代谢的最重要的器官。 药物的代谢一般有两个步骤。
第3章 药物代谢动力 学
是研究机体对药 物处理过程(机体 对药物的影响,或 药物在体内的变化 规律)科学,主要 研究药物的吸收、 在体内的转运分布、 代谢变化过程、排 泄及血浆药物浓度 随时间而变化的规 律。
靶点 结合 游离
储存组织 结合 游离
药物
血浆
吸收
游离药物
结合药物
代谢产物
排泄 排泄
代谢组织 生物转化
首过消除first-pass elimination
某些药物在通过肠 粘膜及肝时,经受灭 活代谢,进入循环的 药量减少,此效应称 首过消除。如口服硝 酸甘油时,其中约有 90%被首过消除;舌 下和肛门灌肠给药, 其吸收不经肝门静脉, 药物被破坏减少。

药理学第三章-药物代谢动力学PPT课件

药理学第三章-药物代谢动力学PPT课件

药物的相互作用
多种药物同时使用可能会产生相互作用,影响药物的代谢和 排泄。
例如,某些药物可能会抑制或诱导其他药物的代谢酶,导致 药物浓度过高或过低。
05
药物代谢动力学在临床上的应用
个体化给药方案的设计
根据患者的年龄、体重、性别、生理状态等因素, 制定个体化的给药方案,确保药物剂量和用药方式 的合理性和安全性。
考虑患者的遗传因素和基因多态性对药物代谢的影 响,为不同个体提供针对性的给药方案。
监测患者的药物代谢情况,及时调整给药方案,确 保治疗效果和减少不良反应的发生。
药物疗效的预测与评估
02
01
03
通过药物代谢动力学的研究,了解药物在体内的吸收 、分布、代谢和排泄过程,预测药物疗效。
结合患者的病情和临床指标,评估药物治疗的效果, 为临床医生提供科学依据。
消除速率常数(Ke)
总结词
表示药物在体内消除的速度常数,是评价药物消除快慢的重要参数。
详细描述
消除速率常数(Ke)是药代动力学的一个参数,用于描述药物在体内消除的速度。 Ke值越大,表示药物的消除速度越快。药物的Ke值受到多种因素的影响,如代谢速 率、排泄速率等。在药代动力学模型中,Ke用于描述一级消除过程。
二室模型
定义
二室模型是指药物在体内存在两个不同的分布相,即中央室和周边室。中央室指药物进入 血液循环后迅速分布到全身各组织器官,而周边室则指药物在某些组织器官中的缓慢分布 。
特点
二室模型适用于药物在体内分布不均匀,且消除速率在不同组织器官中存在差异的情况。
应用
二室模型常用于描述药物的分布过程,以及用于计算药物的表观分布容积、清除率等药动 学参数。
药理学第三章-药物代谢动力 学ppt课件

药物代谢动力学学PPT课件

药物代谢动力学学PPT课件

药物代谢的酶系统
药物代谢的类型与产物
氧化反应
通过加氧的方式将药物转化为极性更强的代谢物,易于排泄。例如,苯妥英钠在肝内氧化为苯妥英。
还原反应
通过加氢的方式将药物还原为更易排泄的形式。例如,硝苯地平在肝内还原为硝苯啶。
水解反应
通过加水的方式将药物分解为更易排泄的形式。例如,阿司匹林在肝内水解为水杨酸。
中药代谢动力学研究
THANKS
感谢您的观看。
半衰期计算公式
半衰期可以反映药物在体内的消除速度,对于制定给药方案和调整用药剂量具有重要的指导意义。同时,半衰期也是判断药物是否易于蓄积中毒的重要依据。
半衰期的意义
半衰期计算
07
CHAPTER
药物代谢动力学在临床上的应用
根据患者的生理、病理状况和药物代谢特征,制定个体化的给药方案,确保药物疗效和安全性。
药物代谢动力学学ppt课件
目录
药物代谢动力学概述 药物吸收 药物分布 药物代谢 药物排泄 药物代谢动力学参数计算 药物代谢动力学在临床上的应用
01
CHAPTER
药物代谢动力学概述
药物代谢动力学是研究药物在体内吸收、分布、代谢和排泄的学科,主要关注药物在体内的动态变化过程。
药物代谢动力学对于新药研发、临床合理用药、药物疗效和安全性评价等方面具有重要意义,是药理学和药物治疗学的重要基础。
清除率的意义
03
清除率可以反映机体对药物的代谢能力,是制定给药方案的重要依据。
清除率计算
1
2
3
表观分布容积是指药物在体内达到动态平衡时,体内药量与血浆药物浓度的比值,是反映药物在体内分布广度的指标。
表观分布容积定义
表观分布容积(Vd)= (总药量)/(血浆药物浓度),其中总药量和血浆药物浓度可通过实验测定。

药物代谢动力学 ppt课件

药物代谢动力学  ppt课件

PPT课件
40
二、药物的体内过程
微粒体酶 是促进药物生物转化的主要酶系统, 主要存在于肝细胞内质网上,又称肝药酶。其 中主要的氧化酶系是细胞色素P-450
2.需要载体转运,载体对药物有特异的选择性。 3.有饱和现象 4. 如果两个药物均由相同的载体转运,则它们之间存在竞争 性抑制现象
PPT课件
14
二、药物的体内过程
吸收 (absorption) 药物自给药部位进入血液循环的过程称为吸收。
影响药物吸收的因素
药物的理化性质及剂型;
给药途径;
吸收环境
PPT课件
15
PPT课件
16
给药途径
❖ 1.口服给药(小肠是口服给药的主要吸收部位)
❖ 口服药物在胃肠粘膜吸收后,首先经门静脉进入肝脏,当通过肠粘膜及肝 脏时部分药物发生转化,使进入体循环的有效药量减少,这种现象称首关 消除。
❖ 2.舌下给药
❖ 3.直肠给药(直肠给药是指通过肛门将药物送入肠管,通过直肠粘膜的迅 速吸收进入大循环 ,发挥药效以治疗全身或局部疾病的给药方法。其主要 方法有三:①保留灌肠法, ②直肠点滴法,③栓剂塞入法。)
PPT课件
33
胎盘屏障
PPT课件
34
血眼屏障
❖ 循环血液与眼内组织间的屏障。药物很难从血液中进入 房水、晶状体、玻璃体 眼部疾病需全身给药结合局部滴 眼和眼周边注射
PPT课件
35
二、药物的体内过程
代谢
(matabolism) 药物在体内发生的化学结构的变化称为代谢,又称生物 转化(biotransformation)。
二、药物的体内过程
影响药物分布的因素 1 药物与血浆蛋白的结合
2 药物与组织的亲和力

药理学 药物代谢动力学ppt课件

药理学 药物代谢动力学ppt课件
34
血脑屏障 (Bloodbrain barrier, BBB)
脑组织内的毛细血 管内皮细胞紧密相 连,内皮细胞之间 无间隙,且毛细血 管外表面几乎均为 星形胶质细胞包围 ,这种特殊结构形 成了血浆与脑脊液 之间的屏障。
35
36
37
四、生物转化/代谢 ( biotransformation/ metabolism)
30
1、药物与血浆蛋白结合
D:游离型药物, DP:结合型药物,PT:血浆蛋白总量,KD:解离常31数
2、体液PH影响
碱化尿液排酸药,酸化尿液排碱药。 细胞内液(PH=7.0),细胞外液 (PH=7.4)→故弱酸药在细胞外浓 度高,而弱碱性在细胞内高。
32
3、血流量与膜的通透性
器官血流量 再分布:早期心、脑、肾,后期脂肪、皮
61
生物利用度 (bioavailability)
绝对生物利用度:把静脉注射和血管外途径 给药时的AUC值进行比较: F= AUCev/AUCiv×100%
相对生物利用度:在同一给药途径下,对不 同制剂进行比较: F=AUC受试制剂/AUC标准制剂×100%
62
第三节 药物消除动力学
药物消除动力学过程是指进人血液循环的 药物由于分布、代谢和排泄,使其血药浓度 不断衰减的过程。
物在尿中离子化,酸化尿液使碱性药物在尿 中离子化,阻止药物重吸收。
50
二)胆汁排泄
由胆汁排入十二指肠的药物有的直接随粪 便排出,但较多的药物可由小肠上皮吸收, 并经肝脏重新进入全身循环,这种肝脏、 胆汁间、小肠的循环称为肝肠循环 (hepatoenteral circulation)。 意义:肝肠循环能延长药物的作用时间, 如洋地黄毒苷。洋地黄中毒,消胆胺可加 速其排泄。

药物代谢动力学-PPT课件

药物代谢动力学-PPT课件

§1-3 药物代谢动力学
药酶的诱导作用:能够增强药酶活性或增加药酶生成的作 用为药酶的诱导作用,药酶诱导剂如苯妥英钠、利福平等。 药酶诱导剂可以加速某些药物和自身的转化,这是药物产 生耐受性的原因之一。
药酶的抑制作用:能够降低药酶活性或减少药酶生成的作 用为药酶的抑制作用,药酶抑制剂较常见的有氯霉素、异 烟肼等。药酶抑制剂可抑制药酶,使自身或其他药物代谢 减慢,血药浓度增高,药效增强,甚至出现毒性,故联合 用药时应多加注意。
10/31/2024
二、药物的体内过程
§1-3 药物代谢动力学
2. 生物转化的时相和类型 (1)Ⅰ相反应:氧化、还原、水解反应 通过该相反应大部分药物失去药理活性,少数药物 被活化,作用增强,甚至形成毒性代谢产物。 (2)Ⅱ相反应:结合反应 药物及代谢产物在酶的作用下,与内源性物质如葡 萄糖醛酸、硫酸、乙酸等结合成无活性的、极性大的、 易溶于水的代谢物从肾排泄。
被动转运:
滤过、简单 -




扩散
主动转运





易化扩散




10/31/2024
二、药物的体内过程
§1-3 药物代谢动力学
二、药物的体内过程:药物自进入机体到从机体消除的全过 程。 决定了血药浓度和靶部位的浓度,影响疗效。 1.吸收 2.分布 3.生物转化 4.排泄
10/31/2024
二、药物的体内过 程
脂溶性高、非解离型药物重吸收的多,排泄得慢; 而水溶性药物排泄得快。增加尿量,可降低尿液中药物 的浓度,加快药物的排泄。
改变尿液的pH可使药物的解离程度发生变化,对弱 酸性或弱碱性药物的影响较大。临床利用改变尿液pH的 办法加速药物的排泄以治疗药物中毒。

药理学 4.药物代谢动力学 PPT课件

药理学 4.药物代谢动力学 PPT课件

影响药物生物转化的因素
1.药酶的诱导 2.药酶的抑制 3.遗传的多态性
药物代谢酶的活性可被诱导或抑制
药酶诱导 (Induction): 苯巴比妥、利福平,环境 污染物等
无诱导 苯巴比妥诱导
苯并芘诱导
药酶抑制 (Inhibition): 西米替丁、普罗地芬等竞争代谢途径而导致药 物代谢酶被抑制。


一、药物的转运
药物的转运方式 药物的吸收、分布和排 泄本质上是药物分子在体内跨过各部位生物 膜的转运(跨膜转运)。 1. 被动转运(passive transport) 2. 主动转运(active transport) 3. 其他转运方式。
被动转运
1.被动转运 指药物自生物膜浓度高的一 侧向浓度低的另一侧进行的跨膜转运。包括 简单扩散(simple diffusion)和滤过(filtration)。
四、生物利用度 bioavailability
F为血管外给药时,制剂中药物被吸收 进入体循环的程度(相对量)和速度。 (1)生物利用度的程度:
绝对生物利用度: F =
AUC(ev) AUC(iv)
×100%
×100%
相对生物利用度: F =
AUC(test)
AUC(standard)
主动转运
2.主动转运 指药物不依赖膜两侧浓度 差的转运,可以由生物膜的浓度低的向浓 度高的一侧转运,形成药物在特殊部位的 高浓度聚积,因而又称为逆浓度梯度转运 或上山转运。 少数药物和生命活动的关键离子(如 Na+、Ca2+、K+)依赖机体特有的载体转 运系统(酶或离子泵)消耗能量ATP进行 主动转运形成浓度势能。
二、药物的体内过程
(一)吸收 药物的吸收是指药物由 给药部位进入血液循环的过程。

药物代谢动力学ppt课件精选全文完整版

药物代谢动力学ppt课件精选全文完整版
• 主动转运(active transport) • 易化扩散(facilitated diffusion)
●胞裂外排(exocytosis)
药物代谢动力学
跨膜转运(Membrane Transfer)
simple diffusion
carrier-mediated
active
facilitated
1. 药物理化性质; 2. 给药途径; 3. 药物剂型; 4. 影响药物从消化道内吸收的主要因素;
药物代谢动力学
1. 药物理化性质:
●分子量; ●脂溶性; ●解离度;
问题:什么样的药物容易被吸收?
药物代谢动力学
2. 给药途径
●常见的给药方式:
静脉 、吸入 、舌下和直肠、肌内注射 、皮下注射 、 口服 、皮肤
药物代谢动力学
(二)吸入(呼吸道给药,inhalation)
�定义:经口鼻吸入的药物从肺泡吸收的给药方式; 肺泡上皮细胞能吸收5 µm左右微粒, 肺泡表面积大(达200m2) ,
●适用于挥发性药物和气体药物,如鼻炎喷雾剂 ;
药物代谢动力学
(三)局部用药
●完整的皮肤吸收能力差 ; �适用于脂溶性高的药或加促皮吸收的药剂,如皮康王、无极膏 。 �问题生活当中,还有哪些是局部给药?
药物代谢动力学
6)药物通过胞膜的速度受药物理化性质的影响;
�药物分子大小; �药物脂溶性; �药物解离状况;
分子量小、脂溶性高、极性小、非解离型的药物容易透过细胞膜。
药物代谢动力学
7)药物通过细胞膜的速度受环境pH的影响
� --------------离子障 ion-trapping �大多数药物为弱酸性或弱碱性;
�原则:药物解离程度脂溶性 跨膜转运 效应。

药理学3第三章药物代谢动力学PPT课件

药理学3第三章药物代谢动力学PPT课件

药物的排泄
研究药物从体内排出的过程, 包括药物的排泄途径和排泄速 率。
药物代谢动力学在药物研发中的作用
指导临床用药
通过了解药物的代谢过程,为临床用药提供科学 依据,制定合理的给药方案。
预测药物疗效
通过药物代谢动力学研究,了解药物在体内的浓 度变化,预测药物的疗效和安全性。
优化药物设计
通过药物代谢动力学研究,了解药物的代谢特点 和排泄途径,为新药设计和优化提供依据。
药物代谢主要在肝脏进行,由不同类型的酶催化 ,如单胺氧化酶、儿茶酚胺氧化酶等。
了解药物的代谢过程有助于预测药物的疗效和安 全性,以及解释个体差异和药物相互作用。
药物的排泄
药物排泄是指体内蓄积的药物及其代谢物通过尿 液、胆汁和汗液等途径排出体外的过程。
胆汁排泄是某些药物排泄的重要途径,尤其是经 肝脏代谢的药物。胆汁中的药物可能重新进入肠 道并被再吸收,形成肠肝循环。
生理药动学模型
要点一
总结词
生理药动学模型基于药动学和生理学的原理,能够更准确 地模拟药物的体内是基于药动学和生理学的原理建立的数学 模型,能够更准确地模拟药物的吸收、分布、代谢和排泄 过程。该模型考虑了药物的物理化学性质、药物的转运和 代谢机制以及生理因素对药物作用的影响。生理药动学模 型能够提供更准确的预测和更全面的药物评价,有助于深 入了解药物的体内过程和作用机制。
01
02
03
生物利用度(F)
指药物被吸收进入血液循 环的量与给药量的比值, 反映了药物的吸收程度和 速率。
F的计算公式
F = (AUC / 给药量) × 100%。F越大,表示药物 的吸收程度越高。
F的意义
通过F可以了解药物在体 内的吸收程度和速率,有 助于预测药物的疗效和安 全性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
fusion, Passive diffusion)
脂溶性物质直接溶于膜的类脂相而通过 体内大多数药物的转运方式
离子障 ion trapping 分子型极性低,亲脂,可通过膜; 离子型相反
特 点:
➢ 转运速度与脂溶度lipid solubility 成正比
了解
各种给药途径对药物吸收的影响 。
Pharmacokinetics Pharmacodynamics
Absorption
Drug in Tissues Of Distribution
Drug Administration
Drug Concentration in Systemic Circulation
Absorption, Distribution, Metabolism and Excretion
Process of Drug in the Body
➢药物经过给药部位进入直至排出机 体的过程。
➢包括药物的吸收(absorption)、分布 (distribution)、代谢(metabolism)和排 泄(excretion),即ADME。
熟悉
被动转运、主动转运、易化扩散的概念 及特点。
肝药酶概念及特性。药物分布、再分布 ,血浆蛋白结合率,结合型药物的特点 ,血脑屏障和胎盘屏障。药物的生物转 化:药酶抑制剂、药酶诱导剂;药物的 排泄:肾脏排泄,胆汁排泄。
零级消除动力学的概念、特点。
表观分布容积概念及意义;负荷量、清 除率的含义。
Drug Metabolism or
Excreted
Distribution
Elimination
Drug Concentration at Site of Action
Pharmacologic Effect
Clinical Response
Toxicity
Efficacy
Pharmacokinetics
第 3 章 药物代谢动力学
Chapter 3 Pharmacokinetics
掌握
简单扩散及影响因素(特别强调药物 所处环境PH值和药物解离度对药物跨 膜转运的影响),离子障的概念。
吸收、首关消除、肝肠循环的概念。
消除的概念,一级消除动力学的概念 和特点,稳态血药浓度的概念。
药代动力学基本参数:消除半衰期、 生物利用度的概念、计算公式,理解 其药理学意义。
➢ 依靠浓度差,不耗能。 ➢ 转运速度与浓度差成正比 ➢ 转运速度与药物解离度 (pKa) 有关 pKa:药物解离50%时容易的PH值
离子障 ion trapping
药物被限制在使其变成离子的 膜的那一侧,不可自由穿透。非离 子型即分子型脂溶性好,可自由穿 透。
酸性药 (Acidic drug): HA H+ + A 碱性药 (Basic drug): BH+ H+ + B (分子型)
不同给药途径的吸收程度排序:
吸入>舌下>直肠>肌注>皮下>口服>皮 肤
(1) 口服给药 (Oral ingestion)
吸收部位 主要在小肠 ➢ 停留时间长,经绒毛吸收面积大 ➢ 毛细血管壁孔道大,血流丰富 ➢ pH5-8,对药物解离影响小
Clinical sketch
A man with angina has not understood instruction on the use of glyceryl trinitrate tablets. He swallows them instead of putting them under his tongue. There is no therapeutic benefit.
3.主动转运 (Active transport)
需依赖细胞膜内特异性载体转运
逆浓度梯度,耗能 特点: 特异性(选择性)
饱和性 竞争性
4.易化扩散
(Facilitated diffusion; Carrier-mediated diffusion)
需特异性载体 顺浓度梯度,不耗能
第二节
药物的体内过程
硝酸甘油
Comment: this drug is subject to extensive first-pass metabolism.
2. 滤过(Filtration)
水溶性小分子药物通过细胞膜的水 通道,受流体静压或渗透压的影响
黏膜上皮细胞及其它大多数细 胞膜孔道4~8Å (=1010m ), 仅水、尿素等小分子水溶性物 质能通过,分子量>100者即不 能通过
毛细血管内皮孔 道约40Å ,除蛋 白质外,血浆中 的溶质均能通过
➢代谢和排泄都是药物在体内逐渐消 失的过程,统称为消除(elimination)。
(4)Excretion (3)metablism
吸收 Absorption
药物自给药部位进入血液循 环的过程
Routes of Administration
不同给药途径的吸收速度排序:
腹腔注射>吸入>舌下>直肠>肌注>皮下 >口服>皮肤
(4)Excretion (3)metablism
药物代谢动力学 (pharmacokinetics)
Pharmacokinetics简称药动学, 主要研究药物的体内过程及体内 药物浓度随时间变化的规律。
第一节 药物分子的跨膜转运
Drug Transport
第二章
一、药物通过细胞膜的方式
滤过
载体转运 简单扩散 主动转运
例题1
在酸性尿液中弱酸性药物:
a、解离多,再吸收多,排泄慢
b、解离少,再吸收多,排泄慢
c、解离多,再吸收多,排泄快
d、解离多,再吸收少,排泄快
e、以上都不对
例题2
某碱性药物的pka=9.8,如果增高尿液的ph, 则此药在尿中:
a、解离度增高,重吸收减少,排泄加快 b、解离度增高,重吸收增多,排泄减慢 c、解离度降低,重吸收减少,排泄加快 d、解离度降低,重吸收增多,排泄减慢 e、排泄速度并不改变
pH和pKa决定药物分子解离多少
A
A OH-
HA
A
HA
A H+
HA
H+
OH-
H2O
A H+
H+
H2O H+
pH和pKa决定药物分子解离多少
酸性药 : Ka = [ H+ ] [ A ]
[HA]
[ A ]
pKa = pH - log
[HA]
10 pH-pKa =
碱性药:pKa-pH
[ A ] [HA]
相关文档
最新文档