量子力学_第一章_周世勋
量子力学第二版(周世勋)
2µ
2µ
= qBnη = nB ⋅ qη
2µ
2µ
= nBNB ,
其中, M B
=
qη 2µ
是玻尔磁子,这样,发现量子化的能量也是等间隔的,而且
具体到本题,有
∆E = BM B
根据动能与温度的关系式
∆E = 10 × 9 × 10−24 J = 9 × 10−23 J
E = 3 kT 2
以及
1k ⋅ K = 10−3 eV = 1.6 × 10−22 J
∂ ∂r
(1 eikr ) − r
1 eikr r
∂ ∂r
(1 r
e
−ikr
ρ )]r0
=
iη [1 (− 2m r
1 r2
+ ik 1) − 1 (− rr
1 r2
−
ik
1 r
)]ρr0
可见,
ρ J2
=
−
ηk mr 2
ρr0
=
−
ηk mr 3
ρr
与rρ反向。表示向内(即向原点) 传播的球面波。
补充:设ψ (x) = eikx ,粒子的位置几率分布如何?这个波函数能否归一化?
1.3 氦原子的动能是 E = 3 kT (k 为玻耳兹曼常数),求 T=1K 时,氦原子的德布罗意波 2
长。
解 根据
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建
知本题的氦原子的动能为
1k ⋅ K = 10−3 eV ,
E = 3 kT = 3 k ⋅ K = 1.5 ×10−3 eV , 22
解 关于两个光子转化为正负电子对的动力学过程,如两个光子以怎样的概率转化为正 负电子对的问题,严格来说,需要用到相对性量子场论的知识去计算,修正当涉及到这个过 程的运动学方面,如能量守恒,动量守恒等,我们不需要用那么高深的知识去计算,具休到 本题,两个光子能量相等,因此当对心碰撞时,转化为正风电子对反需的能量最小,因而所 对应的波长也就最长,而且,有
周世勋量子力学习题答案(七章全)
−
h2 2μ
d2 ψ dx2
(x)
+ U (x)ψ
(x)
=
Eψ
6.62559 ×10−34 × 2.997925 ×108 1.380546 ×10−23
= 2.898 ×10−3 m ⋅ k
[注]
ρν
根据
=
8πhν 3 c3
1
hν
e kT − 1
可求能量密度最大值的频率:
x = hν
令
kT
ρν
=
Ax3
1 ex −1
(
A
=
8πk 3T c3h2
3
)
dρν dν
球面波。
2.3 一粒子在一维势场
⎧∞ U (x) = ⎪⎨0
⎪⎩∞
x<0 0≤ x≤a x>a
中运动,求粒子的能级和对应的波函数。
[解]:由于势函数U (x) 不随时间变化
体系的状态波函数满足定态 Schrödinger 方程
0
a
− h2 ∇2ψ (x) + U (x)ψ (x) = Eψ (x) 2m
vj = ih [ψ (rv)∇ψ *(rv) −ψ *(rv)∇ψ (rv)] 则有: 2μ 即 vj 仅是空间坐标 (x, y, z) 的函数,与时间无关。
2.2 由下列两定态波函数计算几率流密度。
(1)
ψ1
=
1 r
eikr
ψ
(2)
2
=
1 e−ikr r
从所得结果说明ψ1 表示向外传播的球面波,ψ 2 表示向内(即向原点)传播的球面波。
m
= 2.43 ×10−12 m = 2.43 ×10−2 A°
《量子力学教程》周世勋课后答案
量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
周世勋量子力学习题及解答
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫ ⎝⎛-⋅+--⋅=-kThc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学(周世勋)Chap1
1 e
hc kT
1
k和c 分别是玻尔兹曼常数和光速。
h=6.62610-34焦耳。
2.光电效应
光电效应的实验规律及经典理论的困难 饱和光电流强度与 入射光强度成正比。 或者说:单位时间内从 金属表面逸出的光电子 数目与入射光强成正比 I IS 3 2 1
G
U
U0
0
U
相同频率,不同入射光强度
( 7)
p 对于光子, h / c, p h / c 则
h 2 p p pp cos cos c
代入式(7),可解出
或
h 1 2 (1 cos ) mc
( 8)
1 1 h [1 (1 cos )] 2 mc
利用 c / , c / 上式改写成
h (1 cos ) mc
令
(9)
0 h 2 ( c 2.43 10 A (电子的Compton波长) 10) mc
c (1 cos )
c (1 cos )
最为突出的事例: 1846年海王星的发现. 1864年麦克斯韦预言电磁波. 经典物理的成就达到了登峰造 极的程度.
当时物理学家们的世界图样:
物质粒子 + 电磁场 = 世界
物质粒子的运动由经典力学描述
电磁场运动由经典电磁学描述.
带电粒子与电磁场相互作用是 洛仑兹力.
二.经典物理学的困难
19世纪末物理学上空的乌云: 黑体辐射的能量密度随波长的分布.
经典理论的困难:
* 经典认为光强越大,饱和电流应该越大,光电子的 初动能也越大。但实验上光电子的初动能仅与频率 有关而与光强无关。
周世勋量子力学习题及解答
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学教程-周世勋-第一章基础
一部分就是电子离开金属表面后的功能。这个能量关系式可以写为:
1 m 2
2
= hυ − w0
为电子脱出金属表面后的运动速度。 w0 为电子脱出金属表面所需要作
其中 m 为电子质量。
的功,称为脱出功。 w0 的大小与材料有关。显然只有当 hυ 大于 w0 时才有光电子产生。 ,光的频率 决定光子的能量,光的强度只决定光子的数目。光子的数目越多,此产生的光电子也越多。这样, 经典理论所不能解释的光电效应便得到了说明。必须注意,自由电子不可能吸收单个光子,这是由 于不能同时满足能量守恒与动量守恒之故。 2 光子 相对论中,质能关系式为:
ρυ dυ = c1υ 3e
− c2
dυ
(1.2-2)
公式(1.2-2)只在辐射频率较高(波长较短)时与实验符合,而在频率较低时与实验不符。 设光波的波点为 k = k1υ + k2 j + k3 k , L1 , L2 , L3 为长方体沿 υ , j , k 方向的三条边,且满足下述 周期性边界条件:
( hυ ) 2 = k
e kT − 2 + e
hυ
1 T2
−
hυ kT
1 (hυ ) 2 2T 2 = k ch hυ − 1 kT
应用洛毕达(L’Hospital,G..F.)法则得:
1 1 2 k T k 1 k lim 2T = lim = lim( ) = ( )2 T →∞ T →∞ hυ hυ hυ T →∞ hυ hυ hυ −1 ch sh ch kT kT kT 1 2 k 1 lim 2T = lim( ) 2 =0 T →0 T → 0 hυ hυ hυ −1 ch ch kT kT
C 以致可将 C 视为无限大时,则用非相对论也就可以了。
量子力学答案完整版周世勋第三版
找了好久才找到的,希望能给大家带来帮助量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b 〔常量〕;并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, 〔1〕以及 c v =λ, 〔2〕λρρd dv v v -=, 〔3〕有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
此题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kT hc e kT hc e hc λλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5第一章绪论这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体〔如遥远星体〕的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
量子力学标准答案完整版周世勋第三版
找了好久才找到的,希望能给大家带来帮助量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kT hc e kT hc e hc λλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ﻩ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5第一章绪论这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x =4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV,求其德布罗意波长。
《量子力学教程》周世勋课后答案
量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学+周世勋(全套课件)
(2)光电效应
光照射到金属上,有电子从金属上逸出的现象。 这种电子称之为光电子。试验发现光电效应有 两个突出的特点:
•1. 临界频率 v0 只有当光的频率大于某一定值 v0 时, 才有光电子发射出来。若光频率小于该值时,则不论 光强度多大,照射时间多长,都没有电子产生。光的 这一频率v0称为临界频率。 •2. 电子的能量只是与光的频率有关,与光强无关,光 强只决定电子数目的多少。光电效应的这些规律是经典 理论无法解释的。按照光的电磁理论,光的能量只决定 于光的强度而与频率无关。
(三)Compton 散射 -光的粒子性的进一步证实。
8h 3 1 d d 3 C exp(h / kT ) 1
•(1)当 v 很大(短波)时,因为 exp(hv /kT)-1 ≈ exp(hv /kT), 于是 Planck 定律 化为 Wien 公式。
8h 3 d C3 1 exp(h / kT ) 1 d
•这就是著名的巴尔末公式(Balmer)。以后又发现了一 系列线系,它们都可以用下面公式表示:
1 1 RH C 2 2 n m n m
氢原子光谱 谱系 Lyman Balmer Paschen Brackett Pfund m 1 2 3 4 5 n 2,3,4,...... 3,4,5,...... 4,5,6,...... 5,6,7,...... 6,7,8,...... 区域 远紫外 可见 红外 远红外 超远红外
(二)经典物理学的困难
但是这些信念,在进入20世纪以后, 受到了冲击。经典理论在解释一些新 的试验结果上遇到了严重的困难。 (1)黑体辐射问题 (2)光电效应 (3)氢原子光谱
周世勋量子力学习题及解答
量子力学习题及解答 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:如果令x=kThcλ ,则上述方程为 这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有把x 以及三个物理常量代入到上式便知这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有 在这里,利用了 以及 最后,对作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学周世勋第二版课后习题解答第1章
1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 03109.2 ,⋅⨯==-λ。
证明:由普朗克黑体辐射公式:ννπνρννd e c h d kT h 11833-=, 及λνc =、λλνd c d 2-=得 1185-=kT hc e hc λλλπρ, 令kT hc x λ=,再由0=λρλd d ,得λ.所满足的超越方程为 15-=x xe xe 用图解法求得97.4=x ,即得97.4=kThc m λ,将数据代入求得C m 109.2 ,03⋅⨯==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长. 解:010A 7.09m 1009.72=⨯≈==-mE h p h λ #1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。
解:010A 63.12m 1063.1232=⨯≈===-mkTh mE h p h λ 其中kg 1066.1003.427-⨯⨯=m ,123K J 1038.1--⋅⨯=k#1.4利用玻尔—索末菲量子化条件,求:(1)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
已知外磁场T 10=B ,玻尔磁子123T J 10923.0--⋅⨯=B μ,求动能的量子化间隔E ∆,并与K 4=T 及K 100=T 的热运动能量相比较。
解:(1)方法1:谐振子的能量222212q p E μωμ+= 可以化为()12222222=⎪⎪⎭⎫ ⎝⎛+μωμE q E p 的平面运动,轨道为椭圆,两半轴分别为22,2μωμEb E a ==,相空间面积为,2,1,0,2=====⎰n nh EEab pdq νωππ所以,能量 ,2,1,0,==n nh E ν 方法2:一维谐振子的运动方程为02=+''q q ω,其解为()ϕω+=t A q sin速度为 ()ϕωω+='t A q c o s ,动量为()ϕωμωμ+='=t A q p cos ,则相积分为()()nh T A dt t A dt t A pdq T T ==++=+=⎰⎰⎰2)cos 1(2cos 220220222μωϕωμωϕωμω, ,2,1,0=nνμωnh Tnh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
周世勋量子力学习题及解答(PDF)
量子力学习题及解答第一章量子理论基础1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λT=b (常量);并近似计算b 的数值,准确到二位有效数字。
解根据普朗克的黑体辐射公式dv e chv d kThv v v 11833−⋅=πρ,(1)以及c v =λ,(2)λρρd dv v v −=,(3)有,118)()(5−⋅=⋅=⎟⎠⎞⎜⎝⎛−=−=kT hc v v e hc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⋅+−−⋅=−kT hc kThc e kT hc ehc λλλλλπρ⇒0115=−⋅+−−kThc ekThc λλ⇒kThc ekThc λλ=−−)1(5如果令x=kThcλ,则上述方程为xe x =−−)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知Km T m ⋅×=−3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e µ<<动),那么ep E µ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0×,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm mE c hc E h e e 71.01071.031051.021024.1229662=×=××××===−−µµ在这里,利用了meV hc ⋅×=−61024.1以及eVc e 621051.0×=µ最后,对Ec hc e 22µλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
(最新整理)量子力学+周世勋(全套优秀完整教学课件)
(三)Compton 散射 -光的粒子性的进一步证实。
(1) Compton 效应
X--射线被轻元素如白蜡、石墨中的电子散射后出现的效应。该效应有如下 2 个特点:
1 散射光中,除了原来X 光的波长λ外,增加了一 个新的波长为λ'的X光, 且λ' >λ;
2 波长增量 Δλ=λ’ –λ 随 散射角增大而增大。这一现象称 为 Compton 效应。
“ 总而言之,我们可以说,在近代物理学结出 硕果的那些重大问题中,很难找到一个问题是爱因 斯坦没有做过重要贡献的,在他的各种推测中,他 有时可能也曾经没有射中标的,例如,他的光量子 假设就是如此,但是这确实并不能成为过分责怪他 的理由,因为即使在最精密的科学中,也不可能不 偶尔冒点风险去引进一个基本上全新的概念 ”
该式所决定,即
hv -A = 0,
v0 = A / h , 可见,
(2)光电效应
光照射到金属上,有电子从金属上逸出的现象。 这种电子称之为光电子。试验发现光电效应有 两个突出的特点:
•1.临界频率v0 只有当光的频率大于某一定值v0 时, 才有光电子发射出来。若光频率小于该值时,则不论 光强度多大,照射时间多长,都没有电子产生。光的 这一频率v0称为临界频率。
•2.电子的能量只是与光的频率有关,与光强无关,光 强只决定电子数目的多少。光电效应的这些规律是经典 理论无法解释的。按照光的电磁理论,光的能量只决定 于光的强度而与频率无关。
(3) 光子的动量
光子不仅具有确定的能量 E = hv,
而且具有动量。根据相对论知,速度 为 V 运动的粒子的能量由右式给出:
RH
C
1 22
1 n2
n 3,4,5,
其中RH 1.09677576 107 m 1是氢的Rydberg常数, C是光速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1864年 光和电磁现象之间的联系 光的波动性
(二)经典物理学的困难
20世纪初 经典理论遇到了一些严重的困难 (1)黑体辐射问题 (2)光电效应 (3)氢原子光谱
黑体辐射
黑体:能完全吸收一切频率入射电磁 波 (广义光波) 的物体
能 量 密 度
黑体辐射:由这样的空腔小孔发 出的辐射就称为黑体辐射。
h 6.62606896 1034 J s
基于上述假定,普朗克得到了与实验符合很好的黑体辐射公式:
能 量 密 度
8hv3 v dv c3 Planck 线
1 e
hv 1 K BT
dv
吸收或发射电磁能量的不连续概念,经典力学是无法理解的 当时并未引起较多人的注意 用量子假设解决经典困难的是A. Einstein
3. v v0
光愈强,单位时间产生的光电子愈多
光的本性认识:1. Maxwell, Hertz等人工作,肯定了光是电磁波 2. 光电效应,黑体辐射,体现了光的粒子性
光是粒子性和波动性的统一体
• 虽然爱因斯坦对光电效应的解释是对Planck量 子概念的极大支持,但是Planck不同意爱因斯坦的 光子假设,这一点流露在Planck推荐爱因斯坦为普 鲁士科学院院士的推荐信中。 “ 总而言之,我们可以说,在近代物理学结出 硕果的那些重大问题中,很难找到一个问题是爱因 斯坦没有做过重要贡献的,在他的各种推测中,他 有时可能也曾经没有射中标的,例如,他的光量子 假设就是如此,但是这确实并不能成为过分责怪他 的理由,因为即使在最精密的科学中,也不可能不 偶尔冒点风险去引进一个基本上全新的概念 ”
20 sin
2
2
其中 称为电子的Compton波长。
0
2 2.4 10 10 cm m0 C
该式首先由 Compton 提出,后被 Compton 和吴有训用实验证实, 用量子概念完全解释了Compton 效应。因为式右是一个恒大于或等 于零的数,所以散射波的波长λ '总是比入射波波长长(λ ' >λ ) 且随散射角θ 增大而增大 •式中也包含了 Planck 常数 h,经典物理学无法解释它,Compton 散射实验是对光量子概念的一个直接的强有力的支持
E ' ' , p '
' c
’
Ee , pe m0 v v2 1 2 c
2 Ee m0 c 4 c 2 p 2 2
根据光量子概念,光入射前能量为
E
碰撞前电子: 电子动量为零 (很小,可近似为零) 静止能量 Ee m0 c 2 m0 v 碰撞后 电子动量为 p m0 c 2 动能 Ee m0 c 2 v2 1 2 v2 c 1 2 c 碰撞前光子: E , p E / c
m0 v 1 v c2
2
cos( ' )
m0 v 1 v c2
2
sin( ' )
(
2 ' ) ( cos( ) c c
m0 v v2 1 2 c
cos( ' )) 2
(
m0 v 2 m0 v 2 ' ' ) sin 2 ( ) ( ) sin 2 ( ' ) ( )(1 cos2 ( )) ( ) (1 sin 2 ( ' )) c c v2 v2 1 2 1 2 c c
定性解释
E hv
E hv h p n n n k c c
普朗克常量
宏观现象中,h与其他物理量比较可忽略,能量连续 h起重要作用的现象称为量子现象
1.3
原
子
结
构
的
玻
尔
理
论
原子光谱,原子结构 氢原子光谱由许多分立谱线组成,这是很早就发 现了的。1885年瑞士巴尔末发现紫外光附近的一 个线系,并得出氢原子谱线的经验公式为:
第一章 量子力学的诞生
• §1 经典物理学的困难 §2 量子论的诞生 §3 实物粒子的波粒二象性
§1 经典物理学的困难
(一)经典物理学的成功
19世纪末,物理学理论在当时看来已经发展 到相当完善的阶段。主要表现:
(1) 牛顿力学 天体到地上各尺度力学运动 分子运动 气体分子运动论 1897年汤姆森发现了电子,具有粒子行为 (2) 光的波动性 1803年 麦克斯韦 杨式双缝衍射实验
m0 v 1 v c2
2
2
1]
由动量守恒定律:
' cos( ) c c 0 ' sin( ) c
cos( ' )
m0 v 1 v c2
2
sin( ' )
定性解释
由动量守恒定律:
' cos( ) c c 0 ' sin( ) c
(2)光电效应
光照射到金属上,有电子从金属上逸出的现象 光电效应有两个突出的特点:
•1.临界频率v0 光的频率v>v0 时,才有光电子逸出 若v<v0,则不论光强多大,照射时间多长,都无光电子 •2.光电子能量只与光的频率有关,与光强无关 若v>v0,只要光照上,立刻有光电子逸出
与光的经典电磁理论矛盾
加速电子产生的辐射,频率分布是连续的,这与原子光谱是分立 的谱线不符
经典理论遇到了难以克服的困难
(1.3)原子结构的波尔(Bohr)理论
Planck--Einstein 关于辐射的光量子概念 1913年 玻尔(N. Bohr 1885-1962) 将量子概念运用到原子结构问题上 提出原子的量子论 玻尔假定
缺陷:把微观粒子看作经典力学的质点,并应用经典力学规律 波粒二象性提出之后,量子力学逐渐建立,上述问题也相应解决
玻尔量子论的局限性
玻尔量子论首次打开了认识原子结构的大门, 取得了很大的成功。但是它的局限性和存在的 问题也逐渐为人们所认识
1. 不能证明较复杂的原子光谱,甚至简单程度仅 次于氢的氦原子的光谱都未能解释 2. 不能给出光谱的谱线强度(相对强度) 3. Bohr理论只能处理周期运动,不能处理非束缚 态问题,如散射问题; 4. 从理论上讲,能量量子化概念与经典力学不相 容。多少带有人为的性质,其物理本质还不清楚。
Wien 线
0
5
(104 cm)
10
维恩(W.Wien)从热力学出发,得到维恩公式
Ev dv C1v3 exp[C2v / T ]dv
维恩公式在短波部分与实验基本符合,长波部 分偏离
能 量 密 度
瑞利-金斯线
Wien 线
(104 cm) 瑞利(J. W.Rayleigh)和金斯(J. H. Jeans)由经典电动力学, 得到Rayleigh- Jeans公式
1 1 2 n' 1,2,3, n 2,3,4, (n n' ) 2 n n' 1.09677576 10 7 m 1是氢的Rydberg 常数, C是光速。
RH C
其中RH
•这就是著名的巴尔末公式(Balmer)。以后又发现了一 系列线系,它们都可以用下面公式表示:
原子一定时,电子只能在一些特定的轨道上运动,不同 轨道具有不同的能量,电子在不同的轨道上跃迁时伴随 着光的吸收和发射 原子在两个能级(Em和En)间跃迁,吸收和发射光的频 率为
v 量子化条件: nh L 角动量必须是 的整数倍 h h 成功说明了氢原子光谱及结构,但对复杂的光谱, 如氦原子光谱,遇到了极大的困难 E n Em
2 2 4 0 2 2 2
2
则光子动量
E pc
2v, h 2
2 k n
光子能量和动量为:
E hv E hv h p n n n k c c
波矢
光电效应解释:
1. 光量子入射,能量可立即被电子吸收 2. 只有光量子能量足够大,电子才有可能克服脱出功A, 即 1 mv 2 hv A 0 2 v v0 A / h 无光电子逸出
碰撞后
' c E ' ' , p ' c
定性解释
E , p E / c c
0
' E ' ' , p ' c
’
m0 v v2 1 2 c
A
Ee , pe
由能量守恒定律:
' m0 c 2 [ 1 v 1 2 c
a)
b)
(1.3)原子结构的波尔(Bohr)理论
玻尔的理论开始只考虑电子的圆周轨道,即电子只具有一个自由度
索末非(Sommerfeld)将玻尔的量子化条件推广
1 pdq (n 2 )h
广义动量 广义坐标 量子数 可用于多自由度情况,不仅能解释氢原子光谱,一个价电子原子光谱 也能很好解释,如(Li, Na,K)等 玻尔-索末非理论遇到了很大困难,该理论连简单程度仅次于 氢原子的氦原子光谱都不能解释
原子光谱问题,经典物理学不能给于解释
经典物理学不能建立一个稳定的原子模型。 根据经典电动力学,电子环绕原子核运动是加速运动,因而不断以 辐射方式发射出能量,电子的能量变得越来越小,因此绕原子核 运动的电子,终究会因大量损失能量而“掉到”原子核中去,原 子就“崩溃”了,但是,现实世界表明,原子稳定的存在着。
认为:电磁波由光量子组成,频率为v的光, 光量子能量:
E h
粒子性
光量子能量:
E h
E m0 c 2 v 2 1 ( ) c
由狭义相对论,静止质量为m0,速度为v 的运动粒子能量为