三相全控桥式整流电路
三相桥式全控整流电路及工作原理
三相桥式全控整流电路及工作原理
三相桥式全控整流电路是一种常用的电力电子变换电路,广泛应用于交流调速、直流传动、直流无刷电机等领域。
它具有输出电压可调、功率因数可控和双向传输功率等特点。
1. 电路结构
三相桥式全控整流电路由六个可控硅整流器()组成,三个正并联,另外三个反并联。
每个可控硅整流器的阳极与交流电源的一相相连,阴极与负载相连。
整流器的栅极连接到相应的脉冲发生电路,用于控制导通时间。
2. 工作原理
在每个周期内,三相交流电源的三相电压有两相电压大于另一相电压。
整流电路利用这一特性,使两相较高电压的可控硅整流器导通,从而将这两相电压的正半周经整流器输出到负载。
通过控制每个整流器的导通时间,可以调节输出电压的幅值和相位。
当某一相电压达到最大值时,该相的两个整流器将导通。
随着时间推移,其他两相电压将超过该相电压,相应的整流器也将导通。
如此循环,每个整流器在每个周期内均有一段导通时间。
通过调节每个整流器的导通时间,即控制脉冲发生电路对栅极施加脉冲的时间,可以控制输出电压的幅值。
同时,还可以改变脉冲施加的相位角,从而控制功率因数。
3. 特点
(1) 输出电压可连续调节
(2) 功率因数可控
(3) 双向传输功率
(4) 电路结构相对简单
三相桥式全控整流电路通过控制整流器的导通时间和相位,可以实现对输出电压和功率因数的精确控制,是一种非常重要和实用的电力电子变换电路。
三相桥式全控整流电路
8.2.6 三相桥式全控整流电路三相桥式全控整流电路相当于一组共阴极的三相半波和一组共阳极的三相半波可控整流电路串联起来构成的。
习惯上将晶闸管按照其导通顺序编号,共阴极的一组为VT1、VT3和VT5,共阳极的一组为VT2、VT4和VT6。
其电路如图8.22所示图8.22 三相桥式电阻性负载全控整流电路对于图8.22的电路,可以像分析三相半波可控整流电路一样,先分析若是不可控整流电路的情况,即把晶闸管都换成二极管,这种情况相当于可控整流电路的时的情况。
即要求共阴极的一组晶闸管要在自然换相点1、3、5点换相,而共阳极的一组晶闸管则会在自然换相点2、4、6点换相。
因此,对于可控整流电路,就要求触发电路在三相电源相电压正半周的1、3、5点的位臵给晶闸管VT1、VT3和VT5送出触发脉冲,而在三相电源相电压负半周的2、4、6点的位臵给晶闸管VT2、VT4和VT6送出触发脉冲,且在任意时刻共阴极组和共阳极组的晶闸管中都各有一只晶闸管导通,这样在负载中才能有电流通过,负载上得到的电压是某一线电压。
其波形如图8.23所示。
为便于分析,可以将一个周期分成6个区间,每个区间图8.23 三相桥式电阻性负载a=0°时波形区间,u相电位最高,在时刻,即对于共阴极组的u 相晶闸管VT1的的时刻,给其加触发脉冲,VT1满足其导通的两个条件,同时假设此时共阳极组阴极电位最低的晶闸管VT6已导通,这样就形成了由电源u相经VT1、负载及VT6回电源v相的一条电流回路。
若假设电流流出绕组的方向为正,则此时u相绕组的电流为正,v相绕组上的电流为负。
在负载电阻上就得到了整流后的直流输出电压,且,为三相交流电源的线电压之一。
过后到时刻,进入区间,这时u相相电压仍是最高,但对于共阳极组的晶闸管来说,由于w相相电压为最负,即VT2的阴极电位将变得最低。
所以在自然换相点2点,即时,给晶闸管VT2加触发脉冲,使其导通,同时由于VT2的导通,使VT6承受了反向的线电压而关断了。
三相桥式全控整流电路的原理(一)
三相桥式全控整流电路的原理(一)三相桥式全控整流电路简介三相桥式全控整流电路是一种常用于工业领域的电路,用于将交流电转换为直流电。
本文将介绍该电路的原理和工作方式。
电路组成三相桥式全控整流电路由以下几个部分组成: - 三相交流电源 - 三相桥式整流器 - 控制电路原理1.三相交流电源–三相交流电源是整个电路的输入来源,通常为三相交流电网或发电机输出的电流。
–交流电源的频率和电压大小会直接影响到整流器的输出。
2.三相桥式整流器–三相桥式整流器由六个控制可控硅(thyristor)组成,分为三相正半桥和负半桥。
–当正半桥中的可控硅导通时,负半桥中相应的可控硅会导通,从而实现了交流电到直流电的转换。
3.控制电路–控制电路是整个电路的大脑,负责对可控硅的触发和控制。
–控制电路通常由微控制器或其他逻辑控制芯片实现,根据输入信号对可控硅进行触发和控制。
–控制电路要根据交流电源的频率和电压变化来调整可控硅的触发时机,以确保整流器输出的直流电压稳定。
工作方式1.首先,三相交流电源提供输入电流,通过正半桥和负半桥中的可控硅进行整流,无论输入电压是正半周的正弦波还是负半周的正弦波,都会被转换成单向的直流电。
2.控制电路根据输入电压的变化情况,对可控硅进行触发和控制,确保输出的直流电压稳定。
3.最后,整流器的输出连接到负载上,供给电路所需的直流电源。
应用领域三相桥式全控整流电路广泛应用于工业领域,特别适合需要稳定和高负载的设备。
例如: - 运输领域的电车、火车 - 电力系统中的变流器 - 工厂中的直流电机控制系统结论三相桥式全控整流电路是一种重要的电路,通过将交流电转换为直流电,为各种设备提供稳定和高效的直流电源。
深入了解和掌握该电路的原理对于电气工程师和电路设计人员来说是必要的。
继续深入解释:三相桥式整流器的工作原理三相桥式整流器中的可控硅起到一个开关的作用,控制电流什么时候通过。
整流器通过改变可控硅的导通和封锁来实现电流的流动和截断。
三相桥式全控整流电路
三相桥式全控整流电路
三相桥式全控整流电路是一种典型的多相变流器结构。
其概念是利用三个桥式变换器,并将三相电源转换成多脉冲的直流电压或电流。
三相桥式全控整流电路可以满足多种多种
应用场合的需求。
三相桥式全控整流电路具有输出电流均衡、无影响源特性和可靠性等优点。
结构简单,尺寸小,失压开关控制,可靠性高,功率非常低,因此可以有效减少处理器的使用,降低
成本。
控制电路精确,可以实现功率的精确控制,提高了净输出功率的效率。
电阻元件高
度可调,可以对输出电流进行良好的控制,从而获得更好的控制性能。
三相桥式全控整流电路结构简单,可以有效控制输出电流,并且可以满足输出频率和
脉宽调节等多种需求。
但它也有一定的局限性,如功率范围较小,无法处理较大的功率负载。
三相桥式全控整流电路是一种常用的多相变流器。
它结构简单,控制精度高,稳定性好,可以有效解决处理多种应用场景的需求,在工业自动化等领域有广泛的应用。
三相桥式全控整流电路带电阻负载=时的波形
1
ua u2 = 0° ud 1
ub
uc
1. 带电阻负载时的工作情况 1) α =0时的情况 对于共阴极阻的 3 个晶闸 管,阳极所接交流电压值 最大的一个导通; 对于共阳极组的 3 个晶闸 管,阴极所接交流电压值 最低(或者说负得最多) 的导通; 任意时刻共阳极组和共阴 极组中各有 1 个 SCR 处于 导通状态。其余的 SCR 均 处于关断状态。 触发角 α 的起点,仍然是 从自然换相点开始计算, 注意正负方向均有自然换 相点。
13
u2 u d1 O u d2 u 2L ud
= 0° u a t1
Ⅰ u ab Ⅱ u ac Ⅲ u bc
ub
uc
t
Ⅳ u ba Ⅴ u ca uⅥ cb u ab u ac
O
t
i VT
1 1
O u VT
u ab
u ac
u bc
u ba
u ca
u cb
u ab
u ac
t
O
t
u ab
☞对触发脉冲的要求 √6个晶闸管的脉冲按VT1-VT2-VT3-VT4-VT5-VT6的顺序, 相位依次差60 。 √共阴极组VT1、VT3、VT5的脉冲依次差120,共阳极 组VT4、VT6、VT2也依次差120 。 √同一相的上下两个桥臂,即VT1与VT4,VT3与VT6, VT5与VT2,脉冲相差180 。
图3-21 三相桥式全控整流电路带电阻负载=60时的波形 16
三相桥式全控整流电路
12
三、定量分析
➢ 4. 整流变压器视在功率计算
➢ 1). 流过整流变压器二次侧的电流在前面已经算得:
i
I
d
2π/3
0
π
2π/3
2π
ωt
TR二次侧电流有效值: TR二次侧电压有效值:
I2
2 3 Id
0.816Id
U2
Ud 2.34
TR二次侧视在功率:
S2
3U 2I2
3
Ud 2.34
0.816
I
O
id O iVT1 O
t
t
t t
返回
22
图-7
三相桥式全控整流电路
带阻感负载a=30时的波形
ud1 = 30°ua
ub
uc
O ud2 ud
t1
ⅠⅡ uab uac
Ⅲ ⅣⅤⅥ ubc uba uca ucb uab uac
O
id O ia O
t
t
t t
返回
23
三相桥式整流电路
图-8
带阻感负载,a=90时的波形
14
四、归纳比较
2. 全控器件也可组成可控整流电路
超前相角控制的波形不同于滞后 相角控制区别:前者的控制角α由自 然换相点向左计算;后者的控制角α 由自然换相点向右计算。六只晶体管 工作顺序与负载电压关系与晶闸管相 同。
整流变压器二次侧绕组相电流iU 基波电流ia1超前于电源相电压uU一 个Ф角(Ф=α),实现了超前相角
= 90°
ud1
ub
uc
ua
O
ud2 ud
t1
uab
ⅠⅡ uac ubc
ⅢⅣ uba uca
三相桥式全控整流电路
三相桥式全控整流电路⽬录摘要 (1)1 概述 (2)2 三项桥式全控整流电路 (3)2.1电阻性负载 (3)2.1.1 ⼯作原理 (3)2.2 感性负载 (5)2.2.1 原理 (5)3仿真 (7)3.1 MATLAB 介绍 (7)3.2 电路仿真模型建⽴和参数设置 (8)3.2.1 三相桥式全控整流电路的分析 (8)3.3三相桥式整流电路的仿真 (8)3.3.1 带阻感性负载的仿真 (8)3.4 仿真设置及仿真结果 (14)3.5 带阻感性负载三相桥式全控整流电路的仿真分析 (15)3.6 纯电阻负载三相桥式全控整流电路的仿真 (18)⼩结 (19)参考⽂献 (20)带电阻负载的三相桥式全控整流电路设计摘要整流电路就是把交流电能转换成直流电能的电路。
⼤多数整流电路由变压器、整流主电路和滤波器组成。
它在直流电机的调速、发电机的激励调节电解、电镀等领域得到⼴泛应⽤。
整流电路主要有主电路、滤波器、变压器组成。
20世纪70年代以后,主电路多⽤硅整流⼆极管和晶闸管组成。
滤波器接在主电路和负载之间,⽤于滤除波动直流电压中的交流部分。
变压器设置与否视情况⽽定。
变压器的作⽤是实现交流输⼊电压与直流输出电压间的匹配以及交流电⽹与整流电路间的电隔离。
整流电路的种类有很多,半波整流电路、单项桥式半控整流电路、单项桥式全控整流电路、三项桥式半控整流电路、三项桥式全控整流电路。
关键词:整流、变压、触发、电感1 概述在电⼒系统中,电压和电流应是完好的正弦波.但是在实际的电⼒系统中,由于⾮线性负载的影响,实际的电⽹电压和电流波形总是存在不同程度的畸变,给电⼒输配电系统及附近的其它电⽓设备带来许多问题,因⽽就有必要采取措施限制其对电⽹和其它设备的影响。
随着电⼒电⼦技术的迅速发展,各种电⼒电⼦装置在电⼒系统、⼯业、交通、家庭等众多领域中的应⽤⽇益⼴泛,⼤量的⾮线性负载被引⼊电⽹,导致了⽇趋严重的谐波污染.电⽹谐波污染的根本原因在于电⼒电⼦装置的开关⼯作⽅式,引起⽹侧电流、电压波形的严重畸变.⽬前,随着功率半导体器件研制与⽣产⽔平的不断提⾼,各种新型电⼒电⼦变流装置不断涌现,特别是⽤于交流电机凋速传动的变频器性能的逐步完善,为⼯业领域节能和改善⽣产⼯艺提供了⼗分⼴阔的应⽤前景.相关资料表明,电⼒电⼦装置⽣产量在未来的⼗年中将以每年不低于10%的速度递增,同时,由这类装置所产⽣的⾼谐谐波约占总谐波源的70%以上。
三相全控桥式整流电路、单相桥式可控整流电路实验报告
三相全控桥式整流电路、单相桥式可控整流电路实验报告实验目的:1. 了解三相全控桥式整流电路的工作原理,掌握其操作方法和参数调节;2. 了解单相桥式可控整流电路的工作原理,掌握其操作方法和参数调节。
实验器材:1.交流电源2.三相全控桥式整流电路实验板3.单相桥式可控整流电路实验板4.电压表5.电流表6.示波器实验原理:三相全控桥式整流电路:三相全控桥式整流电路是一种用于将三相交流电压转换为直流电压的电路,其具有能控制电压和电流的特点,可应用于照明、通讯、电器控制等领域。
其电路图如下所示:该电路由三相控制电路和全控桥整流电路两部分构成。
控制电路由三组相位移为120°的控制电压(或电流)分别作用于三个晶闸管VT1~VT3,进一步控制电路接在桥式管VM的控制端上,使电路从无控状态变为全控状态。
当三相控制信号都为正信号时,三相桥式整流电路接收到的输入电压为正的交流电压,所输出的电压也为正的直流电压。
反之,当三相控制信号都为负信号时,三相桥式整流电路输出的电压也为负的直流电压。
由此可见,三相全控桥式整流电路可以根据控制信号的不同,输出正负的直流电压。
单相桥式可控整流电路:单相桥式可控整流电路是一种将单相交流电压转换为直流电压的电路,其具有能控制电压和电流的特点,可应用于照明、通讯、电器控制等领域。
其电路图如下所示:该电路由单相控制电路和可控桥式整流电路两部分构成。
控制电路由控制信号分别作用于两个晶闸管VT1和VT2上,使电路从无控状态变为可控状态。
当控制信号为正信号时,桥式整流电路接收到正交流电压,以正半周向电路输出正的直流电压,反之亦然。
由此可见,单相桥式可控整流电路可以根据控制信号的不同,输出正负的直流电压。
实验步骤:1. 接线检查:检查三相全控桥式整流电路实验板和单相桥式可控整流电路实验板的接线是否正确。
2. 电路调节:(1)打开交流电源开关,调节电源电压为220V、频率为50Hz。
(2)打开三相全控桥式整流电路实验板和单相桥式可控整流电路实验板的电源开关。
三相全控桥式整流电路
三相全控桥式整流电路一、引言随着工业技术的发展和电力电子技术的不断推广,三相全控桥式整流电路在各个行业中广泛应用。
三相全控桥式整流电路采用三相交流电源作为输入端,能够将交流电信号转换成满足不同负载需求的直流电信号。
本文将从以下几个方面详细介绍三相全控桥式整流电路的工作原理、主要构成和应用。
二、工作原理三相全控桥式整流电路是一种将交流电信号转换成直流信号的电路。
该电路采用三相变压器将三相交流电源通过变换,将input交流电进行相间差异为120度的降低或升高零电平的变换,接至整流桥三相管闸流控制器的输入端,然后将通过整流桥的三相管管子交错导通,实现交流电的全波整流。
三相全控桥式整流电路通过改变控制器的输出扭矩控制灵活性,从而控制整流桥输出直流电的电压和电流。
三、主要构成三相全控桥式整流电路主要由三相变压器、整流桥和控制器组成。
1. 三相变压器三相变压器的作用是将输入的三相交流电信号通过变换,降低或升高零电平,将降低或升高零电平后的输入信号接入整流桥电路中。
通常情况下,三相变压器分为多种类型,如输入和输出相等的三相变压器、桥式三相变压器、三角变压器等。
2. 整流桥整流桥是三相全控桥式整流电路中的重要部分。
整流桥需要至少4个按一定方式排列的二极管构成,在同一个相序的三个管相互导通的同时,三个相可以实现交替导通。
整流桥既能进行三相半波整流,也能进行三相全波整流。
3. 控制器在三相全控桥式整流电路中,控制器的主要作用是对整流桥输出直流信号进行控制。
通过控制器,可以实现相依输入电压的0-360°可控角度矩,从而实现输出电压的控制。
整流桥控制器通常采用高性能单片机或FPGA,以实现控制回环环节过程控制、溅液等自动保护功能等。
四、应用三相全控桥式整流电路主要应用于高功率负载的变频调速、电力变流器、电弧炉等领域。
在风力发电、太阳能发电等清洁能源领域,三相全控桥式整流电路也具有广泛的应用前景。
在消费电子产品如UPS、电流计、电子锁等领域,也可以采用三相全控桥式整流电路实现高品质的电源供应。
三相桥式全控整流电路
输出电压与输入电压的关系
01
输出电压与输入电压的有效值成 正比,与触发脉冲的相位角有关 。
02
当触发脉冲在合适的相位角触发 晶闸管时,输出电压接近于输入
电压的最大值。
随着触发脉冲相位角的减小,输 出电压逐渐减小。
03
当触发脉冲相位角为0度时,输出 电压为0。
04
03
电路参数
整流元件的参数选择
额定电压
整流元件的额定电压应大 于电路的最大输出直流电 压。
额定电流
整流元件的额定电流应大 于电路的最大输出直流电 流。
反向耐压
整流元件的反向耐压应大 于电路的最大反向电压。
变压器的参数选择
额定功率
变压器的额定功率应大于电路的最大输出功率。
匝数比
变压器的匝数比应与电路的输入输出电压要求 相匹配。
磁芯材料
变压器的磁芯材料应具有较高的磁导率和较低的损耗,以提高变压器的效率。
常见故障与排除方法
故障1
整流输出电压异常
排除方法
检查输入电源是否正常,检查整流管是否损坏 ,检查电路连接是否良好。
故障2
可控硅不导通
排除方法
检查触发脉冲是否正常,检查可控硅控制极的连接 是否正确。
电路发热严重
故障3
排除方法
检查电路的散热情况,确保散热器安装良好,检查负载 是否过重。
维护与保养建议
滤波电容器的参数选择
电容量
滤波电容器的电容量应根据电路的输出电流和电压纹波的要求进 行选择。
耐压值
滤波电容器的耐压值应大于电路的最大输出直流电压。
温度特性
滤波电容器的温度特性应与电路的工作温度要求相匹配。
04
电路分析
三相桥式全控整流电路
小结:
❖ 7. 为确保电源合闸或电流断续情况正常工作, 触发脉冲应采用双脉冲或宽度不小于60度旳 宽脉冲。
❖ 8. 在负载电流连续时,每个SCR导通120度; 三相桥式全控电路旳整流电压在一种周期内 脉动六次,对于工频电源,脉动频率为 6×50HZ=300Hz,比三相半波时大一倍。
小结:
❖ 9. 整流后旳输出电压为两相电压相减后旳波 形,即线电压。
❖ 此时,因为输出电压Ud波形连续, 负载电流波形也连续
❖ 在一种周期内每个晶闸管导通 120o,输出电压波形与电感性负 载时相同。
电阻性负载控制角α>60度
❖ 以控制角等于90度为例, 线电压过零时,负载电 压电流为0, SCR 关断, 电流波形断续
T+a,T-b导经过程
T+a,T-c导经过程
❖ 三相桥式电路中变压器绕组中,一周期既有正向电 流,又有反向电流,提升了变压器旳利用率,防止 直流磁化
❖ 因为三相桥式整流电路是两组三相半波整流电路旳 串联,所以输出电压是三相半波旳两倍。
一.电感性负载电感性负载
❖ 设电感足够大, ❖ 负载电流连续。 ❖ 1.控制角α=0 ❖ 相当于六个二极管整流
可控整流电路
三相桥式全控整流电路
第三节 三相桥式全控整流电路
❖ 一.电路构成: ❖ 共阴极三相半波+共阳极三相半波。
第三节 三相桥式全控整流电路
❖ 一.电路构成: (输出串联构成)
三相桥式全控整流电路
❖ 共阴极组电路和共阳极组电路串联,并接到变压器 次极绕组上
❖ 两组电路负载对称,控制角相同,则输出电流平均 值相等,零线中流过电流为零
❖ ◆输出电压旳脉动较小(6脉波/周期); ❖ ◆变压器利用率高,无直流磁化问题; ❖ ◆最常用(大容量负载供电,电力拖动系统)
三相全控桥式整流电路
摘要整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。
整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
关键词:整流,变压,触发,过电压,保护电路。
三相桥式全控整流电路的设计1主电路设计及原理1.1 主电路设计其原理图如图1所示。
图1 三相桥式全控整理电路原理图习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、 VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。
此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。
从后面的分析可知,按此编号,晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。
1.2 主电路原理说明整流电路的负载为带反电动势的阻感负载。
假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。
此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。
而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。
这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。
三相桥式全控整流电路
uc
ua
7
4.3 三相桥式全控整流电路
ua
ub
uc
ua
8
9
三相桥式全控整流电路
纯电阻负载运行参数分析
当 60o 时
(1)输出直流电压
3
Udav
2
6
6U2rm
s
sin(t
6
)d(t)
2.34U2rms
c
os
(2)晶闸管电流有效值
IVTrms
2
2
2[ 6
6U2rms sin(t )]2 d(t) U2rms
13
三相桥式全控整流电路
14
三相桥式全控整流电路
15
三相桥式全控整流电路
16
三相桥式全控整流电路
大电感负载运行参数分析
(1)整流输出直流电压平均值Udav
Udav
3
2
6
6U2rms
s
in(t
6
)d(t
)
2.34U2
பைடு நூலகம்rm
s
c
os
(2)整流输出直流电流平均值Idav(即为输出直流电流Id)
电力电子技术
三相桥式全控整流电路
三相桥式全控整流电路
2
三相桥式全控整流电路
三相桥式全控整流电路触发脉冲要求
(1)共阴极组和共阳极组的晶闸管各有一个同时导通; (2)触发脉冲按照管子的编号依次间隔60°; (3)启动过程或电流断续状态下,所有的管子均不导通,为保
证同时导通的两个晶闸管均有触发脉冲,采用两种方法: 方法1:使脉冲宽度大于60°(一般取80°~100°),称
Idavmin一般为额定输出的5%~10%
三相桥式全控整流电路
4
特点与优点
特点与优点
整流效率高:由于采用
了全控整流技术,三相
桥式全控整流电路的整
2
流效率可以达到90%以
上
控制性能好:通过调节
触发角α的大小,可以
1
实现对输出电压和电流 的连续和平滑调节,从
而具有良好的控制性能
适用于大功率应用:三
相桥式全控整流电路适
用于大功率应用场合, 可以实现大电流和高电
4
流电源的中性线N上
3
工作原理
工作原理
整流过程
当晶闸管的控制极有触发脉冲时,晶闸管导通,电流可 以通过它而从交流电源的一相流向负载,然后再通过另 外两只晶闸管返回交流电源的另一相。通过改变触发脉 冲的相位,可以控制电流的流向和大小,从而实现对输 出电压和电流的连续和平滑调节
工作原理
控制原理
三相桥式全控整流电路的输出电压和电流的大小取决于晶闸管的触发角α。触发角α是指 从正弦波的正半周开始到触发脉冲出现的位置之间的角度。当触发角α越小时,输出的电 压和电流越大;当触发角α越大时,输出的电压和电流越小 通过调节触发角α的大小,可以实现对输出电压和电流的连续和平滑调节。常用的调节方 式有两种:一种是采用相位控制方式,通过调节触发脉冲的相位来改变触发角α的大小; 另一种是采用移相控制方式,通过改变触发脉冲的移相角的大小来改变触发角α的大小
续和平滑调节
2
电路结构
电路结构
三相桥式全控整流电路的基本结 构由三相交流电源、六只晶闸管
以及负载构成
其中,三相交流电源为三角形接 法,提供三个相位相差120度的交
流电压
六只晶闸管分别连接在三相交流 电源和负载之间,其中三只晶闸 管的一端连接在A、B、C三相交流 电源上,另一端连接在负载的P、 N端子上;另外三只晶闸管的另一 端连接在负载的N、P端子上和交
三相桥式全控整流电路(电阻性负载)
1三相桥式全控整流电路(电阻性负载)
三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。
1-1三相桥式全控整流电路(电阻性负载)
1-1三相桥式全控整流电路
n
d
VT VT VT 462d 2
d
2-1三相桥式全控整流电路(电阻性负载)仿真图2.2三相桥式全控整流电路(电阻性负载)电源参数
电源220V.相位分别为0︒,120︒,-120︒,频率50HZ
设置控制脚a为0︒,30︒,60︒,90︒与其相印的波形
3-1三相桥式全控整流电路(电阻性负载)a为0︒
3-2三相桥式全控整流电路(电阻性负载)a为30︒
3-3三相桥式全控整流电路(电阻性负载)a为60︒
3-4三相桥式全控整流电路(电阻性负载)a为90︒
4总结
2个晶闸管同时导通形成供电回路,其中共阴极组和共阳极组各1个,且不能为同一相器件。
同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180 。
三相桥式全控整流电路
第六章引言6.1 同步电机的励磁简介同步电机的励磁绕组通常由外电源提供励磁电流,这些励磁电源可分为两大类:一类是用直流电源提供励磁的直流励磁机系统;另一类是用硅整流装置将交流变成直流后提供励磁的半导体励磁系统。
随着半导体技术的发展,可控硅整流装置已广泛应用于同步电机励磁系统。
可控硅整流装置将交流励磁机输出的三相交流电流转换成直流电流,励磁调节器根据发电机运行工况调节可控硅整流器的导通角,以此调节可控硅整流装置的输出电压,从而调节发电机的励磁。
6.2 研究同步电机励磁系统的背景在电力系统的运行中,同步发电机是电力系统获得无功功率的重要来源之一,通过调节励磁电流可以维持发电机端电压,改变发电机的无功功率。
不论系统是在正常运行情况下还是在故障情况下,同步发电机的励磁电流都必须得到有效控制,因此励磁系统是同步发电机的重中之重。
励磁系统的安全运行,不仅关系到发电机及电力系统的运行稳定性,而且关系到发电机及与其相关联的电力系统的经济运行指标。
对同步发电机励磁系统基本要求有:一、具有十分高的可靠性;二、保证发电机具有足够的励磁容量;三、具有足够的强励能力;四、保证发电机电压调差率有足够的整定范围;五、保证发电机电压有足够的调节范围;六、保证发电机励磁自动控制系统具有良好的调节特性等。
6.3 本文主要研究内容三相桥式全控整流电路是将交流电压转化为直流电压,进而转化为直流励磁电流的一个桥梁,所以对它的分析研究就显的尤为重要。
本次设计中综合运用MATLAB中的Simulink模块搭建三相桥式全控整流电路,仿真分析了在不同触发角情况下的输出电压波形,并在分析后通过电力系统综合自动化实验台上的示波器观察励磁装置中的六路脉冲、变压器二次测交流电压波形以及经整流后输出的直流电压波形。
u g u gu g u gu2u 图2 三相桥式整流电路的触发脉冲第七章 三相桥式全控整流电路简介7.1 主电路原理说明如图2.1,共阴极组——阴极连接在一起的3个晶闸管(VT 1,VT 3,VT 5)共阳极组——阳极连接在一起的3个晶闸管(VT 4,VT 6,VT 2)。
三相桥式全控整流电路
三相桥式全控整流电路1. 引言三相桥式全控整流电路是一种常用的电力电子器件,广泛应用于直流供电系统中。
它能将三相交流电转换成稳定的直流电,并且可以根据需要调整输出电压大小。
本文将详细介绍三相桥式全控整流电路的结构、工作原理以及优缺点。
2. 结构三相桥式全控整流电路由六个可控硅组成,分别为三相桥臂和控制电路。
其中,三相桥臂由三个可控硅和三个反并联的二极管组成,形成了一个三相全控整流单元。
控制电路用于控制可控硅的导通和关断,以实现对输出电压的调节。
3. 工作原理当输入电源为三相交流电时,通过变压器将其降压,并适当调整相位,然后将其输出到三相桥臂上。
根据控制电路的控制信号,控制可控硅的导通和关断。
当可控硅导通时,交流电信号经过可控硅和二极管之间的通路,形成一个通路;当可控硅关断时,通路中断。
可控硅的导通和关断时间可以通过控制电路的触发方式和触发角来控制。
触发角表示可控硅导通的延迟时间,可以调整导通角度来控制输出电压的大小。
通过调整可控硅的导通角度,可以实现对输出电压的调节。
一般情况下,三相桥式全控整流电路的工作周期是以输入交流电的周期为基准的。
在每个周期内,三相桥臂会分别导通和关断,以便实现对输出电压的稳定控制。
控制电路会根据电压反馈信号和控制信号,实时调整可控硅的导通角度,以使输出电压达到设定值。
4. 优缺点4.1 优点•三相桥式全控整流电路具有较高的稳定性和精度,适用于对电压要求较高的场合。
•可控硅的导通角度可调,可以实现对输出电压的精确调节。
•结构相对简单,制造成本较低。
4.2 缺点•由于可控硅的导通和关断需要外部控制电路的支持,因此整体的复杂度较高。
•整流过程中会产生一定的谐波,可能对其他电器设备造成干扰。
•输出电压的调节需要实时监测和反馈,对控制电路提出了一定的要求。
5. 应用三相桥式全控整流电路广泛用于直流供电系统中,如直流电源、电动机控制等领域。
其稳定性和精确控制性使其成为电力电子设备的重要组成部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ωt1~ωt2区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=90°电阻性负载分析
Click to edit Master text styles
ωt1~ωt2区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=90°电阻性负载分析
Click to edit Master text styles
ωt1~ωt2区间
LOGO
α=90°电阻性负载分析
ωt2~ωt3区间
Click to edit Master text styles
ωt2~ωt3区间
LOGO
α=60°电阻性负载分析
Click to edit Master text styles
ωt3~ωt4区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=60°电阻性负载分析
Click to edit Master text styles
LOGO
α=0°时电路工作分析
Click to edit Master text styles
ωt5~ωt6区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=0°时电路工作分析
Click to edit Master text styles
ωt5~ωt6区间
LOGO
α=0°时电路工作分析
Click to edit Master text styles
ωt3~ωt4区间
LOGO
α=0°时电路工作分析
Click to edit Master text styles
ωt4~ωt5区间
VT1
VT3
VT5
U
V
Rd
W
VT4
ωt2~ωt3区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=0°时电路工作分析
Click to edit Master text styles
ωt2~ωt3区间
LOGO
α=0°时电路工作分析
Click to edit Master text styles
Click to edit Master text styles
ωt1~ωt2区间
LOGO
α=60°电阻性负载分析
Click to edit Master text styles
ωt2~ωt3区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
ωt3~ωt4区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=90°电阻性负载分析
ωt3~ωt4区间
Click to edit Master text styles
LOGO
α=90°电阻性负载分析
ωt4~ωt5区间
LOGO
电路结构特点
Click to edit Master text styles
相当于两组半波电路的串联,一组来至共阴极组,另一 组来至共阳极组。
共阴极组
U
V
Rd
W
共阳极组
LOGO
电路结构特点
Click to edit Master text styles
LOGO
α=90°电阻性负载分析
Click to edit Master text styles
ωt3~ωt4区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=90°电阻性负载分析
Click to edit Master text styles
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=60°电阻性负载分析
Click to edit Master text styles
ωt1~ωt2区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=60°电阻性负载分析
电阻性负载分析
Click to edit Master text styles
波形分析
α=60°
波形 分析
α=90°
波形 分析
LOGO
α=60°电阻性负载分析
Click to edit Master text styles
ωt1~ωt2区间
VT1
VT3
VT5
LOGO
α=60°电阻性负载分析
Click to edit Master text styles
ωt2~ωt3区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=60°电阻性负载分析
Click to edit Master text styles
Click to edit Master text styles
LOGO
α=0°时电路工作分析
Click to edit Master text styles
ωt5~ωt6区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
晶闸管的编号与自然换相点的点号保持一致。
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
电路结构特点
Click to edit Master text styles
触发脉冲“依次、成对”出现。
(ug6、ug1 ) → ( ug1、ug2 ) → ( ug2、ug3 )
LOGO
α=0°时电路工作分析
Click to edit Master text styles
ωt2~ωt3区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=0°时电路工作分析
Click to edit Master text styles
LOGO
α=0°时电路工作分析
Click to edit Master text styles
ωt1~ωt2区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=0°时电路工作分析
Click to edit Master text styles
ωt1~ωt2区间
ωt6~ωt1区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=0°时电路工作分析
Click to edit Master text styles
ωt6~ωt1区间
LOGO
换流规律
Click to edit Master text styles
LOGO
α=90°电阻性负载分析
Click to edit Master text styles
三相全控桥式整流电路
LOGO
LOGO
三相全控桥式整流电路
Click to edit Master text styles
1 电路结构特点 2 α=0°时电路工作分析 3 电阻性负载分析 4 电感性负载分析 5 感性负载接续流管分析
LOGO
α=0°时电路工作分析
Click to edit Master text styles
ωt6~ωt1区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=0°时电路工作分析
Click to edit Master text styles
ωt4~ωt5区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=60°电阻性负载分析
Click to edit Master text styles
ωt4~ωt5区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
ωt3~ωt4区间
VT1
VT3
VT5
U
V
Rd
W
VT4
VT6
VT2
LOGO
α=60°电阻性负载分析
Click to edit Master text styles
ωt3~ωt4区间