建筑学专业绿色建筑毕业论文外文文献翻译及原文
可持续建筑(绿色建筑)外文翻译文献
文献信息:文献标题:Issues in Sustainable Architecture and Possible Solutions (可持续建筑中的问题及可能的解决方案)国外作者:Fatima Ghani文献出处:《International Journal of Civil & Environmental Engineering》,2012,12(1),p21-24字数统计:英文1985单词,11317字符;中文3460汉字外文文献:Issues in Sustainable Architecture and Possible Solutions Abstract—The growing concern with environmental and ecological conditions have led to the discussion/search for ‘energy conscious’, ‘Eco friendly’, ‘energy efficient’ building designs. For the better growth of the future, keeping in view the environment related issues, the first objective of the designer is sustainable development i.e. environmentally compatible building designs. Sustainable architecture also referred as green architecture is a design that uses natural building materials e.g. earth, wood, stone etc (not involving pollution in its treatment) that are energy efficient and that make little or no impact on the nature of a site and its resources. This paper discusses issues related to Sustainable/environmental architecture. It also considers possible solutions related to these issues.Index Terms—Sustainable, Green, Architecture, Building, Design. Efficiency.I. INTRODUCTIONThe words "Green", "Ecological" and "Sustainable" are terms used by environmentalists to indicate modes of practice. From global economics to household features these practices minimize our impact on the environment and generate a healthy place of living. In a deeper sense the words involve as to what can be done to heal andregenerate the earth's ability to bear life.A.Principles of Environmentally Oriented DesignIn Architecture there are many ways a building may be "green" and respond to the growing environmental problems of our planet. Sustainable architecture can be practiced still maintaining efficiency, beauty, layouts and cost effectiveness. There are five basic areas of an environmentally oriented design. They are Healthy Interior Environment, Energy Efficiency, Ecological Building Materials, Building Form and Good Design.• Healthy Interior Environment: It has to be well insured that building materials and systems used do not emit toxic unhealthy gases and substances in the built spaces. Further extra cars and measures are to be taken to provide maximum levels of fresh air and adequate ventilation to the interior environment.• Energy Efficiency: It has to be well ensured that the building's use of energy is minimized. The various HV AC systems and methods of construction etc. should be so designed that energy consumption is minimal.• Ecological Building Materials: As far as possible the use of building materials should be from renewable sources having relatively safe sources of production.• Building Form: The building form should respond to the site, region, climate and the materials available thereby generating a harmony between the inhabitants and the surroundings.• Good Design: Structure & Material and Aesthetics are the basic parameters of defining design. They should be so integrated that the final outcome is a well built, convenient and a beautiful living space.These principles of environmentally oriented design comprise yet another meaningful and environmental building approach called Green or Sustainable design. Architects should use their creativity and perception to correlate these principles to generate locally appropriate strategies, materials and methods keeping in mind that every region should employ different green strategies.B. DefinitionSustainability means 'to hold' up or 'to support from below'. It refers to the abilityof a society, ecosystem or any such ongoing system, to continue functioning into the indefinite future (without being forced into decline through exhaustion of key resources).Sustainable architecture involves a combination of values: aesthetic, environmental, social, political and moral. It's about one's perception and technical knowledge to engage in a central aspect of the practice i.e. to design and build in harmony with the environment. It is the duty of an architect to think rationally about a combination of issues like sustainability, durability, longevity, appropriate materials and sense of place.The present environmental conditions have led to the discussion/search for ‘energy conscious’, ‘Eco friendly’,‘energy efficient’ building designs. For the better growth of the future, keeping in view the environment related issues, the first objective of the designer is a sustainable development i.e. environmentally compatible. This paper discusses issues related to Sustainable/environmental architecture. The main focus of the paper is on sustainable architecture - its need, solutions and impact on the future.II. NEEDS AND ISSUESThe ecological crisis today is very serious and till date much of the debate still focuses on the symptoms rather than the causes. As a result there is an urgent need to emphasize and workout the best possible approach towards environmental protection thereby minimizing further degradation.Architecture presents a unique challenge in the field of sustainability. Construction projects typically consume large amounts of materials, produce tons of waste, and often involve weighing the preservation of buildings that have historical significance against the desire for the development of newer, more modern designs. Sustainable development is one such measure, which presents an approach that can largely contribute to environmental protection. A striking balance between Environmental protection and Sustainable development is a difficult and delicate task.Sustainable design is the thoughtful integration of architecture with electrical,mechanical, and structural engineering. In addition to concern for the traditional aesthetics of massing, proportion, scale, texture, shadow, and light, the facility design team needs to be concerned with long term costs: environmental, economic, and human as shown in Figure 1.III. CONCEPT AND RELEV ANCE OF SUSTAINABLE ARCHITECTURE In the present day scenario the idea and concept of Sustainable Architecture/Development is relevant in the light of the following two aspects:a) Ecological and Environmental crisisb) Imminent disasters and their managementSome of the major causes, which greatly contribute to these two aspects, can be listed as:• Rapid Urbanization and Industrialization:The consequences of this can further lead to Population explosion, Geological deposits of sewage and garbage, Unsustainable patterns of living & development, Environmental degradation (pollution of air, water, soil etc, food web disruption). Thus sustainable urban development is crucial to improve the lives of urban populations and the remainder of the planet. Both people and ecosystems impacted upon by their activities.• Natural Calamities:Natural calamities like volcanic eruptions, earthquakes, flood, famine etc. which are being further aggravated by mankind add to the list of other ill effects like atomicexplosion, green house effect, ozone depletion etc. Sustainable design attempts to have an understanding of the natural processes as well as the environmental impact of the design. Making natural cycles and processes visible, bring the designed environment back to life.• Depletion of Non-renewable sources:Rapid depletion of non-renewable sources is leading to serious issues related to energy & water conservation etc. Thus the rational use of natural resources and appropriate management of the building stock can contribute to saving scarce resources, reducing energy consumption and improving environmental quality.IV. SOLUTIONSA. Sustainable ConstructionSustainable construction is defined as "the creation and responsible management of a healthy built environment based on resource efficient and ecological principles". Sustainable designed buildings aim to lessen their impact on our environment through energy and resource efficiency."Sustainable building" may be defined as building practices, which strive for integral quality (including economic, social and environmental performance) in a very broad way. Thus, the rational use of natural resources and appropriate management of the building stock will contribute to saving scarce resources, reducing energy consumption (energy conservation), and improving environmental quality.Sustainable building involves considering the entire life cycle of buildings, taking environmental quality, functional quality and future values into account environmental initiatives of the construction sector and the demands of users are key factors in the market. Governments will be able to give a considerable impulse to sustainable buildings by encouraging these developments. Further the various energy related issues during the different phases in the construction of buildings can be understood with respect to the chart shown in Figure2.B. Environmentally Friendly HousesFollowing the five basic principles of environmentally oriented design can lead to the construction of what can be called as Environmentally Friendly House. An environmentally friendly house is designed and built to be in tune with its occupants, nature, environment and ecosystem. It is designed and built according to the region it is located in, keeping in mind the climate, material, availability and building practices. The basic areas of design need to be considered at this stage can be listed as: • Orientation• Reduce Energy Gain or Loss• Lighting• Responsible Landscaping• Waste Management• External VentilationC. Green BuildingA green building places a high priority on health, environmental and resource conservation performance over its life cycle. These new priorities expand and complement the classical building design concerns: economy, utility, durability and delight. Green design emphasize a number of new environmental, resource and occupant health concerns:• Reduce human exposure to noxious materials.• Conserve non-renewable energy and scarce materials.• Minimize life cycle ecological impact of energy and materials used.• Use renewable energy and materials that are sustainable harvested.• Protect and restore local air, water, soil, flora & fauna• Support pedestrian, bicycles, mass transit and other alternatives to fossil-fueled vehicles.Most green buildings are high quality buildings they last longer, cost less to operate and maintain and provide greater occupant satisfaction than standard development.D. Green Roofs & Porous PavementsAs already discussed the rapid urbanization and industrialization is resulting in extensive deforestation as a result the green areas are being covered with pavements and concrete. The rainwater that naturally seeps through land covered with vegetation and trees now just runoff, thereby leading to a major environmental imbalance in terms of groundwater. This problem can be solved to a great extent with the help of the construction of Green Roofs and Porous Pavements.Green roofs & porous pavements present a unique method of ground water conservation. Vegetation to hold water on rooftops, and pavement that lets it percolate in the ground are some of the latest ways that can save water tables. Visually what might come across may be a roof sprouted with plants and a parking lot that drains water like a sieve-probably the latest in groundwater conservation.E. Building MaterialsTons of materials including timber go into building construction. There are three principal approaches to improve the material efficiency of building construction: • Reducing the amount of material used in construction.• Using recycled materials that otherwise would have been waste.• Reducing waste generation in the construction process.Further as far as possible sustainable harvested building materials and finishes should be used with low toxicity in manufacturing and installation.V. CONCLUSIONSSustainability often is defined as meeting the needs of the present without compromising the ability of future generations to meet their own needs. A growing number of people are committed to reaching this goal by modifying patterns of development and consumption to reduce demand on natural resource supplies and help preserve environmental quality. Achieving greater sustainability in the field of construction is particularly important, because building construction consumes more energy and resources than any other economic activity. Not only does a home represent the largest financial investment a family is likely to make, but it also represents the most resource- and energy-intensive possession most people will ever own. Making homes more sustainable, then, has a tremendous potential to contribute to the ability of future generations to meet their own needs. Sustainable housing design is a multifaceted concept, embracing:• Affordability• Marketability• Appropriate design• Resource efficiency• Energy efficiency• Durability• Comfort• HealthAs a developed society we should not undermine our resource base, the assimilative capacity of our surroundings or the biotic stocks on which our future depends. As a sustainable society our efforts should consist of a long-term and integrated approach to developing and achieving a healthy community. We should realize that the problems associated with sustainable development are global as a result the issues need worldwide attention. If we work together we can bring change faster.中文译文:可持续建筑中的问题及可能的解决方案摘要——越来越多地关注环境和生态条件已经引起了人们对“节能意识”、“友好生态”、“高效节能”的建筑设计的讨论和探索。
(完整版)建筑学本科外文翻译毕业设计论文
本科毕业设计外文翻译题目:德黑兰城市发展学院: 城市建设学院专业: 建筑学学号:学生姓名:指导教师:日期: 二零一一年六月First Chapter:Development of the city of TehranAli MadanipourTehran :the making of a metropolis,First Chapter:Development New York John Wiley,1998,page five to page eleven。
第一章:德黑兰市的发展阿里.马丹妮普尔德黑兰:一个大都市的建造,第一章:德黑兰市的发展,阿1998,第五页到第十一页。
德黑兰市的发展全市已长成了一定的规模性和复杂性,以这样的程度,空间管理需要另外的手段来处理城市组织和不断发展的复杂性,并为城市总体规划做准备。
第二次世界大战后,在盟军占领国家的期间,有一个时期的民主化,在冷战时开始的政治紧张局势之后,它们互相斗争对石油的控制权。
这个时期已经结束于1953年,结果是由政变产生了伊朗王,那个后来担任了25年的行政君主的人。
随着高出生率和农村向城市迁移,德黑兰和其他大城市增长加剧甚至比以前更快地。
到1956年,德黑兰的人口上升到150万,到了1966至300万, 1976至450万,其规模也从1934年46平方公里到1976年的250平方公里。
从石油行业的收入增长创造的盈余资源,需要流通和经济的吸收。
50年代中期,特别是在工业化的驱动下德黑兰许多大城市有了新工作。
20世纪60年代的土地改革释放了大量来自农业的农村人口,这是不能吸收的指数人口增长。
这种新的劳动力被吸引到城市:到新的产业,到似乎始终蓬勃发展建筑界,去服务不断增长公共部门和官僚机构。
德黑兰的角色是国家的行政,经济,文化中心,它坚定而巩固地通往外面的世界。
德黑兰战后的城市扩张,是在管制、私营部门的推动,投机性的发展下进行的。
房屋一直供不应求,并有大量可用的富余劳动力和资本,因此在德黑兰建筑行业蓬勃发展,土地和财产的价格不断上涨。
建筑外文文献及翻译(参考模板)
外文原文Study on Human Resource Allocation in Multi-Project Based on the Priority and the Cost of ProjectsLin Jingjing , Zhou GuohuaSchoolofEconomics and management, Southwest Jiao tong University ,610031 ,China Abstract----This paper put forward the a ffecting factors of project’s priority. which is introduced into a multi-objective optimization model for human resource allocation in multi-project environment . The objectives of the model were the minimum cost loss due to the delay of the time limit of the projects and the minimum delay of the project with the highest priority .Then a Genetic Algorithm to solve the model was introduced. Finally, a numerical example was used to testify the feasibility of the model and the algorithm.Index Terms—Genetic Algorithm, Human Resource Allocation, Multi-project’s project’s priority .1.INTRODUCTIONMore and more enterprises are facing the challenge of multi-project management, which has been the focus among researches on project management. In multi-project environment ,the share are competition of resources such as capital , time and human resources often occur .Therefore , it’s critical to schedule projects in order to satisfy the different resource demands and to shorten the projects’ duration time with resources constrained ,as in [1].For many enterprises ,the human resources are the most precious asset .So enterprises should reasonably and effectively allocate each resource , especially the human resource ,in order to shorten the time and cost of projects and to increase the benefits .Some literatures have discussed the resource allocation problem in multi-project environment with resources constrained. Reference [1] designed an iterative algorithm and proposeda mathematical model of the resource-constrained multi-project scheduling .Basedon work breakdown structure (WBS) and Dantzig-Wolfe decomposition method ,a feasible multi-project planning method was illustrated , as in [2] . References [3,4]discussed the resource-constrained project scheduling based on Branch Delimitation method .Reference [5] put forward the framework of human resource allocation in multi-project in Long-term ,medium-term and short-term as well as research and development(R&D) environment .Basedon GPSS language, simulation model of resources allocation was built to get the project’s duration time and resources distribution, as in [6]. Reference [7] solved the engineering project’s resources optimization problem using Genetic Algorithms. These literatures reasonably optimized resources allocation in multi-project, but all had the same prerequisite that the project’s importance is the same to each other .This paper will analyze the effects of project’s priority on human resource allocation ,which is to be introduced into a mathematical model ;finally ,a Genetic Algorithm is used to solve the model.2.EFFECTS OF PROJECTS PRIORITY ON HUMAN RESOUCE ALLOCATIONAND THE AFFECTING FACTORS OF PROJECT’S PRIORITYResource sharing is one of the main characteristics of multi-project management .The allocation of shared resources relates to the efficiency and rationality of the use of resources .When resource conflict occurs ,the resource demand of the project with highest priority should be satisfied first. Only after that, can the projects with lower priority be considered.Based on the idea of project classification management ,this paper classifies the affecting factors of project’s priority into three categories ,as the project’s benefits ,the complexity of project management and technology , and the strategic influence on the enterprise’s future development . The priority weight of the project is the function of the above three categories, as shown in (1).W=f(I,c,s…) (1)Where w refers to project’s priority weight; I refers to the benefits of th e project; c refers to the complexity of the project, including the technology and management; s refers to the influence of the project on enterprise .The bigger the values of the three categories, the higher the priority is.3.HUMAN RESOURCE ALLOCATION MODEL IN MULTI-PROJECTENVIRONMENT3.1Problem DescriptionAccording to the constraint theory, the enterprise should strictly differentiate the bottleneck resources and the non-bottleneck resources to solve the constraint problem of bottleneck resources .This paper will stress on the limited critical human resources being allocated to multi-project with definite duration times and priority.To simplify the problem, we suppose that that three exist several parallel projects and a shared resources storehouse, and the enterprise’s operation only involves one kind of critical human resources. The supply of the critical human resource is limited, which cannot be obtained by hiring or any other ways during a certain period .when resource conflict among parallel projects occurs, we may allocate the human resource to multi-project according to project’s priorities .The allocation of non-critical independent human resources is not considered in this paper, which supposes that the independent resources that each project needs can be satisfied.Engineering projects usually need massive critical skilled human resources in some critical chain ,which cannot be substituted by the other kind of human resources .When the critical chains of projects at the same time during some period, there occur resource conflict and competition .The paper also supposes that the corresponding network planning of various projects have already been established ,and the peaks of each project’s resources demand have been optimized .The delay of the critical chain will affect the whole project’s duration time .3.2 Model HypothesesThe following hypotheses help us to establish a mathematical model:(1)The number of mutually independent projects involved in resourceallocation problem in multi-project is N. Each project is indicated withQ i,while i=1,2, … N.(2)The priority weights of multi-project have been determined ,which arerespectively w1,w 2…w n .(3) The total number of the critical human resources is R ,with r k standingfor each person ,while k=1,2, …,R(4) Δk i = ⎩⎨⎧others toprojectQ rcer humanresou i k 01(5) Resources capturing by several projects begins on time. t E i is theexpected duration time of project I that needs the critical resources tofinish some task after time t ,on the premise that the human resourcesdemand can be satisfied .tAi is the real duration time of project I thatneeds the critical resource to finish some task after time t .(6) According to the contract ,if the delay of the project happens the dailycost loss due to the delay is △c i for pro ject I .According to the project’simportance ,the delay of a project will not only cause the cost loss ,butwill also damage the prestige and status of the enterprise .(while thelatent cost is difficult to quantify ,it isn’t considered in this articletemporarily.)(7) From the hypothesis (5) ,we can know that after time t ,the time-gapbetween the real and expected duration time of project I that needs thecritical resources to finish some task is △t i ,( △t i =t A i -t E i ). For thereexists resources competition, the time –gap is necessarily a positivenumber.(8) According to hypotheses (6) and (7), the total cost loss of project I is C i(C i = △t i * △C i ).(9) The duration time of activities can be expressed by the workload ofactivities divided by the quantity of resources ,which can be indicatedwith following expression of t A i =ηi / R i * ,.In the expression , ηi refersto the workload of projects I during some period ,which is supposed tobe fixed and pre-determined by the project managers on project planningphase ; R i * refers to the number of the critical human resources beingallocated to projects I actually, with the equation Ri * =∑=Rk ki 1δ existing. Due to the resource competition the resourcedemands of projects with higherPriorities may be guarantee, while those projects with lower prioritiesmay not be fully guaranteed. In this situation, the decrease of theresource supply will lead to the increase of the duration time of activitiesand the project, while the workload is fixed.3.3 Optimization ModelBased on the above hypotheses, the resource allocation model inmulti-project environment can be established .Here, the optimizationmodel is :F i =min Z i = min∑∑==Ni i N i Ci 11ω =min i i Ni i N i c t ∆∆∑∑==11ω (2) =min ∑∑==N i i N i 11ω )E i R i ki i t - ⎝⎛∑=1δη i c ∆ 2F =min Z 2=min ()i t ∆=min )E i R i ki i t -⎝⎛∑=1δη (3) Where wj=max(wi) ,(N j i 3,2,1,=∀) (4)Subject to : 0∑∑==≤R k ki N i 11δ=R (5)The model is a multi-objective one .The two objective functions arerespectively to minimize the total cost loss ,which is to conform to theeconomic target ,and to shorten the time delay of the project with highestpriority .The first objective function can only optimize the apparenteconomic cost ;therefore the second objective function will help to makeup this limitation .For the project with highest priority ,time delay will damage not only the economic benefits ,but also the strategy and the prestige of the enterprise .Therefore we should guarantee that the most important project be finished on time or ahead of schedule .4.SOLUTION TO THE MULTI-OBJECTIVE MODEL USING GENETICALGORITHM4.1The multi-objective optimization problem is quite common .Generally ,eachobjective should be optimized in order to get the comprehensive objective optimized .Therefore the weight of each sub-objective should be considered .Reference [8] proposed an improved ant colony algorithm to solve this problem .Supposed that the weights of the two optimizing objectives are αand β ,where α+β=1 .Then the comprehensive goal is F* ,where F*=αF1+βF2.4.2The Principle of Genetic AlgorithmGenetic Algorithm roots from the concepts of natural selection and genetics .It’s a random search technique for global optimization in a complex search space .Because of the parallel nature and less restrictions ,it has the key features of great currency ,fast convergence and easy calculation .Meanwhile ,its search scope is not limited ,so it’s an effective method to solve the resource balancing problem ,as in [9].The main steps of GA in this paper are as follow:(1)EncodingAn integer string is short, direct and efficient .According to thecharacteristics of the model, the human resource can be assigned to be acode object .The string length equals to the total number of humanresources allocated.(2)Choosing the fitness functionThis paper choose the objective function as the foundation of fitnessfunction .To rate the values of the objective function ,the fitness of then-th individual is 1/n。
绿色建筑中英文对照外文翻译文献
绿色建筑中英文对照外文翻译文献中英文资料翻译外文文献:Evaluating Water Conservation Measures For Green Building InTaiwanGreen Building evaluation is a new system in which water conservation is prioritized as one of its seven categories for saving water resources through building equipment design in Taiwan. This paper introduces the Green Building program and proposes a water conservation index with quantitative methodology and case study. This evaluation index involves standardized scientific quantification and can be used in the pre-design stage to obtain the expected result. The measure of evaluation index is also based on the essential research in Taiwan and is a practical and applicable approach.Keywords: Green Building; Evaluation system; Water conservation; Building equipment1. IntroductionThe environment was an issue of deep global concern throughout the latter half of the 20th century. Fresh water shortages and pollution are becoming one of the most critical global problems. Many organizations and conferences concerning water resource policy and issues have reached the consensus that water shortages may cause war in the 21st century[1],if not a better solution .Actually, Taiwan is already experiencing significant discord over water supply. Building new dams is no longer an acceptable solution to the current watershortage problems, because of the consequent environmental problems. Previous studies have concludedthat water savings are necessary not only for water conservation but also for reducing energy consumption [2,3].Taiwan is located in the Asian monsoon area and has an abundant supply of rainwater. Annual precipitation averages around 2500mm. However, water shortages have recently beena critical problem during the dry season. The crucial, central issue is the uneven distribution of torrential rain, steep hillsides, and short rivers. Furthermore, the heavy demand for domestic water use in municipal areas, and the difficulties in building new reservoirs are also critical factors. Government departments are endeavoring to spread publicly the concept of water-conservation. While industry and commerce have made excellent progress in water conservation, progress among the public has been extremely slow.Due to this global trend, the Architecture and Building Research Institute (ABRI), Ministry of Interior in Taiwan, proposed the “Green Building” concept and built the evaluation system. In order to save water resources through building equipment design, this system prioritizes water conservation as one of its seven categories. This paper focuses on the water conservation measures for Green Building in T aiwan and a quantitative procedure for proving water-saving efficiency. The purpose of this work is not only aimed at saving water resources, but also at reducing the environmentalimpact on the earth.2. Water conservation indexThe water conservation index is the ratio of the actualquantity of water consumed in a building to the average water-consu mption in general. The index is also called, “the water saving rate”. Evaluations of the water-consumption quantity include the evaluation to the water-saving efficiency within kitchens, bathrooms and all water taps, as well as the recycling of rain and the secondhand intermediate water.2.1. Goal of using the water conservation indexAlthough Taiwan has plenty of rain, due to its large population, the average rainfall for distribution to each individual is poor compared to the world average as shown in Fig. 1.Thus, Taiwan is reversely a country short of water. Yet, the recen t improvements in citizens’ standards of living have led to a big increase in the amount of water needed in cities, as shown in Fig. 2, which, accompanied by the difficulty of obtaining new water resources, makes the water shortage problem even worse. Due to the improper water facilities designs in the past, the low water fee, and the usual practical behavior of people when using water, Taiwanesepeople have tended to use a large quantity of tap water. In 1990,the average water-consumption quantity in Taiwan was 350l per person per day, whereas in Germany it is about 145l per person per day, and in Singapore about 150l per person per day. These statistics reveal the need for Taiwanese people to save water.The promotion of better-designed facilities which facilitate water-saving will become a new trend among the public and designers, because of concerns for environmental protection. The water conservation index was also designed to encourage utilization of the rain, recycling of water used in everyday life and use of water-saving equipment to reduce the expenditure ofwater and thus save water resources.2.2. Methodology for efficient use of water resourcesSome construction considerations and building system designs for effective use of water resources are described below.2.2.1. Use water-conservation equipmentA research of household tap-water consumption revealed that the proportion of the water used in flushing toilets and in bathing, amounts to approximately 50% of the total household water consumption, as given in Table 1. Many construction designers have tended to use luxurious water facilities in housing, and much water has thus been wasted. The use of water-saving equipment to replace such facilities is certain to save a large amount of water. For example, the amounts of water used in taking a shower and having a bath is quite different.A single shower uses around 70l of water, whereas a bath uses around 150l. Furthermore, current construction designs for housing in Taiwan tend to put two sets of bathtubs and toilets, and quite a few families have their own massage bathtubs. Such a situation can be improved only by removing the tubs and replacing them with shower nozzles, so that more water can be possibly saved. The commonly used water-saving devices in Taiwan now include new-style water taps, water-saving toilets, two-sectioned water closets, water-saving shower nozzles, and auto-sensor flushing device systems, etc. Water-saving devices can be used not only for housing, but also in other kinds of buildings. Public buildings, in particular, should take the lead in using water-saving devices.2.2.2. Set up a rain-storage water supply deviceThe rain-storage water supply device stores rain using natural landforms or man-made devices, and then uses simplewater-cleaning procedures to make it available for use in houses. Rain can be used not only as a substitute water supply, but also for re control. Its use also helps to decrease the peak-time water load in cities. The annual average rainfall in Taiwan is about 2500 mm, almost triple better than the global average. However, due to geographic limitations, we could not build enough water storage devices, such as dams, to save all the rain. It is quite a pity that annually about 80% of the rain in Taiwan is wasted and flows directly into the sea, without being saved and stored. The rain-storage water supply system is used with a water-gathering system, water-disposal system, water-storage system and water-supply system. First, the water-gathering system gathers the rain. Then, the water flows to the water-disposal system through pipes, before being sent to the water-storage system. Finally, it is sent to the users’equipment through another set of pipes. Using the drain on the roof of a building, leading to the underground water-storage trough, is considered an effective means of gathering rain. The water, after simple water-disposal processes, can be used for chores such as house cleaning, washing floors, air-conditioning or watering plants.2.2.3. Establishing the intermediate water systemIntermediate water is that gathered from the rain in cities, and includes the recycled waste-water which has already been disposed of and can be used repeatedly only within a certain range, but not for drinking or human contact. Flushing the toilet consumes 35% of all water. If everyone were to use intermediate water to flush toilets, much water could be efficiently saved. Large-scale intermediate water system devices are suggested to be built up regularly with in a big area. Each intermediate watersystem device can gather, dispose and recycle a certain quantity of waste-water from nearby government buildings, schools, residences, hotels, and other buildings. The obtained water can be used for flushing toilets, washing cars, watering plants and cleaning the street, or for garden use and to supplement the water of rivers or lakes. A small-scale intermediate water system gathers waste-water from everyday use, and then, through appropriate water-disposal procedures, improves the water quality to a certain level, so that finally it can be repeatedly used for non-drinking water. Thereare extensive ways to use the intermediate water. It can be used for sanitary purposes, public fountains, watering devices in gardens and washing streets. In order to recycle highly polluted waste-water, a higher cost is needed for setting up the associated water-disposal devices, which are more expensive and have less economic benefits than the rain-utilization system. Except for the intermediate water-system set within a single building, if we build them within large-scale communities or major construction development programs, then it is sure to save more water resources efficiently and positively for the whole country as well as improve the environmental situation.4. Method for assessing the recycling of rainSystems for recycling rain and intermediate water are not yet economic beneficial, because of the low water fee and the high cost of water-disposal equipment. However, systems for recycling rain are considered more easily adoptable than those for recycling intermediate water. Herein, a method for assessing the recycling of rain is introduced to calculate the ratio (C) of the water-consumption quantity of the recycled rainwater to the total water-consumption.4.1. Calculation basis of recycling rainwaterThe designer of a system for recycling rainwater must first determine the quantity of rainwater and the demand, which will determine the rainwater collection device area and the storage tank volume. Rainwater quantity can actually be determined by a simple equation involving precipitation and collection device area. However, precipitation does not fall evenly spread over all days and locations. In particular, rain is usually concentrated in certain seasons and locations. Consequently, the critical point of the evaluation is to estimate and assess meteorological precipitation. Meteorological records normally include yearly, monthly, daily and hourly precipitation. Yearly and monthly precipitation is suitable for rough estimates and initial assessment. However, such approximation creates problems in determining the area of the rainwater collection device and the volume of the storage tank. Thus, daily precipitation has been most commonly considered. Hourly precipitation could theoretically support a more accurate assessment. However, owing to the increasing number of parameters and calculation data increases, the complexity of the process and the calculation time, result in inefficiencies. Herein, daily precipitation is adopted in assessing rainwater systems used in buildings [4,7].4.3. Case study and analysisFollowing the above procedure, a primary school building with a rainwater use system is taken as an example for simulation and to verify the assessment results. This building is located in Taipei city, has a building area of 1260 m and a total floor area of 6960 m ; it is a multi-discipline teaching building. Roofing is estimated to cover 80% of the building area, and the rainwater collection area covers 1008 m .Rainwater is used as intermediatewater for the restrooms, and the utilization condition is set at 20 m per day, whilethe out flow coefficient (Y) is 0.9. A typical meteorological precipitation in Taipei in 1992 was adopted as a database. The rainwater storage tank was set to an initial condition before the simulation procedure. Herein, four tank volumes were considered in the simulations of rainwater utilization—15, 25, 50, 100 m. The results indicate that increased storage tank volume reduces overflow and increases the utilization of rainwater. Given a 50 m storage tank, the quantity of rainwater collection closely approaches the utilization quantity of rainwater. Consequently, this condition obtains a storage tank with a roughly adequate volume. When the volume of the storage tank is 100 m, the utilization rate is almost 100% and the overflow quantity approaches zero. Despite this result being favorable with respect to utilization, such a tank may occupy much space and negatively impact building planning. Consequently, the design concept must balance all these factors. The building in this case is six floors high, and the roof area is small in comparison to the total floor area. The water consumption of the water closet per year, but the maximum rainwater approaches 7280 m collection is 2136 m per year. Thus, significant replenishment from tap water is required. This result also leads to a conclusion that high-rise buildings use rainwater systems less efficiently than other buildings. Lower buildings (e.g. less than three floors) have highly efficient rainwater utilization and thus little need for replenishment of water from the potable water system.The efficiency of rainwater storage tanks is assessed from the utilization rate of rainwater and the substitution rate of tap water. Differences in annual precipitation and rainfall distribution yielddifferent results. Figs. 5 and 6 illustrate the results of the mentioned calculation procedure, to analyze differences in rainwater utilization and efficiency assessment.The simulation runs over a period often years, from 1985 to 1994, and includes storage tanks with four different volumes. When the volume of the rainwater tank is 50 m, the utilization rate of rainwater exceeds 80% with about 25% substitution with tap water. Using this approach and the assessment procedure, the volume of rainwater storage and the performance of rainwater use systems in building design, can be determined.In the formula of the water conservation index, C is a special weighting for some water recycling equipment that intermediates water or rain, and is calculated as the ratio of the water-consumption quantity of the recycled rainwater to the total water-consumption. Therefore, this assessment procedure can also offer an approximate value of C for the water conservation index.5. Green building label and policy“Green Building” is called “Environmental Co-Habitual Architecture” in Japan, “Ecological Building” or “Sustainable Building” in Europe and “Green Build ing in North American countries. Many fashionable terms such as “Green consumption”, “Green living”, “Green illumination” have been broadly used. In Taiwan, currently, “Green” has been used as a symbol of environmental protection in the country. The Construction Research Department of the Ministry of the Interior of the Executive Yuan has decided to adopt the term “Green Building” to signify ecological and environmental protection architecture in Taiwan.5.1. Principles of evaluationGreen Building is a general and systematic method of design to peruse sustainable building. This evaluation system is based on the following principles:(1) The evaluation index should accurately reflect environmental protection factors such as material, water, land and climate.(2) The evaluation index should involve standardized scientific quantification.(3) The evaluation index should not include too many evaluation indexes; some similar quality index should be combined.(4) The evaluation index should be approachable and consistent with real experience.(5) The evaluation index should not involve social scientific evaluation.(6) The evaluation index should be applicable to the sub-tropical climate of Taiwan.(7) The evaluation index should be applicable to the evaluation of community or congregate construction.(8) The evaluation index should be usable in the pre-design stage to yield the expected result.According to these principles, the seven-index system shown in Table 4 is the current Green Building evaluation system use d in Taiwan. The theory evaluates buildings’ impacts on the environment through the interaction of “Earth Resource Input” and “Waste Output”. Practically, the definition of Green Building in T aiwan is “Consume the least earth resource and create the least construction waste”.Internationally, each country has a different way of evaluating Green Building. This system provides only the basicevaluation on “Low environment impact”. Higher level is sues such as biological diversity, health and comfort and community consciousness will not be evaluated. This system only provides a basic, practical and controllable environmental protection tool for inclusion in the government’s urgent construction envir onment protection policy. The “Green Building” logo is set to a ward Green Building design and encourage the government and private sector to pay attention to Green Building development. Fig. 7 is the logo of Green Building in Taiwan [6,8].5.2. Water conservation measureThis paper focuses on water conservation index in green building evaluation system. Water conservation is a critical category of this evaluation system, and is considered in relation to saving water resources through building equipment design. This evaluation index contains standardized scientific quantification and can be used in the pre-design stage to obtain the desired result. The evaluation index is also based on research in Taiwan and is practically applicable. Using water-saving equipment is the most effective way of saving water; using two-sectioned water-saving toilets and water-saving showering devices without a bathtub are especially effective. Various other types of water-recycling equipment for reusing intermediate water and rain are also evaluated. In particular, rainwater-use systems in building designs areencouraged. When a candidate for a Green Building project introduces water recycling system or a rainwater use system, the applicant should propose an appropriate calculation report to the relevant committee to verify its water-saving efficiency. This guideline actually appears to be a reasonable target for performing Green Building policy in T aiwan.A new building can easily reach the above water conservation index. This evaluation system is designed to encourage people to save more water, even in existing buildings. All this amounts to saying that large-scale government construction projects should take the lead in using such water-saving devices, as an example to society.6. ConclusionThis paper introduces the Green Building program and proposes a water conservation index with standardized scientific quantification. This evaluation index contains standardized scientific quantification and can be used in the pre-design stage to obtain the expected results. The measure of evaluation index is also based on the essential research on Taiwan and is a practical and applicable approach. The actual water-saving rate (WR) for Green Building projects should be <0.8, and the AR of the water-saving equipment should be higher than 0.8. Thus, qualified Green Building projects should achieve a water saving rate of over 20%. For the sustainable policy, this program is aimed not only at saving water resources, but also at reducing the environmental impact on the earth.The Green Building Label began to be implemented from 1st September 1999, and over twenty projects have already been awarded the Green Building Label in T aiwan, while the number of applications continues to increase. For a country with limited resources and a high-density population like Taiwan, the Green Building policy is important and represents a positive first step toward reducing environmental impact and promoting sustainable development.译文:台湾的绿色建筑节约用水评价措施在台湾绿色建筑评价是一个新的制度,在它的一个7个类别中,通过建筑设备设计节省水资源,使水资源保护置于优先地位。
建筑设计毕业论文中英文资料外文翻译文献
毕业论文中英文资料外文翻译文献Architecture StructureWe have and the architects must deal with the spatial aspect of activity, physical, and symbolic needs in such a way that overall performance integrity is assured. Hence, he or she well wants to think of evolving a building environment as a total system of interacting and space forming subsystems. Is represents a complex challenge, and to meet it the architect will need a hierarchic design process that provides at least three levels of feedback thinking: schematic, preliminary, and final.Such a hierarchy is necessary if he or she is to avoid being confused , at conceptual stages of design thinking ,by the myriad detail issues that can distract attention from more basic consideration s .In fact , we can say that an architect’s ability to distinguish the more basic form the more detailed issues is essential to his success as a designer .The object of the schematic feed back level is to generate and evaluate overall site-plan, activity-interaction, and building-configuration options .To do so the architect must be able to focus on the interaction of the basic attributes of the site context, the spatial organization, and the symbolism as determinants of physical form. This means that ,in schematic terms ,the architect may first conceive and model a building design as an organizational abstraction of essential performance-space in teractions.Then he or she may explore the overall space-form implications of the abstraction. As an actual building configuration option begins to emerge, it will be modified to include consideration for basic site conditions.At the schematic stage, it would also be helpful if the designer could visualize his or her options for achieving overall structural integrity and consider the constructive feasibility and economic of his or her scheme .But this will require that the architect and/or a consultant be able to conceptualize total-system structural options in terms of elemental detail .Such overall thinking can be easily fed back to improve the space-form scheme.At the preliminary level, the architect’s emphasis will shift to the elaboration of his or her more promising schematic design options .Here the architect’s structural needs will shift toapproximate design of specific subsystem options. At this stage the total structural scheme is developed to a middle level of specificity by focusing on identification and design of major subsystems to the extent that their key geometric, component, and interactive properties are established .Basic subsystem interaction and design conflicts can thus be identified and resolved in the context of total-system objectives. Consultants can play a significant part in this effort; these preliminary-level decisions may also result in feedback that calls for refinement or even major change in schematic concepts.When the designer and the client are satisfied with the feasibility of a design proposal at the preliminary level, it means that the basic problems of overall design are solved and details are not likely to produce major change .The focus shifts again ,and the design process moves into the final level .At this stage the emphasis will be on the detailed development of all subsystem specifics . Here the role of specialists from various fields, including structural engineering, is much larger, since all detail of the preliminary design must be worked out. Decisions made at this level may produce feedback into Level II that will result in changes. However, if Levels I and II are handled with insight, the relationship between the overall decisions, made at the schematic and preliminary levels, and the specifics of the final level should be such that gross redesign is not in question, Rather, the entire process should be one of moving in an evolutionary fashion from creation and refinement (or modification) of the more general properties of a total-system design concept, to the fleshing out of requisite elements and details.To summarize: At Level I, the architect must first establish, in conceptual terms, the overall space-form feasibility of basic schematic options. At this stage, collaboration with specialists can be helpful, but only if in the form of overall thinking. At Level II, the architect must be able to identify the major subsystem requirements implied by the scheme and substantial their interactive feasibility by approximating key component properties .That is, the properties of major subsystems need be worked out only in sufficient depth to very the inherent compatibility of their basic form-related and behavioral interaction . This will mean a somewhat more specific form of collaboration with specialists then that in level I .At level III ,the architect and the specific form of collaboration with specialists then that providing for all of the elemental design specifics required to produce biddable construction documents .Of course this success comes from the development of the Structural Material.1.Reinforced ConcretePlain concrete is formed from a hardened mixture of cement ,water ,fine aggregate, coarse aggregate (crushed stone or gravel),air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction lf the cement/water mix, resulting in hardened concrete. The finished product has high compressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth lf its compressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete element.It is this deviation in the composition of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and compacting the wet mixture of the constituent ingredients are properly proportioned, the finished product becomes strong, durable, and, in combination with the reinforcing bars, adaptable for use as main members of any structural system.The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a bean, a wall, a slab, a foundation. a mass columns, or an extension of previously placed and hardened concrete. For beams, columns, and walls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be compacted and thoroughly moistened to about 6 in. in depth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are compacted by means of high frequency power-driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.Hydration of the cement takes place in the presence of moisture at temperatures above 50°F. It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place. This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice ofconcrete sections, with assumptions based on conditions at site, availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental reinforced concrete is often a site-constructed composite, in contrast to the standard mill-fabricated beam and column sections in steel structures.A trial section has to be chosen for each critical location in a structural system. The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load. Since more than one trial is often necessary to arrive at the required section, the first design input step generates into a series of trial-and-adjustment analyses.The trial-and –adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design. Hence every design is an analysis once a trial section is chosen. The availability of handbooks, charts, and personal computers and programs supports this approach as a more efficient, compact, and speedy instructional method compared with the traditional approach of treating the analysis of reinforced concrete separately from pure design.2. EarthworkBecause earthmoving methods and costs change more quickly than those in any other branch of civil engineering, this is a field where there are real opportunities for the enthusiast. In 1935 most of the methods now in use for carrying and excavating earth with rubber-tyred equipment did not exist. Most earth was moved by narrow rail track, now relatively rare, and the main methods of excavation, with face shovel, backacter, or dragline or grab, though they are still widely used are only a few of the many current methods. To keep his knowledge of earthmoving equipment up to date an engineer must therefore spend tine studying modern machines. Generally the only reliable up-to-date information on excavators, loaders and transport is obtainable from the makers.Earthworks or earthmoving means cutting into ground where its surface is too high ( cuts ), and dumping the earth in other places where the surface is too low ( fills). Toreduce earthwork costs, the volume of the fills should be equal to the volume of the cuts and wherever possible the cuts should be placednear to fills of equal volume so as to reduce transport and double handlingof the fill. This work of earthwork design falls on the engineer who lays out the road since it is the layout of the earthwork more than anything else which decides its cheapness. From the available maps ahd levels, the engineering must try to reach as many decisions as possible in the drawing office by drawing cross sections of the earthwork. On the site when further information becomes available he can make changes in jis sections and layout,but the drawing lffice work will not have been lost. It will have helped him to reach the best solution in the shortest time.The cheapest way of moving earth is to take it directly out of the cut and drop it as fill with the same machine. This is not always possible, but when it canbe done it is ideal, being both quick and cheap. Draglines, bulldozers and face shovels an do this. The largest radius is obtained with thedragline,and the largest tonnage of earth is moved by the bulldozer, though only over short distances.The disadvantages of the dragline are that it must dig below itself, it cannot dig with force into compacted material, it cannot dig on steep slopws, and its dumping and digging are not accurate.Face shovels are between bulldozers and draglines, having a larger radius of action than bulldozers but less than draglines. They are anle to dig into a vertical cliff face in a way which would be dangerous tor a bulldozer operator and impossible for a dragline. Each piece of equipment should be level of their tracks and for deep digs in compact material a backacter is most useful, but its dumping radius is considerably less than that of the same escavator fitted with a face shovel.Rubber-tyred bowl scrapers are indispensable for fairly level digging where the distance of transport is too much tor a dragline or face shovel. They can dig the material deeply ( but only below themselves ) to a fairly flat surface, carry it hundreds of meters if need be, then drop it and level it roughly during the dumping. For hard digging it is often found economical to keep a pusher tractor ( wheeled or tracked ) on the digging site, to push each scraper as it returns to dig. As soon as the scraper is full,the pusher tractor returns to the beginning of the dig to heop to help the nest scraper.Bowl scrapers are often extremely powerful machines;many makers build scrapers of 8 cubic meters struck capacity, which carry 10 m ³ heaped. The largest self-propelled scrapers are of 19 m ³struck capacity ( 25 m ³ heaped )and they are driven by a tractor engine of 430 horse-powers.Dumpers are probably the commonest rubber-tyred transport since they can also conveniently be used for carrying concrete or other building materials. Dumpers have the earth container over the front axle on large rubber-tyred wheels, and the container tips forwards on most types, though in articulated dumpers the direction of tip can be widely varied. The smallest dumpers have a capacity of about 0.5 m ³, and the largest standard types are of about 4.5 m ³. Special types include the self-loading dumper of up to 4 m ³ and the articulated type of about 0.5 m ³. The distinction between dumpers and dump trucks must be remembered .dumpers tip forwards and the driver sits behind the load. Dump trucks are heavy, strengthened tipping lorries, the driver travels in front lf the load and the load is dumped behind him, so they are sometimes called rear-dump trucks.3.Safety of StructuresThe principal scope of specifications is to provide general principles and computational methods in order to verify safety of structures. The “ safety factor ”, which according to modern trends is independent of the nature and combination of the materials used, can usually be defined as the ratio between the conditions. This ratio is also proportional to the inverse of the probability ( risk ) of failure of the structure.Failure has to be considered not only as overall collapse of the structure but also asunserviceability or, according to a more precise. Common definition. As the reaching of a “ limit state ” which causes the construction not to accomplish the task it was designed for. Ther e are two categories of limit state :(1)Ultimate limit sate, which corresponds to the highest value of the load-bearing capacity. Examples include local buckling or global instability of the structure; failure of some sections and subsequent transformation of the structure into a mechanism; failure by fatigue; elastic or plastic deformation or creep that cause a substantial change of the geometry of the structure; and sensitivity of the structure to alternating loads, to fire and to explosions.(2)Service limit states, which are functions of the use and durability of the structure. Examples include excessive deformations and displacements without instability; early or excessive cracks; large vibrations; and corrosion.Computational methods used to verify structures with respect to the different safety conditions can be separated into:(1)Deterministic methods, in which the main parameters are considered as nonrandom parameters.(2)Probabilistic methods, in which the main parameters are considered as random parameters.Alternatively, with respect to the different use of factors of safety, computational methods can be separated into:(1)Allowable stress method, in which the stresses computed under maximum loads are compared with the strength of the material reduced by given safety factors.(2)Limit states method, in which the structure may be proportioned on the basis of its maximum strength. This strength, as determined by rational analysis, shall not be less than that required to support a factored load equal to the sum of the factored live load and dead load ( ultimate state ).The stresses corresponding to working ( service ) conditions with unfactored live and dead loads are compared with prescribed values ( service limit state ) . From the four possible combinations of the first two and second two methods, we can obtain some useful computational methods. Generally, two combinations prevail:(1)deterministic methods, which make use of allowable stresses.(2)Probabilistic methods, which make use of limit states.The main advantage of probabilistic approaches is that, at least in theory, it is possible to scientifically take into account all random factors of safety, which are then combined to define the safety factor. probabilistic approaches depend upon :(1) Random distribution of strength of materials with respect to the conditions of fabrication and erection ( scatter of the values of mechanical properties through out the structure );(2) Uncertainty of the geometry of the cross-section sand of the structure ( faults andimperfections due to fabrication and erection of the structure );(3) Uncertainty of the predicted live loads and dead loads acting on the structure;(4)Uncertainty related to the approximation of the computational method used ( deviation of the actual stresses from computed stresses ).Furthermore, probabilistic theories mean that the allowable risk can be based on several factors, such as :(1) Importance of the construction and gravity of the damage by its failure;(2)Number of human lives which can be threatened by this failure;(3)Possibility and/or likelihood of repairing the structure;(4) Predicted life of the structure.All these factors are related to economic and social considerations such as:(1) Initial cost of the construction;(2) Amortization funds for the duration of the construction;(3) Cost of physical and material damage due to the failure of the construction;(4) Adverse impact on society;(5) Moral and psychological views.The definition of all these parameters, for a given safety factor, allows construction at the optimum cost. However, the difficulty of carrying out a complete probabilistic analysis has to be taken into account. For such an analysis the laws of the distribution of the live load and its induced stresses, of the scatter of mechanical properties of materials, and of the geometry of the cross-sections and the structure have to be known. Furthermore, it is difficult to interpret the interaction between the law of distribution of strength and that of stresses because both depend upon the nature of the material, on the cross-sections and upon the load acting on the structure. These practical difficulties can be overcome in two ways. The first is to apply different safety factors to the material and to the loads, without necessarily adopting the probabilistic criterion. The second is an approximate probabilistic method which introduces some simplifying assumptions ( semi-probabilistic methods ) .文献翻译建筑师必须从一种全局的角度出发去处理建筑设计中应该考虑到的实用活动,物质及象征性的需求。
建筑英文文献及翻译
建筑英文文献及翻译第一篇:建筑英文文献及翻译外文原文出处: NATO Science for Peace and Security Series C: Environmental Security, 2009, Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data, Pages 147-149动力性能对建筑物的破坏引言:建筑物在地震的作用下,和一些薄弱的建筑结构中,动力学性能扮演了一个很重要的角色。
特别是要满足最基本的震动周期,无论是在设计的新建筑,或者是评估已经有的建筑,使他们可以了解地震的影响。
许多标准(例如:欧标,2003;欧标,2006),建议用简单的表达式来表达一个建筑物的高度和他的基本周期。
这样的表达式被牢记在心,得出标定设计(高尔和乔谱拉人,1997),从而人为的低估了标准周期。
因为这个原因,他们通常提供比较低的设计标准当与那些把设计基础标准牢记在心的人(例:乔普拉本和高尔,2000)。
当后者从已进行仔细建立的数字模型中得到数值(例:克劳利普和皮诺,2004;普里斯特利权威,2007)。
当数字估计与周围震动测量的实验结果相比较,有大的差异,提供非常低的周期标准(例:纳瓦洛苏达权威,2004)。
一个概述不同的方式比较确切的结果刊登在马西和马里奥(2008);另外,一个高级的表达式来指定更有说服力的坚固建筑类型,提出了更加准确的结构参数表(建筑高度,开裂,空隙填实,等等)。
联系基础和上层建筑的震动周期可能发生共振的效果。
这个原因对于他们的振动,可能建筑物和土地在非线性运动下受到到破坏,这个必须被重视。
通常,结构工程师和岩土工程师有不同的观点在共振作用和一些变化的地震活动。
结构工程师们认为尽管建筑物和土壤的自振周期和地震周期都非常的接近。
但对于建筑物周期而言,到底是因为结构还是非结构造成的破坏提出了疑问。
green building 外文文献翻译
外文文献:Green buildingGreen building (also known as green construction or sustainable building) refers to a structure and using process that is environmentally responsible and resource-efficient throughout a building's life-cycle: from sitting to design, construction, operation, maintenance, renovation, and demolition. This requires close cooperation of the design team, the architects, the engineers, and the client at all project stages. The Green Building practice expands and complements the classical building design concerns of economy, utility, durability, and comfort.Although new technologies are constantly being developed to complement current practices in creating greener structures, the common objective is that green buildings are designed to reduce the overall impact of the built environment on human health and the natural environment by:Efficiently using energy, water, and other resourcesProtecting occupant health and improving employee productivityReducing waste, pollution and environmental degradationA similar concept is natural building, which is usually on a smaller scale and tends to focus on the use of natural materials that are available locally. Other related topics include sustainable design and green architecture. Sustainability may be defined as meeting the needs of present generations without compromising the ability of future generations to meet their needs. Although some green building programs don't address the issue of the retrofitting existing homes, others do. Green construction principles can easily be applied to retrofit work as well as new construction.A 2009 report by the U.S. General Services Administration found 12 sustainably designed buildings cost less to operate and have excellent energy performance. In addition, occupants were more satisfied with the overall building than those in typical commercial buildings.Green building practices aim to reduce the environmental impact of buildings, so the very first rule is: the greenest building is the building that doesn't get built. New construction almost always degrades a building site, so not building is preferable to building. The second rule is: every building should be as small as possible. The third rule is: do not contribute to sprawl (the tendency for cities to spread out in a disordered fashion). No matter how much grass you put onyour roof, no matter how many energy-efficient windows, etc., you use, if you 1 contribute to sprawl, you've just defeated your purpose. Urban infill sites are preferable to suburban "Greenfield" sites.Buildings account for a large amount of land. According to the National Resources Inventory, approximately 107 million acres (430,000 km2) of land in the United States are developed. The International Energy Agency released a publication that estimated that existing buildings are responsible for more than 40% of the world’s total primary energy consumption and for 24% of global carbon dioxide emissions.The concept of sustainable development can be traced to the energy (especially fossil oil) crisis and the environment pollution concern in the 1970s. The green building movement in the U.S. originated from the need and desire for more energy efficient and environmentally friendly construction practices. There are a number of motives for building green, including environmental, economic, and social benefits. However, modern sustainability initiatives call for an integrated and synergistic design to both new construction and in theretrofiring of existing structures. Also known as sustainable design, this approach integrates the building life-cycle with each green practice employed with a design-purpose to create a synergy among the practices used.Green building brings together a vast array of practices, techniques, and skills to reduce and ultimately eliminate the impacts of buildings on the environment and human health. It often emphasizes taking advantage resources, e.g., using sunlight through passive solar, active solar, and photovoltaic techniques and using plants and trees through green roofs, rain gardens, and reduction of rainwater run-off. Many other techniques are used, such as using wood as a building material, or using packed gravel or permeable concrete instead of conventional concrete or asphalt to enhance replenishment of ground water.While the practices, or technologies, employed in green building are constantly evolving and may differ from region to region, fundamental principles persist from which the method is derived: Sitting and Structure Design Efficiency, Energy Efficiency, Water Efficiency, Materials Efficiency, Indoor Environmental Quality Enhancement, Operations and Maintenance Optimization, and Waste and Toxics Reduction. The essence of green building is an optimizationof one or more of these principles. Also, with the proper synergistic design, individual green building technologies may work together to produce a greater cumulative effect.On the aesthetic side of green architecture or sustainable design is the philosophy of designing a building that is in harmony with the natural features and resources surrounding the site. There are several key steps in designing sustainable buildings: specify 'green' building materials from local sources, reduce loads, optimize systems, and generate on-site renewable energy.The foundation of any construction project is rooted in the concept and design stages. The concept stage, in fact, is one of the major steps in a project life cycle, as it has the largest impact on cost and performance. In designing environmentally optimal buildings, the objective is to minimize the total environmental impact associated with all life-cycle stages of the building project. However, building as a process is not as streamlined as an industrial process, and varies from one building to the other, never repeating itself identically. In addition, buildings are much more complex products, composed of a multitude of materials and components each constituting various design variables to be decided at the design stage. A variation of every design variable may affect the environment during all the building's relevant life-cycle stages.Green buildings often include measures to reduce energy consumption – both the embodied energy required to extract, process, transport and install building materials and operating energy to provide services such as heating and power for equipment.As high-performance buildings use less operating energy, embodied energy has assumed much greater importance – and may make up as much as 30% of the overall life cycle energy consumption. Studies such as the U.S. LCI Database Project show buildings built primarily with wood will have a lower embodied energy than those built primarily with brick, concrete or steel.To reduce operating energy use, designers use details that reduce air leakage through the building envelope (the barrier between conditioned and unconditioned space). They also specify high-performance windows and extra insulation in walls, ceilings, and floors. Another strategy, passive solar building design, is often implemented in low-energy homes. Designers orient windows and walls and place awnings, porches, and trees to shade windows and roofs during the summer while maximizing solar gain in the winter. In addition, effective window placement(daylighting) can provide more natural light and lessen the need for electric lighting during the day.Onsite generation of renewable energy through solar power, wind power, hydro power, or biomass can significantly reduce the environmental impact of the building. Power generation is generally the most expensive feature to add to a building.Reducing water consumption and protecting water quality are key objectives in sustainable building. One critical issue of water consumption is that in many areas, the demands on the supplying aquifer exceed its ability to replenish itself. To the maximum extent feasible, facilities should increase their dependence on water that is collected, used, purified, and reused on-site. The protection and conservation of water throughout the life of a building may be accomplished by designing for dual plumbing that recycles water in toilet flushing. Waste-water may be minimized by utilizing water conserving fixtures such as ultra-low flush toilets and low-flow shower heads. Bidets help eliminate the use of toilet paper, reducing sewer traffic and increasing possibilities of re-using water on-site. Point of use water treatment and heating improves both water quality and energy efficiency while reducing the amount of water in circulation. The use of non-sewage and grey water for on-site use such as site-irrigation will minimize demands on the local aquifer.Building materials typically considered to be 'green' include lumber from forests that have been certified to a third-party forest standard, rapidly renewable plant materials like bamboo and straw, dimension stone, recycled stone, recycled metal (see: copper sustainability and recyclability), and other products that are non-toxic, reusable, renewable, and/or recyclable (e.g., Trass, Linoleum, sheep wool, panels made from paper flakes, compressed earth block, adobe, baked earth, rammed earth, clay, vermiculite, flax linen, sisal, sea grass, cork, expanded clay grains, coconut, wood fibre plates, calcium sand stone, concrete (high and ultra high performance, roman self-healing concrete, etc.) The EPA (Environmental Protection Agency) also suggests using recycled industrial goods, such as coal combustion products, foundry sand, and demolition debris in construction projects Building materials should be extracted and manufactured locally to the building site to minimize the energy embedded in their transportation. Where possible, building elements should be manufactured off-site and delivered to site, to maximise benefits of off-site manufacture including minimising waste, maximising recycling (because manufacture isin one location), high quality elements, better OHS management, less noise and dust. Energy efficient building materials and appliances are promoted in the United States through energy rebate programs, which are increasingly communicated to consumers through energy rebate database services such as GreenOhm.The Indoor Environmental Quality (IEQ) category in LEED standards, one of the five environmental categories, was created to provide comfort, well-being, and productivity of occupants. The LEED IEQ category addresses design and construction guidelines especially: indoor air quality (IAQ), thermal quality, and lighting quality.Indoor Air Quality seeks to reduce volatile organic compounds, or VOCs, and other air impurities such as microbial contaminants. Buildings rely on a properly designed ventilation system (passively/naturally or mechanically powered) to provide adequate ventilation of cleaner air from outdoors or recirculated, filtered air as well as isolated operations (kitchens, dry cleaners, etc.) from other occupancies. During the design and construction process choosing construction materials and interior finish products with zero or low VOC emissions will improve IAQ. Most building materials and cleaning/maintenance products emit gases, some of them toxic, such as many VOCs including formaldehyde. These gases can have a detrimental impact on occupants' health, comfort, and productivity. Avoiding these products will increase a building's IEQ. LEED. HQE and Green Star contain specifications on use of low-emitting interior. Draft LEED 2012 is about to expand the scope of the involved products. BREEA Mlimits formaldehyde emissions, no other VOCs.Also important to indoor air quality is the control of moisture accumulation (dampness) leading to mold growth and the presence of bacteria and viruses as well as dust mites and other organisms and microbiological concerns. Water intrusion through a building's envelope or water condensing on cold surfaces on the building's interior can enhance and sustain microbial growth.A well-insulated and tightly sealed envelope will reduce moisture problems but adequate ventilation is also necessary to eliminate moisture from sources indoors including human metabolic processes, cooking, bathing, cleaning, and other activities.Personal temperature and airflow control over the HVAC system coupled with a properly designed building envelope will also aid in increasing a building's thermal quality. Creating ahigh performance luminous environment through the careful integration of daylight and electrical light sources will improve on the lighting quality and energy performance of a structure.Solid wood products, particularly flooring, are often specified in environments where occupants are known to have allergies to dust or other particulates. Wood itself is considered to be hypo-allergenic and its smooth surfaces prevent the buildup of particles common in soft finishes like carpet. The Asthma and Allergy Foundation of American recommends hardwood, vinyl, linoleum tile or slate flooring instead of carpet. The use of wood products can also improve air quality by absorbing or releasing moisture in the air to moderate humidity.No matter how sustainable a building may have been in its design and construction, it can only remain so if it is operated responsibly and maintained properly. Ensuring operations and maintenance(O&M) personnel are part of the project's planning and development process will help retain the green criteria designed at the onset of the project. Every aspect of green building is integrated into the O&M phase of a building's life. The addition of new green technologies also falls on the O&M staff. Although the goal of waste reduction may be applied during the design, construction and demolition phases of a building's life-cycle, it is in the O&M phase that green practices such as recycling and air quality enhancement take place. Waste reduction Green architecture also seeks to reduce waste of energy, water and materials used during construction. For example, in California nearly 60% of the state's waste comes from commercial buildings. During the construction phase, one goal should be to reduce the amount of material going to landfills. Well-designed buildings also help reduce the amount of waste generated by the occupants as well, by providing on-site solutions such as compost bins to reduce matter going to landfills.To reduce the amount of wood that goes to landfill, Neutral Alliance (a coalition of government, NGOs and the forest industry) created the website . The site includes a variety of resources for regulators, municipalities, developers, contractors, owner/operators and individuals/homeowners looking for information on wood recycling.When buildings reach the end of their useful life, they are typically demolished and hauled to landfills. Deconstruction is a method of harvesting what is commonly considered "waste" and reclaiming it into useful building material. Extending the useful life of a structure also reduceswaste – building materials such as wood that are light and easy to work with make renovations easier.To reduce the impact on wells or water treatment plants, several options exist. "Grey water", wastewater from sources such as dishwashing or washing machines, can be used for subsurface irrigation, or if treated, for non-potable purposes, e.g., to flush toilets and wash cars. Rainwater collectors are used for similar purposes.Centralized wastewater treatment systems can be costly and use a lot of energy. An alternative to this process is converting waste and wastewater into fertilizer, which avoids these costs and shows other benefits. By collecting human waste at the source and running it to a semi-centralized biogas plant with other biological waste, liquid fertilizer can be produced. This concept was demonstrated by a settlement in Lubeck Germany in the late 1990s. Practices like these provide soil with organic nutrients and create carbon sinks that remove carbon dioxide from the atmosphere, offsetting greenhouse gas emission. Producing artificial fertilizer is also more costly in energy than this process.中文译文:绿色建筑绿色建筑(也被称为绿色建筑或可持续建筑)是指一个结构和使用的过程,是对环境负责和资源节约型整个建筑物的循环生活:从选址到设计,施工,运行,维护,改造和拆迁。
关于绿色建筑-毕设论文外文翻译(翻译+原文)
毕业设计英文资料翻译Translation of the English Documents for Graduation Design课题名称原文:DOCTORAL FORUMNA TIONAL JOURNAL FOR PUBLISHING AND MENTORING DOCTORAL STUDENT RESEARCHVOLUME 7, NUMBER 1, 2010Green buildingsPriscilla D. JohnsonPhD Student in Educational LeadershipWhitlowe R. Green College of EducationPrairie View A&M UniversityPrairie View, TexasWilliam Allan Kritsonis, PhDProfessor and Faculty MentorPhD Program in Educational LeadershipWhitlowe R. Green College of EducationPrairie View A&M UniversityMember of the Texas A&M University SystemPrairie View, TexasHall of Honor (2008)William H. Parker Leadership Academy, Graduate SchoolPrairie View A&M UniversityMember of the Texas A&M University SystemPrairie View, TexasVisiting Lecturer (2005)Oxford Round TableUniversity of OxfordOxford, EnglandDistinguished Alumnus (2004)College of Education and Professional StudiesCentral Washington UniversityEllensberg, WashingtonAbstract: Green building refers to do its best to maximize conservation of resources (energy, land, water, and wood),protecting the environment and reduce pollution in its life cycle. Provide people with healthy, appropriate and efficient use of space, and nature in harmony symbiosis buildings. I described more details of green building design’ notion, green building’ design, as well as the significance of the concept of green building and improve the effectiveness analysis of the external effects of green building measures,Key words: green buildings; protect the ecology; signification ; analysing the effects1 What is a green buildingGreen building refers to building life cycle, the maximum conservation of resources (energy, land, water and materials), protecting the environment and reduce pollution, provide people with health, application and efficient use of space, and nature harmony of the building. The so-called green building "green" does not mean a general sense of three-dimensional green, roof garden, but represents a concept or symbol, refers to building environmentally friendly, make full use of natural resources, environment and basic ecological damage to the environment without balance of a building under construction, but also known as sustainable building, eco-building, back into the wild construction, energy saving construction.Green building interior layout is very reasonable, to minimize the use of synthetic materials, full use of the sun, saving energy for the residents Chuangzao almost-natural feeling.People, architecture and the natural environment for the harmonious development goals, in the use of natural and artificial means to create good conditions and healthy living environment, as much as possible to control and reduce the use and destruction of the natural environment, to fully reflect the nature obtain and return balance.2, the meaning of green buildingThe basic connotation of green building can be summarized as: to reduce the load on the environment architecture, which save energy and resources; provide a safe, healthy, comfortable living space with good; affinity with the natural environment, so that people and building a harmonious coexistence with the environment and sustainable development.3 Development of the significance of green building rating systemEstablish green building rating system is a revolution in the field of architecture and the Enlightenment, its far more than energy savings. It is innovative in many ways and organic synthesis, thereby building in harmony with nature, full utilization of resources and energy, create healthy, comfortable and beautiful living space. It's revolutionary for the field of architecture from the technical, social and economic angles.3.1 Technical SignificanceGreen building study of early technical problems of individual-based, technology is isolated and one-sided, not formed an organic whole, the integration of design and economic study ofconsciousness is far from the only strategy of economic analysis phase of the subsidiary's knowledge . However, individual technical research results of early modern green building techniques for the multi-dimensional development and systems integration will lay a solid foundation. Since the nineties of the 20th century, with the understanding of green building gradually deepen and mature, people give up way too utopian thinking He alone environmental consciousness and moral constraints and spontaneous green behavior, turned to explore more workable environmental philosophy, environmental and capital combined into the future world the new direction of development of environmental protection, green building has entered a result of ecological ethics from the practice of promoting ecological research to deepen the new stage. Green Building Technology takes on the natural sciences, social sciences, humanities, computer science, information science and other subjects the trend of integration of research results, making green building design into the multi-dimensional stage of development strategy study. The deepening of green building technology strategy and development in materials, equipment, morphology, etc various advanced fields, in technology development, technology and other design elements of the integration is also starting from the past the simple addition, more attention to the periphery of the retaining structure itself design technology and architecture to combine the overall system change, gradually becoming green building systems. Green building rating system was established green building technologies gradually improve and systematize the inevitable result, it is the organic integration of green building technology, a platform built to green building technology, information technology, computer technology and many other subjects can be a unified platform in their respective roles, the establishment of a comprehensive evaluation system for designers, planners, engineers and managers a more than ever, a more simple, Guizhangmingque green building assessment tools and design guidelines.3.2 The social significance.Green building rating system reflects the social significance of the main advocates of the new way of life, heightened awareness and public participation in the continuation of local culture are two aspects.To promote a healthy lifestyle. Green building rating system, the social significance of the primary advocate a healthy lifestyle, which is based on the design and construction of green buildings as a community education process. The principles of green building rating system is the effective use of resources and ecological rules to follow, based on the health of building space to create and maintain sustainable development. The concept of the past to correct people's misconceptions about consumer lifestyles, that can not blindly pursue material luxury, but should keep the environment under the premise of sustainable use of modest comfort to pursue life. From the fundamental terms, construction is to meet human needs built up of material goods as people's Wenhuayishi Name and lifestyle is not sustainable when, the value of green building itself will be reduced, but only had a real social need When the requirements of sustainable development and way of life that matches the green building to achieve the best results.Enhanced awareness of public participation. Green Building Rating system is not a monopoly for the design staff of professional tools, but for planners, designers, engineers, managers, developers, property owners, jointly owned by the public and other assessmenttools. It broke the previous professional development of the monopoly to encourage the participation of the public and other public officers. Through public participation, the introduction of architects and other building users, the construction of dialogue participants, making the original design process dominated by the architect becomes more open. Proved the involvement of various views and a good help to create a dynamic culture, embody social justice community.3.3 The economic significance.Green building rating system, the economic significance can be divided into macro and micro levels. At the macro level, the green building rating system from the system life-cycle perspective, the green building design integrated into the economic issues involved in the production from the building materials, design, construction, operation, resource use, waste disposal, recycling of demolition until the natural resources the whole process. Economic considerations of green building is no longer limited to the design process itself, while the policy extended to the design of the narrow role to play to support the policy level, including the establishment of "green labeling" system, improving the construction environmental audit and management system, increase and construction-related energy consumption, pollutant emissions and other acts of tax efforts, improve the legal system of environmental protection, from the increase in government construction projects on the sustainability of economic support and raise the cost to the construction of polluting the environment acts as the costs for green buildings design and construction to create a favorable external environment. This goal is not entirely the responsibility of government agencies, as the architects involved in design work as a sound system of responsibility for recommendations obligations, because only the most from the practice of the need is real and urgent. The related policy issues in green building design strategies, building a system to solve the economic problems facing the important aspects. At the micro level, the current from the economic point of Design Strategy is more fully consider the economic operation of the project, and specific technical strategies accordingly adjusted.3.4 Ethical Significance.Green building rating system, the theoretical basis of the concept of sustainable development, therefore, whether the evaluation system of each country how much difference in structure, they all have one thing in common: reduce the burden of ecological environment, improve construction quality of the environment for future generations to remain the development of there is room. This radically change the long-sought human blindly to the natural attitude, reflecting people's understanding of the relationship between man and nature by the opposition to the uniform change. According to the current global energy reserves and resources distribution, the Earth's natural environment is also far from the edge of exhaustion, enough people enjoy the luxury of contemporary material life. But now we have to consume a resource, it means that future generations will be less of a living space. More importantly, if we consume the natural environment more than it can limit self-renewal, then the future of the younger generation is facing the planet's ecosystems can not recover the risk into a real crisis. Therefore we can say, the development of green buildings and their corresponding evaluation system, for more contemporary people is the responsibility and obligations. For more the interests of future generations and advantages. 4 green building designGreen building design include the following:Saving energy: full use of solar energy, using energy-efficient building envelope and heating and air conditioning, reducing heating and air conditioning use. Set according to the principle of natural ventilation cooling system that allows efficient use of building to the dominant wind direction in summer. Adapted to local climatic conditions, building use form and general layout of the plane.Resource conservation: in the building design, construction and selection of construction materials, are considered fair use and disposal of resources. To reduce the use of resources, strive to make the use of renewable resources. Conserve water resources, including water conservation and greening.Return to Nature: Green Building exterior to emphasize integration with the surrounding environment, harmony, movement complement each other so that the protection of natural ecological environment.5 Effect of green building5.1 Effect of the composition of green buildingEffect of green building, including internal effects and external effects, direct benefits and direct costs as the internal effect, known as the indirect benefits and indirect costs of external effects, according to engineering economics point of view: the internal effects can be financial evaluation, external effects should be economic evaluation, economic evaluation is based on the so-called rational allocation of scarce resources and socio-economic principles of sustainable development, from the perspective of the overall national economy, study projects spending of social resources and contributions to the community to evaluate the project's economic and reasonable and external effects generally include Industry Effects, environmental and ecological effects, technology diffusion effect, the external effect will cause the private costs (internal costs or indirect costs) and social costs inconsistent, leading to the actual price is different from the best price. From the perspective of sustainable development, green building assessment effects of the main indicators of external effects.Since beginning the development of green building, unity of quantitative indicators system is still not established, I believe that the following aspects should be analyzed: (1) strictly control the construction industry, size, limit the number of employees. Extensive growth model epitomized by the struggle over the construction project, the construction process using human wave tactics, once the state limit the scale of construction, will form the "adequate", which will not reduce the degree of mechanization, labor, the low level. (2) more investments in technology, upgrade technology, establish and perfect the mechanism for scientific and technical equipment. Focus on the development and application of building technology, combined with the project, the characteristics of future construction, a planned way scientific and technological research and development of new machinery, new processes, new materials, and actively introduce, absorb and assimilate the advanced scientific and technological achievements of science and technology to improve the level of mechanization.(3) in urban planning, survey and design through the "green building" ideas. Family housing and urban construction or alteration must remain in the room, from lighting, ventilation, drainage and so control the damage to the environment. (4) construction work, reduced resource consumption, the production process in construction, energy saving measuresshould be adopted to prevent the excessive consumption of land resources, water resources, power resources.5.2 External effects of the challenges to building the economyUnder the control of the government's intervention, to a certain extent on the efficient allocation of resources to strengthen the implementation of energy conservation mandatory standards for construction supervision. To further improve the building energy monitoring system, and strengthen the mandatory building energy efficiency standards in order to carry out the implementation of the project as the main content of the whole process of monitoring, particularly for large public buildings to enhance the building energy regulation, reflected in the project cost on the part of the Waibu costs into internal costs, making the "non-green building" project's internal costs, internal efficiency and reduce the external costs of green building, the external efficiency increase, so that effective economic resources to the rational flow of green building.6 to improve the external effects of green building measuresEnterprise architecture in the new economy to obtain a competitive advantage, improve the external effects only continually tap the ways and means to improve the external efficiency, reduce external costs, the basic ideas and principles: (1) Construction of natural resources in the life cycle and minimize energy consumption; (2) reducing building life cycle emissions; (3) protect the ecological (natural) environment; (4) to form a healthy, comfortable and safe indoor space; (5) the quality of construction, functionality, performance and environmental unity.Summarydescribed above, the meaning of green building design and analysis of its effectiveness and improve the external effects of green building measures. But how does the future design of green buildings need a degree in practice we try to figure out, I believe that green building will become the future construction of a trend.译文:博士生论坛国家期刊出版和指导博士生研究第7卷,第1号,2010绿色建筑Priscilla D. Johnson博士生教育领导Whitlowe R.绿色教育学院普雷里维尤A&M大学普雷里维尤,德州William Allan Kritsonis博士——教授和教师导师博士课程教育领导Whitlowe R.绿色教育学院普雷里维尤A&M大学会员德克萨斯州A&M大学普雷里维尤,德州荣誉殿堂(2008)威廉H. Parker的领导学院,研究生院普雷里维尤A&M大学会员德克萨斯州A&M大学普雷里维尤,德州客座讲师(2005年)牛津圆桌会议牛津大学英国牛津杰出校友(2004)教育学院及专业课程中央华盛顿大学埃伦斯堡,华盛顿摘要:绿色建筑是指尽力最大限度地节约资源(能源、土地、水、木)、保护环境,减少污染在它的生命周期。
绿色建筑毕业设计外文翻译中英文对照(可编辑)
绿色建筑毕业设计外文翻译中英文对照(可编辑)########## 大学本科毕业设计外文资料译文年级: 2008级学号: 20087221姓名: 朱莉专业: 铁道工程指导老师:2012年6月原文:Green BuildingAbstract: Green building refers to doing its best to imizeconservation of resources energy, land, water, and wood,protecting the environment and reducing pollution in its life cycle. Providing people with healthy, appropriate and efficient use of space, and nature in harmony symbiosis buildings. I described more details of green building design’ notion, green building’ de sign, as well as the significance of the concept of green building and improving the effectivenessanalysis of the external effects of green building measures, Key words: green buildings; protect the ecology; signification ; analysing the effectsWhat is a green buildingGreen building refers to building life cycle,the imum conservation of resources energy, land, water and materials, protecting the environment and reducing pollution, providing people with healthy, appropriate and efficient use of space, and nature harmony of the buildingThe so-called green building "green" does not mean a general sense of three-dimensional green, roof garden, but represents a concept or symbol, refers to building environmentally and friendly, makes full use of natural resources, environment and basic ecological damage to the environment without balance of a building under construction, but also known as sustainable building, eco-building, back into the wild construction, energy saving construction Green building interior layout is very reasonable, to minimize the use of synthetic materials, full use of the sun, saves energy for the residents and creates almost-natural feeling People, architectures and the natural environment for the harmonious development goals, in the use of natural and artificial means to create good conditions and healthy living environment, as much as possible to control and reduce the use and destruction of the natural environment, to fully reflect the nature obtain and return balance2. the meaning of green buildingThe basic connotation of green building can be summarized as: to reduce the load on the environment architecture, which saves energy and resources; provides a safe, healthy, comfortable living space with goods; affinity with the natural environment, so that people and building's coexistence with the environment and sustainable development becomes harmonious3.Development of the significance of green building rating systemEstablish green building rating system is a revolution in the fieldof architecture and the Enlightenment, its far more than energy savings. It is innovative in many ways and organic synthesis, thereby building in harmony with nature, full utilization of resources and energy, create healthy, comfortable and beautiful living space. It's revolutionary for the field of architecture from the technical, social and economicangles3.1 Technical SignificanceGreen building study of early technical problems of individual-based, technology is isolated and one-sided, not formed an organic whole, the integration of design and economic study of consciousness is far fromthe only strategy of economic analysis phase of the subsidiary's knowledgeHowever, individual technical research results of early modern green building techniques for the multi-dimensional development and systems integration will lay a solid foundation. Since the nineties of the 20th century, with the understanding of green building gradually deepen and mature, people give up way too utopian thinking environmental consciousness and moral constraints and spontaneous green behavior, turned to explore more workable environmental philosophy, environmental and capital combined into the future world with the new direction of development of environmental protection, green building has entereda result of ecological ethics from the practice of promoting ecological research to deepen the new stage. Green Building Technology takes on the natural science, social science, humanities, computer science,information science and other subjects the trend of integration of research results, making green building design into the multi-dimensional stage of development strategy study. The deepening of green building technology strategy and development in materials, equipment, morphology and so on. Various advanced fields, in technology development, technology and other design elements of the integration is also starting from the past the simple addition, more attention to the periphery ofthe retaining structure itself design technology and architecture to combine the overall system change, gradually becoming green building systems. Green building rating system was established green building technologies gradually improve and systematize the inevitable result, it is the organic integration of green building technology, a platformbuilt to green building technology, information technology, computer technology and many other subjects can be a unified platform in their respective roles, the establishment of a comprehensive evaluation system for designers, planners, engineers and managers a more simple, Guizhangmingque green building assessment tools and design guidelines with clear rule3.2 The social significanceGreen building rating system reflects the socialsignificance of the main advocates of the new way of life,heightened awareness and public participation in the continuation oflocal culture are two aspects To promote a healthy lifestyle. Green building rating system, the social significance of the primary advocatea healthy lifestyle, which is based on the design and construction ofgreen buildings as a community education process. The principles of green building rating system is the effective use of resources and ecological rules to follow, based on the health of building space to create and maintain sustainable development. The concept of the past to correct people's misconceptions about consumer lifestyles, that can not blindly pursue material luxury, but should keep the environment under the premise of sustainable use of modest comfort to pursue life. From the fundamental terms, construction is to meet human needs built up of material goods as people's lifestyle is not sustainable when, the value of green building itself will be reduced, but only had a real social need When the requirements of sustainable development and way of life that matches the green building to achieve the best results Enhanced awareness of public participation. Green Building Rating system is not a monopoly for the design staff of professional tools, but for planners, designers, engineers, managers, developers, property owners, jointly owned by the public and other assessment tools. It brokes the previous professional development of the monopoly to encourage the participation of the publicand other public officers. Through public participation, the introduction of architects and other building users, the construction of dialogue participants, making the original design process dominated by the architect becomes more open. Proved the involvement of various views and a good help to create a dynamic culture, embody social justice community3.3 The economic significanceGreen building rating system, theeconomic significance can be divided into macro and micro levels. At the macro level, the green building rating system from the system life-cycle perspective, the green building design integrated into the economic issues involved in the production from the building materials, design, construction, operation, resource use, waste disposal, recycling of demolition until the natural resources the whole process. Economic considerations of green building is no longer limited to the design process itself, while the policy extended to the design of the narrow role to play to support the policy level, including the establishment of "green labeling" system, improving the construction environmental audit and management system, increase and construction-related energy consumption, pollutant emissions and other acts of tax efforts, improve the legal system of environmental protection, from the increase in government construction projects on the sustainability of economic support and raise the cost to the construction of polluting the environment acts as the costs for green buildings design and construction to create a favorable externalenvironment. This goal is not entirely the responsibility of government agencies, as the architects involved in design work as a sound system of responsibility for recommendations obligations, because only the most from the practice of the need is real and urgent. The related policy issues in green building design strategies, building a system to solve the economic problems facing the important aspects. At the micro level, the current from the economic point of Design Strategyis more fully consider the economic operation of the project, and specific technical strategies accordingly adjusted3.4 Ethical SignificanceGreen building rating system, the theoretical basis of the concept of sustainable development, therefore, whether the evaluation system of each country how much difference in structure, they all have one thing in common: To reduce the burden of ecological environment, improve construction quality of the environment for future generations to remain the development of room. This radically changes the long-sought human blindly to the natural attitude, reflecting people's understanding of the relationship between man and nature by the opposition to the uniform change. According to the current global energy reserves and resources distribution, the Earth's natural environment is also far from the edge of exhaustion, enough people enjoy the luxury of contemporary material life. But now we have to consume a resource, it means that future generations will be less of a living space. More importantly, if we consume the natural environment more than it can limit self-renewal, then the future of the younger generation is facing the planet's ecosystems can not recover the risk into a real crisis. Therefore we can say, the development of green buildings and their corresponding evaluation system, for more contemporary people is the responsibility and obligations. For more the interests of future generations and advantages for green building design.4.Green building design include the followings:Saving energy: full use of solar energy, using energy-efficient building reducing heating and air conditioning use. Set according to the principle of natural ventilation cooling system that allows efficient use of building to the dominant wind direction in summer. Adapted to local climatic conditions, building use form and general layout of the plane Resource conservation: in the building design, construction and selection of construction materials, are considered fair use and disposal of resources. To reduce the use of resources, strive to make the use of renewable resources. Conserve water resources, including water conservation and greeningReturn to Nature: Green Building exterior to emphasize integration with the surrounding environment, harmony, movement each other so that the protection of natural ecological environment5 .Effects of green building5.1 Effects of the composition of green buildingEffects of green building, including internal effects and external effects, direct benefits and direct costs as the internal effect, known as the indirect benefits and indirect costs of external effects, according to engineering economics point of view: the internal effects can be financial evaluation, external effects should be economic evaluation, economic evaluation is based on the so-called rational allocation of scarce resources and socio-economic principles of sustainable development, from the perspective of the overall national economy, study projects spending of social resources and contributions to the community to evaluate the project's economic and reasonable andexternal effects generally include industry effects, environmental and ecological effects, technology diffusion effect, the external effectwill cause the private costs internal costs or indirect costs and social costs inconsistent, leading to the actual price is different from the best price. From the perspective of sustainable development, green building assessment effects of the main indicators of external effectsSince beginning the development of green building, unity of quantitative indicators system is still not established, I believe that the following aspects should be analyzed: 1 strictly control the construction industry, size, limit the number of employees. Extensive growth model epitomized by the struggle over the construction project, the construction process using human wave tactics, once the state limit the scale of construction, will form the "adequate", which will not reduce the degree of mechanization, labor, thelow level. 2 more investments in upgrade technology, establish and perfect the mechanism for scientific and technical equipment. Focus on the development and application of building technology, combined with the project, the characteristics of future construction, a planned way scientific and technological research and development of new machinery, new processes, new materials, and actively introduction, absorb and assimilate the advanced scientific and technological achievements of science and technology to improve the level of mechanization. 3 in urban planning, survey and design through the "green building" ideas. Family housing and urban construction or alteration must remain in the room,from lighting, ventilation, drainage and control the damages to the environment. 4 construction work, reduced resource consumption, the production process in construction, energy saving measures should be adopted to prevent the excessive consumption of land resources, water resources, power resources5.2 External effects of the challenges to building the economyUnder the control of the government's intervention, to a certain extent on the efficient allocation of resources to strengthen the implementation of energy conservation mandatory standards for construction supervision. To further improve the building energy monitoring system, and strengthen the mandatory building energy efficiency standards in order to carry out the implementation of the project as the main content of the whole process of monitoring, particularly for large public buildings to enhance the building energy regulation, reflected in the project cost on the part of internal costs, making the "non-green building" project's internal costs, internal efficiency and reducing the external costs of green building, the external efficiency increasing, so that effective economic resources to the rational flow of green building6. to improve the external effects of green building measuresEnterprise architecture in the new economy to obtain a competitive advantage, improve the external effects only continually tap the ways and means to improve the external efficiency, reduce external costs, the basic ideas and principles: 1 Construction of natural resources in thelife cycle and minimized energy consumption; 2 reducing building life cycle emissions; 3 protecting the ecological natural environment; 4 to form a healthy, comfortable and safe indoor space; 5 the quality of construction, functionality, performance and environmental unitySummary described above, the meaning of green building design and analysisof its effectiveness and improve the external effects of green building measures. But how does the future design of green buildings need a degree in practice we try to figure out, I believe that green building will become the trend of future construction.译文:绿色建筑摘要: 绿色建筑是指在建筑的全寿命周期内,最大限度地节约资源节能、节地、节水、节材、保护环境和减少污染,为人们提供健康、适用和高效的使用空间,与自然和谐共生的建筑。
建筑学毕业设计的外文文献及译文
建筑学毕业设计的外文文献及译文文献、资料题目:《Advanced Encryption Standard》文献、资料发表(出版)日期:2004.10.25系(部):建筑工程系生:陆总LYY外文文献:Modern ArchitectureModern architecture, not to be confused with Contemporary architecture1, is a term given to a number of building styles with similar characteristics, primarily the simplification of form and the elimination of ornament. While the style was conceived early in the 20th century and heavily promoted by a few architects, architectural educators and exhibits, very few Modern buildings were built in the first half of the century. For three decades after the Second World War, however, it became the dominant architectural style for institutional and corporate building.1. OriginsSome historians see the evolution of Modern architecture as a social matter, closely tied to the project of Modernity and hence to the Enlightenment, a result of social and political revolutions.Others see Modern architecture as primarily driven by technological and engineering developments, and it is true that the availability of new building materials such as iron, steel, concrete and glass drove the invention of new building techniques as part of the Industrial Revolution. In 1796, Shrewsbury mill owner Charles Bage first used his "fireproof design, which relied on cast iron and brick with flag stone floors. Such construction greatly strengthened the structure of mills, which enabled them to accommodate much bigger machines. Due to poor knowledge of iron's properties as a construction material, a number of early mills collapsed. It was not until the early 1830s that Eaton Hodgkinson introduced the section beam, leading to widespread use of iron construction, this kind of austere industrial architecture utterly transformed the landscape of northern Britain, leading to the description, πDark satanic millsπof places like Manchester and parts of West Yorkshire. The Crystal Palace by Joseph Paxton at the Great Exhibition of 1851 was an early example of iron and glass construction; possibly the best example is the development of the tall steel skyscraper in Chicago around 1890 by William Le Baron Jenney and Louis Sullivan∙ Early structures to employ concrete as the chief means of architectural expression (rather than for purely utilitarian structure) include Frank Lloyd Wright,s Unity Temple, built in 1906 near Chicago, and Rudolf Steiner,s Second Goetheanum, built from1926 near Basel, Switzerland.Other historians regard Modernism as a matter of taste, a reaction against eclecticism and the lavish stylistic excesses of Victorian Era and Edwardian Art Nouveau.Whatever the cause, around 1900 a number of architects around the world began developing new architectural solutions to integrate traditional precedents (Gothic, for instance) with new technological possibilities- The work of Louis Sullivan and Frank Lloyd Wright in Chicago, Victor Horta in Brussels, Antoni Gaudi in Barcelona, Otto Wagner in Vienna and Charles Rennie Mackintosh in Glasgow, among many others, can be seen as a common struggle between old and new.2. Modernism as Dominant StyleBy the 1920s the most important figures in Modern architecture had established their reputations. The big three are commonly recognized as Le Corbusier in France, and Ludwig Mies van der Rohe and Walter Gropius in Germany. Mies van der Rohe and Gropius were both directors of the Bauhaus, one of a number of European schools and associations concerned with reconciling craft tradition and industrial technology.Frank Lloyd Wright r s career parallels and influences the work of the European modernists, particularly via the Wasmuth Portfolio, but he refused to be categorized with them. Wright was a major influence on both Gropius and van der Rohe, however, as well as on the whole of organic architecture.In 1932 came the important MOMA exhibition, the International Exhibition of Modem Architecture, curated by Philip Johnson. Johnson and collaborator Henry-Russell Hitchcock drew together many distinct threads and trends, identified them as stylistically similar and having a common purpose, and consolidated them into the International Style.This was an important turning point. With World War II the important figures of the Bauhaus fled to the United States, to Chicago, to the Harvard Graduate School of Design, and to Black Mountain College. While Modern architectural design never became a dominant style in single-dwelling residential buildings, in institutional and commercial architecture Modernism became the pre-eminent, and in the schools (for leaders of the profession) the only acceptable, design solution from about 1932 to about 1984.Architects who worked in the international style wanted to break with architectural tradition and design simple, unornamented buildings. The most commonly used materials are glass for the facade, steel for exterior support, and concrete for the floors and interior supports; floor plans were functional and logical. The style became most evident in the design of skyscrapers. Perhaps its most famous manifestations include the United Nations headquarters (Le Corbusier, Oscar Niemeyer, Sir Howard Robertson), the Seagram Building (Ludwig Mies van der Rohe), and Lever House (Skidmore, Owings, and Merrill), all in New York. A prominent residential example is the Lovell House (Richard Neutra) in Los Angeles.Detractors of the international style claim that its stark, uncompromisingly rectangular geometry is dehumanising. Le Corbusier once described buildings as πmachines for living,∖but people are not machines and it was suggested that they do not want to live in machines- Even Philip Johnson admitted he was πbored with the box∕,Since the early 1980s many architects have deliberately sought to move away from rectilinear designs, towards more eclectic styles. During the middle of the century, some architects began experimenting in organic forms that they felt were more human and accessible. Mid-century modernism, or organic modernism, was very popular, due to its democratic and playful nature. Alvar Aalto and Eero Saarinen were two of the most prolific architects and designers in this movement, which has influenced contemporary modernism.Although there is debate as to when and why the decline of the modern movement occurred, criticism of Modern architecture began in the 1960s on the grounds that it was universal, sterile, elitist and lacked meaning. Its approach had become ossified in a πstyleπthat threatened to degenerate into a set of mannerisms. Siegfried Giedion in the 1961 introduction to his evolving text, Space, Time and Architecture (first written in 1941), could begin ,,At the moment a certain confusion exists in contemporary architecture, as in painting; a kind of pause, even a kind of exhaustion/1At the Metropolitan Museum of Art, a 1961 symposium discussed the question πModern Architecture: Death or Metamorphosis?11In New York, the coup d r etat appeared to materialize in controversy around the Pan Am Building that loomed over Grand Central Station, taking advantage of the modernist real estate concept of πair rights,∖[l] In criticism by Ada Louise Huxtable and Douglas Haskell it was seen to ,,severπthe Park Avenue streetscape and πtarnishπthe reputations of its consortium of architects: Walter Gropius, Pietro Belluschi and thebuilders Emery Roth & Sons. The rise of postmodernism was attributed to disenchantment with Modern architecture. By the 1980s, postmodern architecture appeared triumphant over modernism, including the temple of the Light of the World, a futuristic design for its time Guadalajara Jalisco La Luz del Mundo Sede International; however, postmodern aesthetics lacked traction and by the mid-1990s, a neo-modern (or hypermodern) architecture had once again established international pre-eminence. As part of this revival, much of the criticism of the modernists has been revisited, refuted, and re-evaluated; and a modernistic idiom once again dominates in institutional and commercial contemporary practice, but must now compete with the revival of traditional architectural design in commercial and institutional architecture; residential design continues to be dominated by a traditional aesthetic.中文译文:现代建筑现代建筑,不被混淆与‘当代建筑’,是一个词给了一些建筑风格有类似的特点,主要的简化形式,消除装饰等.虽然风格的设想早在20世纪,并大量造就了一些建筑师、建筑教育家和展品,很少有现代的建筑物,建于20世纪上半叶.第二次大战后的三十年,但最终却成为主导建筑风格的机构和公司建设.1起源一些历史学家认为进化的现代建筑作为一个社会问题,息息相关的工程中的现代性, 从而影响了启蒙运动,导致社会和政治革命.另一些人认为现代建筑主要是靠技术和工程学的发展,那就是获得新的建筑材料,如钢铁,混凝土和玻璃驱车发明新的建筑技术,它作为工业革命的一部分.1796年,Shrewsbury查尔斯bage首先用他的‘火’的设计,后者则依靠铸铁及砖与石材地板.这些建设大大加强了结构,使它们能够容纳更大的机器.由于作为建筑材料特性知识缺乏,一些早期建筑失败.直到1830年初,伊顿Hodgkinson预计推出了型钢梁,导致广泛使用钢架建设,工业结构完全改变了这种窘迫的面貌,英国北部领导的描述,〃黑暗魔鬼作坊〃的地方如曼彻斯特和西约克郡.水晶宫由约瑟夫paxton的重大展览,1851年,是一个早期的例子, 钢铁及玻璃施工;可能是一个最好的例子,就是1890年由William乐男爵延长和路易沙利文在芝加哥附近发展的高层钢结构摩天楼.早期结构采用混凝土作为行政手段的建筑表达(而非纯粹功利结构),包括建于1906年在芝加哥附近,劳埃德赖特的统一宫,建于1926 年瑞士巴塞尔附近的鲁道夫斯坦纳的第二哥特堂,.但无论原因为何,约有1900多位建筑师,在世界各地开始制定新的建筑方法,将传统的先例(比如哥特式)与新的技术相结合的可能性.路易沙利文和赖特在芝加哥工作,维克多奥尔塔在布鲁塞尔,安东尼高迪在巴塞罗那,奥托瓦格纳和查尔斯景mackintosh格拉斯哥在维也纳,其中之一可以看作是一个新与旧的共同斗争.2现代主义风格由1920年代的最重要人物,在现代建筑里确立了自己的名声.三个是公认的柯布西耶在法国,密斯范德尔德罗和瓦尔特格罗皮乌斯在德国.密斯范德尔德罗和格罗皮乌斯为董事的包豪斯,其中欧洲有不少学校和有关团体学习调和工艺和传统工业技术.赖特的建筑生涯中,也影响了欧洲建筑的现代艺术,特别是通过瓦斯穆特组合但他拒绝被归类与他们.赖特与格罗皮乌斯和Van der德罗对整个有机体系有重大的影响.在1932年来到的重要moma展览,是现代建筑艺术的国际展览,艺术家菲利普约翰逊. 约翰逊和合作者亨利-罗素阁纠集许多鲜明的线索和趋势,内容相似,有一个共同的目的, 巩固了他们融入国际化风格这是一个重要的转折点.在二战的时间包豪斯的代表人物逃到美国,芝加哥,到哈佛大学设计黑山书院.当现代建筑设计从未成为主导风格单一的住宅楼,在成为现代卓越的体制和商业建筑,是学校(专业领导)的唯一可接受的,设计解决方案,从约1932年至约1984 年.那些从事国际风格的建筑师想要打破传统建筑和简单的没有装饰的建筑物。
建筑节能技术与绿色建筑设计(英文中文双语版优质文档)
建筑节能技术与绿色建筑设计(英文中文双语版优质文档)In recent years, with the gradual enhancement of people's awareness of environmental protection, green buildings have become a hot topic in the field of architectural design. Green building design refers to minimizing the adverse impact on the environment in the process of design, construction, use and demolition, and achieving the goals of resource conservation and environmental protection. Building energy-saving technology is the key to realize green buildings. This paper will focus on the relevant content of building energy-saving technology and green building design.1. Building energy-saving technologyBuilding energy-saving technology refers to the use of various measures to minimize building energy consumption in the process of building design, construction and use, so as to achieve the purpose of saving energy and reducing consumption.1. Design stageDuring the building design phase, energy savings can be achieved by adopting the following measures:(1) Choose appropriate building facade design to reduce building energy consumption.(2) Choose suitable materials, such as solar panels, energy-saving glass and other materials.(3) Adopt energy-saving building models, such as building thermodynamic models, computer simulation models, etc., to predict and analyze building energy usage and improve building energy efficiency.2. Construction phaseDuring the building construction phase, the following measures can be adopted to achieve energy saving:(1) Adopt green construction materials, such as environmentally friendly cement, building ceramics and other materials.(2) Adopt advanced energy-saving construction technology, such as energy-saving lighting system, energy-saving air-conditioning system, etc.3. Phase of useDuring the building use phase, the following measures can be adopted to achieve energy saving:(1) Adopt energy-saving home appliances, such as LED lights, energy-saving refrigerators, etc.(2) Adopt renewable energy such as solar energy and wind energy to realize self-sufficiency of the building.(3) The thermal insulation performance and lighting performance of buildings also need to be well maintained to reduce energy consumption.4. Demolition phaseDuring the building demolition stage, environmental protection demolition technology should be adopted to reduce the impact on the environment.2. Green building designThe core of green building design is to achieve the maximum protection of the environment and the economical use of resources. The following is the relevant content of green building design:1. Utilization of renewable energyGreen building design emphasizes the use of renewable energy, such as solar energy, wind energy, etc. to achieve building self-sufficiency. In the design stage, factors such as building orientation and lighting can be considered to make full use of solar energy and reduce dependence on traditional energy sources. For example, solar panels are installed on the roof of the building to generate electricity through solar energy to provide electricity for the building.2. Selection of green building materialsGreen building design focuses on the selection of green and environmentally friendly building materials, such as wood made from renewable resources, environmentally friendly cement, etc. These green building materials can reduce environmental pollution during production, use and dismantling.3. Conservation and utilization of water resourcesGreen building design also emphasizes the conservation of water resources. In the design stage, water resources can be reused by setting up rainwater collection systems and irrigation systems. In the use stage, low-flow faucets, water-saving devices and other equipment can also be used to reduce water consumption.4. Guarantee of air qualityGreen building design focuses on ensuring indoor air quality to improve living comfort and health. The release of harmful substances such as formaldehyde can be reduced to ensure indoor air quality by adopting low-VOC paints, indoor air purifiers and other measures.5. Garbage sortingGreen building design also pays attention to the sorting of waste to reduce environmental pollution. The installation of garbage sorting facilities can be considered at the design stage, and residents can be guided to sort garbage during the use phase.3. SummaryBuilding energy-saving technology and green building design are the key to sustainable development. By adopting various energy-saving measures and green building design schemes in the process of building design, construction, use and demolition, the adverse impact on the environment can be minimized and the goals of resource conservation and environmental protection can be achieved. We need to actively promote the concept of green buildings in the process of building design and use, and jointly contribute to the realization of sustainable development.近年来,随着人们环保意识的逐渐增强,绿色建筑已成为建筑设计领域的热门话题。
建筑专业毕业设计外文资料翻译
Title:The Poetics of City and Nature: T oward a New Aesthetic for Urban DesignJournal Issue:Places,6(1)Author:Spirn,Anne WhistonPublication Date:10-01—1989Publication Info:Places,College of Environmental Design, UC BerkeleyCitation:Spirn,AnneWhiston.(1989).ThePoeticsofCityandNature:T owardaNewAestheticforUrban Design。
Places, 6(1),82。
Keywords:places,placemaking,architecture,environment,landscape,urbandesign,publicrealm,planning, design, aesthetic,poetics, Anne Whiston SpirnThe city has been compared to a poem,a sculpture,a machine。
But the city is more than a text,and more than an artistic or technological。
It is a place where natural forces pulse and millions of people live—thinking,feeling,dreaming,doing. An aesthetic of urban design must therefore be rooted in the normal processes of nature and of living。
绿色建筑中英文对照外文翻译文献
中英文资料翻译外文文献:Evaluating Water Conservation Measures For Green Building InTaiwanGreen Building evaluation is a new system in which water conservation is prioritized as one of its seven categories for saving water resources through building equipment design in Taiwan. This paper introduces the Green Building program and proposes a water conservation index with quantitative methodology and case study. This evaluation index involves standardized scientific quantification and can be used in the pre-design stage to obtain the expected result. The measure of evaluation index is also based on the essential researchin Taiwan and is a practical and applicable approach.Keywords: Green Building; Evaluation system; Water conservation; Building equipment1. IntroductionThe environment was an issue of deep global concern throughout the latter half of the 20th century. Fresh water shortages and pollution are becoming one of the most critical global problems. Many organizations and conferences concerning water resource policy and issues have reached the consensus that water shortages may cause war in the 21st century[1],if not a better solution .Actually, Taiwan is already experiencing significant discord over water supply. Building new dams is no longer an acceptable solution to the current water shortage problems, because of the consequent environmental problems. Previous studies have concludedthat water savings are necessary not only for water conservation but also for reducing energy consumption [2,3].Taiwan is located in the Asian monsoon area and has an abundant supply of rainwater. Annual precipitation averages around 2500mm. However, water shortages have recently beena critical problem during the dry season. The crucial, central issue is the uneven distribution of torrential rain, steep hillsides, and short rivers. Furthermore, the heavy demand for domestic water use in municipal areas, and the difficulties in building new reservoirs are also critical factors. Government departments are endeavoring to spread publicly the concept of water-conservation. While industry and commerce have made excellent progress in water conservation, progress among the public has been extremely slow.Due to this global trend, the Architecture and Building Research Institute (ABRI), Ministry of Interior in Taiwan, proposed the “Green Building” concept and built the evaluation system. In order to save water resources through building equipment design, this system prioritizes water conservation as one of its seven categories. This paper focuses on the water conservation measures for Green Building in Taiwan and a quantitative procedure for proving water-saving efficiency. The purpose of this work is not only aimed at saving water resources, but also at reducing the environmentalimpact on the earth.2. Water conservation indexThe water conservation index is the ratio of the actual quantity of water consumed in a building to the average water-consumption in general. The index is also called, “the water saving rate”. Evaluations of the water-consumption quantity include the evaluation to the water-saving efficiency within kitchens, bathrooms and all water taps, as well as the recycling of rain and the secondhand intermediate water.2.1. Goal of using the water conservation indexAlthough Taiwan has plenty of rain, due to its large population, the average rainfall for distribution to each individual is poor compared to the world average as shown in Fig. 1.Thus, Taiwan is reversely a country short of water. Yet, the recen t improvements in citizens’ standards of living have led to a big increase in the amount of water needed in cities, as shown in Fig. 2, which, accompanied by the difficulty of obtaining new water resources, makes the water shortage problem even worse. Due to the improper water facilities designs in the past, the low water fee, and the usual practical behavior of people when using water, Taiwanesepeople have tended to use a large quantity of tap water. In 1990,the average water-consumption quantity in Taiwan was 350l per person per day, whereas in Germany it is about 145l per person per day, and in Singapore about 150l per person per day. These statistics reveal the need for Taiwanese people to save water.The promotion of better-designed facilities which facilitate water-saving will become a new trend among the public and designers, because of concerns for environmental protection. The water conservation index was also designed to encourage utilization of the rain, recycling of water used in everyday life and use of water-saving equipment to reduce the expenditure of water and thus save water resources.2.2. Methodology for efficient use of water resourcesSome construction considerations and building system designs for effective use of water resources are described below.2.2.1. Use water-conservation equipmentA research of household tap-water consumption revealed that the proportion of the water used in flushing toilets and in bathing, amounts to approximately 50% of the total household water consumption, as given in Table 1. Many construction designers have tended to use luxurious water facilities in housing, and much water has thus been wasted. The use of water-saving equipment to replace such facilities is certain to save a large amount of water. For example, the amounts of water used in taking a shower and having a bath is quite different.A single shower uses around 70l of water, whereas a bath uses around 150l. Furthermore, current construction designs for housing in Taiwan tend to put two sets of bathtubs and toilets, and quite a few families have their own massage bathtubs. Such a situation can be improved only by removing the tubs and replacing them with shower nozzles, so that more water can be possibly saved. The commonly used water-saving devices in Taiwan now include new-style water taps, water-saving toilets, two-sectioned water closets, water-saving shower nozzles, and auto-sensor flushing device systems, etc. Water-saving devices can be used not only for housing, but also in other kinds of buildings. Public buildings, in particular, should take the lead in using water-saving devices.2.2.2. Set up a rain-storage water supply deviceThe rain-storage water supply device stores rain using natural landforms or man-made devices, and then uses simple water-cleaning procedures to make it available for use in houses. Rain can be used not only as a substitute water supply, but also for re control. Its use also helps to decrease the peak-time water load in cities. The annual average rainfall in Taiwan is about 2500 mm, almost triple better than the global average. However, due to geographic limitations, we could not build enough water storage devices, such as dams, to save all the rain. It is quite a pity that annually about 80% of the rain in Taiwan is wasted and flows directly into the sea, without being saved and stored. The rain-storage water supply system is used with a water-gathering system, water-disposal system, water-storage system and water-supply system. First, the water-gathering system gathers the rain. Then, the water flows to the water-disposal system through pipes, before being sent to the water-storage system. Finally, it is sent to the users’equipment through another set of pipes. Using the drain on the roof of a building, leading to the underground water-storage trough, is considered an effective means of gathering rain. The water, after simple water-disposal processes, can be used for chores such as house cleaning, washing floors, air-conditioning or watering plants.2.2.3. Establishing the intermediate water systemIntermediate water is that gathered from the rain in cities, and includes the recycled waste-water which has already been disposed of and can be used repeatedly only within a certain range, but not for drinking or human contact. Flushing the toilet consumes 35% of all water. If everyone were to use intermediate water to flush toilets, much water could be efficiently saved. Large-scale intermediate water system devices are suggested to be built up regularly with in a big area. Each intermediate water system device can gather, dispose and recycle a certain quantity of waste-water from nearby government buildings, schools, residences, hotels, and other buildings. The obtained water can be used for flushing toilets, washing cars, watering plants and cleaning the street, or for garden use and to supplement the water of rivers or lakes. A small-scale intermediate water system gathers waste-water from everyday use, and then, through appropriate water-disposal procedures, improves the water quality to a certain level, so that finally it can be repeatedly used for non-drinking water. Thereare extensive ways to use the intermediate water. It can be used for sanitary purposes, public fountains, watering devices in gardens and washing streets. In order to recycle highly polluted waste-water, a higher cost is needed for setting up the associated water-disposal devices, which are more expensive and have less economic benefits than the rain-utilization system. Except for the intermediate water-system set within a single building, if we build them within large-scale communities or major construction development programs, then it is sure to save more water resources efficiently and positively for the whole country as well as improve the environmental situation.4. Method for assessing the recycling of rainSystems for recycling rain and intermediate water are not yet economic beneficial, because of the low water fee and the high cost of water-disposal equipment. However, systems for recycling rain are considered more easily adoptable than those for recycling intermediate water. Herein, a method for assessing the recycling of rain is introduced to calculate the ratio (C) of the water-consumption quantity of the recycled rainwater to the total water-consumption.4.1. Calculation basis of recycling rainwaterThe designer of a system for recycling rainwater must first determine the quantity of rainwater and the demand, which will determine the rainwater collection device area and the storage tank volume. Rainwater quantity can actually be determined by a simple equation involving precipitation and collection device area. However, precipitation does not fall evenly spread over all days and locations. In particular, rain is usually concentrated in certain seasons and locations. Consequently, the critical point of the evaluation is to estimate and assess meteorological precipitation. Meteorological records normally include yearly, monthly, daily and hourly precipitation. Yearly and monthly precipitation is suitable for rough estimates and initial assessment. However, such approximation creates problems in determining the area of the rainwater collection device and the volume of the storage tank. Thus, daily precipitation has been most commonly considered. Hourly precipitation could theoretically support a more accurate assessment. However, owing to the increasing number of parameters and calculation data increases, the complexity of the process and the calculation time, result in inefficiencies. Herein, daily precipitation is adoptedin assessing rainwater systems used in buildings [4,7].4.3. Case study and analysisFollowing the above procedure, a primary school building with a rainwater use system is taken as an example for simulation and to verify the assessment results. This building is located in Taipei city, has a building area of 1260 m and a total floor area of 6960 m ; it is a multi-discipline teaching building. Roofing is estimated to cover 80% of the building area, and the rainwater collection area covers 1008 m .Rainwater is used as intermediate water for the restrooms, and the utilization condition is set at 20 m per day, whilethe out flow coefficient (Y) is 0.9. A typical meteorological precipitation in Taipei in 1992 was adopted as a database. The rainwater storage tank was set to an initial condition before the simulation procedure. Herein, four tank volumes were considered in the simulations of rainwater utilization—15, 25, 50, 100 m. The results indicate that increased storage tank volume reduces overflow and increases the utilization of rainwater. Given a 50 m storage tank, the quantity of rainwater collection closely approaches the utilization quantity of rainwater. Consequently, this condition obtains a storage tank with a roughly adequate volume. When the volume of the storage tank is 100 m, the utilization rate is almost 100% and the overflow quantity approaches zero. Despite this result being favorable with respect to utilization, such a tank may occupy much space and negatively impact building planning. Consequently, the design concept must balance all these factors. The building in this case is six floors high, and the roof area is small in comparison to the total floor area. The water consumption of the water closet per year, but the maximum rainwater approaches 7280 m collection is 2136 m per year. Thus, significant replenishment from tap water is required. This result also leads to a conclusion that high-rise buildings use rainwater systems less efficiently than other buildings. Lower buildings (e.g. less than three floors) have highly efficient rainwater utilization and thus little need for replenishment of water from the potable water system.The efficiency of rainwater storage tanks is assessed from the utilization rate of rainwater and the substitution rate of tap water. Differences in annual precipitation and rainfall distribution yield different results. Figs. 5 and 6 illustrate the results of the mentioned calculation procedure, to analyze differences in rainwater utilization and efficiency assessment.The simulation runs over a period often years, from 1985 to 1994, and includes storage tanks with four different volumes. When the volume of the rainwater tank is 50 m, the utilization rate of rainwater exceeds 80% with about 25% substitution with tap water. Using this approach and the assessment procedure, the volume of rainwater storage and the performance of rainwater use systems in building design, can be determined.In the formula of the water conservation index, C is a special weighting for some water recycling equipment that intermediates water or rain, and is calculated as the ratio of the water-consumption quantity of the recycled rainwater to the total water-consumption. Therefore, this assessment procedure can also offer an approximate value of C for the water conservation index.5. Green building label and policy“Green Building” is called “Environmental Co-Habitual Architecture” in Japan, “Ecological Building” or “Sustainable Building” in Europe and “Green Build ing in North American countries. Many fashionable terms such as “Green consumption”, “Green living”, “Green illumination” have been broadly used. In Taiwan, currently, “Green” has been used as a symbol of environmental protection in the country. The Construction Research Department of the Ministry of the Interior of the Executive Yuan has decided to adopt the term “Green Building” to signify ecological and environmental protection architecture in Taiwan.5.1. Principles of evaluationGreen Building is a general and systematic method of design to peruse sustainable building. This evaluation system is based on the following principles:(1) The evaluation index should accurately reflect environmental protection factors such as material, water, land and climate.(2) The evaluation index should involve standardized scientific quantification.(3) The evaluation index should not include too many evaluation indexes; some similar quality index should be combined.(4) The evaluation index should be approachable and consistent with real experience.(5) The evaluation index should not involve social scientific evaluation.(6) The evaluation index should be applicable to the sub-tropical climate of Taiwan.(7) The evaluation index should be applicable to the evaluation of community or congregate construction.(8) The evaluation index should be usable in the pre-design stage to yield the expected result.According to these principles, the seven-index system shown in Table 4 is the current Green Building evaluation system use d in Taiwan. The theory evaluates buildings’ impacts on the environment through the interaction of “Earth Resource Input” and “Waste Output”. Practically, the definition of Green Building in Taiwan is “Consume the least earth resource and create the least construction waste”.Internationally, each country has a different way of evaluating Green Building. This system provides only the basic evaluation on “Low environment impact”. Higher level issues such as biological diversity, health and comfort and community consciousness will not be evaluated. This system only provides a basic, practical and controllable environmental protection tool for inclusion in the government’s urgent construction environment protection policy. The “Green Building” logo is set to a ward Green Building design and encourage the government and private sector to pay attention to Green Building development. Fig. 7 is the logo of Green Building in Taiwan [6,8].5.2. Water conservation measureThis paper focuses on water conservation index in green building evaluation system. Water conservation is a critical category of this evaluation system, and is considered in relation to saving water resources through building equipment design. This evaluation index contains standardized scientific quantification and can be used in the pre-design stage to obtain the desired result. The evaluation index is also based on research in Taiwan and is practically applicable. Using water-saving equipment is the most effective way of saving water; using two-sectioned water-saving toilets and water-saving showering devices without a bathtub are especially effective. Various other types of water-recycling equipment for reusing intermediate water and rain are also evaluated. In particular, rainwater-use systems in building designs areencouraged. When a candidate for a Green Building project introduces water recycling system or a rainwater use system, the applicant should propose an appropriate calculation report to the relevant committee to verify its water-saving efficiency. This guideline actually appears to be a reasonable target for performing Green Building policy in Taiwan.A new building can easily reach the above water conservation index. This evaluation system is designed to encourage people to save more water, even in existing buildings. All this amounts to saying that large-scale government construction projects should take the lead in using such water-saving devices, as an example to society.6. ConclusionThis paper introduces the Green Building program and proposes a water conservation index with standardized scientific quantification. This evaluation index contains standardized scientific quantification and can be used in the pre-design stage to obtain the expected results. The measure of evaluation index is also based on the essential research on Taiwan and is a practical and applicable approach. The actual water-saving rate (WR) for Green Building projects should be <0.8, and the AR of the water-saving equipment should be higher than 0.8. Thus, qualified Green Building projects should achieve a water saving rate of over 20%. For the sustainable policy, this program is aimed not only at saving water resources, but also at reducing the environmental impact on the earth.The Green Building Label began to be implemented from 1st September 1999, and over twenty projects have already been awarded the Green Building Label in Taiwan, while the number of applications continues to increase. For a country with limited resources and a high-density population like Taiwan, the Green Building policy is important and represents a positive first step toward reducing environmental impact and promoting sustainable development.译文:台湾的绿色建筑节约用水评价措施在台湾绿色建筑评价是一个新的制度,在它的一个7个类别中,通过建筑设备设计节省水资源,使水资源保护置于优先地位。
绿色建筑英语作文
绿色建筑英语作文第一篇:绿色建筑英语作文Peitou Public Library-The First Green Library in TaiwanThe first green building in Taiwan, the architecture housing the Peitou Public Library has been awarded as the candidate for the Green Building’s Nine Indicators Certificate from Ministry of the Interior based on its outstanding sustainable design.Through the persistent effort of the design team, the library architecture integrated natural view and Peitou hot spring into the overall design.Its design also features the high and low windows in elevated mezzanine, allowing the circulation of 'floating air current,' which will keep the interior temperature down via the air exchanger.Other noteworthy characteristics include the deep balcony that will keep the sun sway;vertical wooden railings to absorb the heat wave and reduce the power usage;the light weight ecological roof powered by solar energy that will consume only 20% of the energy during a mid summer day.Fu-bon Fu-An Memorial BuildingThe idea for the Memorial Building was that of a green design concept, preserving the existing environmental ecology, in conjunction with new plantings implemented creatively to entice butterflies and birds as a way to foster a sustainable environment.Available local materials and resources have also been incorporated so that the construction cost and demand for equipments can be significantly lowered.In order to reduce the consumption of natural resources and energy, equipment offering lower energy consumption, higher efficiency, automatic control, and alternative energies – solar power and rain water –serve as the primary standards in its selection.Yilan TraditionalArts Center(Phase 4)–Visitor Center and Dormitory for Artist and TraineeThe architecture design imitates traditional three-section compound, as a clever approach to reinvent the idea of green building by introducing traditional structure that is packed with various sustainable features.Well ventilation and lower energy consumption, to name just a few, are among the advantages of the traditional three-section compound.The design of Dong-Shan Villa seeks to preserve these qualities, and at the same time utilizes low-rise design surrounded by trees to evoke a sense of locality.第二篇:浅谈绿色建筑浅谈绿色建筑我们的生活离不开建筑,随着时代的发展,建筑所代表的文化内涵也在不断发展,人们对建筑物的要求也在不断提高。
建筑类外文文献及中文翻译
forced concrete structure reinforced with anoverviewReinSince the reform and opening up, with the national economy's rapid and sustained development of a reinforced concrete structure built, reinforced with the development of technology has been great. Therefore, to promote the use of advanced technology reinforced connecting to improve project quality and speed up the pace of construction, improve labor productivity, reduce costs, and is of great significance.Reinforced steel bars connecting technologies can be divided into two broad categories linking welding machinery and steel. There are six types of welding steel welding methods, and some apply to the prefabricated plant, and some apply to the construction site, some of both apply. There are three types of machinery commonly used reinforcement linking method primarily applicable to the construction site. Ways has its own characteristics and different application, and in the continuous development and improvement. In actual production, should be based on specific conditions of work, working environment and technical requirements, the choice of suitable methods to achieve the best overall efficiency.1、steel mechanical link1.1 radial squeeze linkWill be a steel sleeve in two sets to the highly-reinforced Department with superhigh pressure hydraulic equipment (squeeze tongs) along steel sleeve radial squeeze steel casing, in squeezing out tongs squeeze pressure role of a steel sleeve plasticity deformation closely integrated with reinforced through reinforced steel sleeve and Wang Liang's Position will be two solid steel bars linkedCharacteristic: Connect intensity to be high, performance reliable, can bear high stress draw and pigeonhole the load and tired load repeatedly.Easy and simple to handle, construction fast, save energy and material, comprehensive economy profitable, this method has been already a large amount of application in the project.Applicable scope : Suitable for Ⅱ, Ⅲ, Ⅳgrade reinforcing bar (including welding bad reinfor cing bar ) with ribbing of Ф 18- 50mm, connection between the same diameter or different diameters reinforcing bar .1.2must squeeze linkExtruders used in the covers, reinforced axis along the cold metal sleeve squeeze dedicated to insert sleeve Lane two hot rolling steel drums into a highly integrated mechanical linking methods.Characteristic: Easy to operate and joining fast and not having flame homework , can construct for 24 hours , save a large number of reinforcing bars and energy. Applicable scope : Suitable for , set up according to first and second class antidetonation requirement -proof armored concrete structure ФⅡ, Ⅲgrade reinforcing bar with ribbing of hot rolling of 20- 32mm join and construct live.1.3 cone thread connectingUsing cone thread to bear pulled, pressed both effort and self-locking nature, undergo good principles will be reinforced by linking into cone-processing thread at the moment the value of integration into the joints connecting steel bars.Characteristic: Simple , all right preparatory cut of the craft , connecting fast, concentricity is good, have pattern person who restrain from advantage reinforcing bar carbon content.Applicable scope : Suitable for the concrete structure of the industry , civil buil ding and general structures, reinforcing bar diameter is for Фfor the the 16- 40mm one Ⅱ, Ⅲgrade verticality, it is the oblique to or reinforcing bars horizontal join construct live.conclusionsThese are now commonly used to connect steel synthesis methods, which links technology in the United States, Britain, Japan and other countries are widely used. There are different ways to connect their different characteristics and scope of the actual construction of production depending on the specific project choose a suitable method of connecting to achieve both energy conservation and saving time limit for a project ends.钢筋混凝土构造中钢筋连接综述改革开放以来,伴随国民经济旳迅速、持久发展,多种钢筋混凝土建筑构造大量建造,钢筋连接技术得到很大旳发展。
建筑类环境变化影响下的建筑学毕业论文外文文献翻译及原文
毕业设计(论文)外文文献翻译文献、资料中文题目:环境变化影响下的建筑学文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14Architecture in a Climate of ChangePage52-Page62Low energy techniques for housingIt would appear that,for the industrialised countries,the best chance of rescue lies with the built environment because buildings in use or in the course of erection are the biggest single indirect source of carbon emissions generated by burning fossil fuels,accounting for over 50 per cent of total emissions.If you add the transport costs generated by buildings the UK government estimate is 75 per cent.It is the built environment which is the sector that can most easily accommodate fairly rapid change without pain.In fact,upgrading buildings, especially the lower end of the housing stock,creates a cluster of interlocking virtuous circles. Construction systemsHaving considered the challenge presented by global warming and the opportunities to generate fossil-free energy,it is now time to consider how the demand side of the energy equation can respond to that challenge.The built environment is the greatest sectoral consumer of energy and,within that sector,housing is in pole position accounting for 28 per cent of all UK carbon dioxide (CO2) emissions.In the UK housing has traditionally been of masonry and since the early 1920s this has largely been of cavity construction.The purpose was to ensure that a saturated external leaf would have no physical contact with the inner leaf apart from wall ties and that water would be discharged through weep holes at the damp-proof course level.Since the introduction of thermal regulations,initially deemed necessary to conserve energy rather than the planet,it has been common practice to introduce insulation into the cavity.For a long time it was mandatory to preserve a space within the cavity and a long rearguard battle was fought by the traditionalists to preserve this‘sacred space’.Defeat was finally conceded when some extensive research by the Building Research Establishment found that there was no greater risk of damp penetration with filled cavities and in fact damp through condensation was reduced.Solid masonry walls with external insulation are common practice in continental Europe and are beginning to make an appearance in the UK.In Cornwall the Penwith Housing Association has built apartments of this construction on the sea front, perhaps the most challenging of situations.The advantages of masonry construction are:● It is a tried and tested technology familiar to house building companies of all sizes.● It is durable and generally risk free as regards catastrophic failure–though not entirely.A few years ago the entire outer leaf of a university building in Plymouth collapsed due to the fact that the wall ties had corroded.● Exposed brickwork is a low maintenance system; maintenance demands rise considerably if it receives a rendered finish.● From the energy efficiency point of view,masonry homes have a relatively high thermal mass which is considerably improved if there are high density masonryinternal walls and concrete floors.Framed constructionVolume house builders are increasingly resorting to timber-framed construction with a brick outer skin,making them appear identical to full masonry construction.The attraction is the speed of erection especially when elements are fabricated off site. However,there is an unfortunate history behind this system due to shortcomings in quality control.This can apply to timber which has not been adequately cured or seasoned.Framed buildings need to have a vapour barrier to walls as well as roofs. With timber framing it is difficult to avoid piercing the barrier.There can also be problems achieving internal fixings.For the purist,the ultimate criticism is that it is illogical to have a framed building clad in masonry when it cries out for a panel,boarded,slate or tile hung external finish.Pressed steel frames for homes are now being vigorously promoted by the steel industry.The selling point is again speed of erection but with the added benefit of a guaranteed quality in terms of strength and durability of the material.From the energy point of view,framed buildings can accommodate high levels of insulation but have relatively poor thermal mass unless this is provided by floors and internal walls.Innovative techniquesPermanent Insulation Formwork Systems (PIFS) are beginning to make an appearance in Britain.The principle behind PIFS is the use of precision moulded interlocking hollow blocks made from an insulation material,usually expanded polystyrene.They can be rapidly assembled on site and then filled with pump grade concrete.When the concrete has set the result is a highly insulated wall ready for the installation of services and internal and exterior finishes.They can achieve a U-value as low as 0.11 W/m2K.Above three storeys the addition of steel reinforcement is necessary. The advantages of this system are:● Design flexibility; almost any plan shape is possible.● Ease and speed of erection;skill requirements are modest which is why it has proved popular with the self-build sector.Experienced erectors can achieve 5 m2 per man hour for erection and placement of concrete.● The finished product has high structural strength together with considerable thermal mass and high insulation value.Solar designPassive solar designSince the sun drives every aspect of the climate it is logical to describe the techniques adopted in buildings to take advantage of this fact as‘solar design’. The most basic response is referred to as‘passive solar design’.In this case buildings are designed to take full advantage of solar gain without any intermediate operations.Access to solar radiation is determined by a number of conditions:● the sun’s position relative to the principal facades of the building(solar altitude and azimuth);● site orientation and slope;● existing obstructions on the site;● potential for overshadowing from obstructions outside the site boundary.One of the methods by which solar access can be evaluated is the use of some form of sun chart.Most often used is the stereographic sun chart in which a series of radiating lines and concentric circles allow the position of nearby obstructions to insolation,such as other buildings,to be plotted.On the same chart a series of sun path trajectories are also drawn(usually one arc for the 21st day of each month); also marked are the times of the day.The intersection of the obstructions’outlines and the solar trajectories indicate times of transition between sunlight and shade. Normally a different chart is constructed for use at different latitudes (at about two degree intervals).Sunlight and shade patterns cast by the proposed building itself should also be considered.Graphical and computer prediction techniques may be employed as well as techniques such as the testing of physical models with a heliodon.Computer modelling of shadows cast by the sun from any position is offered by Integrated Environmental Solutions (IES) with its‘Suncast’program.This is a user-friendly program which should be well within normal undergraduate competence. The spacing between buildings is important if overshading is to be avoided during winter months when the benefit of solar heat gain reaches its peak.On sloping sites there is a critical relationship between the angle of slope and the level of overshading.For example, if overshading is to be avoided at a latitude of 50N,rows of houses on a 10 north-facing slope must be more than twice as far apart than on 10 south-facing slope.Trees can obviously obstruct sunlight.However,if they are deciduous,they perform the dual function of permitting solar penetration during the winter whilst providing a degree of shading in the summer.Again spacing between trees and buildings is critical.Passive solar design can be divided into three broad categories:● direct gain;● indirect gain;● attached sunspace or conservatory.Each of the three categories relies in a different way on the‘greenhouse effect’as a means of absorbing and retaining heat.The greenhouse effect in buildings is that process which is mimicked by global environmental warming.In buildings,the incident solar radiation is transmitted by facade glazing to the interior where it is absorbed by the internal surfaces causing warming.However,re-emission of heat back through the glazing is blocked by the fact that the radiation is of a much longer wavelength than the incoming radiation.This is because the re-emission is from surfaces at a much lower temperature and the glazing reflects back such radiation to the interior.Direct gainDirect gain is the design technique in which one attempts to concentrate the majority of the building’s glazing on the sun-facing facade.Solar radiation is admitted directly into the space concerned.Two examples 30 years apart are the author’s housein Sheffield,designed in 1967 and the Hockerton Project of 1998 by Robert and Brenda Vale.The main design characteristics are:● Apertures through which sunlight is admitted should be on the solar side of the building, within about 30 of south for the northern hemisphere.● Windows facing west may pose a summer overheating risk.● Windows should be at least double glazed with low emissivity glass (Low E) as now required by the UK Building Regulations.● The main occupied living spaces should be located on the solar side of the building.● The floor should be of a high thermal mass to absorb the heat and provide thermal inertia,which reduces temperature fluctuations inside the building.● As regards the benefits of thermal mass,for the normal daily cycle of heat absorption and emission,it is only about the first 100 mm of thickness which is involved in the storage process.Thickness greater than this provides marginal improvements in performance but can be useful in some longer-term storage options.● In the case of solid floors,insulation should be beneath the slab.● A vapour barrier should always be on the warm side of any insulation.● Thick carpets should be avoided over the main sunlit and heatabsorbing portion of the floor if it serves as a thermal store.However,with suspended timber floors a carpet is an advantage in excluding draughts from a ventilated underfloor zone. During the day and into the evening the warmed floor should slowly release its heat, and the time period over which it happens makes it a very suitable match to domestic circumstances when the main demand for heat is in the early evening.As far as the glazing is concerned,the following features are recommended: ● Use of external shutters and/or internal insulating panels might be considered to reduce night-time heat loss.● To reduce the potential of overheating in the summer,shading may be provided by designing deep eaves or external louvres. Internal blinds are the most common technique but have the disadvantage of absorbing radiant heat thus adding to the internal temperature.● Heat reflecting or absorbing glass may be used to limit overheating.The downside is that it also reduces heat gain at times of the year when it is beneficial. ● Light shelves can help reduce summer overheating whilst improving daylight distribution.Direct gain is also possible through the glazing located between the building interior and attached sunspace or conservatory;it also takes place through upper level windows of clerestory designs.In each of these cases some consideration is required concerning the nature and position of the absorbing surfaces.In the UK climate and latitude as a general rule of thumb room depth should not be more than two and a half times the window head height and the glazing area should be between about 25 and 35 per cent of the floor area.Indirect gainIn this form of design a heat absorbing element is inserted between the incident solar radiation and the space to be heated;thus the heat is transferred in an indirectway.This often consists of a wall placed behind glazing facing towards the sun,and this thermal storage wall controls the flow of heat into the building.The main elements● High thermal mass element positioned between sun and internal spaces,the heat absorbed slowly conducts across the wall and is liberated to the interior some time later.● Materials and thickness of the wall are chosen to modify the heat flow.In homes the flow can be delayed so that it arrives in the evening matched to occupancy periods. Typical thicknesses of the thermal wall are 20–30 cm.● Glazing on the outer side of the thermal wall is used to provide some insulation against heat loss and help retain the solar gain by making use of the greenhouse effect.● The area of the thermal storage wall element should be about 15–20 per cent of the floor area of the space into which it emits heat.● In order to derive more immediate heat benefit,air can be circulated from the building through the air gap between wall and glazing and back into the room.In this modified form this element is usually referred to as a Trombe wall. Heat reflecting blinds should be inserted between the glazing and the thermal wall to limit heat build-up in summer.In countries which receive inconsistent levels of solar radiation throughout the day because of climatic factors (such as in the UK),the option to circulate air is likely to be of greater benefit than awaiting its arrival after passage through the thermal storage wall.At times of excess heat gain the system can provide alternative benefits with the air circulation vented directly to the exterior carrying away its heat,at the same time drawing in outside air to the building from cooler external spaces.Indirect gain options are often viewed as being the least aesthetically pleasing of the passive solar options,partly because of the restrictions on position and view out from remaining windows,and partly as a result of the implied dark surface finishes of the absorbing surfaces.As a result,this category of the three prime solar design technologies is not as widely used as its efficiency and effectiveness would suggest.Attached sunspace/conservatoryThis has become a popular feature in both new housing and as an addition to existing homes.It can function as an extension of living space,a solar heat store,a preheater for ventilation air or simply an adjunct greenhouse for plants.On balance it is considered that conservatories are a net contributor to global warming since they are often heated.Ideally the sunspace should be capable of being isolated from the main building to reduce heat loss in winter and excessive gain in summer.The area of glazing in the sunspace should be 20–30 per cent of the area of the room to which it is attached.The most adventurous sunspace so far encountered is in the Hockerton housing development which will feature later.Ideally the summer heat gain should be used to charge a seasonal thermal storage element to provide background warmth in winter.。
建筑节能技术与绿色建筑设计(英文中文双语版优质文档)
建筑节能技术与绿色建筑设计(英文中文双语版优质文档)With the gradual improvement of people's awareness of environmental protection, building energy-saving technology and green building design have become the development trend of today's construction industry. Building energy-saving technology can effectively reduce building energy consumption and environmental pollution, while improving building comfort and safety. Green building design can take environmental protection and sustainable development factors into consideration at the early stage of design, so as to achieve sustainable development of buildings. This article will discuss the importance of building sustainable development and the application of related technologies from two aspects of building energy-saving technology and green building design.1. Building energy-saving technologyBuilding energy-saving technology refers to reducing building energy consumption and environmental pollution through scientific design and technical means, while improving building comfort and safety. Building energy-saving technology can be optimized from the following aspects:1. Thermal insulation design of building exterior walls and roofsThe thermal insulation design of building exterior walls and roofs can effectively reduce indoor energy consumption and improve building comfort. The selection of insulation materials and the optimization of construction technology can improve the insulation effect and reduce energy consumption. For example, the use of high-efficiency insulation materials and a design that reduces thermal bridging effects can reduce building energy consumption by more than 10%.2. Optimal design of building energy systemsThe optimal design of building energy systems can effectively reduce building energy consumption and environmental pollution. For example, the use of renewable energy sources such as solar and wind energy can reduce the use of non-renewable energy sources, thereby reducing energy consumption and environmental pollution. In addition, the use of high-efficiency energy-saving equipment and control systems can also reduce building energy consumption.3. Building lighting designThe architectural lighting design can improve the quality of indoor lighting and reduce the energy consumption of indoor lighting. Reasonable lighting design can reduce lighting energy consumption by maximizing the use of natural light. For example, the design of large-area windows and light pipes can effectively improve the quality of building lighting.4. Building intelligent control systemBuilding intelligent control system can realize efficient control and management of building energy, thereby reducing energy consumption and environmental pollution. For example, intelligent lighting and air-conditioning control systems can minimize energy consumption while maintaining indoor comfort.2. Green building designGreen building design refers to the consideration of environmental protection and sustainable development factors in the early stage of building design, so as to realize the sustainable development of buildings. Green building design can be optimized from the following aspects:1. Selection of sustainable materialsIn green building design, priority should be given to choosing sustainable materials, such as the use of recycled and recyclable materials. This reduces waste of building materials and environmental impact.2. Energy saving designEnergy-saving design is an important part of green building design. At the early stage of design, the energy consumption of the building should be considered as much as possible, such as the use of high-efficiency heat insulation materials, intelligent control systems, etc., so as to minimize energy consumption.3. Utilization of natural resourcesIn the design of green buildings, natural resources should be fully utilized, such as the use of renewable energy such as solar energy and wind energy. In addition, the use of technologies such as rainwater harvesting systems can also make full use of natural resources and reduce the impact on the natural environment.4. Green landscape designIn the design of green buildings, the design of green landscape should be fully considered. Green landscape can not only beautify the building environment, but also purify the air and reduce environmental noise.3. The importance of building sustainabilityThe sustainable development of buildings is one of the important issues facing society today. The construction industry is one of the main sources of energy consumption and environmental pollution. Therefore, the sustainable development of buildings involves not only environmental protection issues, but also energy security and economic development. Building sustainability can bring benefits in several ways:1. Reduce environmental pollution and energy consumptionBuilding energy-saving technology and green building design can effectively reduce environmental pollution and energy consumption. By reducing the consumption of natural resources and reducing the generation of waste, the impact on the environment can be reduced.2. Improve building comfort and safetyBuilding energy-saving technology and green building design can improve the comfort and safety of buildings. By adopting technologies such as high-efficiency thermal insulation materials and intelligent control systems, the comfort of buildings can be improved, thereby improving people's quality of life.3. Promoting the sustainable development of economic buildings can promote economic development. On the one hand, the adoption of green building design and energy-saving technologies can reduce the operating costs and energy consumption of buildings, thereby bringing economic benefits to the construction industry. On the other hand, the sustainable development of buildings can promote the development and application of new technologies and products, and promote industrial upgrading and economic transformation.4. Improve social image and brand valueThe sustainable development of buildings can improve the social image and brand value of enterprises. Today, with the increasing awareness of social responsibility and environmental protection, the adoption of green building design and energy-saving technology can improve the social reputation and brand value of enterprises, thereby enhancing the competitiveness of enterprises.To sum up, the sustainable development of buildings is not only related to environmental protection issues, but also involves energy security, economic development and corporate brand image. By adopting green building design and energy-saving technology, the sustainable development of buildings can be realized, thus contributing to the sustainable development of human beings.随着人们对环境保护意识的逐渐提高,建筑节能技术与绿色建筑设计已经成为当今建筑业发展的趋势。
建筑外文文献(含中文翻译)
中文译文:建筑业的竞争及竞争策略美国的工程建筑公司几十年来一直控制着国际建筑市场,但近来世界上发生的事件改变了它的主导地位。
为了调查今后十年对工程建筑竞争产生影响的推动力及趋势,由建筑工业研究院的"2000年建筑特别工作组:发起一项称为“2000年建筑市场竞争分析”的研究项目。
该研究项目考察了一些影响竞争的因素,包括下列方面:企业能力塑造:采用纵向联合,横向发展的方法,提高企业的综合能力。
扩大市场领地,这种做法包括被海外的联合企业收购或被其合并,或是由美国公司收购外国公司。
筹措资金的选择方法:私有化作用,建筑权力转让项目,未来市场中工程筹资特征。
管理、组织及结构:未来的经营管理及组织方法、组织结构、组织技巧要有利于引导职员在世界竞争环境中发挥作用。
劳力特征:未来具有专业水平和技工水平的工程建筑工人的供求情况技术问题:技术将如何影响竞争,如何用来弥补劳力不足的缺陷。
研究目标及范围这一研究项目的目标是收集信息,使之为适应2000年及以后的工程建筑业在调整、制定策略方面的需要提供真知灼见,并制定出2000年工程建筑业的可能的发展计划。
这项研究回顾了工程建筑业的历史过程,审视了当前的发展趋势,以确定影响该工业未来的推动力,与该工业相关的有重塑企业能力,私有化及筹措资金方法的潜在作用以及经营管理、组织方法、公司结构方面的未来发展方向。
研究范围包括选定一些公司,采访这些公司有专业特长的人员。
这些人员的专业涉及面很广,包括商业建筑,重工业建筑,公共事业设施建设,基础建设.轻工业建筑,电力,生产程序以及航天科学。
工程建筑业竞争特性工程建筑业的竞争特征由于下列原因在变动:80年代发生的事件,以及计划在90年代实施的项目,正在引导建筑业摆脱相互对立的局面,转向相互合作。
应该以积极的眼光看待新的公司进入国际工程建筑市场,因为它增加了全球合作的机遇。
合作关系会使所有的伙伴受益,这是因为美国公司可以在合作伙伴的国家找到机遇,同样,外国公司也会打入美国市场。
建筑英语论文(汉英对照)
建筑文化根植于人居自然环境之中不同的地域自然有不同的自然环境:地形地貌、日照角度、日月潮汐、水流风势、气温、气压、食物、土地、水质、植被等等。
作为人与自然中介的建筑,对外应有利于形成小区外部环境,对内应有利于保障人居的室内环境。
这些建筑像植物一样,落地生根,合天时,合地利,适宜于地区自然环境的要求,与大自然融为一体。
在东南亚和南亚各国,在中国的海南岛和台湾岛,椰林茂密,气候炎热,人们用椰树叶、棕榈叶盖起了适应热带雨林的茅草房、小木楼,通风、凉爽、轻盈、简洁,建起了热带雨林建筑。
在中亚、西亚,在中国的西部高寒地区,人们用石块垒砌、依山就势盖起了石板建筑,避风、挡雪、保温、御寒,筑成了高原山地建筑。
如中国的西藏、青海、四川等少数民族在中国西部依山就势建起了各式各样的山地建筑群。
在中国的黄土高原,漠北戈壁,雨量稀少,气候干燥,人们利用山边、土坡挖洞筑房,建起了具有鲜明特色的生土建筑。
甘肃敦煌艺术陈列馆把建筑埋入山坡下,半开敞式入口,山坡挡墙甬道,生土式建筑特征十分明显。
在美国的东部,在澳大利亚,在中国的南方,雨量充沛,气候温和,人们用木材、砖瓦依山就势,因地制宜,盖起了遮阳避雨、通风透气、造型别致的湿热地区建筑。
这些建筑形式多样,风格各异,适宜于不同地区自然环境,与风景、林木、地形融为一体,形成了根植于自然环境的各种建筑文化。
建筑既要根植于自然环境,又要服从于自然环境,这是建筑师必须遵循的一条基本原则。
社会时空环境差异造成建筑文化的多元化不同的地域、不同的国家、不同的民族,有不同的社会历史形态。
欧洲国家、美洲国家、亚洲与非洲等发展中国家,国度不同,宗教信仰不同,经济发展状况不同,各地区的文化习俗也不同。
不同地区的人居社会时空环境的差异,造成了建筑文化的时空性和多元性,因而产生了古代的或现代的中国建筑文化、俄罗斯建筑文化、东南亚建筑文化、欧美建筑文化、非洲建筑文化等等。
欧洲的古希腊建筑、北非的古埃及建筑、南亚的古印度建筑、古代中国建筑是世界民族建筑文化的历史源流。
建筑工程毕业设计外文翻译英文原文
建筑工程毕业设计外文翻译英文原文The effects of surface preparation on the fracture behavior ofECC/concrete repair systemToshiro Kamada a,*, Victor C. Li ba Department of Civil Engineering, Gifu University, Yanagido, Gifu 501-1193, Japanb Advanced Civil Engineering Materials Research Laboratory, Department of Civil and Environmental Engineering,University of Michigan, Ann Arbor, Michigan, MI 48109-2125, USAReceived 7 July 1999; accepted 15 May 2000AbstractThis paper presents the influence of surface preparation on thekink-crack trapping mechanism of engineered cementitious composite (ECC)/concrete repair system. In general,surfacepreparation of the substrate concrete is considered essential to achieve a durable repair. In thisexperiment, the ``smooth sur face’’ system showed more desirable behavior in the crack pattern and the crack widths than the ``rough surface’’ system. This demonstrates that the smooth surface system is preferable to the rough surface system, from the view point of obtaining durable repair structure. The special phenomenon of kink-crack trapping which prevents the typical failuremodes of delamination or spalling in repaired systems is best revealed when the substrate concrete is prepared to have a smooth surface prior to repair. This is in contrast to the standard approach when the substrate concrete is deliberately roughened to create better bonding to the new concrete. Ó 2000 Elsevier Science Ltd. All rights reserved.Keywords: ECC repair system; Kink-crack trapping mechanism; Surface preparation; Durable repair1. IntroductionEngineered cementitious composites (ECCs) [1,2] are high performance fiber-reinforced cement based composite materials designed with micromechanical principles. Micromechanicalparameters associated with fiber, matrix and interface are combined to satisfy a pair of criteria, the first crack stress criterion and steady state cracking criterion [3] to achieve the strain hardening behavior. Micromechanics allows optimization of the composite for high performance while minimizing the amount of reinforcing fibers (generally less than 2-3%). ECC has a tensile strain capacity of up to 6% and exhibits pseudo-strain hardening behavior accompanied by multiple cracking. It also has high ultimate tensile strength (5-10 MPa), modulus of rupture (8-25 MPa), fracture toughness (25-30 kJ/m2) and compressive strength (up to 80 MPa) and strain (0.6%). A typical tensile stress-strain curve is shown in Fig. 1. ECC has its uniqueness not only insuperior mechanical properties in tension or in relatively small amount ofchopped fiber usage but also in micromechanical methodology in material design.The use of ECC for concrete repair was proposed by Li et al. [4], and Lim and Li [5]. In theseexperiments, specimens representative of an actual repair system - bonded overlay of a concrete pavement above a joint, were used. It was shown that the common failure phenomenona ofspalling or delamination in repaired concrete systems were eliminated. Instead, microcracksemanated from the tips of defects on the ECC/concrete interface, kinked into and subsequently were arrested in the ECC material (see Fig. 2, [5]). The tendency for the interface crack to kink into the ECC material depends on the competing driving force for crack extension at differentorientations, and on the competing crack extension resistance along the interface and into the ECC material. A low initial toughness of ECC combined with a high Mode II loading configuration tends to favor kinking. However, if the toughness of ECC remains low after crack kinking, this crack will propagate unstably to the surface, forming a surface spall. This is the typically observed phenomenon associated with brittle concrete and even fiber-reinforced concrete (FRC). In the case of ECC, the kinked crack is trapped or arrested in the ECC material, dueto the rapidly rising toughness of the ECC material. Conceptually, the ECC behaves like a material with strong R-curve behavior, with lowinitial toughness similar to that of cement (0.01 kJ/m2) and high plateau toughness (25-30 kJ/m2). After kinked crack arrest,additional load can drive further crackextension into the interface, followed by subsequent kinking and arrest.Details of the energetics of kink-crack trapping mechanism can befound in [5]. It was pointed out that this kink-crack trapping mechanism could serve as a means for enhancing repaired concrete system durability.In standard concrete repair, surface preparation of the substrate concrete is considered critical in achieving a durable repair [6]. Inthe study of Lim and Li [5], the ECC is cast onto a diamond saw cut surface of the concrete. Hence, the concrete surface is smooth and is expected as a result to produce a low toughness interface. Higherinterface roughness has been associated with higher interface toughnessin bi-material systems [7].In this paper, this particular aspect of the influence of surface preparation on the kink-crack trapping phenomenon is investigated. Specifically, the base concrete surfaces were prepared by threedifferent methods. The first surface was obtained as cut surface byusing a diamond saw (smooth surface), similar to that used in theprevious study [5]. The second one was obtained by applying a lubricanton the smooth surface of the concrete to decrease the bond between thebase concrete and the repair material. This surface was applied only in one test case to examine the effect of weak bond of interface on the fracture behavior of the repaired specimen. The third surface was prepared with a portable scarifier to produce a roughened surface (rough surface) from a diamond saw-cut surface.Regarding the repair materials, the water/cement ratio of ECC was varied to control its toughness and strength. Thus, two different mixtures of ECC were used for the comparison of fracture behavior in both smooth and rough surface case. Concrete and steel fiber-reinforced concrete (SFRC) were also used as control repair materials instead of ECC.2. Experimental procedure2.1. Specimens and test methodsThe specimens in this experiment were designed to induce a defect in the form of aninterfacial crack between the repair material and the base concrete, as well as a joint in thesubstrate. Fig. 3 shows the dimensions of the designed specimen and the loading configuration, and these were the same as those of the previous experiment [5]. This loading condition can provide a stable interface crack propagation condition, when the crack propagates along the interface [8].In this experiment, concrete, SFRC and ECC (with two different W/C ratios) were used as therepair materials. Table 1 illustrates the combinations of the repair material and the surface condition of test specimens. The numbers of specimens are also shown in Table 1. Only in the concrete overlay specimens, a special case where lubricant was smeared on the concrete smooth surface was used.The mix proportions of materials are shown in Table 2. Ordinary mixture proportions wereadopted in concrete and SFRC as controls for comparisons with ECC overlay specimens. The steel fiber for SFRC was ``I.S fiber’’, straight with indented surfaceand rectangular cross-section (0.5* 0.5 mm2), 30 mm in length. An investigation using a steel fiber with hooked ends had already been performed in the previous study [5]. Polyethylene fiber (Trade name Spectra 900) with 19 mm length and 0.038 mm diameter was used for ECC. The elastic modulus, the tensile strength and the fiber density of Spectra 900 were 120 GPa, 2700 MPa and 0.98 g/cm3, respectively. Two different ECCs were used with different water/cement ratios. The mechanical properties of the base concrete and the repair materials are shown in Table 3. The tensile strain capacity of the ECC materials are not measured, but are estimated to be in excess of 3% based on test results of similar materials [2].An MTS machine was used for loading. Load and load point displacement were recorded. The loading rate in this experiment was0.005 mm/s. After the final failure of specimens, interface crack (extension) lengths were measured at both (left and right) sides of a specimen as the distance from a initial notch tip to a propagated crack tip along the interface between the base concrete and the repair material.2.2. Specimen preparationMost of the specimen preparation procedures followed those of the previous work [5]. The base concrete was prepared by cutting a concrete block (see Fig. 4(a)) into four pieces (see Fig. 4(b)) using a diamond saw. Two out of the four pieces were usedfor one smooth surface repairspecimen. In order to make a rough surface, a cut surface was roughened uniformly with ascarifier for 30 s. To prepare a repair specimen in the form of an overlay system, a repair material was cast against either the smooth surface or the rough surface of the base concrete blocks (see Fig. 5). Special attention was paid both to maintain cleanliness and to provide adequate moisture on the base concrete surface just before the casting. In two of the concrete overlay specimens, lubricant was sprayed on the smooth surface just before concrete casting. The initial notch and joint were made by applying a smooth tape on the base concrete before casting the repair materials(see Fig. 4(c)).The specimens were cured for 4 weeks in water. Eventually, the base concrete was cured for a total of 8 weeks, and repair materials were cured for 4 weeks in water. The specimens were dried for 24 h before testing.3. Results and discussion3.1. Comparison of the ECC overlay system with the control systemsFig. 6 shows the representative load-deflection curves in each test case. The overall peak load and deflection at peak load are recorded in Table 4. In the ECC overlay system, the deflections at peak load, which reflect the system ductility, are considerably larger than those of both theconcrete overlay (about one order of magnitude higher) and the SFRC overlay system (over five times). These results show good agreement with the previous results [5]. Moreover, it is clear fromFig. 6 that the energy absorption capacity in the ECC overlay system is much enhanced when it is compared with the other systems. This significant improvement in ductility and in energyabsorption capacity of the ECC overlay system is expected to enhance the durability of repaired structures by resisting brittle failure. The ECC overlay system failed without spalling ordelamination of the interface, whereas, both the concrete and SFRC overlay systems failed by spalling in these experiments (Fig. 7).3.2. Influence of surface preparationBoth in the concrete overlay system and the SFRC overlay system, the peak load and thedeflection at peak load do not show significant differences between smooth surface specimen and rough surface specimen (Table 4). Thetypical failure mode for both overlay systems (for smooth surface) is shown in Fig. 7. In the concrete overlay specimen with lubricant on the interface, delamination between repair concrete and substrate occurred first, followed by a kinked crack which propagates unstably to the surface of the repair concrete. On the other hand, in the concrete overlay system without lubricant, the initial interface crack kinked out from the interface into the repair concrete with a sudden load drop, without any interface delamination. The fractured halves of the specimens separated completely in both smooth surface specimens and rough surfacespecimens. In the SFRC overlay system, the initial interface crack also kinked out into the SFRC and the load decreased gradually in both surface conditions of specimen. In all these repairsystems, a single kink-crack always leads to final failure, and the influence of surface preparation is not reflected in the experimental data. Instead, only the fracture behavior of the repair material (concrete versus SFRC) are revealed in the test data. These specimen failures are characterized bya single kinked crack with immediate softening following elastic response.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)外文文献翻译文献、资料中文题目:绿色建筑文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:建筑学班级:姓名:学号:指导教师:翻译日期: 2017.02.14原文:DOCTORAL FORUMNA TIONAL JOURNAL FOR PUBLISHING AND MENTORING DOCTORAL STUDENT RESEARCHVOLUME 7, NUMBER 1, 2010Green buildingsPriscilla D. JohnsonPhD Student in Educational LeadershipWhitlowe R. Green College of EducationPrairie View A&M UniversityPrairie View, TexasWilliam Allan Kritsonis, PhDProfessor and Faculty MentorPhD Program in Educational LeadershipWhitlowe R. Green College of EducationPrairie View A&M UniversityMember of the Texas A&M University SystemPrairie View, TexasHall of Honor (2008)William H. Parker Leadership Academy, Graduate SchoolPrairie View A&M UniversityMember of the Texas A&M University SystemPrairie View, TexasVisiting Lecturer (2005)Oxford Round TableUniversity of OxfordOxford, EnglandDistinguished Alumnus (2004)College of Education and Professional StudiesCentral Washington UniversityEllensberg, WashingtonAbstract: Green building refers to do its best to maximize conservation of resources (energy, land, water, and wood),protecting the environment and reduce pollution in its life cycle. Provide people with healthy, appropriate and efficient use of space, and nature in harmony symbiosis buildings. I described more details of green building design’notion, green building’design, as well as the significance of the concept of green building and improve the effectiveness analysis of the external effects of green building measures,Key words: green buildings; protect the ecology; signification ; analysing the effects1 What is a green buildingGreen building refers to building life cycle, the maximum conservation of resources (energy, land, water and materials), protecting the environment and reduce pollution, provide people with health, application and efficient use of space, and nature harmony of the building. The so-called green building "green" does not mean a general sense of three-dimensional green, roof garden, but represents a concept or symbol, refers to building environmentally friendly, make full use of natural resources, environment and basic ecological damage to the environment without balance of a building under construction, but also known as sustainable building, eco-building, back into the wild construction, energy saving construction.Green building interior layout is very reasonable, to minimize the use of synthetic materials, full use of the sun, saving energy for the residents Chuangzao almost-natural feeling.People, architecture and the natural environment for the harmonious development goals, in the use of natural and artificial means to create good conditions and healthy living environment, as much as possible to control and reduce the use and destruction of the natural environment, to fully reflect the nature obtain and return balance.2, the meaning of green buildingThe basic connotation of green building can be summarized as: to reduce the load on the environment architecture, which save energy and resources; provide a safe, healthy, comfortable living space with good; affinity with the natural environment, so that people and building a harmonious coexistence with the environment and sustainable development.3 Development of the significance of green building rating systemEstablish green building rating system is a revolution in the field of architecture and the Enlightenment, its far more than energy savings. It is innovative in many ways and organic synthesis, thereby building in harmony with nature, full utilization of resources and energy, create healthy, comfortable and beautiful living space. It's revolutionary for the field of architecture from the technical, social and economic angles.3.1 Technical SignificanceGreen building study of early technical problems of individual-based, technology is isolated and one-sided, not formed an organic whole, the integration of design and economic study of consciousness is far from the only strategy of economic analysis phase of the subsidiary's knowledge . However, individual technical research results of early modern green building techniques for the multi-dimensional development and systems integration will lay a solid foundation. Since the nineties of the 20th century, with the understanding of green building gradually deepen and mature, people give up way too utopian thinking He alone environmental consciousness and moral constraints and spontaneous green behavior, turned to explore more workable environmental philosophy, environmental and capital combined into the future world the new direction of development of environmental protection, green building has entered a result of ecological ethics from the practice of promoting ecological research to deepen the new stage. Green Building Technology takes on the natural sciences, social sciences, humanities, computer science, information science and other subjects the trend of integration of research results, making green building design into the multi-dimensional stage of development strategy study. The deepening of green building technology strategy anddevelopment in materials, equipment, morphology, etc various advanced fields, in technology development, technology and other design elements of the integration is also starting from the past the simple addition, more attention to the periphery of the retaining structure itself design technology and architecture to combine the overall system change, gradually becoming green building systems. Green building rating system was established green building technologies gradually improve and systematize the inevitable result, it is the organic integration of green building technology, a platform built to green building technology, information technology, computer technology and many other subjects can be a unified platform in their respective roles, the establishment of a comprehensive evaluation system for designers, planners, engineers and managers a more than ever, a more simple, Guizhangmingque green building assessment tools and design guidelines.3.2 The social significance.Green building rating system reflects the social significance of the main advocates of the new way of life, heightened awareness and public participation in the continuation of local culture are two aspects.To promote a healthy lifestyle. Green building rating system, the social significance of the primary advocate a healthy lifestyle, which is based on the design and construction of green buildings as a community education process. The principles of green building rating system is the effective use of resources and ecological rules to follow, based on the health of building space to create and maintain sustainable development. The concept of the past to correct people's misconceptions about consumer lifestyles, that can not blindly pursue material luxury, but should keep the environment under the premise of sustainable use of modest comfort to pursue life. From the fundamental terms, construction is to meet human needs built up of material goods as people's Wenhuayishi Name and lifestyle is not sustainable when, the value of green building itself will be reduced, but only had a real social need When the requirements of sustainable development and way of life that matches the green building to achieve the best results.Enhanced awareness of public participation. Green Building Rating system is not a monopoly for the design staff of professional tools, but for planners, designers, engineers, managers, developers, property owners, jointly owned by the public and other assessment tools. It broke the previous professional development of the monopoly to encourage the participation of the public and other public officers. Through public participation, the introduction of architects and other building users, the construction of dialogue participants, making the original design process dominated by the architect becomes more open. Proved the involvement of various views and a good help to create a dynamic culture, embody social justice community.3.3 The economic significance.Green building rating system, the economic significance can be divided into macro and micro levels. At the macro level, the green building rating system from the system life-cycle perspective, the green building design integrated into the economic issues involved in the production from the building materials, design, construction, operation, resource use, waste disposal, recycling of demolition until the natural resources the whole process. Economic considerations of green building is no longer limited to the design process itself, while thepolicy extended to the design of the narrow role to play to support the policy level, including the establishment of "green labeling" system, improving the construction environmental audit and management system, increase and construction-related energy consumption, pollutant emissions and other acts of tax efforts, improve the legal system of environmental protection, from the increase in government construction projects on the sustainability of economic support and raise the cost to the construction of polluting the environment acts as the costs for green buildings design and construction to create a favorable external environment. This goal is not entirely the responsibility of government agencies, as the architects involved in design work as a sound system of responsibility for recommendations obligations, because only the most from the practice of the need is real and urgent. The related policy issues in green building design strategies, building a system to solve the economic problems facing the important aspects. At the micro level, the current from the economic point of Design Strategy is more fully consider the economic operation of the project, and specific technical strategies accordingly adjusted.3.4 Ethical Significance.Green building rating system, the theoretical basis of the concept of sustainable development, therefore, whether the evaluation system of each country how much difference in structure, they all have one thing in common: reduce the burden of ecological environment, improve construction quality of the environment for future generations to remain the development of there is room. This radically change the long-sought human blindly to the natural attitude, reflecting people's understanding of the relationship between man and nature by the opposition to the uniform change. According to the current global energy reserves and resources distribution, the Earth's natural environment is also far from the edge of exhaustion, enough people enjoy the luxury of contemporary material life. But now we have to consume a resource, it means that future generations will be less of a living space. More importantly, if we consume the natural environment more than it can limit self-renewal, then the future of the younger generation is facing the planet's ecosystems can not recover the risk into a real crisis. Therefore we can say, the development of green buildings and their corresponding evaluation system, for more contemporary people is the responsibility and obligations. For more the interests of future generations and advantages. 4 green building designGreen building design include the following:Saving energy: full use of solar energy, using energy-efficient building envelope and heating and air conditioning, reducing heating and air conditioning use. Set according to the principle of natural ventilation cooling system that allows efficient use of building to the dominant wind direction in summer. Adapted to local climatic conditions, building use form and general layout of the plane.Resource conservation: in the building design, construction and selection of construction materials, are considered fair use and disposal of resources. To reduce the use of resources, strive to make the use of renewable resources. Conserve water resources, including water conservation and greening.Return to Nature: Green Building exterior to emphasize integration with the surrounding environment, harmony, movement complement each other so that the protection of natural ecological environment.5 Effect of green building5.1 Effect of the composition of green buildingEffect of green building, including internal effects and external effects, direct benefits and direct costs as the internal effect, known as the indirect benefits and indirect costs of external effects, according to engineering economics point of view: the internal effects can be financial evaluation, external effects should be economic evaluation, economic evaluation is based on the so-called rational allocation of scarce resources and socio-economic principles of sustainable development, from the perspective of the overall national economy, study projects spending of social resources and contributions to the community to evaluate the project's economic and reasonable and external effects generally include Industry Effects, environmental and ecological effects, technology diffusion effect, the external effect will cause the private costs (internal costs or indirect costs) and social costs inconsistent, leading to the actual price is different from the best price. From the perspective of sustainable development, green building assessment effects of the main indicators of external effects.Since beginning the development of green building, unity of quantitative indicators system is still not established, I believe that the following aspects should be analyzed: (1) strictly control the construction industry, size, limit the number of employees. Extensive growth model epitomized by the struggle over the construction project, the construction process using human wave tactics, once the state limit the scale of construction, will form the "adequate", which will not reduce the degree of mechanization, labor, the low level. (2) more investments in technology, upgrade technology, establish and perfect the mechanism for scientific and technical equipment. Focus on the development and application of building technology, combined with the project, the characteristics of future construction, a planned way scientific and technological research and development of new machinery, new processes, new materials, and actively introduce, absorb and assimilate the advanced scientific and technological achievements of science and technology to improve the level of mechanization.(3) in urban planning, survey and design through the "green building" ideas. Family housing and urban construction or alteration must remain in the room, from lighting, ventilation, drainage and so control the damage to the environment. (4) construction work, reduced resource consumption, the production process in construction, energy saving measures should be adopted to prevent the excessive consumption of land resources, water resources, power resources.5.2 External effects of the challenges to building the economyUnder the control of the government's intervention, to a certain extent on the efficient allocation of resources to strengthen the implementation of energy conservation mandatory standards for construction supervision. To further improve the building energy monitoring system, and strengthen the mandatory building energy efficiency standards in order to carry out the implementation of the project as the main content of the whole process of monitoring, particularly for large public buildings to enhance the building energy regulation, reflected in the project cost on the part of the Waibu costs into internal costs, making the "non-green building" project's internal costs, internal efficiency and reduce the external costs of green building, the external efficiency increase, so that effective economic resources to the rational flow of green。