考点20 递推公式求通项(第2课时)——2021年高考数学专题复习真题练习
高考数学专题复习题:数列的递推公式
高考数学专题复习题:数列的递推公式一、单项选择题(共8小题)1.已知数列{a n }满足a n =4a n -1+3(n ≥2,n ∈N *),且a 1=0,则此数列的第5项是( ) A.15B.255C.16D.632. 已知数列a n =-n 2+4n +2,则该数列中最大项的序号是( ) A .2B .3C .4D .53.已知数列{a n }满足a n =1a n−1+1(n ≥2,n ∈N *),如果a 4=53,那么a 1等于( ) A.1B.32C.2D.854.下列给出的图形中,星星的个数构成一个数列,则该数列的一个递推公式可以是( )A.a n +1=a n +n ,n ∈N *B.a n =a n -1+n ,n ∈N *,n ≥2C.a n +1=a n +(n +1),n ∈N ,n ≥2D.a n =a n -1+(n −1),n ∈N *,n ≥25.已知数列{a n }满足a 1=2,a n +1-a n +1=0(n ∈N *),则此数列的通项公式a n 等于( ) A.n 2+1 B.n +1C.1-nD.3-n6.设a n =1n+1+1n+2+1n+3+…+12n (n ∈N *),那么a n +1-a n 等于( )A.12n+1B.12n+2C.12n+1+12n+2D.12n+1-12n+27.在数列{a n }中,a 1=12,a n +1=1-1a n,则a 2 024等于( ) A.12B.-1C.2D.38.某书中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…,满足a n +2=a n +1+a n (n ≥1),那么1+a 2+a 4+a 6+…+a 2022等于( ) A.a 2021B.a 2022C.a 2023D.a 2024二、填空题(共4小题)9.在数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=________. 10.已知数列{a n }中,a 1a 2…a n =n 2(n ∈N *),则a 9=________. 11.已知数列{a n }的通项公式为a n =12n −15,其最大项为________,最小项为________.12.在一个数列中,如果对任意n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.三、解答题(共4小题)13.已知数列{a n }的前n 项和S n =2n 2-n +2. (1)求数列{a n }的通项公式.(2)若b n =a n +100n -2n ,求数列{b n }的最大项是该数列的第几项. 14.在数列{a n }中,a 1=2,且a n +1=a n +ln (1+1n ),求数列{a n }的通项公式.15.已知数列{a n }中,a 1=12,a n =n−1n+1a n -1(n ≥2),求数列{a n }的通项公式.16.已知数列{a n }满足:a 1=m (m 为正整数),a n +1={a n2,a n 为偶数,3a n +1,a n 为奇数.若a 4=4,求m 所有可能的取值.。
2021高考数学考点精讲精练《20 递推公式求通项(第2课时)》讲解(解析版)
考点20 递推公式求通项(第二课时)【思维导图】【常见考法】考法一:构造等差数列1.已知数列{}n a 满足1111,2n n n n a a a a a ++=-=,则8a =__________.【答案】115【解析】由题,1111,2n n n n a a a a a ++=-= 则1112,n n a a +-=则数列1n a ⎧⎫⎨⎬⎩⎭是以111a 为首项,2 为公差的等差数列,则()8111121,,.2115n n n a a a n =+-∴=∴=-即答案为115. 2.在数列{}n a 中,11a =,()*11nn na a n N a +=∈+,则这个数列的通项n a = 。
【答案】1n【解析】∵11n n n a a a +=+,等式两边同时取倒数得:1111n n a a +=+,则()*1111n nn a a N +∈-=, ∴132211-121111111111+n n n n n a a a a a a a a a a --⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 111111+1nn a ⇒=++++=,1n a n⇒=, 当1n = 时,1111a == 亦成立,综上所述()*1n a n N n=∈ 3.已知数列{}n a 的前n 项和为n S ,11a =,1120n n n a S S +++=,则n S =______.【答案】121n - 【解析】因为11n n n a S S ++=-则1120n n n a S S +++=可化简为1120n n n n S S S S +++=-等式两边同时除以1n n S S +可得11120n n S S ++-=,即1112n nS S +-= 所以数列1n S ⎧⎫⎨⎬⎩⎭为等差数列,首项11111S a ==,公差2d = 所以()111221n n n S =+-⨯=- 即121n S n =-故答案为: 121n - 4.各项均正的数列{}n a 满足1114,22n n n a a a ++==+,则n a 等于 。
专题由递推关系求数列的通项公式(含答案)
.专题 由递推关系求数列的通项公式一、目标要求通过具体的例题,掌握由递推关系求数列通项的常用方法:二、知识梳理求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。
三、典例精析1、公式法 :利用熟知的公式求通项公式的方法称为公式法。
常用的公式有 a nS 1 S nSn 1等差数列和等比数列的通项公式。
例 1已知数列 { a n } 中 a 1 2 , s nn 2+2 ,求数列 { a n } 的通项公式n 1及n 2评注 在运用 a n s n s n 1 时要注意条件 n 2 ,对 n=1 要验证。
2、累加法: 利用恒等式 a n a 1 a 2 a 1 +......+ a n a n 1 求通项公式的方法叫累加法。
它是求型如an 1a n +f n 的递推数列的方法(其中数列 f n 的前 n 项和可求)。
例2已知数列{ a n } 中 a 1 1 a n +1 ,求数列 { a n } 的通项公式 , a n 12 +3n2 n 2评注 此类问题关键累加可消中间项,而f ( n )可求和则易得 a n 3 、 . 累乘法 :利用恒等式 a n a 1a 2a 3 a n a n 0 求通项公式的方法叫累乘法。
它是求型如a 1 a 2a n1an 1g n a n 的递推数列的方法 数列 g n可求前 n 项积例 3已知数列{a n} 中s n 1 na n,求数列{ a n} 的通项公式评注此类问题关键是化a ng n ,且式子右边累乘时可求积,而左边中间项可消。
a n14、转化法:通过变换递推关系,将非等差(等比)数列转化为等差或等比有关的数列而求得通项公式的方法称为转化法。
递推数列求通项公式-高考数学一题多解
递推数列求通项公式-高考数学一题多解一、攻关方略数列学习中难度较高的一个内容是递推数列,由递推关系求通项公式是一种十分重要的题型,解题方法丰富多彩,注重分析递推式的结构特点,合理构造得到等差或等比等常见数列是解题的重要策略.下面对一些常见的由递推关系求通项公式的求法做一些归纳.第一类:型如()1n n a a f n +=+的一阶递推式,可改写为()1n n a a f n +-=的形式,左端通过“累加”可以消项;右端()f n 是关于n 的函数,可以求和.故运用“累加法”必定可行,即()()()112132111()n n n n k a a a a a a a a a f k --==+-+-+⋅⋅⋅+-=+∑.第二类:型如1()n n a g n a +=的递推式,可改写为1()n na g n a +=的形式.左端通过“迭乘”可以消项;右端通常也可以化简,故运用“迭乘法”必定可行,即3211121(1)(2)(1)(2)n n n a a a a a a n n g g a a a -=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅-≥.第三类:型如1n n a pa q +=+(1p ≠,0q ≠)的递推式,可由下面两种构造法求通项公式.构造法一:由1n n a pa q +=+及1n n a pa q -=+,两式相减得()11n n n n a a p a a +--=-,得{}1n n a a +-是首项为21a a -,公比为p 的等比数列,先求{}1n n a a +-的通项公式,再利用“累加法”求{}n a 的通项公式.构造法二:若1p =,则显然是以1a 为首项、q 为公差的等差数列;若1p ≠,0p ≠,0q ≠,则构造数列{}n a λ+,满足()1n n a p a λλ++=+.运用待定系数法,解得1q p λ=-,则1n q a p ⎧⎫+⎨⎬-⎩⎭是首项为11q a p +-,公比为p 的等比数列.第四类:型如1nn n pa a a q+=+(0p ≠,0q ≠,0n a ≠)的递推式,运用取倒数,构造数列1n a ⎧⎫⎨⎬⎩⎭,满足111n n q a pa p +=+,运用换元法,即令1n n b a =,得11n n q b b p p +=+,从而转换为第三类.第五类:型如1rn n a pa +=(0p >,0r ≠,1r ≠)的递推式,运用两边取对数法得1lg lg lg n n a r a p +=+,令lg n n b a =,转化为1lg n n b rb p +=+型,即第三类,再运用待定系数法.第六类:型如1n n a pa qn r +=++(1p ≠,0p ≠,0q ≠)的递推式,可构造数列{}n a n λμ++,满足()1(1)n n a n p a n λμλμ++++=++,运用待定系数法解得1q p λ=-,21(1)r qp p μ=+--,从而由等比数列求通项公式;进一步推广,若递推式中包含n 的二次项、三次项,则构造的数列中也同样包含对应次数项.第七类:型如1()n n a pa f n +=+(1p ≠,0p ≠)的递推式,可在等式两边同除以1n p +,构造数列nn a p ⎧⎫⎨⎬⎩⎭,满足111()n n n n n a a f n p p p +++=+,令n n n a b p =,则转化为11()n n n f n b b p ++=+,即第一类,再利用“累加法”求通项公式.第八类:型如满足:11a m =,22a m =,21n n n a pa qa ++=+(p 、q 是常数)的递推式,则称数列{}n a 为二阶线性递推数列,可构造数列{}1n n a a λ+-,满足()11n n n n a a a a λμλ+--=-,则,,p q λμλμ+=⎧⎨=-⎩即λ,μ为方程20x px q --=的两个根,此方程称之为特征方程,则数列{}n a 的通项公式n a 均可用特征根求得(即转化为第七类进一步求解).第九类:型如1n n n ra sa pa q++=+(0p ≠,0q ≠,0r ≠,0s ≠)的递推式,利用不动点法,其中rx sx px q +=+的根为该数列的不动点,若该数列有两个相异的不动点μ,则n n a a v μ⎧⎫-⎨⎬-⎩⎭为等比数列;若该数列有唯一的不动点μ,即方程等根时,1n a μ⎧⎫⎨⎬-⎩⎭为等差数列,这就是不动点求递推数列通项公式的方法.除上述9种类型之外还有换元法、数学归纳法(归纳一猜想一论证)等.给出相类似的递推式必有相应的破解之道,这是模型思想的运用,对所给的递推式借助于变形、代换、运算等方法转化为等差数列、等比数列这两类基本数列(模型)而求解.切变形、代换、运算的手段都是构造法的体现,真可谓:递推数列变化无穷,变形、代换方法众多.模型思想是根主线,合理构造顿显坦途.【典例】(2021·全国甲卷T17)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213a a =.注:若选择不同的组合分别解答,则按第一个解答计分.选①②作条件证明③:(一)待定系数法解法一:【解析】待定系数法+n a 与n S 关系式(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.解法二:【解析】待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d =-,将1(1)2n n n S na d -=+1(1)n d -,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a ==.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n +-=所以是等差数列.选②③作条件证明①:(二)定义法解法一:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43ab =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a =-<不合题意,舍去.综上可知{}n a 为等差数列.解法二:求解通项公式因为213a a ===也为等差数列,所以公差1d =()11n d =-=,故21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n 的一次函数,直接(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进而由等差数列定义进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a1d =11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.【针对训练】(2022年全国高考乙卷)1.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <2.设数列{an }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{an }的通项公式并加以证明;(2)求数列{2nan }的前n 项和Sn .3.已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.4.已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .(2022全国甲卷)5.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.6.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.7.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.8.对负整数a ,数43a +、77a +、283a a ++依次成等差数列.(1)求a 的值;(2)若数列{}n a 满足()112n n n a aa n *++=-∈N ,1a m =,求{}n a 的通项公式;(3)在(2)的条件下,若对任意n *∈N ,有2121n n a a +-<,求m 的取值范围.9.设0b >,数列{}n a 满足1a b =,()1121n n n nba a n a n --=≥+-(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,121n n a b +≤+.10.设数列{}n a 满足:11a =,12n n n a a -=-+(2n ≥),数列{}n b 满足:1(1)3n n n b a +=-⋅.求数列{}n b 的通项公式.参考答案:1.D【分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误;178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,47b b <故D 正确.2.(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可.【详解】(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立;[方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+.[方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=.由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯,……1114(1)(2)333n n nn n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯+-⨯⎢⎥⎣⎦ ,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n n S a a a a =++++ ()()()()2132431n n b b b b b b b b +=-+-+-++- 11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122n n n pn q p S S ----=+,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠- ,()121211(1)()1231(1)n n nn x x nx n x f x x x nxx x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦' ,所以12n b b b +++L 21122322n n -=+⋅+⋅++⋅ 1(2)12(1)2n n f n n +==+-+'⋅.故234(2)2222nn S f =++'+++ ()1212412(1)212n n n n n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解;方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式;方法三:由134n n a a n +=-化简得1114333n n n n n a a n +++-=-,根据累加法即可求出数列{}n a 的通项公式;方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式.(2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法;方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n nx x f x x x x x x x-=++++=≠- 的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.3.(1)122,5,31n b b b n ===-;(2)300.【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+,所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===,所以{}n b 是以2为首项,3为公差的等差数列,于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=.由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知,数列从第一项起,若n 为奇数,则其后一项减去该项的差为1,若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-.(2)[方法一]:奇偶分类讨论20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++ 1231012310(1111)b b b b b b b b =-+-+-++-+++++ 110()102103002b b +⨯=⨯-=.[方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+,所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列.从而数列{}n a 的前20项和为:201351924260()()S a a a a a a a a =+++++++++ 1091091013102330022⨯⨯=⨯++⨯+⨯=.【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质;方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.4.(1)2n n a =;(2)100480S =.【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2n n a =,所以数列{}n a 的通项公式为2n n a =.(2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15] ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31] ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63] ,则3233635b b b ====L ,即有52个5;6465100,,,b b b L 对应的区间分别为(0,64],(0,65],,(0,100] ,则64651006b b b ====L ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.[方法三]:由题意知)1,2,2k k m b k m +⎡=∈⎣,因此,当1m =时,10b =;[2,4)m ∈时,1m b =;[4,8)m ∈时,2m b =;[8,16)m ∈时,3m b =;[16,32)m ∈时,4m b =;[32,64)m ∈时,5m b =;[64,128)m ∈时,6m b =.所以1001234100S b b b b b =+++++ 0(11)(222)(666)=++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.所以数列{}n b 的前100项和100480S =.【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.5.(1)证明见解析;(2)78-.【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)法一:由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时,()min 78n S =-.[方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<= .则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.6.(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【分析】(1)由已知212n nS b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b b b b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】(1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n ∈N 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;[方法二]【最优解】:由已知条件知1231-⋅=⋅⋅⋅⋅ n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥ n n b S S S S n .②由①②得1nn n b S b -=.③又212n nS b +=,④由③④得112n n b b --=.令1n =,由11S b =,得132b =.所以数列{}n b 是以32为首项,12为公差的等差数列.[方法三]:由212n nS b +=,得22=-n n n S b S ,且0n S ≠,0n b ≠,1n S ≠.又因为111--=⋅⋅=⋅ n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S .故数列{}n b 是以32为首项,12为公差的等差数列.[方法四]:数学归纳法由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+.下面用数学归纳法证明.当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S 331(1)1222k k k k ++⋅==+++.综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b n S b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【整体点评】(1)方法一从212n nS b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论;方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解;方法三由212n nS b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论.(2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;7.(1)11()3n n a -=,3n nn b =;(2)证明见解析.【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==.(2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++ ,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S ,230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++=⎪ ⎪⎝⎭⎝⎭ 012111012222333---++++ 111233---+n n n n .设0121111101212222Γ3333------=++++ n n n ,⑧则1231111012112222Γ33333-----=++++ n n n .⑨由⑧-⑨得1121113312111113322Γ132********--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭- n n n n nn n .所以211312Γ432323----=--=-⨯⨯⨯n n n n n n .因此10232323--=-=-<⨯⨯n n n n nS n n nT .故2nn S T <.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++ ,①231112133333n n n n nT +-=++++ ,②①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(14323n n nn T =--⋅,所以2n n S T -=3131(1)(1043234323n nn n n n ----=-<⋅⋅,所以2nn S T <.[方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法设()231()1-=++++=- n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦,则12121(1)()123(1)+-+-+=++++='- n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.8.(1)2a =-(2)()()()1212n nn a m n -=⋅-+-⋅-(3)163m <【分析】(1)根据等差中项的性质可出关于a 的等式,结合a 为负整数可得出a 的值;(2)推导出数列()2n n a ⎧⎫⎪⎪⎨-⎪⎪⎩⎭为等差数列,确定该数列的首项和公差,即可求得数列{}n a 的通项公式;(3)由2121n n a a +-<对*n ∈N 恒成立结合参变量分离法可得出1243n m +<,求出1243n +的最小值,可得出实数m 的取值范围.【详解】(1)解:由题意可得()21414383a a a a +=++++,整理可得2280a a --=,a 为负整数,解得2a =-.(2)解:因为()1122n n n a a ++=-+-,等式两边同时除以()12n +-可得()()11122n nn n a a ++-=--,所以,数列()2n n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭是首项为2m -,公差为1的等差数列,故()()122n n a m n =-+--,因此,()()()1212n n n a m n -=⋅-+-⋅-.(3)解:由2121n n a a +-<对*n ∈N 恒成立得()()()()()()22122212222222n n n n m n m n +--⋅-+-<⋅--⋅⋅+-对n *∈N 均成立.()2220n --> ,不等式两边同除()222n --,得()()()482222m n m n +-⋅<+-⋅-,得1243n m +<对n *∈N 恒成立,当1n =时,1243n +取最小值163,163m ∴<.9.(1)11(1)011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明见解析【分析】(1)由题设形式可以看出,题设中给出了关于数列a n 的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.【详解】(1)()1121n n n nba a n a n --=≥+- 1111(2)n n n n n a b b a --∴=+⨯≥当1b =时,11(2)1n n n n n a a -=+≥-,∴数列n n a ⎧⎫⎨⎬⎩⎭是以11a 为首项,以1为公差的等差数列,1(1)1n n n n a ∴=+-⨯=,即1n a =,当0b >,且1b ≠时,11111(2)11n n n n n a b b b a -⎛⎫-+=+≥ --⎝⎭即数列11n n a b ⎧⎫+⎨⎬-⎩⎭是以11111(1)a b b b +=--为首项,公比为1b 的等比数列,111111(1)(1)n n n n a b b b b b b -⎛⎫∴+=⨯= ⎪---⎝⎭即(1)1n n nnb b a b -=-,∴数列{}n a 的通项公式是()111011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明:当1b =时,不等式显然成立当0b >,且1b ≠时,(1)1n n nnb b a b -=-,要证对于一切正整数n ,121n n a b +≤+,只需证1(1)211n n n nb b b b+-⨯≤+-,即证()11121011n nn n b b nb b b b +--≤+⨯>--)()1111n n b bb +-+⨯- ()1111n n b b b +-=+⨯-()()11211n n n b b b b +--=+⨯++⋯++()()22121121n n n n n n b b b b b b b -++--=++⋯+++++⋯++()12211111n n n n n b b b b b b bb b --⎡⎤⎛⎫=++⋯+++++⋯++ ⎪⎢⎥⎝⎭⎣⎦(222)2n n b nb ≥++⋯+=∴不等式成立,综上所述,对于一切正整数n ,有121n n a b +≤+,【点睛】本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.10.223n n b =-⋅.【分析】利用辅助法,对于数列{}n a 的递推公式,两边同时除以2n ,根据数列构造法,可得答案.【详解】∵12n n n a a -+=,两边同时除以2n 得1111222n n n n a a --+⋅=.令2n n n a c =,则1112n n c c -=-+.两边同时加上23-得1212323n n c c -⎛⎫-=-⋅- ⎪⎝⎭.∴数列23n c ⎧⎫-⎨⎬⎩⎭是以123c -为首项,12-为公比的等比数列.∴112211133232n n n c c -⎛⎫⎛⎫⎛⎫-=-⋅-=⋅- ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴211332n n c ⎛⎫=+⋅- ⎪⎝⎭.∴2122(1)33n n n n n a c ==⋅+⋅-⋅.又∵1(1)3n n n b a +=-⋅,∴12(1)233n n n n b a =⋅--=-⋅,。
第2课时 数列的通项公式与递推公式
1)可得
n
an+1-an=ln(1+ n1),利用累加法求通项.
【解析】因为a1=2,an+1=an+lnn1(1+ ), 所以a2=a1+ln(1+1)=2+ln2, a3=a2+ln(1+12 )=2+ln2+32ln =2+ln3, a4=a3+ln(1+13 )=2+ln3+43ln =2+ln4. 可猜想an=2+lnn(n∈N*).
圆学子梦想 铸金字品牌
4.数列{an}满足
an+1=
1
1 an
,a8=2,则
a1=
1 2
.
【解析】由
an+1=
1
1 an
,可得
an=1-
1 an +1
,又
a8=2, 故
a7= 1 ,……依次下去得 a1= 1 .
2
2
5.根据下面数列的前几项的值,写出数列的一个通项公式:
(1)3,5,7,9,11,….
=
1+
3 5
=
8 5
【即时练习】
在数列{an}中,已知a1=2,a2=3,an+2=3an+1-2an(n≥1) 写出此数列的前六项.
【解题关键】通过观察,此题的递推公式是数列中相
邻三项的关系式,知道前两项就可以求出后一项.
【解析】a1=2,a2=3, a3=3a2-2a1=3×3-2×2=5, a4=3a3-2a2=3×5-2×3=9, a5=3a4-2a3=3×9-2×5=17, a6=3a5-2a4=3×17-2×9=33.
常见递推数列通项公式的求法典型例题及习题
常见递推数列通项公式的求法典型例题及习题k=1,则an+1=an+f(n)为一阶线性递推数列,可用递推公式或特征方程求解。
例如已知a1=1,an+1=an+1/n,则有:an+1-an=1/nan-an-1=1/(n-1)an-a1=1+1/2+。
+1/n-1an=1+1/2+。
+1/n当k≠1时,设an+1+m=k(an+m),则有:an+1=kan+km-m比较系数得km-m=b,解得m=b/(k-1)an+m=b/(k-1)k^(n-1)+(a1-b/(k-1))k^n-1即为通项公式。
例2]an+1=kan+f(n)型。
当k=1时,an+1-an=f(n),若f(n)可求和,则可用累加消项的方法求得通项公式。
例如已知a1=1,an+1-an=1/(n(n+1)),则有:an+1-an=1/n-1/(n+1)an-an-1=1/1-1/2-1/2+1/3+。
+1/(n-1)-1/n-1/(n+1)an-a1=1-1/(n+1)an=2-1/n当k≠1且f(n)=an+b时,可设an+1+A(n+1)+B=k(an+An+B),解得A=a/(k-1),B=(2k-1)/(k-1)b-a,即可得通项公式。
例3]an+1=f(n)an型。
若f(n)=q(n+1)/n,则有:Cn=qCn-1Cn=q^nC0an=Cn/n!=q^nC0/n!即为通项公式。
1.已知数列 $\{a_n\}$ 中,$a_1=1$,$a_{n+1}=a_n+2a_{n-1}$,求 $a_n$。
解:根据递推式,可以列出 $a_2=3$,$a_3=7$,$a_4=15$,$a_5=31$,$a_6=63$,$a_7=127$,$\cdots$,可以猜测 $a_n=2^n-1$。
可以用数学归纳法证明:当 $n=1$ 时,$a_1=1=2^1-1$,假设 $a_k=2^k-1$,则 $a_{k+1}=a_k+2a_{k-1}=2^k-1+2\cdot 2^{k-1}-2=2^{k+1}-1$,所以 $a_n=2^n-1$。
数列的通项公式与递推公式 第2课时
×…×aa32
×aa21
n-1 ×a1= n
n-2 ×n-1
n-3 ×n-2
2 ×…×3
1 ×2
×1=n1
.
又因为 n=1 时,a1=1,符合上式,所以 an=1n (n∈N*).
由递推公式求通项公式的方法 1.累差法:形如 an+1-an=f(n)的递推公式,可以利用 a1+(a2-a1)+(a3-a2)+…+(an -an-1)=an(n≥2,n∈N*)求通项公式;
所以a1n =a11 +a12-a11 +a13-a12 +…+a1n-an1-1
=2+
111
n 1个1
=n+1.所以a1n =n+1(n≥2),
又 a1=12 也适合上式,所以 an=n+1 1 .
角度 2 累乘法
【典例】设数列{an}中,a1=1,an=1-n1 an-1(n≥2),求通项公式 an.
n,0
an
1, 2
n-1,12 an 1,
若 a1=67 ,则 a2 021=________.
【解析】计算得 a2=2a1-1=57 ,a3=2a2-1=37 ,a4=2a3=76 .
故数列{an}是以 3 为周期的周期数列, 又因为 2 021=673×3+2,所以 a2 021=a2=57 .
2.符合递推关系式 an= 2 an-1(n≥2)的数列是( )
A.1,2,3,4,…
B.1, 2 ,2,2 2 ,…
C. 2 ,2, 2 ,2,…
D.0, 2 ,2,2 2 ,…
【解析】选 B.B 中从第二项起,后一项是前一项的 2 倍,符合递推公式 an=
2 an-1.
3.数列{an}中,an+1=an+2-an,a1=2,a2=5,则 a5=( )
专题20 递推公式求通项(第1课时)-2021年高考数学一轮复习专题讲义附真题及解析
当 时上式也成立综上可知
2.【答案】
【解析】 数列 的前 项和
, ,
又 ,
,检验当 时, ,
3.【答案】
【解析】当 时,
当 时,
即 ,故数列 为等比数列则
因为 ,所以
4.【答案】 .
【解析】因为点 在直线 上代入可得 ,即 .
由 可知数列 是首项为 ,公比为 的等比数列.所以
由 代入可得 而 不符合上式
∴an﹣a1=(n﹣1)•2n+2﹣2n,所以an=(n﹣2)•2n
考法三:累乘法
1.【答案】
【解析】由nan+1=(n+1)an,可得: ,
又∵a1=1,∴ = =n.∴an=n,
2.【答案】
【解析】已知 中, , 化简整理可得
所以递推可得
等式两边分别相乘可得
即 所以
1.【答案】
【解析】 , ,则当 时, ,
。
2.【答案】
【解析】数列 满足 , , , ,
因此, .
故答案为: .
3.【答案】
【解析】由题, ,则 , …, ,
所以由累加法可得, ,即 ,
则 ,所以
4.【答案】(n﹣2)•2n
【解析】∵an+1=an+n•2n,∴an+1﹣an=n•2n,且a1=﹣2
所以 故答案为:
5.【答案】
【解析】 得, ,
所以有
6.【答案】
【解析】这类问题类似于 的问题处理方法,在 中用 代换 得 ( ),两式相减得 , ,又 ,即 ,故
7.【答案】
【解析】由题意, ,所以 , ,所以 .
8.【答案】
【解析】 , ,
考点20 递推公式求通项(第2课时)——2021年高考数学专题复习讲义
考点20 递推公式求通项(第二课时)【思维导图】【常见考法】考法一:构造等差数列1.已知数列满足,则__________. {}n a 1111,2n n n n a a a a a ++=-=8a =2.在数列中,,,则这个数列的通项= 。
{}n a 11a =()*11nn na a n N a +=∈+n a3.已知数列的前n 项和为,,,则______. {}n a n S 11a =1120n n n a S S +++=n S =4.各项均正的数列满足,则等于 。
{}n a 1114,22n n n a a a ++==+n a5.已知数列{a n }满足a 1=1,a n -a n +1=na n a n +1(n ∈N *),则a n =________.考法二:构造等比数列1.已知数列满足,且,则________________. {}n a 12a =-136n n a a +=+n a =2.已知数列满足,则数列的通项公式_________.{}n a 11235,6nn n a a a +=+⨯={}n a n a =3.设为数列的前项和,,且,则_.n S {}n a n 11232(2)n n n a a n ---=⋅≥1232a a =na =4.已知数列满足, (),则__________.{}n a 113a =11221n n n n a a a n --⋅=+-2,n n N *≥∈n a =考法三:周期数列1.数列中,若,则 。
{}n a 11,a =1111n n a a +=-+2016=a2.已知数列中,,,则的值是 。
{}n a 114a =111(2)n n a n a -=-≥2020a3.已知数列满足,,则 。
{}n a 113a =111n n n a a a ++=-*()n N ∈2012391a a a a ⋯⋯⋅⋅=4.已知数列中,,,且,则的值为 。
数列的递推关系与通项-2021届新课改地区高三数学一轮专题复习(解析版)
2
A. an n B. an n 1
an
C.
n(n 1) 2
an
D.
n(n 1) 2
【答案】D
【解析】令 m=1,得 an1 an n 1,an1 an n 1,a2 a1 2,a3 a2 3, ,an an1 n ,
an
所以
1
2
3
4
n, an
1
2
3
4
n
(2)利用构造法求解时应注意数列的首项的正确求解以及准确确定最后一个式子的形式.
三、自主热身、归纳总结
1、数列{an}的前几项为1,3,11,8,21,…,则此数列的通项可能是( ) 22 2
A.an=5n-4 2
B.an=3n-2 2
C.an=6n-5 2
D.an=10n-9 2
【答案】A
【解析】数列为1,6,11,16,21,…,其分母为 22 2 2 2
2,分子是首项为
1,公差为
5
的等差数列,故通项公式为
an
=5n-4. 2
2、在数列{an}中,a1=1,an=1+-1n(n≥2),则 a5 等于( ) an-1
A.3
B.5
2
3
1
C.8
D.2
5
3
【答案】D
【解析】a2=1+-12=2,a3=1+-13=1,a4=1+-14=3,a5=1+-15=2.
2
2
则 a4=42-4+2=7. 2
4、设数列{an}中,a1=2,an+1=an+n+1,则 an=________.
【答案】 n2+n+2 2
【解析】 由条件知 an+1-an=n+1.
用递推公式求数列通项公式的方法及数列求和的方法精讲与练习(含答案)
数列的通项公式的求法 一、观察法(即猜想法,不完全归纳法)观察各项的特点,关键是找出各项与项数n 的关系例1:根据数列的前4,写出它的一个通项公式:9,99,999,9999,......二、公式法若已知数列的前n 项和与项数n 的关系,求数列的通项公式可用公式法求解。
)1()2(111==≥-=-n S a n S S a n n n例2:}{n a 的前n 项和n S ,求}{n a 的通项公式。
三、由递推公式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊的数列。
1.迭加法已知递推关系)(),(*1N n n f a a n n ∈=-+例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
变式:已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
2.迭乘法 已知递推关系是)(),(*1N n n f a a nn ∈=+ 例4:已知数列}{n a 中,n n a nn a a 1,211+==+,求}{n a 的通项公式。
变式:已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
3、待定系数法例5 已知数列{}n a 满足112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式。
变式: 已知数列{}n a 满足1135241n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
4、数学归纳法例6 已知数列{}n a 满足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式。
解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得 2122322243228(11)88224(211)(213)9925258(21)248348(221)(223)252549498(31)488480(231)(233)49498181a a a a a a +⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯ 由此可猜测22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论。
专题20 递推公式求通项(第2课时)-2021年高考数学一轮复习专题讲义附真题及解析
【解析】∵ ,等式两边同时取倒数得: ,则 ,
∴ ,
, ,
当 时, 亦成立,综上所述
3.【答案】
【解析】因为 则 可化简为
等式两边同时除以 可得 ,即
所以数列 为等差数列,首项 ,公差 所以
即 故答案为:
4.【答案】
【解析】 两边同除以 ,得 ,则 为首项为2,公差为1 的等差数列,∴ 则
6.【答案】1022
【解析】因为 ,所以 ,
即 ,所以 ,
即 ,故 是以3为首项,1为公差的等差数列,
所以 ,
所以 ,所以 1022
7.【答案】7500
【解析】当 是奇数时, =﹣1,由 ,得 ,
所以 , , ,… ,…是以 为首项,以2为公差的等差数列,
当 为偶数时, =1,由 ,得 ,
所以 , , ,… ,…是首项为 ,以4为公差的等差数列,
代入①式得 ②
由 及②式得 ,则 ,
则数列 是以 为首项,以 为公比的等比数列,
所以 ,所以 .
故答案为: .
3.【答案】 .
【解析】由 两边同除以 ,
整理得 ,
令 ,则 ,
∴ ,
又由 解得 ,
∴ 。
∴数列 是首项为 ,公比为 的等比数列。
∴ 。
∴ ,
∴ ,
4.【答案】
【解析】由 ( ),可得 ,于是 ,
3.【答案】
【解析】依题意, , ,所以 ,所以数列是周期为 的数列,且每 项的积为 ,故 .
4.【答案】2
【解析】因为 ,由 , ,得 ;
由 , ,得 ;
由 , ,得 ;
由 , ,得 ;
由 , ,得 ;
由 , ,得
考点20 递推公式求通项(第1课时)——2021年高考数学专题复习真题练习
考点20 递推公式求通项(第一课时)【题组一 公式法】1.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.2.设数列的前n 项乘积为,对任意正整数n 都有,则______. {}n a n T 1n n T a =-n T =3.数列的前项和为,,则它的通项公式为______.{}n a n 23n S n n =+n ∈+N4.若数列的前项和为,且,则______. {}n a n n S 21n n S a =+n a =5.数列的前n 项和,则其通项公式________.{}n a 23nn S =+n a =6.已知数列满足,,则_________________.{}n a ()12323213nn a a a na n ++++=-⋅ N n *∈n a =7.若数列,则_______.}{n a 2*3()n n n N +⋅⋅⋅+=+∈n a =8.已知数列满足:,数列的通项公式 。
{}n a 2112313333n n n a a a a -+++⋯+=()*n N ∈{}n a9.设数列满足.数列的通项公式 。
{}n a 123232n a a a na n ++++= {}n a10.设数列满足,的通项公式 。
{}n a 12323...2(n N*)n na a a na ⋅⋅⋅⋅=∈{}n a11.已知各项均为正数的数列的前项和为,且,(,且{}n a n n S 11a =n a =*n N ∈2n ≥)数列的通项公式 。
{}n a12.正项数列前项和为,且,.= 。
{}n a n n S ()214n na S +=()n N*∈na13.已知数列前项和为,若,则__________.{}n a n n S 22nn n S a =-n S =【题组二 累加法】1.在数列中:已知,,则数列的通项公式为 。
2021年高考数学总复习课时作业加练一课递推数列的通项的求法理
2021年高考数学总复习课时作业加练一课递推数列的通项的求法理一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.[2021·遵义航天高级中学月考]数列满足a1=1,a n+1=2a n-1,则a n=()A.1B.2n-1C.nD.-12.已知数列{a n}对任意的p,q∈N*满足a p+q=a p+a q且a2=6,那么a10等于()A.165B.33C.30D.213.[2021·黄山二模]已知数列的前n项和为S n,且a1=2,a n+1=S n+1(n∈N*),则S5=()A.31B.42C.37D.474.若数列{a n}前8项的值各异,且a n+8=a n对任意的n∈N*都成立,则下列数列中可取遍{a n}前8项值的数列为()A.{a2k+1}B.{a3k+1}C.{a4k+1}D.{a6k+1}5.[2021·揭阳模拟]已知数列满足a1=1,a n+1=a n,则a n= ()A. B.C. D.6.[2021·三明质检]已知数列的前n项和为S n,且a1=1,a n+1·a n=2n(n∈N*),则S2021=()A.3·21008-3B.22021-1C.22009-3D.21010-37.已知数列满足a1=1,a n+1=a n+,则a n=()A.B.C.D.8.已知数列满足a1=1,a n-a n+1=na n a n+1(n∈N*),则a n=()A. B.C.D.9.[2021·赣州期末]已知数列{a n}的前n项和为S n,若a n+1+(-1)n a n=n,则S40=()A.120B.150C.210D.42010.已知数列{a n}满足a1=2,且a n=(n≥2,n∈N*),则a n=()A. B.C.D.11.[2021·福州第一中学质检]已知数列满足a1=a2=,a n+1=2a n+a n-1(n∈N*,n≥2),则的整数部分是()A.0B.1C.2D.312.已知S n为数列的前n项和,且a n=a1=a(a∈R).给出下列3个结论:①数列一定是等比数列;②若S5<100,则a<18;③若a3,a6,a9成等比数列,则a=-.其中,所有正确结论的序号为()A.②B.②③C.①③D.①②③二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若数列满足a1=1,a n+1=a n+2,则a10= .14.[2021·深圳调研]若数列,满足a1=b1=1,b n+1=-a n,a n+1=3a n+2b n,n∈N*,则a2021-a2021= .15.[2021·株洲一模]已知数列{a n}满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则数列{a n}的通项公式为a n= .16.[2020·南宁二中、柳州高中联考]已知数列2008,2009,1,-2008,…若那个数列从第二项起,每一项都等于它的前后两项之和,则那个数列的前2020项之和S2020= .加练一课(四)1.A[解析] ∵a n+1=2a n-1,∴a n+1-1=2(a n-1).∵a1-1=0,∴a n-1=0,即a n=1,故选A.2.C[解析] a4=a2+a2=12,a6=a4+a2=18,a10=a6+a4=30.故选C.3.D[解析] 由a n+1=S n+1①,可得a n=S n-1+1(n≥2)②,①-②得a n+1=2a n,又∵a2=S1+1=3,a1=2,∴S5=2+=47,故选D.4.B[解析] 因为数列{a n}前8项的值各异,且a n+8=a n对任意的n∈N*都成立,因此该数列为周期为8的周期数列.为使数列中可取遍{a n}前8项的值,必须保证项数被8除的余数能够取到0,1,2,3,4,5,6,7.体会证A,C,D都不能够,因为它们的项数全部由奇数组成,被8除的余数只能是奇数,故选B.5.B[解析] 由条件知=,分别令n=1,2,3,…,(n-1)(n≥2),可得=,=,=,…,=,累乘得···…·=××……××,即=.又∵a1=1,∴a n=,故选B.6.D[解析] ∵数列满足a1=1,a n+1·a n=2n(n∈N*),∴a2·a1=2,解得a2=2.由题得=,即=2,∴数列{a n}的奇数项与偶数项分别成等比数列,首项分别为a1=1,a2=2,公比都为2,则S2021=(a1+a3+…+a2021)+(a2+a4+…+a2021)=+=21010-3,故选D.7.C[解析] 由条件知a n+1-a n==-.分别令n=1,2,3,…,(n-1),代入上式得到(n-1)个等式,这些等式累加可得(a2-a1)+(a3-a2)+(a4-a3)+…+(a n-a n-1)=(-1)+(-)+(-)+…+(-),即a n-a1=-1.又因为a1=1,因此a n=,故选C.8.D[解析] 因为a n-a n+1=na n a n+1,因此=-=n,因此=-+-+…+-+=(n-1)+(n-2)+…+3+2+1+=+1=,则a n=.9.D[解析] 由已知得a3+a1=(a3+a2)-(a2-a1)=1,同理可得a5+a7=1,…,a37+a39=1,又a2+a4=(a3+a2)+(a4-a3)=2+3=5,a6+a8=13,…,a38+a40=77,∴S40=(a1+a3+…+a39)+(a2+a4+…+a40)=10×1+(5+13+…+77)=10+410=420,故选D.10.C[解析] 由a n=,得=+,因此-1=-1(n≥2,n∈N*).又-1=-,∴数列-1是以-为首项,为公比的等比数列,故-1=-(n≥2,n∈N*),当n=1时,a1=2满足上式,则-1=-,∴a n=(n∈N*),故选C.11.B[解析]∵a1=,a2=,a n+1=2a n+a n-1,∴=1,a3=2a2+a1=,∴=·= -=-,=-+-+…+-=-=4-=2-<2,又∵=>1,∴1<<2,则的整数部分是1,故选B.12.B[解析] 依照题意,数列满足a n=且a1=a,则a2=a1+1=a+1,a3=a2+1=a+2,a4=a3+1=a+3,a5=a4+1=a+4,a6=2a5=2a+8,a7=2a6,…关于①,当a=-4时,a6=2a+8=0,现在数列不是等比数列,故①错误;关于②,若S5<100,则有S5=(a1+a2+…+a5)=5(a+2)<100,则有a<18,故②正确;关于③,依照题意,a3=a+2,a6=2a+8,a9=24a5=16×(a+4),若a3,a6,a9成等比数列,则有(2a+8)2=(a+2)×16×(a+4),且a6=2a+8≠0,解得a=-,故③正确.故选B.13.19[解析] 因为a n+1=a n+2,因此a n+1-a n=2,因此数列是首项为1,公差为2的等差数列,因此a10=1+(10-1)×2=19.14.22021[解析] 由题得,a2=3a1+2b1=5,当n≥2时,a n+1=3a n+2b n=3a n-2a n-1,因此a n+1-a n=2(a n-a n-1),又a2-a1=4,因此数列{a n-a n-1}是首项为4,公比为2的等比数列,因此a2021-a2021=4×22021-1=22021.15.[解析] 当n≥2时,由已知得a n+1=a1+2a2+3a3+…+(n-1)a n-1+na n,用此等式减去已知等式,得a n+1-a n=na n,即a n+1=(n+1)a n,又a2=a1=1,∴a1=1,=1,=3,=4,…,=n,将以上n个式子相乘,得a n=(n≥2).当n=1时,a1=1不满足上式,则a n=16.4017[解析] 设该数列为{a n},则a1=2008,a2=2009,a3=1,a4=-2008,由题意得a5=-2009,a6=-1,a7=2008,…因此a n+6=a n,即数列是以6为周期的数列,又a1+a2+a3+a4+a5+a6=0, ∴S2020=336(a1+a2+a3+a4+a5+a6)+(a1+a2)=4017.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点20 递推公式求通项(第二课时)【题组一 构造等差数列】1.在数列中,若,,则 。
{}n a 12a =()*121nn n a a n a +=∈+N n a =2.若数列中,,则这个数列的 。
{}n a 11113nn n a a a a ,+==+na =3.已知数列满足 ,则数列的通项公式_______.{}n a ()*112,222,nn n a a a n n N -==+≥ò{}n a na=4.在数列中,,且满足,则=________ {}n a 132a =113(2)32n nn a a n a --=≥+n a【题组二 构造等比数列】1.已知数列中,,则数列通项公式为_____.{}n a ()*111,34,2n n a a a n N n -==+∈≥且{}n a2.在数列{a n}中,a1=3,且点P n(a n,a n+1)(n∈N*)在直线4x-y+1=0上,则数列{a n}的通项公式为________.3.在数列{a n}中,a1=3,a n+1=2a n﹣1(n∈N*),则数列{a n}的通项公式为。
4.已知数列满足,,则等于 。
{}n a 1a 1=n 1n a 3a 4+=+n a【题组三 周期数列】1.已知数列中,,(),则等于 。
{}n a 12a =111n n a a -=-2n ≥2018a2.已知数列满足,且,则 。
{}n a 1(1)1n n a a +⋅-=112a =-2020a =3.设数列满足:,,则______. {}n a 112a =()1111n n na a n a ++=≥-2016a =4.数列中,,,(),则______. {}n a 11a =25a =21n n n a a a ++=-N n *∈2012a =【题组四 其他求通项方法】1.数列中,若(),则数列的通项公式_____. {}n a 13a =n a =*n ∈N {}n a n a =2.已知数列中,,且(且)通项公式= 。
{}n a 15a =1221nn n a a -=+-2n ≥*n N ∈n a如何学好数学1.圆锥曲线中最后题往往联立起来很复杂导致k 算不出,这时你可以取特殊值法强行算出k 过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok 了2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA 之类的先边化角然后把第一题算的比如角A 等于60度直接假设B 和C 都等于60°带入求解。
省时省力!4.空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。
如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!5.立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!6.高考选择题中求条件啥的充要和既不充分也不必要这两个选项可以直接排除!考到概率超小7.选择题中考线面关系的可以先从D项看起前面都是来浪费你时间的7.选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点带入能成立的就是答案8.线性规划题目直接求交点带入比较大小即可(这个看楼下的说用这条要碰运气,文科可以试试。
)9.遇到这样的选项 A 1/2 B 1 C 3/2 D 5/2 这样的话答案一般是D因为B可以看作是2/2 前面三个都是出题者凑出来的如果答案在前面3个的话 D应该是2(4/2).数学无耻得分综合篇!做选择题时注意各种方法的运用,比较简单的自己会的题正常做就可以了,遇到比较复杂的题时,看看能否用做选择题的技巧进行求解(主要有排除法、特殊值代入法、特例求解法、选项一一带入验证法、数形结合法、逻辑推理验证法等等),一般可以综合运用各种方法,达到快速做出选择的效果。
填空题也是,比较简单的会的就正常做,复杂的题如果答案是一个确定的值时,看能否用特殊值代入法以及特例求解法。
选择填空题的答题时间要自己掌握好,遇到不会的先放下往后答,我们的目标是把卷子上所有会的题都答上了、都答对了,审题要仔细(一个字一个字读题),计算要准确(一步一步计算),千万不要有马虎的地方。
大题文科第一题一般是三角函数题,第一步一般都是需要将三角函数化简成标准形式Asin(wx+fai)+c,接下来按题做就行了,注意二倍角的降幂作用以及辅助角(合一)公式,周期公式,对称轴、对称中心、单调区间、最大值、最小值都是用整体法求解。
求最值时通过自变量的范围推到里面整体u=wx+fai的范围,然后可以直接画sinu的图像,避免画平移的图像。
这部分题还有一种就是解三角形的问题,运用正弦定理、余弦定理、面积公式,通常有两个方向,即角化成边和边化成角,得根据具体问题具体分析哪个方便一些,遇到复杂的题就把未知量列成未知数,根据定理列方程组,然后解方程组即可。
理科如果考数列题的话,注意等差、等比数列通项公式、前n项和公式;证明数列是等差或等比直接用定义法(后项减前项为常数/后项比前项为常数),求数列通项公式,如为等差或等比直接代公式即可,其它的一般注意类型采用不同的方法(已知Sn求an、已知Sn与an关系求an(前两种都是利用an=Sn-Sn-1,注意讨论n=1、n>1)、累加法、累乘法、构造法(所求数列本身不是等差或等比,需要将所求数列适当变形构造成新数列lamt,通过构造一个新数列使其为等差或等比,便可求其通项,再间接求出所求数列通项);数列的求和第一步要注意通项公式的形式,然后选择合适的方法(直接法、分组求和法、裂项相消法、错位相减法、倒序相加法等)进行求解。
如有其它问题,注意放缩法证明,还有就是数列可以看成一个以n为自变量的函数。
第二题是立体几何题,证明题注意各种证明类型的方法(判定定理、性质定理),注意引辅助线,一般都是对角线、中点、成比例的点、等腰等边三角形中点等等,理科其实证明不出来直接用向量法也是可以的。
计算题主要是体积,注意将字母换位(等体积法);线面距离用等体积法。
理科还有求二面角、线面角等,用建立空间坐标系的方法(向量法)比较简单,注意各个点的坐标的计算,不要算错。
第三题是概率与统计题,主要有频率分布直方图,注意纵坐标(频率/组距)。
求概率的问题,文科列举,然后数数,别数错、数少了啊,概率=满足条件的个数/所有可能的个数;理科用排列组合算数。
独立性检验根据公式算K方值,别算错数了,会查表,用1减查完的概率。
回归分析,根据数据代入公式(公式中各项的意义)即可求出直线方程,注意(x平均,y平均)点满足直线方程。
理科还有随机变量分布列问题,注意列表时把可能取到的所有值都列出,别少了,然后分别算概率,最后检查所有概率和是否是1,不是1说明要不你概率算错了,要不随机变量数少了。
第四题是函数题,第一步别忘了先看下定义域,一般都得求导,求单调区间时注意与定义域取交。
看看题型,将题型转化一下,转化到你学过的内容(利用导数判断单调性(含参数时要利用分类讨论思想,一般求导完通分完分子是二次函数的比较多,讨论开口a=0、a<0、a>0和后两种情况下delt<=0、delt>0)、求极值(根据单调区间列表或画图像简图)、求最值(所有的极值点与两端点值比较)等),典型的有恒成立问题、存在问题(注意与恒成立问题的区别),不管是什么都要求函数的最大值或最小值,注意方法以及比较定义域端点值,注意函数图象(数形结合思想:求方程的根或解、曲线的交点个数)的运用。
证明有关的问题可以利用证明的各种方法(综合法、分析法、反证法、理科的数学归纳法)。
多问的时候注意后面的问题一般需要用到前面小问的结论。
抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题。
第五题是圆锥曲线题,第一问求曲线方程,注意方法(定义法、待定系数法、直接求轨迹法、反求法、参数方程法等等)。
一定检查下第一问算的数对不,要不如果算错了第二问做出来了也白算了。
第二问有直线与圆锥曲线相交时,记住我说的“联立完事用联立”,第一步联立,根据韦达定理得出两根之和、两根之差、因一般都是交于两点,注意验证判别式>0,设直线时注意讨论斜率是否存在。
第二步也是最关键的就是用联立,关键是怎么用联立,即如何将题里的条件转化成你刚才联立完的x1+x2和x1x2,然后将结果代入即可,通常涉及的题型有弦长问题(代入弦长公式)、定比分点问题(根据比例关系建立三点坐标之间的一个关系式(横坐标或纵坐标),再根据根与系数的关系建立圆锥曲线上的两点坐标的两个关系式,从这三个关系式入手解决)、点对称问题(利用两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上)、定点问题(直线y=kx+b过定点即找出k与b的关系,如b=5k+7,然后将b代入到直线方程y=kx+5k+7=k(x+5)+7即可找出定点(-5,7))、定值问题(基本思想是函数思想,将要证明或要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,通过适当化简,消去变量即得定值。
)、最值或范围问题(基本思想还是函数思想,将要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,利用函数求值域的方法(首先要求变量的范围即定义域—别忘了delt>0,然后运用求值域的各种方法—直接法、换元法、图像法、导数法、均值不等式法(注意验证“=”)等)求出最值(最大、最小),即范围也求出来了)。
抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题。
选修题我只说下参数方程与极坐标,各种曲线的参数方程的标准形式要记准,里面谁是参数,以及各量的意义以及参数的几何意义,一般都是先画成直角坐标,变成直角坐标题意就简单了,有的题要用到参数方程里参数的几何意义来解题(注意直线参数方程只有是标准的参数方程才能用t的几何意义,要不会差一个倍数,弦长|AB|=|t1-t2|,|PA||PB|=|t1t2|(注意P点得是你参数方程里前面的(a,b),只有这样联立后的参数t才表示PA、PB)),这时会简单许多。
极坐标也是,先化成直角坐标再解题,这样就简单了。