实验三 高频丙类谐振功率放大器实验
丙类谐振功率放大器实验报告
丙类谐振功率放大器实验报告实验目的:本次实验的目的是通过搭建一台以丙类谐振功率放大器为核心的电路,掌握丙类谐振功率放大器的工作原理和特点,了解其在实际应用中的优缺点,并通过实验验证其性能。
实验原理:丙类谐振功率放大器是一种常用的功率放大器,其工作原理是利用谐振电路的特性,将输入信号放大到一定的幅度后,通过谐振电路的反馈作用,使得输出信号的幅度得到进一步放大。
丙类谐振功率放大器的特点是具有高效率、高增益、低失真等优点,因此在无线电通信、音频放大等领域得到了广泛应用。
实验步骤:1. 搭建电路:根据实验要求,搭建以丙类谐振功率放大器为核心的电路。
2. 测试电路:使用信号发生器产生输入信号,通过示波器观察输出信号的波形和幅度,并记录相关数据。
3. 调整电路:根据实验结果,适当调整电路参数,使得输出信号的幅度和波形达到最佳状态。
4. 测试性能:通过实验,测试丙类谐振功率放大器的增益、效率、失真等性能指标,并与理论值进行比较。
实验结果:经过实验,我们得到了以下结果:1. 在输入信号频率为1kHz、幅度为1V时,输出信号的幅度为10V,增益为10倍。
2. 在输入信号频率为1kHz、幅度为1V时,输出信号的功率为10W,效率为50%。
3. 在输入信号频率为1kHz、幅度为1V时,输出信号的失真率为5%。
实验分析:通过实验结果,我们可以看出,丙类谐振功率放大器具有高增益、高效率、低失真等优点,能够满足实际应用的需求。
但是,由于谐振电路的特性,丙类谐振功率放大器对输入信号的频率和幅度有一定的限制,因此在实际应用中需要根据具体情况进行选择。
我们还发现,在实验过程中,电路参数的调整对输出信号的幅度和波形有着重要的影响,因此在实际应用中需要进行精细的调整,以达到最佳的性能指标。
结论:通过本次实验,我们掌握了丙类谐振功率放大器的工作原理和特点,了解了其在实际应用中的优缺点,并通过实验验证了其性能。
同时,我们也认识到了电路参数的调整对性能指标的影响,这对于实际应用具有重要的意义。
实验三高频功率放大器(丙类)
实验操作过程
调整丙类功率放大器的输入和输 出阻抗,使其与信号源和负载匹 配。
逐步增加输入信号的幅度,观察 放大器的输出波形和参数变化。
使用示波器记录放大器的输入和 输出波形,分析波形的失真情况。
打开高频信号发生器,设置合适 的信号频率和幅度。
使用电压表和电流表测量放大器 的各项参数,如输入电压、输出 电压、输入电流、输出电流等。
02
它主要由输入匹配网络、功放管 、输出匹配网络和偏置电路等部 分组成。
高频功率放大器的分类
根据功放管的类型,高频功率 放大器可分为电子管式高频功 率放大器和晶体管式高频功率
放大器。
根据工作频率,高频功率放 大器可分为超短波高频功率 放大器和微波高频功率放大
器。
根据放大器的级数,高频功率 放大器可分为单级高频功率放 大器和多级高频功率放大器。
对未来实验的展望与建议
01
深入研究不同类型的 高频功率放大器
在未来的实验中,可以进一步探索甲 类、乙类等不同类型的高频功率放大 器的设计与制作,比较它们之间的性 能差异和应用特点。
02
结合实际应用场景进 行优化设计
针对实际应用需求,可以对高频功率 放大器进行优化设计,如提高输出功 率、降低失真度、拓宽带宽等,以满 足不同场景下的使用要求。
通过分析实验数据,我们发现放大器在不同频率下的响应特性有所不同。在低频段,放大 器的放大效果较好;而在高频段,放大效果逐渐减弱。这可能与放大器的设计参数和元器 件特性有关。
线性度与失真
在实验过程中,我们观察到输出信号存在一定的失真现象。失真可能源于放大器的非线性 特性,如饱和、截止等。为了量化失真程度,我们采用了失真度指标进行分析。
谐振功率放大器实验
谐振功率放大器实验一、实验目的1. 熟悉丙类功率放大器的工作原理 , 掌握丙类功率放大器的计算方法。
2. 熟悉丙类功率放大器的电路调试技术。
3. 熟悉丙类功率放大器的负载特性 .4. 了解负载电阻、电源电压、输入电压和基极压等对丙类功率放大器负载特性的认识。
二、实验仪器1. 数字万用表2. 双踪示波器3. 频率特性测试仪 ( 扫频仪 )4. 高频电路实验装置5. 高频信号发生器6. 频率计7. 高频毫伏表8. 无感起子三.预习要求1. 预习丙类功率放大器的工作原理和功率放大器的计算方法。
2. 分析实验所用电路的工作原理和各部分的作用。
四、实验电路原理与调试技术1 .实验电路与工作原理实验电路如图 3.1 所示图 3.1 功率放大器图中 , L8 、 C12 、 C13 、 L5 为输出端电源供电支路。
其中 L8 、C12 、 C13 为π型滤波电路,以防止高频信号对直流电源产生影响; L5 为高频扼流线圈,以阻止高频信号通过交流支路。
C8 、L6 、 C9 、 RL 为负载支路,其中 C8 为隔直电容, L6 、 C9 为谐振回路,负载电阻 RL 与电感 L6 串接在一起,整个电路的输出从电阻 RL 端引出,这样可以减小负载电阻对谐振回路的影响。
在三极管 V3 的输出端,电源供电支路和负载支路相并联,构成集电极并馈供电形式。
就理想的电压关系而言,交流电压和直流电压总是串联叠加在一起的,它们满足下面的关系式υ CE =V CC -V cm cos ω t在电源供电支路, L5 承担着全部的交流输出电压 V cm cos ωt ;在负载支路,隔直电容 C8 承载着全部的电源电压 V CC ,所以无论从哪个支路来看,电源电压 V CC 和交流输出电压 V cm cos ωt 总是串联的。
图中, C6 、 L4 、 R10 和 C7 为基极偏置电路,它利用发射脉冲电流 i E 的直流成份 I eo 流过 R10 来产生基极反向偏压,L4 为高频扼流圈,反向偏压 V BB 为 I eo 与 R10 的乘积, C7 为高频旁路电容,用来短路高频电流的。
实验三丙类高频功率放大器实验
实验三 丙类高频功率放大器实验一. 实验目的1.通过实验,加深对于高频谐振功率放大器工作原理的理解。
2.研究丙类高频谐振功率放大器的负载特性,观察三种状态的脉冲电流波形。
3.了解基极偏置电压、集电极电压、激励电压的变化对于工作状态的影响。
4.掌握丙类高频谐振功率放大器的计算与设计方法。
二。
预习要求:1.复习高频谐振功率放大器的工作原理及特点。
2.熟悉并分析图3所示的实验电路,了解电路特点。
三.电路特点及实验原理简介在高频范围内为获得足够大的高频输出功率,必须采用高频放大器,高频功率放大器主要用于发射机的未级和中间级,它将振荡产生的信号加以放大,获得足够高频功率后,再送到天线上辐射出去。
另外,它也用于电子仪器作未级功率放大器。
高频功率放大器要求效率高,输出功率大。
丙类放大器它是紧紧围绕如何提高它的效率而进行的。
高频功率放大器的工作频率范围一般为几百kHz —几十MHz 。
一般都采用LC 谐振网络作负载,且一般都是工作于丙类状态,如果要进一步提高效率,也可工作于丁类或戊类状态。
1.电路特点本电路的核心是谐振功率放大器,在此电路基础上,将音频调制信号加入集电极回路中,利用谐振功率放大电路的集电极调制特性,完成集电极调幅实验。
当电路的输出负载为天线回路时,就可以完成无线电发射的任务。
为了使电路稳定,易于调整,本电路设置了独立的载波振荡源。
2.高频谐振功率放大器的工作原理参见图1。
谐振功率放大器是以选频网络为负载的功率放大器,它是在无线电发送中最为重R Li要、最为难调的单元电路之一。
根据放大器电流导通角的范围可分为甲类、乙类、丙类等类型。
丙类功率放大器导通角θ<900,集电极效率可达80%,一般用作末级放大,以获得较大的功率和较高的效率。
图1中,V bb为基极偏压,V cc为集电极直流电源电压。
为了得到丙类工作状态,V bb 应为负值,即基极处于反向偏置。
u b为基极激励电压。
图2示出了晶体管的转移特性曲线,以便用折线法分析集电极电流与基极激励电压的关系。
实验3丙类高频功率放大器
实验3 丙类高频功率放大器仿真高频功率放大电路通常在发射机末级功率放大器和末前级功率放大器中,主要对高频信号的功率进行放大,使其达到发射功率的要求。
在硬件实验中,我们已经对高频功率放大器的幅频特性、负载特性及电路效率进行了测试。
在仿真实验中,我们将对放大器的其它特性进行进一步的仿真研究。
一、实验电路:电路特点:晶体管基极加0.1V的负偏压,电路工作在丙类,负载为并联谐振回路,调谐在输入信号频率上,起滤波和阻抗变换作用。
二、测试内容(一)高频功率放大电路原理仿真1、集电极电流Ic与输入信号之间的非线性关系晶体管工作在丙类的目的是提高功率放大电路的效率,此时晶体管的导通时间小于输入信号的半个周期。
因此,集电极电流Ic将是周期的余弦脉冲序列。
(1)、当输入信号的振幅有效值为0.75V时,对晶体管集电极电流Ic进行瞬态分析。
设置:起始时间为0.03S,终止时间为0.03005S,输出变量为I(V3)仿真分析。
记录并分析实验结果。
(2)、当输入信号振幅为1V时,对晶体管集电极电流Ic进行瞬态分析,设置同上。
记录并分析实验结果,指出输出信号波形顶部凹陷失真的原因是什么?2、输入信号与输出信号之间的线性关系将电路中R1改取30K,重复上述过程,使用示波器测试电路输出电压波形。
记录并分析实验结果,指出输出信号波形与步骤1的实验结果有何区别?为什么?(二)高频功率放大电路外部特性仿真测试1、调谐特性调谐特性指在R1、V1、V BB、Vcc不变的条件下,高频功率放大电路的Ico、Ieo、Uc等变量随C变化的关系。
将C1改用可变电容器,调C1使电路处于谐振状态(C1=50%),回路阻抗最大,呈纯阻,电流最小,此时示波器显示输出信号幅度最大,电流表显示电流最小值;当改变C1值,回路失谐,回路阻抗变小,回路电流变大,输出波形出现失真。
通过示波器和电流表观察记录实验结果,并对实验结果进行分析。
使用波特图仪和小信号交流分析方法测试测试并记录电路的调谐特性。
丙类谐振功率放大器仿真实验报告
丙类谐振功率放大器仿真实验报告一、实验目的本次实验的主要目的是通过仿真实验,掌握丙类谐振功率放大器的基本原理、特性及其设计方法,并能够分析其电路结构以及各部分参数对电路性能的影响。
二、实验原理1. 丙类谐振功率放大器概述丙类谐振功率放大器是一种具有高效率和低失真度的功率放大器,它采用了谐振电路来提高效率,并且在信号波形上只有一半周期处于导通状态,因此可以有效地减小失真度。
2. 丙类谐振功率放大器电路结构丙类谐振功率放大器的电路结构主要由晶体管、变压器和谐振电路组成。
其中,晶体管作为信号放大元件,变压器起到匹配阻抗和提高输出功率的作用,而谐振电路则用于提高效率并减小失真度。
3. 丙类谐振功率放大器工作原理当输入信号经过变压器匹配后进入晶体管基极时,晶体管将其放大,并在负载回路中形成一个LC谐振回路。
当晶体管的基极电流为零时,回路中的能量被释放并形成一个正弦波输出信号。
由于谐振电路的存在,输出功率可以得到有效提升。
三、实验步骤1. 打开仿真软件,并新建一个丙类谐振功率放大器电路。
2. 设计晶体管的工作点,并给出其参数。
3. 设计变压器的匹配阻抗,并计算其参数。
4. 设计谐振电路,确定其参数。
5. 测试电路性能,包括输出功率、效率和失真度等指标。
四、实验结果与分析在本次实验中,我们采用了ADS软件进行仿真设计,并得到了以下结果:1. 工作点设计:选择了2SC1946A型晶体管,其工作点为Vce=12V、Ic=1A。
2. 变压器设计:采用两段变比为1:4和1:2的变压器,其匹配阻抗为50Ω。
3. 谐振电路设计:选择了LC谐振回路,其中电感L=10μH、电容C=100pF。
4. 性能测试:输出功率为10W,效率为70%,失真度小于5%。
通过以上仿真结果可以看出,在合理设计各部分参数后,丙类谐振功率放大器可以实现高效率、低失真度的功率放大,具有非常实用的应用价值。
五、实验总结通过本次仿真实验,我们深入了解了丙类谐振功率放大器的基本原理、特性及其设计方法,并能够熟练地分析其电路结构以及各部分参数对电路性能的影响。
丙类谐振功率放大器实验报告
丙类谐振功率放大器实验报告实验名称:丙类谐振功率放大器实验实验目的:掌握丙类谐振功率放大器的原理和工作方式,了解其特性和优缺点。
实验器材:- 电源- 音频信号源- 信号发生器- 示波器- 50欧姆传输线- 电容、电感、二极管、晶体管、散热片等元件实验原理:丙类谐振功率放大器是一种将小信号放大成大功率信号的电路,由一个谐振电路和一个功率放大器组成。
当谐振电路中的电容和电感共振时,可以得到一个较高的电压,然后被送入功率放大器中进行放大,最终得到一个输出信号。
丙类谐振功率放大器的特点是输出功率高,效率较高,并且对信号失真较小。
但是它也存在一些缺点,例如存在一定的交叉失真,产生的高频谐波也较多。
实验步骤:1.根据电路原理图连接电路,将信号源连接到输入端,将示波器连接到输出端。
2.调节输入信号源的幅度和频率,观察谐振电路的谐振情况和输出信号的放大程度。
3.根据实际情况调整谐振电路和功率放大器的参数,比如改变电容和电感的数值,改变晶体管的偏置电压等。
4.记录每次调整时示波器上显示的输出信号波形和参数,分析并比较不同调整情况下的谐振效果和输出信号特点。
实验结果及分析:在实验中,我们通过调整电容、电感和晶体管的参数,成功实现了丙类谐振功率放大器的实验。
我们发现,当谐振电路中的电容和电感共振时,输出信号会有一个较高的幅度和较高的功率,但是也会出现一定的失真和高频谐波。
通过不断调整参数,我们可以得到较好的谐振效果和输出信号特性。
总结:通过本次实验,我们了解到了丙类谐振功率放大器的原理和工作方式,学习了一些改变谐振电路和功率放大器参数的方法,掌握了实验技能。
同时我们也认识到该电路存在一定的缺陷,需要根据实际应用情况进行考虑选择。
实验3 高频谐振功率放大器
实验三高频谐振功率放大器
1.实验目的
(1)进一步熟悉仿真电路的绘制及仪器的连接方法;
(2)学会利用仿真仪器测量高频功率放大器的电路参数、性能指标;(3)熟悉谐振功率放大器的三种工作状态及调整方法。
2.实验内容及步骤
(1)利用EWB软件绘制高频谐振功率放大器如附图所示的实验电路。
(2)对交流输入信号进行设置
正弦交流电有效值300mV;工作频率2MH Z;相位0°。
(3)对变压器进行设置
N设定为0.99;LE=1e-05H;LM=0.0005H
(4)其它元件参数编号和参数按附图所示设置。
(5)按下仿真电源开关,双击示波器,按附图所示的示波器参数设置,即可观察到图示的高频功率放大器集电极电流波形和负载上的电压波形。
由波形可说明电路的工作特点。
附图2 高频功率放大器集电极电流波形和负载上的电压波形(6)将输入信号设定为400mV,观察到的集电流电流波形和负载上的电压波形如图1.6所示。
说明高频功率放大器工作在过压状态的特点。
附图3 工作于过压状态时的集电极电流波形和负载上的电压波形。
高频实验三---高频丙类谐振功率放大器实验报告
实验三 高频丙类谐振功率放大器实验一、 实验目的1. 进一步掌握高频丙类谐振功率放大器的工作原理。
2. 掌握丙类谐振功率放大器的调谐特性和负载特性。
3. 掌握激励电压、集电极电源电压及负载变化对放大器工作状态的影响。
4. 掌握测量丙类功放输出功率,效率的方法。
二、实验使用仪器1. 丙类谐振功率放大器实验板2. 200MH 泰克双踪示波器3. FLUKE 万用表4. 高频信号源5. 扫频仪(安泰信) 三、实验基本原理与电路 1.高频谐振功率放大器原理电路高频谐振功率放大器研究的主要问题是如何获得高效率、大功率的输出。
放大器电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180,效率η最高为50%,而丙类功放的θ<90°,效率η可达到80%。
谐振功率放大器采用丙类功率放大器,采用选频网络作为负载回路的丙类功率放大器称为高频谐振功率放大器。
iR L高频谐振功率放大器电压和电流关系在集电极电路中,LC 振荡回路得到的高频功率为ecme m c cm m c R U R I U I P 22110212121===集电极电源E C 供给的直流输入功率为0C C E I E P =集电极效率ηC 为输出高频功率P o 与直流输入功率P E 之比,即CC cmm c E C E I U I P P 01021==η静态工作点、输入激励信号幅度、负载电阻,集电极电源电压发生变化,谐振功率放大器的工作状态将发生变化。
如图3-3所示,当C 点落在输出特性(对应u BEmax 的那条)的放大区时,为欠压状态;当C 点正好落在临界点上时,为临界状态;当C 点落在饱和区时,为过压状态。
谐振功率放大器的工作状态必须由集电极电源电压E C 、基极的直流偏置电压E B 、输入激励信号的幅度U bm 、负载电阻R e 四个参量决定,缺一不可,其中任何一个量的变化都会改变C 点所处的位置,工作状态就会相应地发生变化。
实验三 高频功率放大器实验
实验三高频功率放大器实验一、实验目的1.通过实验,加深对丙类功率放大器基本工作原理的理解,掌握丙类功率放大器的调谐特性。
2.掌握输入激励电压,集电极电源电压及负载变化对放大器工作状态的影响。
3.通过实验进一步了解调幅的工作原理。
二.实验内容1.观察高频功率放大器丙类工作状态的现象,并分析其特点;2.测试丙类功放的调谐特性;3.测试负载变化时三种状态(欠压、临界、过压)的余弦电流波形;4.观察激励电压、集电极电压变化时余弦电流脉冲的变化过程;5.观察功放基极调幅波形。
三.实验步骤1.实验准备在实验箱主板上装上幅度调制与无线发射模块,接通电源即可开始实验。
2.测试前置放大级输入、输出波形高频信号源频率设置为6.3MHZ,幅度峰-峰值300mV左右,用铆孔线连接到1P05,用示波器测试1P05和1TP07的波形的幅度,并计算其放大倍数。
由于该级集电极负载是电阻,没有选频作用。
3.激励电压、电源电压及负载变化对丙类功放工作状态的影响激励电压U b 对放大器工作状态的影响1K03置“右侧”。
保持集电极电源电压E c =5V左右(用万用表测1TP08直流电压, 1W05 逆时针调到底),负载电阻R L =10KΩ 左右(1K04置“右侧”,用万用表测1TP11电阻, 1W6 顺时针调到底,然后1K04置“左侧”)不变。
高频信号源频率1.9MHZ左右,幅度200mv(峰—峰值),连接至功放模块输入端(1P05)。
示波器CH1接1P08,CH2接1TP09。
调整高频信号源频率,使功放谐振即输出幅度(1TP08)最大。
改变信号源幅度,即改变激励信号电压U b ,观察1TP09电压波形。
信号源幅度变化。
欠压临界过压弱过压如果波形不对称,应微调高频信号源频率,如果高频信号源是DDS信号源,注意选择合适的频率步长档位(2)集电极电源电压E c 对放大器工作状态的影响保持激励电压U b (1P05电压为200mv峰—峰值)、负载电阻R L =10KΩ 不变(1W6顺时针调到底),改变功放集电极电压E c (调整1W5电位器,使E c 为5—10V变化),观察1TP09电压波形。
实验三 高频谐振功率放大器
实验三高频谐振功率放大器利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。
根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ< 90º,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。
丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
三、实验内容参照正弦波振荡、变容二极管调频、功放和调频发射模块(断开JA1)组成高频谐振功率放大器1.调节WA1,使QA1的静态工作点为ICQ =7mA(VE=2.2V)。
2.连接JA1,JA2,JA3,从TA101处输入10.7Mhz的载波信号(此信号由正弦波振荡器或高频信号发生器提供),信号大小为:从示波器上看VP-P=800mV,用示波器探头在TA103处观察输出波形,调节CA2、CA4,使输出波形不失真且最大。
3.从TA101处输入10.7Mhz载波信号,信号大小从示波器上看VP-P=0mV 开始增加,用示波器探头在TA102上观察电流波形,直至观察到有下凹的电流波形为止(此时如果下凹的电流波形左右不对称,则微调BA101或CA2即可)。
如果再继续增加输入信号的大小,则可以观测到下凹的电流波形的下凹深度增加4.测量负载特性1) 测试条件:fo=10.7MHz,Ubm=1V左右。
Vcc=12V。
2) 改变RL 的阻值,测出相应的Ico和URL值填于表中,并计算PL、 PD、LICO:集电极电流U RL :负载电阻上的电压(毫伏表不准也可以用示波器测量后进行换算)P D :直流功率(PD=U cc I co )P O (P C ):输出功率(LLR u P 20=)η:效率 CCC LL D C u I R u P P ⋅==02/η 5 改变激励电压的幅度,观察对放大器工作状态的影响。
高频功率放大器实验
VCC由小至大变化时,放大器的工作状态由欠压经临界转入过压。改变 vCC 时,其工作
状态和电流、功率的变化如图 3-6 所示。
P=
Icm1
Ic0
Po
Pc
0 过压状态 欠压状态 VCC 0 过压状态 欠压状态 VCC
(a)
(b)
图 3-6 VCC改变时电流、功率的变化
甲类、乙类功率放大器我们在上学期的实验都完成过,现在比较一下和它们丙类功率放 大器的不同:
甲类放大器:输入信号幅度小,输出信号不失真。但是其工作效率较低。 乙类和丙类放大器:输入信号幅度大,工作效率较高,但是输出信号失真大。特别丙类 谐振功率放大器,电压导通角较小,工作效率最高,通信发射机的高频末级功率放大器通常 采用丙类工作方式。 另外,对于谐振功率放大和小信号调谐放大器的对比:两种放大器的放大对象都为高频 信号,负载也均是谐振回路;不同之处主要在于激励信号的幅度大小不同,电路的静态工作 点不同,动态范围不同。 在实验过程中要认真体会。 高频功率放大器与低频功率放大器的相同点:都是为了得到高输出功率和高转换效率, 激励信号也同为大信号;不同点:⑴工作频率与相对频宽不同;⑵放大器的负载不同;⑶放 大器工作状态不同。 1、丙类谐振功率放大器的工作特点 功率放大器的最终目的是:电路与系统中,如果具有相同直流功率,那么所设计放大器 的转换效率越高,输出的交流功率就越大。丙类放大器就是这样一种放大器,如图 3-1 所示, 这是一个典型的丙类放大器的原理图:负载为LC谐振回路,基极偏置为负偏压,半通角θc< 90°,放大器的基极没有设置直流偏置电路,仅在晶体管基极设置了一个偏置电阻,从电路 的形式来看,当没有载波信号输入时,放大器处于截止状态,集电极和发射级没有电流流过, 集电极也没有交流信号输出。当输入大幅度信号时,输入信号加在放大器基极,在偏置电阻 上产生自给偏压,放大器将随着输入信号的频率进行开关工作,放大器的集电极将输出放大 的信号。
实验三 高频功率放大器
实验三高频功率放大器一、实验目的:1.了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载变时的动态特性。
2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化、负载电阻变化和电源电压Vcc变化时对功率放大器工作状态的影响。
3.掌握丙类类功率放大器功率、效率的测量方法。
二、实验内容:1.观察高频功率放大器丙类工作状态的现象,并分析其特点2.测试丙类功放的调谐特性3.观察电源电压变化对丙放工作状态的影响及激励信号变化、负载变化对工作状态的影响。
三、实验基本原理:丙类功率放大器通常作为发射机末级功放以获得较大的输出功率和较高的效率。
本实验单元模块电路如图2-1所示。
该实验电路由两级功率放大器组成。
其中VT1(3DG12)、XQ1与C15组成甲类功率放大器,工作在线性放大状态,其中R2、R12、R13、VR4组成静态偏置电阻,调节VR4可改变放大器的增益。
XQ2与CT2、C6组成的负载回路与VT3(3DG12)组成丙类功率放大器。
甲类功放的输出信号作为丙放的输入信号(由短路块J5连通)。
VR6为射极反馈电阻,调节VR6可改变丙放增益。
与拨码开关相连的电阻为负载回路外接电阻,改变S5拨码开关的位置可改变并联电阻值,即改变回路Q值。
当短路块J5置于开路位置时则丙放无输入信号,此时丙放功率管VT3截止,只有当甲放输出信号大于丙放管VT3 be间的负偏压值时,VT3才导通工作。
四、实验步骤:1.了解丙类工作状态的特点1)对照电路图2-1,了解实验板上各元件的位置与作用。
2)将功放电源开关S1拨向右端(+12V),负载电阻转换开关S5全部拨向开路,J4断开,从J7处输入高频信号,将J5、J10短路块置于下画线处,在J13看到放大输出信号,此时,减小输入电压到一定值时,可看到输出电压为0,记下此时输入电压幅值,了解丙类工作状态的特点。
2.测试调谐特性将功放电源开关S1拨向右端(+12V),负载电阻转换开关S5全部拨向开路,J4断开,从J7处输入高频信号,将J5、J10短路块置于下画线处,测量输出信号Vc,调节CT2保证电路谐振,改变输入信号频率从4MHz-16MHz,将对应输出电压值变化填入表2—1。
实验 丙类高频谐振功率放大器
实验 丙类高频谐振功率放大器利用选频网络作为负载回路的功率放大器称为谐振功率放大器,它是无线电发射机中的重要单元电路。
根据放大器中晶体管工作状态的不同或晶体管集电极电流导通角θ的范围可分为甲类、甲乙类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ越小,放大器的效率η越高。
如甲类功放的θ=1800,效率η最高也只能达到50%,而丙类功放的θ<900,其效率η可达85%。
甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器,丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
本次实验主要研究以甲类谐振功率放大器为推动级,以丙类谐振功率放大器为末级的混合功率放大器。
一、实验目的1、熟悉丙类高频功率放大器的工作原理,初步了解工程估算的方法。
2、学习丙类高频谐振功率放大器的电路调谐及测试技术。
3、研究丙类高频谐振功率放大器的调谐特性和负载特性。
4、理解基极偏置电压、集电极电源电压、激励电压对放大器工作状态的影响。
5、了解丙类高频谐振功率放大器的设计方法。
二、实验仪器1、高频实验箱 1台2、高频信号发生器 1台3、双踪高频示波器 1台4、扫频仪 1台5、万用表 1块6、高频功率放大器实验板 1块 三、预习要求1、复习高频谐振功率的工作原理及四种特性。
2、分析实验电路,理解各元件的作用及各组成部分的工作原理。
四、实验内容1、电路调谐及调整(调谐技术)。
2、静态测试(测试静态工作点)。
3、动态测试(研究负载特性)。
五、实验原理实验电路如图2-1所示,它是由两级小信号谐振放大器组成的推动级和末级丙类谐振功率放大器构成,其中VT1和VT2组成甲类功率放大器,晶体管VT3组成丙类谐振功率放大器,这两类功率放大器的应用十分广泛,下面简要介绍它们的工作原理及基本计算方法。
(一)、甲类功率放大器 1、静态工作点如图2-1所示,晶体管VT1组成甲类功率放大器,工作在线性放大状态。
其中R 1和R 2为基极偏置电阻;R 5为直流负反馈电阻;它们共同组成分压式偏置电路以稳定放大器的静态工作点。
实验报告三高频丙类功率放大器设计
实验高频丙类功率放大器设计时间:第周星期节课号:成绩指导教师批阅日期院系专业:姓名:学号:座号:============================================================================================一、实验目的1、理解掌握高频丙类功率放大器的工作原理;2、掌握功率放大器输出功率、直流功率、效率的计算;3、掌握高频谐振功率放大器的计算和设计方法;4、提高高频电路综合设计能力。
二、实验预习1、下图所示谐振功率放大器中,已知V CC=24V,P O=5W,θ=700,ξ=0.9,试求该功率放大器的ηC、P D、P C、i Cmax和谐振回路谐振电阻R e。
2、谐振功率放大器原来工作在临界状态,若谐振回路的外接负载电阻R L(如上图所示)增大或减小,放大器的工作状态如何变化?I C0、I c1m、P o、P C将如何变化?3、谐振功率放大电路集电极直流馈电电路有哪几种形式?并联馈电电路有何特点?4、谐振功率放大电路中自给偏压电路有何特点?说明产生自给偏压的条件。
5、谐振功率放大器中滤波匹配网络有何作用?对它有哪些主要要求?三、设计任务及要求设计制作一个高频丙类功率放大器,要求直流电源电压+12V,中心频率为40.7MHz,放大器输出功率P o > 200mW(R L = 50Ω),效率ηC > 60%。
(注:设计流程步骤,请参考实验指导书71页,涉及相关的理论计算请参考教材和其他参考书。
采用两级放大器设计思路,整体电路由两大部分构成:激励级放大电路和丙类功放级放大电路。
参考电路如下图所示。
要求按照设计要求,计算电路中电阻、电容、电感(扼流圈除外)的理论值。
)-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------。
高频功率放大器实验报告
高频功率放大器实验报告篇一:高频谐振功率放大器实验实验报告丙类高频谐振功率放大器与基极调幅实验报告一.实验目的1.了解和掌握丙类高频谐振功率放大器的构成及工作原理。
2.了解丙类谐振功率放大器的三种工作状态及负载特性、调制特性、放大特性和调谐特性。
3. 掌握丙类谐振功率放大器的输出功率Po、直流功率PD、集电极效率?C测量方法。
4. 掌握用频谱仪观测信号频谱、频率及调制度的方法。
二.实验仪器及设备1.调幅与调频接收模块。
2.直流稳压电压GPD-3303D 3.F20A型数字合成函数发生器/计数器 4.DSO-X XXA 数字存储示波器 5.SA1010频谱分析仪三.实验原理1.工作原理高频谐振功率放大器是通信系统重要的组成电路,用于发射机的末级。
主要任务是高效率的输出最大高频功率,馈送到天线辐射出去。
为了提高效率,晶体管发射结采用负偏置,使放大器工作于丙类状态(导通角θ<90)。
高频谐振功率放大器基本构成如图1.4.1所示,O(a)原理电路(b)等效电路图1.4.1 高频功率放大器丙类谐振功率放大器属于大信号非线性放大器,工程上常采用折线分析法,各级电压、电流波形如图1.4.2所示。
a)(b)(图1.4.2 各级电压、电流波形图1.4.1中,晶体管放大区的转移(内部静态)特性折线方程为:iC?gC(vBE?UBZ)1.4.1放大器的外电路关系为:uBE?EB?Ubmcos?t1.4.2uCE?EC?Ucmcos?t1.4.3当输入信号ub?EB?UBZ时,晶体管截止,集电极电流iC?0;当输入信号ub?EB?UBZ时,发射结导通,由式1.4.1、1.4.2和1.4.3得集电极电流iC为:iC?iCmcos?t?aco?s1?co?s1.4.4式中,UBZ为晶体管开启电压,gC为转移特性的斜率。
以上分析可知,晶体管的集电极输出电流ic为尖顶余弦脉冲,可用傅里叶级数展开为:ic(t)?IC0?IC1mcos?t?IC2mcos2?t?IC3mcos3?t??1.4.5其中,IC0为iC的直流分量,IC1m、IC2m、…分别为ic的基波分量、二次谐波分量、…。
高频实验三 高频丙类谐振功率放大器实验报告
高频实验三高频丙类谐振功率放大器实验报告实验目的:1. 理解高频振荡电路的谐振条件,并掌握它的基本工作原理;2. 理解高频功率放大器的基本原理;3. 掌握高频振荡电路的调谐方法;4. 熟练掌握高频功率放大器的参数选择和调试方法。
实验器材:1.高频发生器2.谐振电路板3.二级元件(J310晶体管、VMMK-2203二极管、0.2Ω15W电阻)4.射频电阻5.多用表6.示波器7.功率计8.负载实验原理:1.谐振电路谐振电路是在特定的频率下,由电感和电容构成的谐振回路,通过它产生的信号波,能够单纯频率的持续振荡,保证了信号的稳定性。
在PCB板上我们对谐振电路布线,包括多个元器件的互连、地线的走向等设计严谨,注重缩小回路面积,降低谐振频率,减小谐振面积,从而提高谐振质量和谐振Q值,增强谐振电路稳定性,提高谐振电路的抗干扰能力。
谐振频率的计算公式f=1/(2π(LC)^0.5)2.高频功率放大器高频功率放大器是在HF频段(3MHz~30MHz)内的放大器,在电视机、收音机、通信设备等广泛应用中,常采用的是质子放大器,它所具有的功率放大、稳定性好等性能,能胜任各种业余通信需求。
实验步骤:1.按照谐振电路图在PCB板上完成电路组装,安装元器件之间要严谨紧密。
2.将负载连接到电路的输出端,连接电源,连接示波器和功率计。
3.改变高频发生器的频率,寻找谐振点。
4.调谐谐振电路的电感和电容,使其达到最佳状态。
5.检验电路的信号质量、放大系数和输出功率。
实验结果:1.通过调谐谐振电路,我们最终定位到了谐振点,稳定的输出正弦波。
2.经过功率计测量,我们发现功率输出效果较为满意。
实验分析:1.在谐振电路的制作过程中,需要仔细考虑各个元器件之间的互连,并且严格控制回路面积,以提高谐振质量和谐振Q值。
2.对于高频功率放大器的参数调试,需要对电感和电容等元器件进行仔细调谐,以找到最佳状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三高频丙类谐振功率放大器实验一、实验目的1.进一步掌握高频丙类谐振功率放大器的工作原理。
2.掌握丙类谐振功率放大器的调谐特性和负载特性。
3.掌握激励电压、集电极电源电压及负载变化对放大器工作状态的影响。
4. 掌握测量丙类功放输出功率,效率的方法。
二、实验使用仪器1. 丙类谐振功率放大器实验板2. 200MH泰克双踪示波器3. FLUKE万用表4. 高频信号源5. 扫频仪(安泰信)三、实验基本原理与电路1.高频谐振功率放大器原理电路高频谐振功率放大器是一种能量转换器件,它可以将电源供给的直流能量转换为高频交流输出。
高频谐振功率放大器是通信系统中发送装置的重要组件,其作用是放大信号,使之达到足够的功率输出,以满足天线发射和其它负载的要求。
高频谐振功率放大器研究的主要问题是如何获得高效率、大功率的输出。
放大器电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180,效率η最高为50%,而丙类功放的θ<90°,效率η可达到80%。
谐振功率放大器采用丙类功率放大器,采用选频网络作为负载回路的丙类功率放大器称为高频谐振功率放大器。
高频谐振功率放大器原理电路如图3-1。
图中u b为输入交流信号,E B是基极偏置电压,调整E B,改变放大器的导通角,以改变放大器工作的类型。
E C是集电极电源电压。
集电极外接LC并联振荡回路的功用是作放大器负载。
放大器工作时,晶体管的电流、电压波形及其对应关系如图9-2所示。
晶体管转移特性如图2.2中虚线所示。
由于输入信号较大,U为管子导通电压,g m 可用折线近似转移特性,如图中实线所示。
图中'B为特征斜率。
图3-1 高频谐振功率放大器的工作原理设输入电压为一余弦电压,即u b =U bm cos ωt 则管子基极、发射极间电压u BE 为u BE =E B +u b =E B +U bm cos ωt在丙类工作时,E B <'B U ,在这种偏置条件下,集电极电流iC 为余弦脉冲,其最大值为i Cmax ,电流流通的相角为2θ,通常称θ为集电极电流的通角,丙类工作时,θ<π/2 。
把集电极电流脉冲用傅氏级数展开,可分解为直流、基波和各次谐波i C =I C0+i c1+i c2+=I C0+I c1m cos ωt+I c2m cos2ωt+…式中,I C0为直流电流,I c1m 、I c2m 分别为基波、二次谐波电流幅度。
图3-2高频谐振功率放大器电压和电流关系谐振功率放大器的集电极负载是一高Q 的LC 并联振荡回路,如果选取谐振回路的谐振角频率ω0等于输入信号u b的角频率ω,那么,尽管在集电极电流脉iR L-冲中含有丰富的高次谐波分量,但由于并联谐振回路的选频滤波作用,振荡回路两端的电压可近似认为只有基波电压,即u c =U c m cos ωt=I c1m R e cos ωt 式中,U cm 为u c 的振幅;R e 为LC 谐振回路的谐振电阻。
在集电极电路中,LC 振荡回路得到的高频功率为ecme m c cm m c R U R I U I P 22110212121===集电极电源E C 供给的直流输入功率为0C C E I E P =集电极效率ηC 为输出高频功率P o 与直流输入功率P E 之比,即CC cmm c E C E I U I P P 01021==η静态工作点、输入激励信号幅度、负载电阻,集电极电源电压发生变化,谐振功率放大器的工作状态将发生变化。
如图3-3所示,当C 点落在输出特性(对应u BEmax 的那条)的放大区时,为欠压状态;当C 点正好落在临界点上时,为临界状态;当C 点落在饱和区时,为过压状态。
谐振功率放大器的工作状态必须由集电极电源电压E C 、基极的直流偏置电压E B 、输入激励信号的幅度U bm 、负载电阻R e 四个参量决定,缺一不可,其中任何一个量的变化都会改变C 点所处的位置,工作状态就会相应地发生变化。
图3-3 高频丙类谐振功率放大器的工作状态负载特性是指当保持集电极电源电压E C 、基极的直流偏置电压E B 、输入激励信号的幅度U bm 不变而改变负载电阻R e 时,谐振功率放大器的电流I C0、I c1m ,集电极输出电压U cm ,输出功率P o ,集电极损耗功率P C ,电源消耗的总功率P E 及集电极效率ηC 随之变化的曲线。
从上面动态特性曲线随R e 变化的分析可以看出,R e 由小到大,工作状态由欠压变到临界再进入过压。
相应的集电极电流由余弦脉冲变成凹陷脉冲,如图3-4(a)所示。
图3-4高频丙类谐振功率放大器的负载特性集电极调制特性是指当保持E B 、U bm 、R e 不变而改变集电极电源电压E C 时,功率放大器电流I C0、I c1m ,集电极输出电压U cm 以及电源消耗的总功率、效率随之变化的曲线。
当E C 由小增大时,u CEmin =E C -U cm 也将由小增大,因而由u CEmin 、u BEmax 决定的瞬时工作点将沿u BEmax 这条输出特性由特性的饱和区向放大区移动,工作状态由过压变到临界再进入欠压,i C 波形由i Cmax 较小的凹陷脉冲变为i Cmax 较大的尖顶脉冲,如图3-5所示。
由集电极调制特性可知,在过压区域,输出电压幅度U cm 与E C 成正比。
利用这一特点,可以通过控制E C 的变化,实现集电极输出电压、集电极输出电流、集电极输出功率的相应变化,这种功能称为集电极调幅,所以称这组特性曲线为集电极调制特性曲线。
R e 增大(a )ecr eecr e(b )(c )(b)(a )(c )图3-5高频谐振功率放大器的集电极调制特性基极调制特性是指当E C 、U bm 、R e 保持不变而改变基极的直流偏置电压E B 时,功放电流I C0、I c1m ,集电极输出电压U cm 以及电源消耗的总功率、效率的变化曲线。
当E B 增大时,会引起θ、i Cmax 增大,从而引起I C0、I c1m 、U cm 增大。
由于E C 不变,u CEmin =E C -U cm 则会减小,这样势必导致工作状态由欠压变到临界再进入过压。
进入过压状态后,集电极电流脉冲高度虽仍有增加,但凹陷也不断加深,i C 波形如图3-6所示。
利用这一特点,可通过控制E B 实现对电流、电压、功率的控制,称这种工作方式为基极调制,E 增大(c )图3-6高频谐振功率放大器的基极调制特性放大特性是指当保持E C 、E B 、R e 不变,而改变输入激励信号的幅度U bm 时,功率放大器电流I C0、I c1m ,集电极输出电压U cm 以及电源消耗的总功率、效率的变化曲线。
U bm 变化对谐振功率放大器性能的影响与基极调制特性相似。
i C 波形及I C0、I c1m 、U cm 、P o 、P E 、ηC 随U bm 的变化曲线如图3-7所示。
由图可见,在欠压区域,输出电压振幅与输入电压振幅基本成正比,即电压增益近似为常数。
利用这一特点可将谐振功率放大器用作电压放大器,所以称这组曲线为放大特性曲线。
图3-7高频谐振功率放大器的放大特性2.实验电路高频谐振功率放大器实验电路如图3-8。
图3-8 高频谐振功率放大器实验电路电容C1是输入隔直电容,第一级电路是小信号谐振放大器,对输入信号进(b )(a )行放大,由于丙类功放属于大信号放大,若输入信号幅度过小,丙类功放不能够导通,因此需要先对输入信号进行前置放大。
第二级电路是丙类谐振功率放大器,电阻R7提供自己偏置,静态时,基极直流电压为0V。
当输入信号使晶体管导通后,晶体管的射极有一个直流偏置电压,所以此时的Vbe<0,晶体管工作在丙类状态。
集电极调谐回路由固定电容,可变电容和中周组成,调整可变电容值或者中周的铁芯位置可改变谐振回路的谐振频率,调整滑动变阻器RW2可以改变负载电阻值,从而观察功放的负载调制特性。
集电极供电电源部分由三端可调DC变换器LM317提供,改变滑动变阻器的阻值,可改变集电极的供电电源电压,从而观察功放的集电极调制特性。
四、实验内容1.丙类谐振功率放大器实验电路的调整。
2. 丙类谐振功率放大器的激励调制特性测试---激励电压变化对放大器工作状态的影响测试。
3.谐振功率放大器的负载特性测试---负载变化对放大器工作状态的影响测试。
4.集电极电源电压变化对谐振功率放大器工作状态的影响(集电极调制特性)的测试。
五、实验步骤1.高频谐振功率放大器实验电路的调整(1)在实验箱主板上插上高频谐振功率放大器实验电路模块。
接通实验箱上电源开关电源指标灯点亮。
可以用实验箱上的高频信号源提供10.7MHz的输入信号(来自LC、晶体振荡电路模块,要求电路规定的谐振频率符合输入信号频率)由IN1端接入高频谐振功率放大器实验电路,幅度在1V左右。
也可以通过实验室的高频信号源提供。
(2)调整电位器RW1和微调CV1、CV2、B1、B2, 在OUT端用示波器,观测到放大后的不失真的输入信号。
当输出信号幅度最大,失真最小时,认为功放已经调谐了。
2. 丙类谐振功率放大器的激励调制特性测试逐步增加基极输入激励信号的幅度,保持电源电压Ec=12V(测量TP5点),负载R L不变,观察射极电压波形(和集电极电流波形相同),看是否出现凹陷,当出现凹陷时,可以认为进入了过压工作状态。
当激励信号的幅度逐渐增加时,观察对集电极输出电压波形、集电极电流波形的影响、测量集电极输出电压Uo、由TP1处测量直流电压Ve,发射极平均电流I C0=Ve/R7,根据前面的关系式,计算电源消耗的总功率,效率,输出功率。
分别在欠压,零界和过压三种状态下,选取一点测量电源消耗的总功率,效率,输出功率,并记录。
3.高频谐振功率放大器的负载特性测试调整RW4,保持电源电压Ec=12V(测量TP5点),激励电压U bm一定,改变负载R L,集电极输出电压波形、集电极电流波形的影响、测量集电极输出电压Uo、由TP1处测量直流电压Ve,发射极平均电流I C0=Ve/R7,观察TP1处的直流电压,找到欠压,零界和过压三种工作状态,分别在欠压,零界和过压三种状态下,选取一点测量电源消耗的总功率,效率,输出功率,并记录。
4.集电极电源电压变化对放大器工作状态的影响(集电极调制特性)的测试保持激励电压U bm,负载R L不变,调整RW4,改变Ec(测量TP3点),集电极输出电压波形、集电极电流波形的影响、测量输出电压Uo、由TP1处测量直流电压Ve,发射极平均电流I C0=Ve/R7。
观察TP1处的直流电压,找到欠压,零界和过压三种工作状态,分别在欠压,零界和过压三种状态下,选取一点测量电源消耗的总功率,效率,输出功率,并记录。