(完整版)相反数和绝对值经典练习题.docx
数轴,相反数,绝对值(拔高题)精编版.docx
![数轴,相反数,绝对值(拔高题)精编版.docx](https://img.taocdn.com/s3/m/03dbcea7b7360b4c2e3f64e3.png)
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯第二讲数轴 ,相反数 ,绝对值 (拔高题 )一.选择题(共7 小题)1.若两个非零的有理数a、b,满足: | a| =a,| b| =﹣ b, a+b<0,则在数轴上表示数 a、b 的点正确的是()A.B.C.D.2.已知: a>0,b<0,| a| <| b| < 1,那么以下判断正确的是()A.1﹣b>﹣ b> 1+a>a B. 1+a>a>1﹣b>﹣ bC.1+a> 1﹣ b> a>﹣ b D. 1﹣ b> 1+a>﹣ b>a3.下列说法中正确的是()A.互为相反数的两个数的绝对值相等B.最小的整数是0C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等4.如图,数轴上有 A,B,C,D 四个整数点(即各点均表示整数),且 2AB=BC=3CD.若A,D 两点所表示的数分别是﹣ 5 和 6,则线段 BD 的中点所表示的数是()A.6B.5C.3D.25.若 ab> 0,则++的值为()A.3B.﹣ 1 C.± 1 或± 3D. 3 或﹣ 16.数轴上表示整数的点称为整点.某数轴的单位长度是 1 厘米,若在这个数轴上随意画出一条长为2004 厘米的线段 AB,则线段 AB 盖住的整点的个数是()A.2002 或 2003B. 2003 或 2004C.2004 或 2005D. 2005 或 2006 7.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“ 0cm”和“15cm”分别对应数轴上的﹣ 3.6 和 x,则()A.9<x<10B.10<x<11 C. 11<x<12D.12< x<13二.填空(共18 小)8.已知 A,B,C 是数上的三个点,且 C 在 B 的右.点 A, B 表示的数分是 1,3,如所示.若BC=2AB,点 C 表示的数是.9.如所示,数上点 A 所表示的数的相反数是.10.已知 | a+2| =0, a=.11.大家知道 | 5| =| 5 0| ,它在数上的意是表示 5 的点与原点(即表示0的点)之的距离.又如式子| 6 3| ,它在数上的意是表示 6 的点与表示 3的点之的距离.似地,式子| a+5| 在数上的意是.12.在数上,与表示 1 的点距离 3 的点所表示的数是.13.若 | x|+ 3=| x 3| , x 的取范是.14.定: A={ b,c, a} ,B={ c} ,A∪B={ a, b,c} ,若 M={ 1} ,N={ 0,1,1} , M ∪N={} .15.若,a的取范是.16.( 6)的相反数是.17.有理数 a、b、c 在数的位置如所示,且 a 与 b 互相反数, | a c|| b+c| =.18.有理数 a,b 在数上的位置如所示,下列各式:① b a> 0,② b>0,③ a> b,④ ab<0,正确的个数是.19.点 A, B, C 在同一条数上,其中A, B 表示的数 5, 2,若 BC=3,AC=.20.如果 | m 1| =5, m=.21.如所示,在直l 上有若干个点 A1、A2、⋯、A n,每相两点之的距离都 1,点 P 是段 A1A n上的一个点.( 1)当 n=3 ,点 P 分到点 A1、A2、 A3的距离之和的最小是;( 2)当 n=13 ,当点 P 在点的位置,点P分到点A1、A2、⋯、A13的距离之和有最小,且最小是.22.已知 a,b,c 三个有理数,它在数上的位置如所示,| c b| | b a| | a c| =.23.( 1)若 a=2.5, a=;( 2)若 a=,a=;( 3)若( a) =16, a=;( 4)若 a=( +5), a=.24.| x+1|+| x 5|+ 4 的最小是.25. a,b,c 有理数,由构成的各种数是.三.解答(共 6 小)26.把下列各数填入相的集合中, 5.2, 0,,,22,,2005,0.030030003⋯正数集合: {⋯};分数集合: {⋯};非整数集合: {⋯};有理数集合: {⋯}.27.已知 | a| =3,| b| =5,且 a<b,求 a b 的.28.有理数 a,b,c 在数上的位置如所示,化下式:| a c| | a b|+| 2a| .29.同学们都知道: | 5﹣(﹣ 2)| 表示 5 与﹣ 2 之差的绝对值,实际上也可理解为5 与﹣ 2 两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:( 1)数轴上表示 5 与﹣ 2 两点之间的距离是,( 2)数轴上表示 x 与 2 的两点之间的距离可以表示为.( 3)如果 | x﹣ 2| =5,则 x=.( 4)同理 | x+3|+| x﹣1| 表示数轴上有理数x 所对应的点到﹣ 3 和 1 所对应的点的距离之和,请你找出所有符合条件的整数x,使得 | x+3|+| x﹣1| =4,这样的整数是.(5)由以上探索猜想对于任何有理数 x,| x﹣3|+| x﹣ 6| 是否有最小值?如果有,直接写出最小值;如果没有,说明理由.30.已知 A,B 在数轴上分别表示数a,b.( 1)对照数轴填写下表:( 2)若 A,B 两点间的距离记为d,试问 d 与 a,b 有何数量关系?( 3)在数轴上找到所有符合条件的整数点 P,使它到 5 和﹣ 5 的距离之和为 10,并求出所有这些整数的和.( 4)若数轴上点 C 表示的数为 x,当点 C 在什么位置时,① | x+1| 的值最小?② | x+1|+| x﹣ 2| 的值最小?31.阅读下列材料并解决有关问题:我们知道,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式| x+1|+| x﹣ 2| 时,可令 x+1=0 和 x﹣ 2=O,分别求得 x=﹣1,x=2(称﹣ 1,2 分别为 | x+1| 与| x﹣ 2| 的零点值).在实数范围内,零点值x=﹣1 和, x=2 可将全体实数分成不重复且不遗漏的如下 3 种情况:(1)x<﹣ 1;(2)﹣ 1≤ x<2;(3)x≥2.从而化简代数式 | x+1|+| x﹣2| 可分以下 3 种情况:(1)当 x<﹣ 1 时,原式 =﹣( x+1)﹣( x﹣ 2) =﹣ 2x+1;(2)当﹣ 1≤x<2 时,原式 =x+1﹣( x﹣2)=3;(3)当 x≥2 时,原式 =x+1+x﹣2=2x﹣1.综上讨论,原式 =.通过以上阅读,请你解决以下问题:(1)分别求出 | x+2| 和| x﹣4| 的零点值;(2)化简代数式 | x+2|+| x﹣4| .参考答案与试题解析一.选择题(共7 小题)1.若两个非零的有理数a、b,满足: | a| =a,| b| =﹣ b, a+b<0,则在数轴上表示数 a、b 的点正确的是()A.B.C.D.【解答】解:∵ a、b 是两个非零的有理数满足:| a| =a, | b| =﹣ b, a+b<0,∴a>0,b<0,∵ a+b<o,∴| b| >| a| ,∴在数轴上表示为:故选 B.2.已知: a>0,b<0,| a| <| b| < 1,那么以下判断正确的是()A.1﹣b>﹣ b> 1+a>a B.1+a>a>1﹣b>﹣ b C.1+a>1﹣b>a>﹣ b D. 1﹣b>1+a>﹣ b>a【解答】解:∵ a>0,∴ | a| =a;∵b< 0,∴ | b| =﹣b;又∵ | a| <| b| < 1,∴ a<﹣ b<1;∴1﹣ b> 1+a;而 1+a>1,∴1﹣ b> 1+a>﹣ b>a.故选 D.3.下列说法中正确的是()A.互为相反数的两个数的绝对值相等B.最小的整数是0C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等【解答】解:根据绝对值和相反数的定义,互为相反数的两个数到原点距离相等,因此互为相反数的两个数的绝对值相等,故 A 正确;整数分为正整数、零负整数,不存在最小的整数,故 B 错误;有理数分为正有理数、零、负有理数,故 C 错误;如果两个数绝对值相等,这两个数可能相等,可能互为相反数,故 D 错误.故选 A.4.如图,数轴上有 A,B,C,D 四个整数点(即各点均表示整数),且 2AB=BC=3CD.若A,D 两点所表示的数分别是﹣ 5 和 6,则线段 BD 的中点所表示的数是()A.6B.5C.3D.2【解答】解:设 BC=6x,∵2AB=BC=3CD,∴ AB=3x,CD=2x,∴AD=AB+BC+CD=11x,∵ A, D 两点所表示的数分别是﹣ 5 和 6,∴11x=11,解得: x=1,∴AB=3, CD=2,∴B, D 两点所表示的数分别是﹣ 2 和 6,∴线段 BD的中点表示的数是 2.故选 D.5.若 ab> 0,则++的值为()A.3B.﹣ 1 C.± 1 或± 3D. 3 或﹣ 1【解答】解:因为 ab> 0,所以 a, b 同号.①若 a,b 同正,则++=1+1+1=3;②若 a,b 同负,则++=﹣1﹣1+1=﹣1.故选 D.6.数轴上表示整数的点称为整点.某数轴的单位长度是 1 厘米,若在这个数轴上随意画出一条长为2004 厘米的线段 AB,则线段 AB 盖住的整点的个数是()A.2002 或 2003B. 2003 或 2004C.2004 或 2005D. 2005 或 2006【解答】解:依题意得:①当线段 AB 起点在整点时覆盖2005 个数;②当线段 AB 起点不在整点,即在两个整点之间时覆盖2004 个数.故选 C.7.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“ 0cm”和“15cm”分别对应数轴上的﹣ 3.6 和 x,则()A.9<x<10 B.10<x<11 C. 11<x<12 D.12< x<13【解答】解:依题意得: x﹣(﹣ 3.6)=15, x=11.4.故选 C.二.填空题(共18 小题)8.已知 A,B,C 是数轴上的三个点,且 C 在 B 的右侧.点 A, B 表示的数分别是 1,3,如图所示.若 BC=2AB,则点 C 表示的数是 7 .【解答】解:∵点 A,B 表示的数分别是1, 3,∴AB=3﹣ 1=2,∵ BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点 C 表示的数是 7.故答案为 7.9.如图所示,数轴上点 A 所表示的数的相反数是2.【解答】解:数轴上点 A 所表示的数是﹣ 2,﹣ 2 的相反数是 2,故答案为: 2.10.已知 | a+2| =0,则 a=﹣2.【解答】解:由绝对值的意义得:a+2=0,解得: a=﹣ 2;故答案为:﹣ 2.11.大家知道 | 5| =| 5﹣0| ,它在数轴上的意义是表示 5 的点与原点(即表示0的点)之间的距离.又如式子| 6﹣3| ,它在数轴上的意义是表示 6 的点与表示 3的点之间的距离.类似地,式子| a+5| 在数轴上的意义是表示数a的点与表示﹣ 5 的点之间的距离.【解答】解:根据题意,得 | a+5| =| a﹣(﹣ 5)| ,即表示数 a 的点与表示﹣ 5 的点之间的距离.故答案为:表示数 a 的点与表示﹣ 5 的点之间的距离.12.在数轴上,与表示﹣ 1 的点距离为 3 的点所表示的数是 2 或﹣ 4 .【解答】解:若点在﹣ 1 的左面,则点为﹣ 4;若点在﹣ 1 的右面,则点为2.故答案为: 2 或﹣ 4.13.若 | x|+ 3=| x﹣ 3| ,则 x 的取值范围是x≤0.【解答】解:①当 x≥3 时,原式可化为: x+3=x﹣3,无解;②当 0<x<3 时,原式可化为: x+3=3﹣x,此时 x=0;③当 x≤0 时,原式可化为:﹣ x+3=3﹣x,等式恒成立.综上所述,则 x≤0.14.定义: A={ b,c, a} ,B={ c} ,A∪B={ a, b,c} ,若 M={ ﹣ 1} ,N={ 0,1,﹣ 1} ,则 M ∪N={ 1,0,﹣ 1 } .【解答】解:∵ M={ ﹣1} ,N={ 0,1,﹣ 1} ,∴M∪N={ 1,0,﹣ 1} ,故答案为: 1,0,﹣ 1.15.若,则a的取值范围是a< 0.【解答】解:∵=﹣ 1,∴| a| =﹣a 且 a≠0,∴a< 0.16.﹣(﹣ 6)的相反数是﹣6.【解答】解:﹣(﹣ 6)=6,∴6 的相反数是﹣6.故答案为:﹣ 6.17.有理数 a、b、c 在数轴的位置如图所示,且 a 与 b 互为相反数,则 | a﹣c| ﹣| b+c| = 0.【解答】解:由图知, a>0,b<0,c>a,且 a+b=0,∴| a﹣c| ﹣ | b+c| =c﹣a﹣c﹣b=﹣( a+b)=0.18.有理数 a,b 在数轴上的位置如图所示,下列各式:①b﹣ a> 0,②﹣ b>0,③ a>﹣ b,④﹣ ab<0,正确的个数是1.【解答】解: a<0,b>0,b﹣a>0,故① b﹣ a> 0 正确,b>0, b< 0,故② b>0 ,a<0,b>0,| a| >| b| , a< b,故③ a> b ,a<0,b>0, ab>0,故④ ab< 0 ,故只有①正确.故答案: 1.19.点 A, B, C 在同一条数上,其中A, B 表示的数 5, 2,若 BC=3,AC= 4 或 10.【解答】解:∵如下,点A,B,C 在同一条数上,其中A,B 表示的数5,2,且 BC=3,∴C 表示的数 1 或 5,当C 表示的数 1 ,AC=4.C 表示的数 5 ,AC=10.故答案: 4 或 10.20.如果 | m 1| =5, m= 6 或 4 .【解答】解:∵ | m 1| =5,∴m 1=5 或 m 1= 5.解得: m=6 或 m= 4.故答案: 6 或 4.21.如所示,在直l 上有若干个点 A1、A2、⋯、A n,每相两点之的距离都 1,点 P 是段 A1A n上的一个点.( 1)当 n=3 ,点 P 分到点 A1、A2、 A3的距离之和的最小是2;( 2)当 n=13 ,当点 P 在点A7的位置,点P分到点A1、A2、⋯、A13的距离之和有最小值,且最小值是42.【解答】解:(1)P 在 A2处, PA1+PA3 =1+1=2,;(2)当点 P 在点 A7的位置时,(PA1+PA2+PA3+PA4+PA5+PA6)× 2=(1+2+3+4+5+6)× 2=42,故答案为: 2,A7,42.22.已知 a,b,c 为三个有理数,它们在数轴上的对应位置如图所示,则 | c﹣b|﹣| b﹣a| ﹣| a﹣c| = 0 .【解答】解:根据图示知: b>1>a>0>c>﹣ 1,∴| c﹣b| ﹣ | b﹣a| ﹣| a﹣c| =﹣c+b﹣b+a﹣ a+c=0故答案是 0.23.( 1)若 a=2.5,则﹣ a=﹣2.5;( 2)若﹣ a=,则a=﹣;(3)若﹣(﹣ a) =16,则﹣ a= ﹣ 16 ;(4)若 a=﹣( +5),则﹣ a= 5 .【解答】解:(1)若 a=2.5,则﹣ a=﹣2.5;(2)若﹣ a= ,则 a=﹣;(3)若﹣(﹣ a) =16,则﹣ a=﹣16;(4)若 a=﹣( +5),则﹣ a=5,故答案为:﹣ 2.5;﹣;﹣ 16; 524.| x+1|+| x﹣5|+ 4 的最小值是10.【解答】解:①当 x< 1,| x+1|+| x 5|+ 4=( x+1) +5 x+4=8 2x>10,②当 1≤x≤5,| x+1|+| x 5|+ 4=x+1+5 x+4=10,③当 x>5,| x+1|+| x 5|+ 4=x+1+x 5+4=2x>10;所以 |x+1|+| x 5|+ 4 的最小是 10.故答案: 10.25. a, b, c 有理数,由构成的各种数是4、4、 0 .【解答】解:∵ a,b,c 有理数,①若 a>0,b>0,c>0,∴=1+1+1+1=4;②若 a,b,c 中有两个数,abc>0,∴=(1 2) +1=0,③若 a,b,c 中有一个数,abc<0,∴=(2 1) +( 1)=0,④若 a,b,c 中有三个数,abc<0,∴=( 3)+( 1)= 4,故答案:± 4,0.三.解答(共 6 小)26.把下列各数填入相的集合中, 5.2, 0,,,22,,2005,0.030030003⋯正数集合: {,5.2,,,2005,⋯} ;分数集合: {,5.2,,,⋯} ;非整数集合: { 0,2005,⋯} ;有理数集合: {,5.2,0,, 22,,2005,⋯} .【解答】解:正数集合: {,5.2,,,2005,⋯}分数集合: {,5.2,,,⋯}非整数集合: { 0,2005,⋯}有理数集合 {,5.2,0,,22,,2005,⋯},故答案:,5.2,,,2005,,5.2,,,0,2005,,5.2,0,, 22,,2005.27.已知 | a| =3,| b| =5,且 a<b,求 a b 的.【解答】解:∵ | a| =3,| b| =5,∴a=±3,b=±5.∵a< b,∴当 a=3 , b=5, a b= 2.当a= 3 , b=5, a b= 8.28.有理数 a,b,c 在数上的位置如所示,化下式:| a c| | a b|+| 2a| .【解答】解:由可知: c< a< 0<b;∴a c>0,a b<0,2a<0;∴原式=a c+a b 2a= b c.29.同学都知道: | 5( 2)| 表示 5 与 2 之差的,上也可理解 5 与 2 两数在数上所的两点之的距离.你借助数行以下探索:( 1)数上表示 5 与 2 两点之的距离是7,( 2)数上表示 x 与 2 的两点之的距离可以表示| x 2|.( 3)如果 | x 2| =5, x= 7 或 3.( 4)同理 | x+3|+| x 1| 表示数上有理数x 所的点到 3 和 1 所的点的距离之和,请你找出所有符合条件的整数x,使得 | x+3|+| x﹣1| =4,这样的整数是﹣3、﹣ 2、﹣ 1、 0、 1.(5)由以上探索猜想对于任何有理数 x,| x﹣3|+| x﹣ 6| 是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【解答】解:(1)数轴上表示 5 与﹣ 2 两点之间的距离是 | 5﹣(﹣ 2)| =| 5+2| =7,故答案为: 7;( 2)数轴上表示x 与 2 的两点之间的距离可以表示为| x﹣2| ,故答案为: | x﹣2| ;(3)∵ | x﹣2| =5,∴x﹣2=5 或 x﹣2=﹣5,解得: x=7 或 x=﹣ 3,故答案为: 7 或﹣ 3;( 4)∵| x+3|+| x﹣ 1| 表示数轴上有理数 x 所对应的点到﹣ 3 和 1 所对应的点的距离之和, | x+3|+| x﹣1| =4,∴这样的整数有﹣ 3、﹣ 2、﹣ 1、0、1,故答案为:﹣ 3、﹣ 2、﹣ 1、 0、 1;( 5)有最小值是 3.30.已知 A,B 在数轴上分别表示数a,b.( 1)对照数轴填写下表:( 2)若 A,B 两点间的距离记为d,试问 d 与 a,b 有何数量关系?( 3)在数轴上找到所有符合条件的整数点 P,使它到 5 和﹣ 5 的距离之和为 10,并求出所有这些整数的和.( 4)若数轴上点 C 表示的数为 x,当点 C 在什么位置时,① | x+1| 的值最小?②| x+1|+| x﹣ 2| 的值最小?【解答】解:(1)(2) d=| a﹣ b| ;(3)是﹣ 5,﹣ 4,﹣ 3,﹣ 2,﹣ 1,0,1,2,3,4,5 共 11 个点,和为 0;(4)①点 C 在﹣ 1;②点 C 在﹣ 1 与 2 之间(包括﹣ 1 和 2).31.阅读下列材料并解决有关问题:我们知道,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式| x+1|+| x﹣ 2| 时,可令 x+1=0 和 x﹣ 2=O,分别求得 x=﹣1,x=2(称﹣ 1,2 分别为 | x+1| 与| x﹣ 2| 的零点值).在实数范围内,零点值x=﹣1 和, x=2 可将全体实数分成不重复且不遗漏的如下 3 种情况:(1)x<﹣ 1;(2)﹣ 1≤ x<2;(3)x≥2.从而化简代数式 | x+1|+| x﹣2| 可分以下 3 种情况:(1)当 x<﹣ 1 时,原式 =﹣( x+1)﹣( x﹣ 2) =﹣ 2x+1;(2)当﹣ 1≤x<2 时,原式 =x+1﹣( x﹣2)=3;(3)当 x≥2 时,原式 =x+1+x﹣2=2x﹣1.综上讨论,原式 =.通过以上阅读,请你解决以下问题:(1)分别求出 | x+2| 和| x﹣4| 的零点值;(2)化简代数式 | x+2|+| x﹣4| .【解答】解:(1)| x+2| 和| x﹣ 4| 的零点值分别为x=﹣2 和 x=4.( 2)当 x<﹣ 2 时, | x+2|+| x﹣4| =﹣ 2x+2;当﹣ 2≤x< 4 时, | x+2|+| x﹣ 4| =6;当x≥4 时, | x+2|+| x﹣ 4| =2x﹣2.综上讨论,原式 =.。
数轴、相反数、绝对值专题练习(含答案)
![数轴、相反数、绝对值专题练习(含答案)](https://img.taocdn.com/s3/m/04f05b2b02768e9950e73850.png)
数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。
七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)
![七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)](https://img.taocdn.com/s3/m/4f71be8e77a20029bd64783e0912a21615797f1d.png)
2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。
小学数学相反数与绝对值练习题
![小学数学相反数与绝对值练习题](https://img.taocdn.com/s3/m/5e1f1f4417fc700abb68a98271fe910ef12dae3d.png)
小学数学相反数与绝对值练习题
一、选择题
1. 下列各组数中,哪一组数中的两个数互为相反数?
A. 2,-5
B. -3,6
C. -7,-9
D. 4,4
2. 两个数互为相反数,它们的和是多少?
A. 0
B. 1
C. -1
D. 2
3. -8的相反数是多少?
A. -7
B. 8
C. -8
D. 7
4. 下列各数中哪一个的绝对值最小?
A. -5
B. 0
C. -3
D. 5
5. -12与8的绝对值之和是多少?
A. 4
B. -4
C. 20
D. -20
二、填空题
1. 一个数与它的相反数的和是 ______。
2. -15的相反数是 ______。
3. 一个数的绝对值是它与 ______ 之间的距离。
4. -9与9的绝对值之和是 ______。
三、解答题
1. 请列举两对相反数。
2. 如果一个数的相反数是-7,这个数是多少?
3. 请解释什么是绝对值,并给出一个例子。
四、应用题
小明和小华一起做数学作业。
他们发现小明选的数为-5,小华选的数是5。
他们想知道这两个数的和是多少?请你帮他们计算一下。
五、综合题
小明有5只苹果,他将其中一些苹果送给了小华。
小明送给小华的苹果是-3个,这意味着小明亲手给小华拿走了3个苹果。
请你计算小明现在还剩下几个苹果?
以上是关于小学数学相反数与绝对值的练习题。
1有理数认识、相反数、绝对值50题(题含答案)
![1有理数认识、相反数、绝对值50题(题含答案)](https://img.taocdn.com/s3/m/9c281df019e8b8f67c1cb9cf.png)
有理数认识相反数绝对值57题1、海拔高度是+561米表示__________________,海拔高度是—189米表示_____________2、味精袋上标有“300±5克”字样,+5表示__________________,—5表示_____________还说明这袋味精的质量应该是____~____3、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海报高度为—5米,其中最高处为___地,最低处为____地,最高处与最低处相差_________4、如果点A表示的数是2.2,将点A向左边移动2个单位长度,那么这时点A表示的数是_______,如过再向左移动1.2个单位长度,那么这时点A表示的数是_______,第三次再向右移动15个单位长度,那么这时点A表示的数是________5、数轴上,到原点的距离等于4个单位长度的点所表示的数是_____,它们互为_________6、数轴上与距离原点3个单位长度的点所表示的负数是___,它与表示数1的点的距离为___7、在数轴上,到表示—3的点的距离等于199个单位长度的点所表示的数是___________8、在数轴上,点M表示—7,把点M向左移动5个单位长度到点N,再把N向右移动6个单位长度到点P。
则点P表示的数是______,P点与M点距离是________9、若X的相反数是—5,则X=______;若—X的相反数是—3.7,则X=_______10、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________11、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______12、如果一个数的相反数小于它本身,则这个数为________数13、a+3与—1互为相反数,则a=________14、a—1的相反数是__________,n+1的相反数是_________,—a+b—c的相反数是________15、_____的相反数是它本身,_____的绝对值是它本身,____的倒数是它本身,______的绝对值是它的相反数。
相反数绝对值练习题
![相反数绝对值练习题](https://img.taocdn.com/s3/m/2b02aa3a77c66137ee06eff9aef8941ea66e4b77.png)
相反数绝对值练习题相反数和绝对值选择题:1.B2.B3.C4.B5.B6.B7.A8.A9.A10.B11.D填空题:1.绝对值2.23.-114.相等5.-1或1相反数和绝对值是初中数学中的重要概念。
在解题时,我们需要掌握它们的定义和性质。
选择题:1.已知a≠b,a=-5,|a|=|b|,则b的值为负5.2.一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为m。
3.绝对值相等的两个数在数轴上对应的两点距离为8,则这两个数为正8或负8.4.下列说法中正确的是互为相反数的两数的绝对值相等;一个数的绝对值等于本身,这个数不是负数;若|m|>m,则m若|a|>|b|,则a>b,正确的是。
5.一个数等于它的相反数的绝对值,则这个数为负数或零。
6.已知|a|>a,|b|>b,且|a|>|b|,则a<b。
7.-10,3,π,-3.3的绝对值的大小关系是10>3>|π|>|-3.3|。
8.若|a|>-a,则a>0.9.a的相反数是-a。
10.一个数的相反数小于原数,这个数为负数。
11.一个数在数轴上所对应的点向右移到5个单位长度后,得到它的相反数的对应点,则这个数为负2.填空题:1.在数轴上表示一个数的点,它离开原点的距离就是这个数的绝对值。
2.绝对值为同一个正数的有理数有2个。
3.一个数比它的绝对值小10,这个数是负11.4.一个数的相反数的绝对值与这个数的绝对值的相反数的关系是相等。
5.一个数的绝对值与这个数的倒数互为相反数,则这个数为负1或1.6.若a|b|,则a与b的大小关系是什么?当a与b均为负数时,|a|>|b|,则a>b。
7.绝对值不大于3的整数是什么?其和为多少?绝对值不大于3的整数为-3,-2,-1,0,1,2,3,它们的和为0.8.在有理数中,绝对值最小的数是什么?在负整数中,绝对值最小的数是什么?在有理数中,绝对值最小的数是0.在负整数中,绝对值最小的数是-1.9.设|x|1,若x为整数,则x等于多少?由题可得,1<x<3,且x为整数,所以x=2.10.一个数的倒数是它本身,这个数是什么?一个数的相反数是它本身,这个数是什么?一个数的倒数是1或-1,这个数是1或-1.一个数的相反数是它本身的相反数,即0.11.-5的相反数是什么?-3的倒数的相反数是什么?5的相反数是5.-3的倒数是-1/3,它的相反数是1/3.12.10的相反数是什么?(a-2)的相反数是什么?10的相反数是-10.(a-2)的相反数是-(a-2)。
相反数与绝对值练习题目
![相反数与绝对值练习题目](https://img.taocdn.com/s3/m/2efa03da482fb4daa48d4b9f.png)
相反数与绝对值1. 化简()[]()[]()78758+-----+----2. 数轴上到2的距离小于322个单位长度的非负整数有几个?分别是?3. 若数轴上表示互为相反数的两点之间的距离是8,则这两个数是( )。
4. 在数轴上将点A 向右(正方向)移动10个单位长度,得到它的相反数,则数A 表示( )。
5. 如果a a -=,那么表示a 的点在数轴的什么位置?6. 下列说法正确的是( )A. 若一个数大于它的相反数,则这个数一定是正数B. 如果0=+b a ,那么b a ,一定互为相反数C. 如果一个数的相反数是非负数,那么这个数一定是负数D. 带“十号”和带“一”号的数互为相反数E. 和一个点距离相等的两个点所表示的数-定互为相反数7. 设a 是最小的正整数,b 是最大的负整数,c 的相反数是它本身,则a+b+c=( )8. 若a ,b 互为相反数,那么a+2a+…+50a+50b+…+2b+b=( )9. 已知4-a 与-1互为相反数,则a=( )10. .数轴上A 点表示-5,B ,C 两点所表示的数互为相反数,且点B 到点A 的距离为4,求点B 和点C 对应数11. 若m 、n 互为相反数,x 是最小的非负数,y 是最小的正整数,求(m+n)*y+y -x 的值是12. 已知:有理数m 所表示的点到点3距离4个单位,a, b 互为相反数,且都不为零,c,d 互为倒数.求: 2a+2b -3cd -m 的值.13. 有理数a 、b 在数轴上如图,用>、=或〈填空-a___-b ,b___-a, |a|___b14. 已知a 、b. c 在数轴上的位置如图所示,试求|a|+|c -3|+|b|的值.15. 下列各式的结论成立的是( ) A.若|m|=|n|,则m=n B.若m≥n,则|m|≥|n| c.若m<n<o,则|m|>|n| D.若|ml>|n|,则m>n16. 下列说法正确的是( )A. 如果两个数绝对值相同,那么这两个数一定相同B. 若|a|>0,则a 一定不为零C. 若一个数小于它的绝对值,则这个数是负数D. 数轴上原点及原点左边的点表示非正数E. 一个数的绝对值越大,表示它的点在数轴上距离原点越远17. 若a, b 为有理数,且|a|=2, |b|=3,且a>b,求a+b 的值.18. 若|x -2|+|y+3|+|z -5|=0,计算:(1)x,y;z 的值. (2)求|x|+|y|+|z|的值.。
数的正负数与绝对值练习题及答案
![数的正负数与绝对值练习题及答案](https://img.taocdn.com/s3/m/ca2be1f7f021dd36a32d7375a417866fb84ac006.png)
数的正负数与绝对值练习题及答案一、选择题1. 小明走了-5步,小红走了7步。
他们中哪个走得更远?A. 小明B. 小红C. 一样远2. 将-8与2的和的绝对值记作a,-5与-3的和的绝对值记作b,那么a与b之间的关系是:A. a > bB. a < bC. a = b3. 下列数中哪个是正数?A. -2B. 0C. 34. -4与-9的和与它们的绝对值之和相等吗?A. 相等B. 不相等5. -3与2哪个数是正数?A. -3B. 2C. 都不是6. 将-5与-4的和记作x,-7与-1的和的相反数为y,则x与y之间的关系是:A. x > yB. x < yC. x = y7. -12与10的和的相反数是多少?A. -22B. 2C. -28. 将-9与-3的和的相反数与-2的和是多少?A. -10B. -8C. 6二、填空题9. 两个相反数的和为___。
10. 两个正数的和一定是___。
11. 两个非零的数的和是正数,那么它们的符号是___。
12. 两个断的和是负数,那么它们的符号是___。
13. 7与它的相反数的差是___。
三、解答题14. 求-5与-3的和,并将结果用数轴表示出来。
15. 两个正数的差是-4,其中一个数是8,求另一个数。
16. 求-10与-2的和的绝对值。
17. -3与1/2哪个数的绝对值更大?并用数轴表示出来。
答案:1. A2. A3. C4. 不相等5. 26. C7. 28. -89. 010. 正数11. 正号12. 负号13. 014. -8,结果如数轴所示(标注-5与-3之间的点)15. 另一个数是1216. 1217. -3的绝对值更大,结果如数轴所示。
绝对值与相反数练习题
![绝对值与相反数练习题](https://img.taocdn.com/s3/m/062db2a918e8b8f67c1cfad6195f312b3169ebbc.png)
绝对值与相反数练习题绝对值与相反数练习题数学是一门让人既爱又恨的学科。
有时候,我们可以轻松地解决问题,但有时候也会被一些概念和计算困扰。
其中,绝对值和相反数是我们在数学中经常遇到的概念之一。
本文将通过一些练习题来帮助我们更好地理解和应用绝对值和相反数。
练习题一:计算绝对值1. |-5| = ?2. |8| = ?3. |-3| = ?4. |0| = ?5. |-10| = ?解答:1. |-5| = 52. |8| = 83. |-3| = 34. |0| = 05. |-10| = 10练习题二:判断绝对值大小1. 比较 |-7| 和 |5| 的大小。
2. 比较 |-2| 和 |-9| 的大小。
3. 比较 |-4| 和 |-4| 的大小。
5. 比较 |-6| 和 |6| 的大小。
解答:1. |-7| = 7,|5| = 5,7 > 5。
2. |-2| = 2,|-9| = 9,2 < 9。
3. |-4| = 4,|-4| = 4,4 = 4。
4. |1| = 1,|-1| = 1,1 = 1。
5. |-6| = 6,|6| = 6,6 = 6。
练习题三:计算相反数1. 相反数是什么意思?2. 5的相反数是多少?3. -8的相反数是多少?4. 0的相反数是多少?5. -15的相反数是多少?解答:1. 相反数指的是一个数与它的相反数相加等于0。
2. 5的相反数是-5。
3. -8的相反数是8。
4. 0的相反数是0。
5. -15的相反数是15。
练习题四:综合运用绝对值和相反数1. 计算 |-6| + |4| 的值。
3. 计算 |-2| + |-7| 的值。
4. 计算 |-5| - |2| 的值。
5. 计算 |-10| + |-10| 的值。
解答:1. |-6| = 6,|4| = 4,6 + 4 = 10。
2. |-9| = 9,|-3| = 3,9 - 3 = 6。
3. |-2| = 2,|-7| = 7,2 + 7 = 9。
七年级数学上册相反数与绝对值练习题(进阶篇)
![七年级数学上册相反数与绝对值练习题(进阶篇)](https://img.taocdn.com/s3/m/5cf80f80f021dd36a32d7375a417866fb94ac04d.png)
七年级数学上册相反数与绝对值练习题
(进阶篇)
1. 相反数练题
1. 求下列数的相反数:
a) -3
b) 5
c) -7
d) 12
2. 如果一个数的相反数是15,这个数是多少?
3. 如果两个数的和为0,它们互为相反数。
找出与下列数互为相反数的数:
a) 9
b) -2
c) 0
4. 如果一个数的相反数是它自身的2倍,这个数是多少?
2. 绝对值练题
1. 求下列数的绝对值:
a) 4
b) -9
c) 0
d) -2.5
2. 如果一个数的绝对值是25,这个数可能是多少?
3. 绝对值是正数,求下列数的绝对值所代表的数的符号:
a) -6
b) 0
c) 3
4. 如果两个数的绝对值相等,它们有可能是相反数吗?
3. 相反数与绝对值综合练题
1. 求下列数的相反数,并计算其绝对值:
a) 10
b) -15
c) 7
d) -3.5
2. 如果一个数的相反数的绝对值是20,这个数可能是多少?
3. 互为相反数且绝对值相等的两个数是什么?
4. 如果一个数的相反数的绝对值是它自身的2倍,这个数是多少?
以上是七年级数学上册相反数与绝对值的进阶练习题。
希望能
够帮助你巩固理解和运用相反数与绝对值的概念。
如果有任何问题,请随时向我提问。
祝你学习顺利!。
绝对值与相反数练习题
![绝对值与相反数练习题](https://img.taocdn.com/s3/m/f9db13b7f9c75fbfc77da26925c52cc58ad69070.png)
绝对值与相反数练习题一、选择题1. 绝对值的定义是:A. 一个数的平方B. 一个数的立方C. 一个数距离0的距离D. 一个数的倒数2. 相反数的定义是:A. 一个数的平方B. 一个数的立方C. 一个数的绝对值D. 一个数的符号相反的数3. 计算|-5|的结果是:A. 5B. -5C. 0D. 14. 如果a=-3,那么-a的值是:A. 3B. -3C. 0D. 15. 绝对值的性质不包括:A. 非负性B. 唯一性C. 可加性D. 可乘性二、填空题6. 绝对值|-8|等于______。
7. 相反数-(-4)等于______。
8. 如果一个数的绝对值是5,那么这个数可以是______或______。
9. 绝对值最小的数是______。
10. 如果x=-2,那么|x|=______。
三、判断题11. 绝对值总是正数或0。
()12. 任何数的相反数都是唯一的。
()13. 0的绝对值是0。
()14. 两个相反数的绝对值相等。
()15. 绝对值不改变一个数的符号。
()四、计算题16. 计算下列各数的绝对值:- 3.5- 0- -717. 计算下列各数的相反数:- 4.5- -2- 018. 已知a=-7,b=-3,求|a-b|的值。
19. 如果|x-3|=4,求x的值。
20. 已知|a|=5,|b|=3,且a>b,求a和b的可能值。
五、解答题21. 解释绝对值的几何意义,并给出一个例子。
22. 解释相反数的几何意义,并给出一个例子。
23. 讨论绝对值和相反数在数学中的重要性。
24. 给出一个实际生活中使用绝对值或相反数的例子。
25. 讨论绝对值和相反数在解决实际问题中的应用。
六、拓展题26. 如果一个数的绝对值是它自己的相反数,这个数是什么?27. 讨论绝对值在不等式中的应用。
28. 讨论绝对值和相反数在复数系统中的表现。
29. 给出一个证明,证明绝对值函数是连续的。
30. 讨论绝对值和相反数在向量运算中的应用。
(完整版)相反数和绝对值经典练习题
![(完整版)相反数和绝对值经典练习题](https://img.taocdn.com/s3/m/cbd1211fae45b307e87101f69e3143323968f5a9.png)
(完整版)相反数和绝对值经典练习题1. 计算以下数的相反数:-12 ______________25 _______________-3 ________________0 ________________2. 计算以下数的绝对值:-10 ______________15 _______________-2 _______________0 ________________3. 求以下数的相反数和绝对值:-8 _______________-18 ______________23 _______________0 _______________4. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。
相反数:______________绝对值:______________5. 如果一个数的相反数比它本身的绝对值大6,求这个数是多少。
这个数是:____________6. 如果一个数的绝对值比它本身的相反数大3,求这个数是多少。
这个数是:____________7. 如果一个数的相反数比它本身的绝对值小4,求这个数是多少。
这个数是:____________8. 如果一个数的绝对值比它本身的相反数小2,求这个数是多少。
这个数是:____________9. 小明的体重是x公斤,小红的体重是x的绝对值的两倍加1公斤。
如果x = -5,请计算小明和小红的体重。
小明的体重:____________小红的体重:____________10. 已知一个数的相反数比它本身大9,求这个数。
这个数是:____________参考答案如下:(完整版)相反数和绝对值经典练题1. 计算以下数的相反数:-12 1225 -25-3 30 02. 计算以下数的绝对值:-10 1015 15-2 20 03. 求以下数的相反数和绝对值:-8 8-18 1823 -230 04. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。
北师大版七年级数学上册相反数与绝对值--练习题
![北师大版七年级数学上册相反数与绝对值--练习题](https://img.taocdn.com/s3/m/f4dfa00b5627a5e9856a561252d380eb62942399.png)
北师大版七年级数学上册相反数与绝对值--练习题北师大版七年级数学上册相反数与绝对值--练题一、选择题1、绝对值等于它本身的数有()。
A、个;B、1个;C、2个;D、无数个。
2、下列说法正确的是()。
A、—|a|一定是负数;B、只有两个数相等时它们的绝对值才相等;C、若|a|=|b|,则a与b互为相反数;D、若一个数小于它的绝对值,则这个数为负数。
3、若有理数在数轴上的对应点如下图所示,则下列结论中正确的是()。
A、a>|b|;B、a|b|;D、|a|<|b|。
4、如果a>0,则的取值范围是()。
A.>0;B.≥0;C.≤0;D.<0.5、下列各数中,互为相反数的是()。
A、│和-B、│-│和-;C、│-│和;D、│-│和。
6、下列说法错误的是()。
A、一个正数的绝对值一定是正数;B、一个负数的绝对值一定是正数;C、任何数的绝对值都不是负数;D、任何数的绝对值一定是正数。
7、│a│=-a,a一定是()。
A、正数;B、负数;C、非正数;D、非负数。
8、下列说法正确的是()。
A、两个有理数不相等,则这两个数的绝对值也一定不相等;B、任何一个数的相反数与这个数一定不相等;C、两个有理数的绝对值相等,则这两个有理数不相等;D、两个数的绝对值相等,且符号相反,则这两个数是互为相反数。
9、-│a│=-3.2,则a是()。
A、3.2;B、-3.2;C、 3.2;D、以上都不对。
10、如果2a2a,则a的取值范围是()。
A.a>0;B.a≥0;C.a≤0;D.a<0.11、若│a│=8,│b│=5,且a+b>0,则a-b的值是(。
)。
A.3或13;B.13或-13;C.3或-3;D.-3或-13.12、a<0时,化简结果为(。
)。
3a2A.0;B.-1;C.-2a;D.-3.13、如果2a2a,则a的取值范围是()。
A.a>0;B.a≥0;C.a≤0;D.a<0.二、判断题1、-|a|=|a|;(错误)。
(完整word版)相反数和绝对值经典练习题(word文档良心出品)
![(完整word版)相反数和绝对值经典练习题(word文档良心出品)](https://img.taocdn.com/s3/m/2e01a25b2af90242a895e583.png)
相反数和绝对值练习题一、填空题1. 如a = +2.5,那么,-a = 如果-a= -4,则a= 2. 如果 a,b 互为相反数,那么2a+2b = 61a+61b= )(b a +π=3. ―(―2)= ; 与―[―(―8)]互为相反数. 4. 如果a 的相反数是最大的负整数,b 的相反数是最小的正整数,a+b= .5. a - b 的相反数是 .6. 如果 a 和 b 是符号相反的两个数,在数轴上a 所对应的数和 b 所对应的点相距6个单位长度,如果a=-2,则b 的值为 .7. 在数轴上与表示3的点的距离等于4的点表示的数是_______.8. 若一个数的绝对值是它的相反数,则这个数是_______.9. 若a ,b 互为相反数,则|a|-|b|=______.10.若,3=x 则_____=x ;若,3=x 且0<x ;则_____=x ;若,3=x 且0>x ,则_____=x ;11. 若,0>a 则____=a ;若,0<a 则____=a ;若,0=a 则____=a ;12. 若a 为整数,|a|<1.999,则a 可能的取值为_______.13. 若,5-=x 则_____=x ;若,5--=x 则_____=x ;若0>x ,则______=x x;若0<x ,则______=x x。
14. ,11a a -=-则a 的取值范围是 15. 210--x 的最小值为16. 若04312=-+-y x ,则=+y x17. 如果a=b,那么a与b的关系是18. 绝对值等于它本身的有理数是,绝对值等于它的相反数的数是19. │x│=│-3│,则x= ,若│a│=5,则a=20. 12的相反数与-7的绝对值的和是21. 下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数22. 下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
《数轴、相反数、绝对值》专题练习(含答案)
![《数轴、相反数、绝对值》专题练习(含答案)](https://img.taocdn.com/s3/m/b887053f08a1284ac950434c.png)
《数轴、相反数、绝对值》专题练习一、选择题(每小题3分,共30分)1.-5的绝对值为 ( )A .-5B .5C .-15D .152.-18的相反数是 ( )A .-8B .18 C .0。
8 D .83.在下面所画的数轴中,你认为正确的数轴是 ( )4.下列说法正确的是 ( )A .正数与负数互为相反数B .符号不同的两个数互为相反数C .数轴上原点两旁的两个点所表示的数互为相反数D .任何一个有理数都有它的相反数5.数轴上的点A ,B 位置如图所示,则线段AB 的长度为 ( )A .-3B .5C .6D .76.若a =7,b =5,则a -b 的值为 ( )A .2B .12C .2或12D .2或12或-12或-27.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A . a +b =0B . b <aC . a b >0D . |b |<|a |8.下列式子不正确的是 ( )A .44-=B .1122= C .00= D . 1.5 1.5-=-9.如果有理数a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于它本身的数,那么式子a-b+c2-d的值是()A.-2 B.-1 C.0 D.110.如果abcd<0,a+b=0,cd〉0,那么这四个数中的负因数至少有() A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-112的相反数是______;-2是______的相反数;_______与110互为倒数.13.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使1x =x-1成立,你写出的x的值是______.17.若x,y是两个负数,且x〈y,那么x_______y.18.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,若a〉b>c,则该数轴的原点O的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-135,-(+6。
相反数和绝对值练习题
![相反数和绝对值练习题](https://img.taocdn.com/s3/m/a67882b4195f312b3169a5c2.png)
相反数和绝对值练习题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】2013级初一代数练习题(三) 1、若x =—x ,则x 一定是( ) A 、正数 B 、负数 C 、非正数 D 、非负数2、下列说法正确的是( )A 、一个数的绝对值的相反数一定不是负数B 、一个数的绝对值的相反数是负数C 、一个数的绝对值一定是正数D 、一个数的绝对值的一定是非负数 3、下列结论正确的是( )A 、a 一定是正数B 、—c 一定是负数C 、—a -一定是正数D 、—a 一定是非正数4、如果a +b =0,则a 与b 的大小关系是( )A 、a=b=0B 、a 与b 不相等C 、a 与b 互为相反数D 、a 、b 异号 5、下列说法不正确的是( )A 、如果a 的绝对值比它本身大,则a 一定是负数B 、如果两个数不等,则它们的绝对值也必不相等C 、两个负有理数,绝对值大的离原点远D 、两个负有理数,大的离原点近6、如果a =5,b =2,试求3a+2b 的值7、已知2a -+4b -=0,求2a+3b 的值8、绝对值不大于6的非正整数有 。
9、若a<0,b<0,且a <b ,那么a 、b 的大小关系是 。
10、若b<a<0,则-a b ,a -b ,11、如果a >0,那么( ) A 、a 为任意有理数 B 、a 一定不等于0C 、a 必为正数D 、a 必为负数12、下列各式的结论,正确的是( )A 、若m =n ,则m=nB 、若m>n ,则m >nC 、若m >n ,则m>nD 、若m<n<0,则m >n13、若有理数a 、b 在数轴的对应位置如) b a 0A 、b >—aB 、a >—bC 、b >aD 、a >b14、已知a 、b 为有理数,且a<0,b>0,a >b ,试比较a 、b 、—a 、—b 的大小,并用“<”连接。
完整版绝对值与相反数的练习题.doc
![完整版绝对值与相反数的练习题.doc](https://img.taocdn.com/s3/m/0e7e57dab84ae45c3a358c1a.png)
绝对值与相反数的练习题一、选择题1.绝对值等于其相反数的数一定是( )A.负数B.正数C.负数或零D.正数或零2.若│x│+x=0,则x一定是()A.负数B.0 C.非正数D.非负数3、绝对值最小的有理数的倒数是()A. 1 B、-1 C、0 D、不存在4、在有理数中,绝对值等于它本身的数有()A、1个B、2个C、3个D、无数多个5、下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数6、│a│= -a, a一定是()A、正数B、负数C、非正数D、非负数7、下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数8、-│a│= -3.2,则a是()A、3.2B、-3.2 C 3.2或-3.2 D、以上都不对9、|x-1|+|x-2|+|x-3|的最小值为( )A、1B、2C、3D、410、若a、b互为相反数,c、d互为倒数,且m的绝对值为2,求为()A、1B、-1C、2D、-2二,填空题1.绝对值最小的数是_____.2.若b<0且a=|b|,则a与b的关系是______.3.一个数大于另一个数的绝对值,则这两个数的和一定_____0(填“>”或“<”).4.如果|a|>a,那么a是_____.5.如果-|a|=|a|,那么a=_____.6.已知|a|+|b|+|c|=0,则a=_____,b=_____,c=_____.7.一个正数增大时,它的绝对值_____,一个负数增大时,它的绝对值_____.(填增大或减小)8、绝对值等于它本身的有理数是_____,绝对值等于它的相反数的数是_____.9、│x│=│-8│,则x=_____,若│a│=9,则a=_____三.解答题1.如果|a|=4,|b|=3,且a>b,求a,b的值.2、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;3、若︳2x-1︳与︳3y-4︳互为相反数,求y-x的值4、│a-2│+│b-3│+│c-4│=0,则a+2b+3c的值四、去掉下列各数的绝对值符号:(1)若x<0,则|x|=________________;(2)若a<1,则|a-1|=_______________; (3)已知x>y>0,则|x+y|=________________; (4)若a>b>0,则|-a-b|=__________________.五、比较-(-a)和-|a|的大小关系。
相反数和绝对值含答案
![相反数和绝对值含答案](https://img.taocdn.com/s3/m/1ec62c32f342336c1eb91a37f111f18582d00c7e.png)
相反数和绝对值1.对于有理数a,下面的3个说法中:①﹣a表示负有理数;②|a|表示正有理数;③a与﹣a 中,必有一个是负有理数.正确说法的个数有()A.0个B.1个C.2个D.3个2.π﹣3.14的相反数是()A.0B.﹣π﹣3.14C.π+3.14D.3.14﹣π3.若m,n互为相反数,则下列各组数中不是互为相反数的是()A.﹣m和﹣n B.5m和5n C.m+1和n﹣1D.m+1和n+14.相反数是最大负整数的数是()A.1B.﹣1C.0D.25.已知a是有理数,则下列判断:①a是正数;②﹣a是负数;③a与﹣a必然有一个负数;④a与﹣a互为相反数.其中正确的个数是()A.1个B.2个C.3个D.4个6.与a﹣b互为相反数的是()A.b﹣a B.a﹣b C.﹣a﹣b D.a+b7.如果a与1互为相反数,则a+2等于()A.2B.﹣2C.1D.﹣18.下列各对数中互为相反数的是()A.﹣(+8)和+(﹣8)B.+(﹣8)和﹣8C.﹣(+8)和﹣8D.﹣(﹣8)和+(﹣8)9.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是()A.5或﹣5B.5或−52C.52或−52D.﹣5或5210.a表示非负有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等11.式子﹣2a+b﹣c的相反数是()A.2a+b﹣c B.﹣2a﹣b+c C.2a﹣b﹣c D.2a﹣b+c12.下列各代数式:①a﹣b与﹣a﹣b;②a+b与﹣a﹣b;③a+1与1﹣a;④﹣a+b与a﹣b.其中互为相反数的有()A.①②B.②④C.②③④D.①②③④13.如果a与6互为相反数,那么﹣(﹣a)的值为()A.6B.﹣6C.16D.−1614.若|ab|=ab,则下一定正确的是()A.ab>0B.ab<0C.ab≥0D.ab≤015.a、b是有理数,且|a|=﹣a,|b|=b,|a|>|b|,用数轴上的点来表示a、b,正确的是()A.B.C.D.16.已知|a|=5,|b|=4,且a+b<0,则a﹣b的值是()A.9或1B.﹣1或﹣9C.9或﹣1D.﹣9或117.若|a|=5,|b|=6,且a>b,则a+b的值为()A.﹣1或11B.1或﹣11C.﹣1或﹣11D.1118.若|﹣7|=﹣a,则a的值是()A.7B.﹣7C.17D.−1719.对于任意有理数a,下列式子中取值不可能为0的是()A.|a+1|B.|﹣1|+a C.|a|+1D.1﹣|a| 20.若a与2互为相反数,则|a+3|是()A.5B.1C.﹣1D.﹣5 21.下列说法正确的是()A.若|a|=|b|,则a=b B.若|a|=|b|,则a=b或a=﹣b C.若a<b,则|a|<|b|D.若|a|=|b|,则a>b22.当3<a<4时,化简|a﹣3|+|a﹣4|=()A.1B.2a﹣7C.﹣1D.1﹣2a23.a、b为非零有理数式子|a|a+|b|b的值不可能的是()A.2B.﹣2C.1D.0 24.适合|a+5|+|a﹣3|=8的整数a的值有()A.4个B.5个C.7个D.9个25.绝对值小于3.2的整数有( )个.A .3B .4C .5D .726.化简|x−2|x−2−|2−x|2−x 的结果是( )A .0B .2C .﹣2D .2或﹣227.已知x <﹣2,则|x +2|﹣|1﹣x |等于( )A .1B .﹣3C .2x +1D .﹣2x ﹣128.若|m ﹣2|+|n ﹣7|=0,则|m +n |=( )A .2B .7C .8D .929.如果m 是有理数,代数式|5m ﹣6|+1的最小值是( )A .0B .1C .﹣1D .没有最小值30.当a ,b 满足 _______的时候,﹣|a ﹣b |+7有最 _______(填大或小)值为 _______.()A .a =b ,大,7B .a =b ,小,7C .a =﹣b ,大,7D .a =﹣b ,小,7相反数和绝对值参考答案1.A; 2.D; 3.D; 4.A; 5.A; 6.A; 7.C; 8.D; 9.C; 10.D;11.D;12.B;13.B;14.C;15.A;16.B;17.C;18.B;19.C;20.B;21.B;22.A;23.C;24.D;25.D;26.D;27.B;28.D;29.B;30.A;。
数轴、相反数、绝对值提高试题(完整资料).doc
![数轴、相反数、绝对值提高试题(完整资料).doc](https://img.taocdn.com/s3/m/7d907e4cc8d376eeafaa3153.png)
【最新整理,下载后即可编辑】数轴、相反数、绝对值提高试题1、设a是最小的自然数,b是最大的负整数。
c是绝对值最小的有理数,则a b c++的值为() A -1 B 0 C 1D 22、下列说法正确的是()A整数就是正整数和负整数B负整数的相反数就是非负整数C有理数中不是负数就是正数D零是自然数,但不是正整数3、a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<b D -b<b<-a<a4、若m n n m-=-,且4m=,3n=,则2()m n+=.5、绝对值大于1而小于4的整数有个;6、已知有理数a,b在数轴上的位置如图所示,那么a,b,-a,-b的大小关系是。
(用“>”连结)三、解答题1、已知1,5==ba,且abba-=-,求a和b的值?2、求|110-111|+|111-112|+…|149-150|的值.3、化简│1-a │+│2 a +1│+│a │ (2-<a ).4、3m —4的相反数是—11,则求m 2-3m+1的值。
5、已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0.求式子4422++-+c a c ab 的值.6、若3+-y x 与1999-+y x 互为相反数,求y x y x -+的值。
7、若x>0,y<0,求32---+-x y y x 的值。
8、如果规定符号“@”的意义是a @b =ab a b +, (1) 求2@(3)-的值。
(2) 求2@(3)-@4的值。
9、计算:1+2-3—4+5+6—7—8+9+10—11—12+…+2005+2006-2007—200810、有若干个数,第一个数记为a 1,第二个数记为a 2,…,第n 个数记为a n 。
若a 1=21,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相反数和绝对值练习题
一、填空题
1. 如 a = +
2.5, 那么 , - a =
如果- a= -4,则 a=
2. 如果 a,b 互为相反数 , 那么 2a+2b =
1 a+ 1
b=
(a
b) =
3. ― ( ― 2)=
;
6
6
与―[― ( ―
8) ]互为相反数 .
4. 如果 a 的相反数是最大的负整数
,b 的相反数是最小的正整数 ,a+b=.
5. a - b 的相反数是 .
6. 如果 a
和 b 是符号相反的两个数
, 在数轴上 a 所对应的数和 b 所对应的点相距
6 个单位
长度 , 如果 a=- 2, 则 b 的值为 .
7. 在数轴上与表示 3 的点的距离等于 4 的点表示的数是 _______.
8. 若一个数的绝对值是它的相反数,则这个数是 _______.
9. 若 a , b 互为相反数,则 |a|-|b|=______ .
10. 若 x 3, 则 x _____ ;若 x 3, 且 x 0 ;则 x _____ ;若 x
3, 且 x 0 ,则
x _____ ;
11. 若 a
0,则 a ____ ;若 a 0, 则 a ____ ;若 a 0, 则 a ____ ;
12. 若 a 为整数, |a|<1.999 ,则 a 可能的取值为 _______.
13. 若 x 5, 则 x _____ ;若 x
5 ,则 x _____ ;若 x 0,则
x
0 ,则
x ______ ;若 x
______ 。
x
x
14.
a 1 1 a, 则 a 的取值范围是
15.
x 10 2 的最小值为
16. 若 2x 1 3y 4 0 ,则 x y
17.如果 a = b ,那么a与b的关系是
18.绝对值等于它本身的有理数是,绝对值等于它的相反数的数是
19.│ x│ =│- 3│ , 则 x=,若│ a│ =5, 则 a=
20.12 的相反数与- 7 的绝对值的和是
21.下列说法错误的是()
A、一个正数的绝对值一定是正数
B、一个负数的绝对值一定是正数
C、任何数的绝对值都不是负数
D、任何数的绝对值一定是正数
22.下列说法正确的是()
A、两个有理数不相等,那么这两个数的绝对值也一定不相等
B、任何一个数的相反数与这个数一定不相等
C、两个有理数的绝对值相等,那么这两个有理数不相等
D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
23.-│ a│ =- 3.2 ,则 a 是()
A、 3.2
B、- 3.2
C、 3.2
D、以上都不对
24.一个数的绝对值等于它本身,则这个数是()
A正数B负数C非正数D非负数
三、解答题
25.已知│ x+y+3│ =0, 求│ x+y│的值。
26.已知│ a- 2│ +│ b- 3│ +│c- 4│ =0, 求 a+2b+3c 的值。
27.如果a,b互为相反数,c,d 互为倒数, x 的绝对值是1,求代数式a b
+x2+cd的值。
x
28.已知│ a│ =3,│ b│ =5,a与b异号,求│ a-b│的值。
29. 已知 a、 b 都是有理数,且A.负数; B. 正数;|a|=a,|b|≠ b, 则 ab 是(
C. 负数或零;
)
D. 非负数
30.已知 |x|= 3,|y|= 2,且xy< 0,则x+y的值等于()
A . 5 或- 5B. 1 或- 1 C .5 或1D.- 5 或- 1
31.已知: a、 b、 c 都不等于0,则的可能取值是
32.下列说法中,正确的是((A) |-a|是正数(B)|-a|
).
不是负数( C) -|a|是负数( D)不是正数。