射频与微波技术知识点总结
射频与微波技术知识点总结
![射频与微波技术知识点总结](https://img.taocdn.com/s3/m/2368b68c0508763230121224.png)
射频/微波的特点: 1.频率高 2.波长短 3.大气窗口 4.分子谐振微波频率:3003000 波长:0.11m独特的特点:的波长与自然界物体尺寸相比拟在波段,由于导体的趋肤效应、介质损耗效应、电磁感应等影响,期间区域不再是单纯能量的集中区,而呈现分布特性。
长线概念:通常把导线(传输线)称为长线,传统的电路理论已不适合长线!系统的组成:传输线:传输信号微波元器件:完成微波信号的产生、放大、变换等和功率的分配、控制及滤波天线:辐射或接收电磁波微波、天线与电波传播的关系:(简答)微波:对象:如何导引电磁波在微波传输系统中的有效传输目的:希望电磁波按一定要求沿微波传输系统无辐射的传输;天线任务:将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波作用:1.有效辐射或接收电磁波;2.把无线电波能量转换为导行波能量电波传播分析和研究电波在空间的传播方式和特点常用传输线机构:矩形波导共面波导同轴线带状线微带线槽线分析方法 场分析法:麦克斯韦方程满足边界条件的波动解传输线上电磁场表达式分析传输特性等效电路法:传输线方程满足边界条件的电压电流波动方程的解沿线等效电压电流表达式分析传输特性称为传输线的特性阻抗特性阻抗Z0通常是个复数, 且与工作频率有关。
它由传输线自身分布参数决定而与负载及信源无关, 故称为特性阻抗对于均匀无耗传输线, 0, 传输线的特性阻抗为 此时, 特性阻抗Z0为实数, 且与频率无关。
常用的平行双导线传输线的特性阻抗有250Ω, 400Ω和600Ω三种。
常用的同轴线的特性阻抗有50 Ω 和75Ω两种。
均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗及工作频率有关, 且一般为复数, 故不宜直接测量。
无耗传输线上任意相距λ /2处的阻抗相同, 一般称之为λ /2重复性。
传输线上电压和电流以波的形式传播, 在任一点的电压或电流均由沿方向传播的行波(称为入射波)和沿方向传播的行波(称为反射波)叠加而成。
射频与微波技术期末总结
![射频与微波技术期末总结](https://img.taocdn.com/s3/m/e16e7b9727fff705cc1755270722192e453658c3.png)
射频与微波技术期末总结一、引言射频与微波技术是电子工程的一个重要分支,它涉及到无线通信、雷达、卫星通信等许多领域。
在过去的几十年里,射频与微波技术经历了巨大的发展和创新,为我们的现代化生活和通信提供了巨大的便利。
本次期末总结将对射频与微波技术的相关知识做一个系统的回顾和总结。
二、射频与微波技术的概述1. 射频与微波技术的起源和发展射频与微波技术起源于20世纪初期,最初应用于无线电通信领域。
后来随着雷达和卫星通信技术的发展,射频与微波技术逐渐成为独立的学科领域,并广泛应用于各个领域。
2. 射频与微波技术的基本概念射频与微波技术是指在射频和微波频段工作的电子设备和系统的设计、分析和应用。
射频频段通常定义为3-3000 MHz,微波频段通常定义为1-300 GHz。
射频和微波波段有很多特殊的性质,例如衰减、穿透能力以及大气吸收等。
三、射频与微波技术的电路设计1. LNA设计低噪声放大器(LNA)是射频电路中非常重要的组成部分。
它的作用是放大输入信号并尽量减小噪声。
在LNA设计中,需要考虑噪声系数、增益和稳定性等因素。
2. 射频开关设计射频开关的设计是为了实现信号的路由和选择。
它对射频系统的性能和功能有着重要的影响。
在射频开关的设计中,需要考虑传输损耗、隔离度和插入损耗等。
3. 射频功率放大器设计射频功率放大器(PA)是将低功率信号放大到高功率的关键部分。
它在无线通信系统中起到提高信号传输距离和质量的作用。
在射频功率放大器的设计中,需要考虑效率、线性度和带宽等因素。
四、射频与微波技术的无线通信应用1. 无线电通信射频与微波技术在无线电通信中有着广泛的应用。
它可以用于手机、无线局域网和卫星通信等。
2. 雷达技术雷达是利用射频与微波技术实现目标探测、跟踪和测距的一种技术。
它在军事和民用领域都有广泛的应用。
3. 卫星通信卫星通信是通过射频与微波技术实现地球上不同地区之间的通信。
它在电视广播、互联网和军事通信等方面有着重要的应用。
射频与微波基础知识
![射频与微波基础知识](https://img.taocdn.com/s3/m/ed627951581b6bd97f19eae4.png)
¾ 回波损耗(Return Loss) :传输线上任一点入射功率和反射功率之比
RL( dB
)
= 10 lg⎜⎜⎝⎛
Pi Po
⎟⎟⎠⎞
=
10
lg
⎜⎛ቤተ መጻሕፍቲ ባይዱ⎜
⎝
1 Γ2
⎟⎞ ⎟ ⎠
=
−20 lg
Γ
第二章
Z. Q. LI
16
传输线阻抗变换
¾ 基本原理-传输线对阻抗的改变
第二章
Z. Q. LI
17
传输线阻抗变换
= − d V(x) dx
) = − d I( x ) dx
⎧ ⎪⎪ ⎨ ⎪ ⎪⎩
jωLI( x ) jωCV ( x
= +
− V ( x + Δx ) −V ( x ) Δx
Δx ) = − I( x + Δx ) − Δx
I(
x
)
⎧ ⎪⎪ ⎨ ⎪ ⎪⎩
d2 dx2 d2 dx2
V (x) + I(x) +
传输线无损耗 γ = α + jβ = jβ
(( )) (( )) Z(d) =
Zin (− d ) =
Z0
1 + ΓLe−2γd 1 − ΓLe−2γd
= Z0
1 + ΓLe−2 jβd 1 − ΓLe−2 jβd
=
Z0
(Z L (Z0
+ +
jZ 0 jZ L
tan tan
βd βd
) )
¾ (电压)驻波比
I ( x)
R1
L1
I (x + Δx)
V (x) R2
x
射频与微波技术原理及应用总结归纳
![射频与微波技术原理及应用总结归纳](https://img.taocdn.com/s3/m/b5c4f9e2f121dd36a22d8238.png)
精心整理射频与微波技术原理及应用培训教材华东师范大学微波研究所一、Maxwell(麦克斯韦)方程Maxwell 方程是经典电磁理论的基本方程,是解决所有电磁问题的基础,它用数学形式概括了宏观电磁场的基本性质。
其微分形式为E DH J D B ρ∇⨯=∂∇⨯=+∇=∇= 对于各向同性介质,有D EB H J Eεμσ=== (1.2)其中D 为电流密度矢量。
方程,得到空间任何位置的电场、磁场分布。
对Maxwell 方程只有公司的Ensemble 和HFSS 、Agilent 公司的Momentum Remcom 公司的XFDTD 等。
0,0J ρ==时,有222200E k E H k H ∇+=∇+= (1.3)其中k 为传播波数,22k ωμε=。
二、传输线理论传输线理论又称一维分布参数电路理论,是射频、微波电路设计和计算的理论基础。
传输线理论在电路理论与场的理论之间起着桥梁作用,在微波网络分析中也相当重要。
1、微波等效电路法低频时是利用路的概念和方法,各点有确切的电压、电流概念,以及明确的电阻、电感、电容等,这是集总参数电路。
在集总参数电路中,基本电路参数为L 、C 、R 。
由于频率低,波长长,电路尺寸与波长相比很小,电磁场随时间变化而不随长度变化,而且电感、电阻、线间电容和电导的作用都可忽略,因此整个电路的电能仅集中于电容中,磁能集中于电感线圈中,损耗集中于电阻中。
射频和微波频段是利用场的概念和方法,主要考虑场的空间分布,测量参数由电压U 、电流I 转化为频率f 、功率P 、驻波系数等,这是分布参数电路。
在分布参数电路中,电磁场不仅随时间变化也随空间变化,相位有明显的滞后效应,线上每点电位都不同,处处有储能和损耗。
由于匀直无限长的传输系统在现实中是不存在的,因此工程上常用微波等效电路法。
微波等效电路法的特点是:一定条件下“化场为路”(1)(2)(3)2、传输线方程及其解传输线方程是传输线理论的基本方程,的微分方程。
射频与微波技术
![射频与微波技术](https://img.taocdn.com/s3/m/21e86054ae1ffc4ffe4733687e21af45b207fe41.png)
射频与微波技术:让我们的世界更连通近年来,的发展和应用越来越受到关注。
从无线通讯到医疗设备,从航空航天到军事领域,这项技术已经渗透到了我们生活的各个方面。
那么,什么是射频和微波技术呢?它有哪些优点和应用呢?本文将探讨这些问题,为大家揭秘的奥秘。
一、的基本概念简单来说,射频就是指频率在几个千赫兹至几个千兆赫兹之间的无线电波。
而微波则是频率在1千兆赫兹至300千兆赫兹之间的电磁波。
与低频和中频相比,射频和微波的频率高,波长短,传输速度快,能量密度大,能够穿透障碍物并传输较远的距离。
这些特点使得射频和微波技术成为了一种重要的通信手段。
二、的优点1.高速传输:射频和微波技术的传输速度非常快,比起传统的有线传输方式,能够提高数据传输的效率。
2.节省空间:相对于有线传输方式而言,射频和微波技术的设备和器件体积小巧,节省了空间,适用于各种紧凑的应用场景。
3.维护成本低:无需担心线缆老化和损坏问题,也无需担心设备移动或更改位置带来的麻烦。
这样,射频和微波技术能够降低系统部署和维护的成本。
4.无干扰:射频和微波技术的传输方式可以减少噪音和干扰的影响,避免信息的损失和干扰。
三、的应用1.通讯领域:射频和微波技术在通讯领域的应用非常广泛,如手机、对讲机、卫星通讯等。
除此之外,无线电台、微波通道、通讯系统的天线等也都使用了这项技术。
2.医疗设备:射频和微波技术在医疗设备领域也有着广泛的应用,如磁共振成像、医疗诊断、治疗设备等。
3.航空航天:射频和微波技术在航空航天领域也有着广泛的应用,如雷达、导航设备等。
4.军事领域:射频和微波技术在军事领域的应用非常广泛,如合成孔径雷达、电子对抗等。
四、未来展望随着科技的不断发展,也将得到进一步的发展和应用。
例如,5G通讯技术的使用已经慢慢普及,机器人、智能家居等智能设备的开发也需要大量依赖射频和微波技术,这将为的发展提供更广阔的应用空间。
总之,的不断发展和应用,不仅让我们的生活更加便捷、舒适,而且也为人类社会的进步和发展作出了巨大的贡献。
射频微波基础知识
![射频微波基础知识](https://img.taocdn.com/s3/m/2bef664be97101f69e3143323968011ca300f7a6.png)
射频微波基础知识射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。
每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。
有线电视系统就是采用射频传输方式的。
在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。
在电磁波频率低于100khz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100khz时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力,我们把具有远距离传输能力的高频电磁波成为射频,英文缩写:RF一、射频和微波技术基础知识1、什么是射频?射频(RF)是指无线通信系统中使用的电磁频率范围。
它涵盖了广泛的频率范围,通常从3kHz(千赫)到300GHz(千兆赫)。
射频信号的特点是能够长距离传播并穿过障碍物,这使其成为各种通信应用的理想选择。
2、微波频率微波是射频频率的一个子集,频率范围为300MHz(兆赫)到300GHz。
虽然微波仍然是像射频一样的电磁波,但它们具有更短的波长,这在特定应用中提供了某些优势,例如高数据传输速率和精确成像能力。
二、射频和微波技术的应用1、无线通信射频和微波技术最突出的应用之一是在无线通信系统中。
从简单的无线电传输到复杂的蜂窝网络,射频技术使移动设备上的语音通话、短信、互联网浏览和视频流成为可能。
此外,Wi-Fi网络、蓝牙连接和其他无线协议依赖RF信号进行无缝数据交换。
2、卫星通信卫星通信严重依赖微波频率。
地球静止轨道或近地轨道卫星利用微波远距离传输电视信号、互联网数据和电话,确保在传统通信基础设施有限,或无法使用的偏远地区实现全球连接。
3、雷达系统微波雷达系统对各种应用至关重要,包括空中交通管制、天气监测和军事防御。
雷达使用微波脉冲来探测物体的存在、距离和速度,从而进行精确的跟踪和分析。
4、医疗应用射频和微波技术在医学领域有着重要的应用,例如磁共振成像(MRI)和微波消融。
最新射频与微波技术知识点总结
![最新射频与微波技术知识点总结](https://img.taocdn.com/s3/m/1029a8477fd5360cba1adbbb.png)
射频/微波的特点: 1.频率高 2.波长短 3.大气窗口 4.分子谐振 微波频率:300MHz-3000GHz 波长:0.1mm-1m独特的特点:RF/MW 的波长与自然界物体尺寸相比拟在RF/MW 波段,由于导体的趋肤效应、介质损耗效应、电磁感应等影响,期间区域不再是单纯能量的集中区,而呈现分布特性。
长线概念:通常把RF/MW 导线(传输线)称为长线,传统的电路理论已不适合长线! RF/MW 系统的组成:传输线:传输RF/MW 信号微波元器件:完成微波信号的产生、放大、变换等和功率的分配、控制及滤波 天线:辐射或接收电磁波 微波、天线与电波传播的关系:(简答) 微波:对象:如何导引电磁波在微波传输系统中的有效传输目的:希望电磁波按一定要求沿微波传输系统无辐射的传输; 天线任务:将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波 作用:1.有效辐射或接收电磁波;2.把无线电波能量转换为导行波能量 电波传播分析和研究电波在空间的传播方式和特点常用传输线机构:矩形波导 共面波导 同轴线 带状线微带线 槽线分析方法称为传输线的特性阻抗特性阻抗Z0通常是个复数, 且与工作频率有关。
它由传输线自身分布参数决定而与负载及信源无关, 故称为特性阻抗 对于均匀无耗传输线, R=G=0, 传输线的特性阻抗为 此时, 特性阻抗Z0为实数, 且与频率无关。
常用的平行双导线传输线的特性阻抗有250Ω, 400Ω和600Ω三种。
常用的同轴线的特性阻抗有50 Ω 和75Ω两种。
均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗及工作频率有关, 且一般为复数, 故不宜直接测量。
无耗传输线上任意相距λ /2处的阻抗相同, 一般称之为λ /2重复性。
传输线上电压和电流以波的形式传播, 在任一点的电压或电流均由沿-z 方向传播的行波(称为入射波)和沿+z 方向传播的行波(称为反射波)叠加而成。
射频与微波知识点总结
![射频与微波知识点总结](https://img.taocdn.com/s3/m/7cdeaf8aab00b52acfc789eb172ded630b1c980f.png)
射频与微波知识点总结一、引言射频(Radio Frequency, RF)与微波(Microwave)技术在现代通信、雷达、无线电频谱、天线设计等领域发挥着重要作用。
射频与微波技术涉及到电磁波的传播、调制解调、射频功率放大、频率变换、天线设计等方面的知识。
本文将从射频与微波的基本原理、传输线理论、射频放大器、射频调制解调、天线设计等方面进行知识点总结。
二、射频与微波的基本原理1. 电磁波的基本概念电磁波是一种由电场和磁场相互作用而产生的波动现象。
根据波长的不同,电磁波可以分为射频、微波、红外线、可见光、紫外线、X射线和γ射线等不同频段的电磁波。
射频与微波技术主要涉及射频和微波频段的电磁波。
2. 电磁波的特性电磁波具有波长、频率、速度、传播特性等基本特性。
其中,波长和频率之间的关系由光速公式c=λf(c为光速,λ为波长,f为频率)决定。
在射频与微波领域,常用的频率单位有千兆赫兹(GHz)、兆赫兹(MHz)和千赫兹(kHz)等,波长单位常用的是米(m)。
根据电磁波在介质中传播的特性,常见的介质波速和传播常数也会影响射频微波在介质中的传播特性。
3. 电磁波在空间中的传播电磁波在自由空间中传播的特性是由麦克斯韦方程组决定的,其中包括麦克斯韦方程组的电场和磁场分布规律、电磁波的波动性等。
了解电磁波在不同介质中的传播特性有利于射频与微波技术在不同环境中的应用。
4. 电磁波的天线辐射和接收天线是电磁波的辐射和接收装置,根据天线的结构和工作原理,天线可以分为定向天线和非定向天线。
定向天线主要用于定向传输和接收电磁波;非定向天线主要用于对全向的电磁波进行辐射和接收。
天线的辐射和接收特性与天线的形状和尺寸、频率、方向性等因素有关。
三、传输线理论1. 传输线的基本概念传输线是用于传输电磁波的导线或介质,主要包括同轴电缆、微带线、矩形波导和圆柱波导等。
传输线具有阻抗匹配、功率传输和信号传输等功能。
根据传输线的不同特性和应用场景,可以选择不同类型的传输线。
射频微波(知识点)
![射频微波(知识点)](https://img.taocdn.com/s3/m/70dd6a20ae45b307e87101f69e3143323968f5e7.png)
一、射频/微波技术及其基础1、射频/微波技术的基础 ✓ 什么是微波技术研究微波的产生、放大、传输、辐射、接收和测量的科学。
射频/微波技术是研究射频/微波信号的产生、调制、混频、驱动放大、功率放大、发射、空间传输、接收、低噪声放大、中频放大、解调、检测、滤波、衰减、移相、开关等各个电路及器件模块的设计和生产的技术,利用不同的电路和器件可以组合成相应的射频/微波设备。
微波技术主要是指通信设备和系统的研究、设计、生产和应用。
✓ 微波技术的基本理论是以麦克斯韦方程为核心的场与波的理论2、射频/微波的基本特性✓ 频率高、穿透性、量子性、分析方法的独特性射频频段为30 ~ 300MHz ,微波频段为300MHz ~ 3000GHz ,相对应波长为1m ~0.1mm ,照射于介质物体时能深入到该物质的内部。
根据量子理论,电磁辐射能量不是连续的,而是由一个个的“光量子”组成,单个量子的能量与其频率的关系为e = h ·f式中,h = 4×10-15电子伏·秒 (eV ·S) 成为普朗克常数3、射频/微波技术在工程里的应用✓ 无线通信的工作方式1、单向通信方式通信双方中的一方只能接收信号,另一方只能发送信号,不能互逆,收信方不能对发信方直接进行信息反馈2、双向单工通信方式3、双向半双工通信方式通信双方中的一方使用双频双工方式,可同时收发;另一方则使用双频单工方式,发信时要按下“送话”开关。
4、双向全双工通信方式通信双方可以通信进行发信和收信,这时收信与发信一般采用不同的工作频率,通-讲 开关按-讲 按-讲 受话器受话器二、电磁波频谱12、射频/✓GSM900系统的频道配置GSM-900系统采用等间隔方式,频道间隔为200KHz,同一信道的收发频率间隔为45MHz, 频道序号和频道标称中心频率的关系为F上行(n)= 890.2 +(n-1)×0.2 MHzF下行(n)= F上行(n)+ 45 MHz式中:频道序号 n = 1 ~ 124在我国的GSM900网络中,1~94号载频分配给中国移动使用,96~124号载频分配给中国联通使用,95号载频作为保护隔离,不用于业务。
电路设计中的射频与微波电路技术
![电路设计中的射频与微波电路技术](https://img.taocdn.com/s3/m/46136029001ca300a6c30c22590102020740f233.png)
电路设计中的射频与微波电路技术随着科技的不断进步与发展,射频(Radio Frequency)与微波(Microwave)电路技术在电子领域中扮演着非常重要的角色。
射频与微波电路设计是一门高度专业化的技术,用于处理高频信号和微波信号的传输、接收和放大。
本文将介绍电路设计中的射频与微波电路技术,并探讨其在通信、雷达、卫星和无线电等领域的应用。
1. 射频与微波电路技术的基础概念射频与微波电路技术是电路设计中的一项重要分支,主要涉及到射频信号(3kHz-300GHz)以及微波信号(1GHz-300GHz)的处理。
这些信号常常具有较高的频率与较短的波长,因此对于电路的设计、布线和制造技术提出了更高的要求。
射频与微波电路技术的基础概念包括:- S参数:用于描述电路元件或系统的传输特性,如增益、损耗和反射等。
常见的S参数有S11表示反射系数,S21表示传输系数等。
- 工作频段:描述电路中工作的频率范围,通常表示为中心频率加减一个带宽,如2.4GHz ± 100MHz。
- 正交匹配:射频电路设计中常用的一种匹配技术,用于提高信号与噪声的传输效率。
2. 射频与微波电路技术在通信领域的应用射频与微波电路技术在通信领域中具有广泛的应用。
例如,在手机通信系统中,射频电路技术负责手机与基站之间的信号传输和接收。
通过设计高效的射频天线和功率放大器,可以实现更远距离的信号传输和更高的通信质量。
此外,射频与微波电路技术还应用于卫星通信系统、雷达系统和无线电系统等领域。
在卫星通信中,射频电路技术用于卫星与地面站之间的信号传输和接收;在雷达系统中,射频电路技术用于发射和接收雷达脉冲信号;在无线电系统中,射频电路技术负责无线电信号的传输、接收和放大。
3. 射频与微波电路技术的设计挑战射频与微波电路技术的设计面临诸多挑战。
由于高频信号的损耗较大,电路设计中需要尽量减小损耗,提高信号传输的效率。
此外,高频信号的传输还面临着信号干扰、匹配问题和功率耗散等方面的挑战。
电子信息工程中的射频与微波技术
![电子信息工程中的射频与微波技术](https://img.taocdn.com/s3/m/4915596ce3bd960590c69ec3d5bbfd0a7856d56b.png)
电子信息工程中的射频与微波技术射频(Radio Frequency)和微波(Microwave)技术是电子信息工程中不可或缺的两个分支。
这两种技术都涉及到无线传输和通信,尤其是在无线电设备的制造和应用领域,但它们又各具特色,有着各自的应用范围和优劣势。
本文将就射频和微波技术,它们的定义、发展历程、应用领域以及未来的前景进行探讨。
一、射频技术射频技术是指在高频和超高频范围内(约从3kHz到300GHz)传输和处理无线电信号的技术。
射频技术在电视、手机、广播、无线网络、卫星通信、雷达和导航等领域得到广泛应用。
它的来源可追溯到19世纪末,当时马克士威提出了电磁场的统一理论,开启了电磁波研究的新时代。
随着技术的不断发展,射频技术也得到了进一步的提高和完善,目前已经成为现代通信领域的关键技术。
射频技术的应用非常广泛,在无线电器材、导航系统、广告媒体等方面都有广泛的应用。
其中最为重要的莫过于无线电通信了。
我国在无线电通信方面的应用非常广泛,除了现在很多人都能接触到的无线局域网和蜂窝移动通信,还有新兴的物联网、车联网、以及无人机领域都是射频技术的重要应用。
无论是哪个行业,都必须依靠射频技术才能实现远距离通信,这也是射频技术的最大优势。
二、微波技术微波技术是指在高频(3GHz~30GHz)甚至极高频(30GHz~300GHz)范围内传输和处理无线电信号的技术。
微波技术在雷达、卫星通信、无线电和电视广播等领域得到广泛应用。
它的产生时间比较晚,大部分应用都集中在二战以后的60年代左右。
随着技术的不断发展,微波技术也得到了很大的提高和发展,被广泛应用于航空航天、国防军工、通信和广播等领域。
和射频技术相比,微波技术的传输距离更远、频率更高、传输速度更快、噪声更小,因此其实用性更为广泛。
在卫星通信和雷达领域,微波技术的应用尤其重要。
卫星通信可以实现全球通信,让人们无论在哪里都可以通过卫芯地的链接完成信息交流。
而雷达技术,则可以检测和跟踪任何物体的运动,是空军、海军等军事行业的必要设备。
射频微波常用知识
![射频微波常用知识](https://img.taocdn.com/s3/m/2b526d0be87101f69e319521.png)
由于射频/微波本身的特点, 也会带来一些局限性。 主要体现在如下几个方面: (1) 元器件成本高。 (2) 辐射损耗大。 (3) 大量使用砷化镓器件,而不是通常的硅器件。 (4) 电路中元件损耗大,输出功率小。 (5) 设计工具精度低,成熟技术少。 这些问题都是我们必须面对的,在工程中应合理设计电路,取得一个比较好 的折中方案。
射频/微波的应用
微波的应用包括作为信息载体的应用和作为微波能的应用两个方面。
7
微波的经典用途是通信和雷达系统。这是微波作为信息载体的应用。 近年来发展最为迅猛的当数个人通信系统,当然,导航、遥感、科学研究、 生物医学和微波能的应用也占有很大的市场份额。 在通信应用方面,由于微波具有频率高、频带、信息量大的特点,所以被广 泛应用于各种通信业务,包括微波多路通信、微波中继通信、散射通信、移动通 信和卫星通信。利用微波波长短的特点可作特殊用途的通信,例如从 S 到 Ku 波 段的微波适用作以地面为基地的通信;毫米波适用于空间与空间的通信;毫米波 段的 60GHz 频段的电波大气衰减较大,适于作近距离保密通信;而 90GHz 频段 的电波在大气中的衰减却很小,是个窗口频段,适于作地空和远距离通信;对于 很长距离的通信,则 L 波段更适合,因为在此波段容易获得较大的功率。 微波作为能源的应用始于 20 世纪 50 年代后期,至 60 年代末,微波能应用 随着微波炉的商品化进入家庭而得到大力发展。 微波能应用包括微波的强功率应用和弱功率应用两个方面。强功率应用是微 波加热; 弱功率应用是用于各种电量和非电量 (包括长度、 速度、 湿度、 温度等) 的测量。 微波加热可以深入物体内部,热量产生于物体内部,不依靠热传导,里外同 时加热,具有热效率高、节省能源、加热速度快、加热均匀等特点,便于自动化 连续生产。用于食品加工时,还有消毒作用,清洁卫生,既不污染食品,也不污 染环境, 而且不破坏食品的营养成份。 微波加热现在已被广泛应用于食品、 橡胶、 塑料、化学、木材加工、造纸、印刷、卷烟等工业中;在农业上,微波加热可用 于灭虫、育种、干燥谷物等。 弱功率应用的电量和非电量的测量,其显著特点是不需要和被测量物体接触, 因而使非接触式的无损测量,特别适宜于生产线测量或进行生产的自动控制。现 在应用最多的是测量湿度,即测量物质(如煤、原油等)中的含水量。 微波的生物医学应用,也属于微波能的加热应用。利用微波对生物体的热效 应,选择性局部加热,是一种有效的热疗方法,临床上可用来治疗人体的各种疾 病。微波的医学应用包括微波诊断、微波治疗、微波解冻、微波解毒和微波杀菌 等。用微波对生物体作局部照射,可提高局部组织的新陈代谢,并诱导产生一系 列的物理化学变化,从而达到解痉镇痛、抗炎脱敏、促进生长等作用,广泛用于
射频微波基础知识:基本概念和术语
![射频微波基础知识:基本概念和术语](https://img.taocdn.com/s3/m/dd05f3f10875f46527d3240c844769eae009a3ff.png)
射频微波基础知识:基本概念和术语•波器技术第一群(新5G群)全面开放十天射频微波基础知识射频基础知识1、功率/电平(dBm):放大器的输出能力,一般单位为w、mw、dBm注:dBm是取1mw作基准值,以分贝表示的绝对功率电平。
换算公式:电平(dBm)=10lgw5W → 10lg5000=37dBm10W → 10lg10000=40dBm20W → 10lg20000=43dBm从上不难看出,功率每增加一倍,电平值增加3dBm2、增益(dB):即放大倍数,单位可表示为分贝(dB)。
即:dB=10lgA(A为功率放大倍数)3、插损:当某一器件或部件接入传输电路后所增加的衰减,单位用dB表示。
4、选择性:衡量工作频带内的增益及带外辐射的抑制能力。
-3dB带宽即增益下降3dB时的带宽,-40dB、-60dB同理。
5、驻波比(回波损耗):行驻波状态时,波腹电压与波节电压之比(VSWR)附:驻波比——回波损耗对照表:SWR 1.2 1.25 1.30 1.35 1.40 1.50回波损耗(dB) 21 19 17.6 16.6 15.6 14.06、三阶交调:若存在两个正弦信号ω1和ω2 由于非线性作用将产生许多互调分量,其中的2ω1-ω2和2ω2-ω1两个频率分量称为三阶交调分量,其功率P3和信号ω1或ω2的功率之比称三阶交调系数M3。
即M3 =10lg P3/P1 (dBc)7、噪声系数:一般定义为输出信噪比与输入信噪比的比值,实际使用中化为分贝来计算。
单位用dB。
8、耦合度:耦合端口与输入端口的功率比, 单位用dB。
9、隔离度:本振或信号泄露到其他端口的功率与原有功率之比,单位dB。
10、天线增益(dB):指天线将发射功率往某一指定方向集中辐射的能力。
一般把天线的最大辐射方向上的场强E与理想各向同性天线均匀辐射场场强E0相比,以功率密度增加的倍数定义为增益。
Ga=E2/ E0211、天线方向图:是天线辐射出的电磁波在自由空间存在的范围。
微波技术常考知识点
![微波技术常考知识点](https://img.taocdn.com/s3/m/d0b7f454b80d6c85ec3a87c24028915f814d845d.png)
微波技术常考知识点一、知识概述《微波技术常考知识点》①基本定义:微波就是频率在300MHz - 300GHz之间的电磁波。
简单说吧,就像咱们手机通信或者微波炉加热用的那种电磁波,不过它的频率范围是特定的这么一段。
②重要程度:在电子信息工程之类的学科里可是相当重要的。
它是现代通信、雷达等多种技术的基础。
就好比盖房子,微波技术就是那些很关键的砖头。
如果不懂这个,好多关于无线技术的东西就理解不了。
③前置知识:你得先掌握基本的电磁学知识,像电场、磁场是咋回事,麦克斯韦方程组(虽然不用精通到能推导,但是大概原理要知道)。
还有就是简单的电路知识,毕竟微波也涉及到能量传输啥的。
④应用价值:实际应用太多了。
微波炉就是很常见的例子,微波在炉子里不断来回反射,让食物的水分子跟着它振动,就把食物加热了。
还有通信方面,像4G、5G网络很多频段都是微波频段,能把咱们手机的信息快速传出去传回来。
二、知识体系①知识图谱:微波技术在整个电子通信相关学科里像是一个枢纽。
它连接着各种无线通信、雷达探测,一边连着基础的电磁理论,一边又关联着很多复杂的系统工程。
②关联知识:和电磁场理论关联可紧密了,很多公式都是从电磁场那些理论推导来的。
还有和电路知识也有关,像微波电路就涉及到传统电路理论的一些延伸。
跟通信原理更是离不开,因为微波就是通信的一种传输载体。
③重难点分析:掌握难度就在于它concept(概念)不容易理解得透彻。
像波导(一个特殊的能让微波传输的部件),概念理解起来有点抽象。
关键点就是要弄清楚微波在各种传输部件中的特性。
④考点分析:在考试里可以说非常重要。
考查方式么,很多都是考微波的特性、传输参数,有时候还会出一些关于微波电路设计的小题目。
比如出个微波某部件的传输损耗相关题目。
三、详细讲解【理论概念类】①概念辨析:比如微波的波长这个概念。
微波波长很短,在毫米到分米这个量级。
它决定了很多微波的特性,像在小尺寸的天线里,短波长的微波就能方便地让天线实现小型化。
电路中的射频电路和微波技术
![电路中的射频电路和微波技术](https://img.taocdn.com/s3/m/9fb32564580102020740be1e650e52ea5518cee7.png)
电路中的射频电路和微波技术射频电路是电路中的一种重要部分,它在通信系统、雷达、无线电、电视等领域起着至关重要的作用。
微波技术则是射频电路中的一个重要分支,主要用于处理高频信号和微波信号。
本文将分析射频电路和微波技术的基本概念、应用领域以及未来发展趋势。
1. 射频电路的基本概念射频电路是指工作频率在几十千赫兹(kHz)到几百兆赫兹(MHz)之间的电路。
它主要用于信号的放大、调制、解调和滤波等功能。
射频电路的设计需要考虑信号的频率、幅度、相位等参数,并且需要满足一定的信号传输要求,如带宽、增益、噪声等。
2. 射频电路的应用领域射频电路广泛应用于通信系统、雷达和无线电等领域。
在通信系统中,射频电路用于信号的发射、接收和处理。
在雷达系统中,射频电路用于信号的发射和回波信号的接收。
在无线电领域,射频电路用于信号的放大和调制解调。
射频电路在这些领域中的应用,为人们的通信和无线连接提供了便利。
3. 微波技术的基本概念微波技术是一种处理高频信号和微波信号的技术。
微波信号具有特定的频率范围,通常在几百兆赫兹(MHz)到几十千兆赫兹(GHz)之间。
微波技术涉及电磁波的传输、放大、调制、解调和合成等方面的技术。
4. 微波技术的应用领域微波技术被广泛应用于通信系统、雷达系统、无线电系统以及医疗设备等领域。
在通信系统中,微波技术用于高速数据传输和无线通信。
在雷达系统中,微波技术用于检测和跟踪目标。
在无线电系统中,微波技术用于信号传输和天线设计。
微波技术的应用使得人们可以更加高效地进行信息交流和数据处理。
5. 射频电路和微波技术的未来发展趋势随着通信技术的不断发展,射频电路和微波技术也在不断创新和进步。
未来,随着5G通信技术的广泛应用,射频电路和微波技术将面临更高的要求和挑战。
人们对于更快的数据传输速度、更广阔的频谱资源利用等方面的需求将推动射频电路和微波技术的发展。
同时,新的材料、器件和设计方法的出现,也将为射频电路和微波技术的发展提供更多的可能性。
电子科技中的射频技术与微波电路设计
![电子科技中的射频技术与微波电路设计](https://img.taocdn.com/s3/m/978ce1a69a89680203d8ce2f0066f5335a816707.png)
电子科技中的射频技术与微波电路设计作为现代电子科技中的一个重要领域,射频技术与微波电路设计在许多领域中都扮演着重要的角色。
射频技术及微波电路设计涉及的广泛领域包括通信、雷达、卫星导航系统等,这些领域对于高频率射频电路的设计和制造的要求十分高。
在这篇文章中,我们将介绍射频技术与微波电路设计的基础知识、应用领域和未来发展趋势。
基础知识首先,让我们来了解一下射频技术与微波电路设计的基础知识。
所谓射频(Radio Frequency),是指高于一般电压、频率在3千赫到300吉赫之间的电磁波信号。
而微波(Microwave)则指频率高于1吉赫、波长约为1毫米至1米之间的电磁波信号。
射频技术与微波电路设计主要涉及到一些特定的电路元件和设备。
例如,射频功放器(RFPA)是射频电路中非常常用的设备,用于放大弱信号,使其达到能够被接收器处理和解码的程度。
微波电路设计中还包括一些被广泛应用的电路元件,如微带传输线、滤波器、方向耦合器(Directional Coupler)、功率分配器(Power Divider)等。
应用领域射频技术与微波电路设计的应用领域非常广泛,包括卫星通信、移动通信、雷达系统、医疗设备、无线网络等。
对于这些领域,高频率的射频技术和微波电路设计都是至关重要的,它们能够为这些设备提供稳定、高效的信号传输和处理能力。
其中,卫星通信是射频技术与微波电路设计的一个非常重要的应用领域。
卫星通信系统需要高频率、高精度的射频电路,以实现信号的传输和接收。
在这个领域中,微波电路设计和卫星通信系统的研究已经开始关注对天线和卫星通信系统中其他关键部件的研究和优化,以提高通信系统的性能和稳定性。
无线通信是另一个射频技术与微波电路设计的重要应用领域。
移动通信、蓝牙等无线通信技术中都需要高频率的射频电路和微波电路设计。
这些技术可以用于在不同设备之间传输数据、音频和视频信号。
未来发展趋势随着技术的不断进步,射频技术与微波电路设计领域也在不断发展。
第1章-射频微波工程基础介绍
![第1章-射频微波工程基础介绍](https://img.taocdn.com/s3/m/50c7dc4215791711cc7931b765ce050877327578.png)
第1章 射频/微波工程介绍 表1-1
第1章 射频/微波工程介绍
以上这些波段的划分并不是惟一的,还有其他许多 不同的划分方法,它们分别由不同的学术组织和政府机 构提出,甚至还在相同的名称代号下有不同的范围,因 此波段代号只是大致的频谱范围。其次,以上这些波段 的分界也并不严格,工作于分界线两边临近频率的系统 并没有质和量上的跃变,这些划分完全是人为的,仅是 一种助记符号。
电路,取得一个比较好的折中方案。
第1章 射频/微波工程介绍
1.3 射频/
1.3.1 由于频率、 阻抗和功率是贯穿射频/微波工程的
三大核心指标,故将其称为射频铁三角。它能够形象地 反映射频/微波工程的基本内容。这三方面既有独立特 性,又相互影响。三者的关系可以用图1-2表示。
第1章 射频/微波工程介绍
第1章 射频/微波工程介绍
1.2.2 射频/ 由上述基本特性可归纳出射频/微波与普通无线电相
比有以下优点: (1) 频带宽。可传输的信息量大。 (2) 分辨率高。连续波多普勒雷达的频偏大,成像更
清晰,反应更灵敏。 (3) 尺寸小。电路元件和天线体积小。 (4) 干扰小。不同设备相互干扰小。 (5) 速度快。数字系统的数据传输和信号处理速度
第1章 射频/微波工程介绍
(3) 导航系统: 微波着陆系统(MLS),GPS,无线信标,防撞系统, 航空、 航海自动驾驶等。 (4) 遥感: 地球监测,污染监测,森林、 农田、 鱼汛监测,矿 藏、 沙漠、 海洋、 水资源监测,风、 雪、 冰、 凌监 测,城市发展和规划等。
第1章 射频/微波工程介绍
4. 射频/微波频带比普通的中波、 短波和超短波的 频带要宽几千倍以上,这就意味着射频/微波可以携带 的信息量要比普通无线电波可能携带的信息量大的多。 因此,现代生活中的移动通信、 多路通信、 图像传输、 卫星通信等设备全都使用射频/微波作为传送手段。 射频/微波信号还可提供相位信息、 极化信息、 多普勒频移信息等。这些特性可以被广泛应用于目标 探测、 目标特征分析、 遥测遥控、 遥感等领域。
射频与微波的区别,常见的射频微波器件介绍
![射频与微波的区别,常见的射频微波器件介绍](https://img.taocdn.com/s3/m/b529e750b94ae45c3b3567ec102de2bd9605de2c.png)
波长:
射频:射频波的波长通常大于1米,这使它们在传播时能够绕过一些物体和遮挡物,适用于远距离通信。
微波:微波波段的波长通在1毫米到1米之间,波长较短,因此它们更容易受到障碍物的阻挡和大气吸收的影响,适用于较短距离的高频率通信和精密测量。
微波:微波信号在大气中容易受到吸收和散射的影响,这导致了其在大气透明窗口内的传播,但在其他频率范围内受到干扰。这也限制了微波通信的传输距离。
总的来说,射频和微波都是电磁波,它们的主要区别在于频率范围、波长、应用领域和传播特性。这些差异使它们适用于不同类型的通信和应用需求。
射频微波的器件有哪些?
射频微波技术涉及到各种不同类型的器件,这些器件用于生成、传输、接收和处理射频微波信号。以下是一些常见的射频微波器件:
射频调制器和解调器:射频调制器用于将基带信号调制到射频载波上,而射频解调器用于从射频信号中提取基带信号。
射频振荡器:射频振荡器用于产生稳定的射频信号,通常作为时钟信号或局部振荡器在接收器和发射器中使用。
射频传输线:这包括微带线、同轴电缆、波导等,用于将射频信号从一个地方传输到另一个地方。
射频集成电路(RFIC):RFIC是专门设计用于射频应用的集成电路,包括射频放大器、混频器、滤波器和其他功能。
射频天线:射频天线用于发射和接收射频信号。它们来自各种形状和类型,包括偶极天线、单极天线、方向天线、扫描天线等。
射频放大器:射频放大器用于增加射频信号的幅度。它们可以是放大器模块、晶体管放大器、功率放大器等。
射频滤波器:射频滤波器用于选择性地通过或拒绝特定频率范围内的信号。它们有带通滤波器、带阻滤波器等类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压驻波比有时也称为电压驻波系数, 简称驻波系数, 其倒数称为行波系数, 用 K 表示。
当|Γl|=0 即传输线上无反射时, 驻波比ρ=1; 而当|Γl|=1,即传输线上全反射时, 驻波比ρ→∞, 因此驻波比ρ的取
值范围为 1≤ρ<∞。可见,驻波比和反射系数一样可用来描述传输线的工作状态。
行波状态就是无反射的传输状态, 此时反射系数Γl=0, 而负载阻抗等于传输线的特性阻抗, 即 Zl=Z0, 也可称此时
上接匹配负载即可测得散射矩阵的各个参量。 对于互易网络: S12=S21 对于对称网络: S11=S22 对于无耗网络: [S]+[S]=[E]
b1 b2
S11 S21
S12 a1
S22
a2
[b] [S][a]
其中,[S]+是[S]的转置共轭矩阵,[E]为单位矩阵。
另外,工程上经常用的回波损耗和插入损耗与[S]参数的关系可表达为
[U]为电压矩阵, [I]为电流矩阵, 而[Z]是阻抗矩阵, 其中 Z11、 Z22 分别是端口“1”和“2”的自阻抗; Z12、
Z21 分别是端口“1”和“2”的互阻抗。
U1
U
2
Z11 Z 21
Z12 I1
Z
22
I
2
[Z]矩阵中的各个阻抗参数必须使用开路法测量, 故也称为开路阻抗参数, 而且由于参考面选择不同, 相应的阻抗
阻抗
对于均匀无耗传输线, R=G=0, 传输线的特性阻抗为
Z0
L C
此时, 特性阻抗 Z0 为实数, 且与频率无关。
常用的平行双导线传输线的特性阻抗有 250Ω, 400Ω和 600Ω三种。
常用的同轴线的特性阻抗有 50 Ω 和 75Ω两种。
均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗及工作频率有关, 且一
任意频率均能在此类传输线上传输。
将 Ez≠0 而 Hz=0 的波称为磁场纯横向波, 简称 TM 波, 由于只有纵向电场故又称为 E 波。
将 Ez=0 而 Hz≠0 的波称为电场纯横向波, 简称 TE 波, 此时只有纵向磁场,故又称为 H 波。
无论是 TM 波还是 TE 波,其相速 vp=vp / c rr 均比无界媒质空间中的速度要快, 故称之为快波。
在 0<z<λ /4 内, Zin=jX 相当于一个纯电感, 在λ /4<z< λ /2 内, Zin=-jX 相当于一个纯电容,从终端起每隔
λ/4 阻抗性质就变换一次, 这种特性称为λ /4 阻抗变换性。
无耗传输线上距离为λ/4 的任意两点处阻抗的乘积均等于传输线特性阻抗的平方, 这种特性称之为λ /4 阻抗变
具有相同的传输特性。
主模:在导行波中截止波长λc 最长的导行模称为该导波系统的主模, 因而也能进行单模传输
矩形波导的主模为 TE10 模
波导尺寸越大, 频率越高, 则功率容量越大。而当负载不匹配时, 由于形成驻波, 电场振幅变大, 因此功率容量会变
小
当允许传输功率不能满足要求时,可采用下述措施:
(1)在不出现高次模的条件下,适当加大波导的窄边尺寸 b;
U max
U m in
目的:希望电磁波按一定要求沿微波传输系统无辐射的传输;
天线
任务:将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波
作用:1.有效辐射或接收电磁波;2.把无线电波能量转换为导行波能量
电波传播
分析和研究电波在空间的传播方式和特点
常用传输线机构:矩形波导
长线概念:通常把 RF/MW 导线(传输线)称为长线,传统的电路理论已不适合长线!
RF/MW 系统的组成:
传输线:传输 RF/MW 信号
微波元器件:完成微波信号的产生、放大、变换等和功率的分配、控制及滤波
天线:辐射或接收电磁波
微波、天线与电波传播的关系:(简答)
微波: 对象:如何导引电磁波在微波传输系统中的有效传输
平面型传输线的基本结构有两种形式:带状线、微带线。它们均属于双导体传输线,主要传输的是 TEM 波。 一般来说衰减主要是由导体损耗及介质损耗引起的 带状线传输的主模是 TEM 模,但若尺寸选择不合理也会引起高次模 TE 模和 TM 模。 微带线所传输的波为准 TEM 波 微带线的色散特性: 色散是指电磁波的相速、特性阻抗等随频率而变的现象。当频率较低时,微带线上传播的波基本上是准 TEM 模, 故可不考虑色散。当频率较高时,微带线的特性阻抗与相速随着频率变化而变化,即具有色散特性; 频率 f↑→相速 vp↓、εe↑、特性阻抗 Z0↓ 偶模激励 对称面上磁场的切向分量为零,电力线平行于对称面, 对称面可等效为“磁壁”; 奇模激励 对称面上电场的切向分量为零, 对称面可等效为“电壁” 金属条带与地共面的优点:1.低色散宽频带特性 2.便于与其它元器件连接 3.特性阻抗调整方便 4.方便构成无源部 件及平面天线的馈电 介质波导的应用:应用在毫米波段的传输器件 介质波导的分类:开放式介质波导:圆形介质波导和介质镜像线。半开放式介质波导:H 形波导和 G 形波导 光纤折射率:
Z 参数也不同。
互易网络:如果任意网络是线性互易的,或说线性可逆矩阵
ij
Z ji ,Yij
Y ji
对称网络:
Zii Z jj ,Yii Yjj
无耗网络:即对于无耗网络,阻抗矩阵的各项的实部均等于零;即阻抗矩阵为虚数矩阵。
同理无耗网络的导纳矩阵各导纳的实部也等于零,导纳矩阵亦为虚数矩阵。
[S]矩阵的各参数是建立在端口接匹配负载基础上的反射系数或传输系数。 这样利用网络输入输出端口的参考面
共面波导 同轴线 带状线
微带线
槽线
分析方法
场分析法:麦克斯韦方程 满足边界条件的波动解 传输线上电磁场表达式 分析传输特性
等效电路法:传输线方程 满足边界条件的电压电流波动方程的解 沿线等效电压电流表达式 分析传输特性
Z0 (R jL) /(G jC) 称为传输线的特性阻抗 特性阻抗 Z0 通常是个复数, 且与工作频率有关。 它由传输线自身分布参数决定而与负载及信源无关, 故称为特性
缺点:精度不高 解决方法——多点测量
S11 m
S122
2(m
s )(0 0 s
m
)
S22
0
2m 0 s
s
线性非互易元器件:主要是指铁氧体器件,它的散射矩阵不对称,但仍工作在限行区域,主要包括隔离器、环行器
光纤芯与包层相对折射率差: n1 n2 n1
将这一角度的正弦值定义为光纤数值孔径,即:
NA sin
NA 用相对折射率差Δ来描述: NA n1(2)1/ 2
为取得较大的数值孔径,相对折射率差Δ应取大一些。 零色散工作原理:(简答) 光纤色散主要有材料色散、波导色散和模间色散三种色散效应。 材料色散和波导色散随波长的变化呈相反的变化趋势,因此总会存在着两种色散大小相等符号相反的波长区,即总 色散为 0 或很小的区域。1.55μm 零色散单模光纤即根据此原理制成。 光纤的损耗影响了传输距离,而光纤的色散影响了传输带宽和通信容量。
TM11 模是矩形波导 TM 波的最低次模, 其它均为高次模。
可见当工作波长λ小于某个模的截止波长λc 时, β2>0, 此模可在波导中传输, 称为传导模; 当工作波长λ大于
某个模的截止波长λc 时, β2<0, 此模在波导中不能传输, 称为截止模。一个模能否在波导中传输取决于波导结
构和工作频率(或波长)。对相同的 m 和 n, TEmn 和 TMmn 模具有相同的截止波长,称为简并模, 虽然场分布不同, 但
小越好)
当 Zl=Z0 时, Γl=0, 即负载终端无反射, 此时传输线上反射系数处处为零, 一般称之为负载匹配。而当 Zl≠Z0 时, 负
载端就会产生一反射波, 向信源方向传播, 若信源阻抗与传输线特性阻抗不相等时, 则它将再次被反射。
定义传输线上波腹点电压振幅与波节点电压振幅之比为电压驻波比, 用ρ表示:
射频/微波的特点: 1.频率高 2.波长短 3.大气窗口 4.分子谐振
微波频率:300MHz-3000GHz 波长:0.1mm-1m
独特的特点:RF/MW 的波长与自然界物体尺寸相比拟
在 RF/MW 波段,由于导体的趋肤效应、介质损耗效应、电磁感应等影响,期间区域不再是单纯能量的集中区,而
呈现分布特性。
[T]为双端口网络的传输矩阵。其中 T11 表示参考面 T2 接匹配负载时, 端口“1”至端口“2”的电压传输系数的 倒数, 其余三个参数没有明确的物理意义。
a1 b1
T11 T21
T12 T22
b2 a2
T
ab22Biblioteka 三点测量法令终端短路、开路和接匹配负载时, 测得的输入端反射系数分别为Γs, Γo 和Γm, 代入
式中,
kc
mπ
2
nπ
2
a b
为矩形波导 TE 波的截止波数, 显然它与波导尺寸、传输波型有关。m 和 n 分别代
表 TE 波沿 x 方向和 y 方向分布的半波个数, 一组 m、n, 对应一种 TE 波, 称作 TEmn 模; 但 m 和 n 不能同时为零, 否
则场分量全部为零。
因此, 矩形波导能够存在 TEm0 模和 TE0n 模及 TEmn(m,n≠0)模; 其中 TE10 模是最低次模, 其余称为高次模。
(2)密闭波导并充以压缩空气或惰性气体来提高介质的击穿强度;
(3)保持波导内壁清洁和干燥;
(4)提高行波系数,减少反射。
场的极化方向具有不确定性, 使导行波的场分布在φ方向存在 cosmj 和 sinmj 两种可能的分布, 它们独立存在, 相互
正交, 截止波长相同, 构成同一导行模的极化简并模。 由于圆波导具有轴对称性,对 m≠0 的任意非圆对称模式,横向电磁场可以有任意的极化方向而截波数相同,任意 极化方向的电磁波可以看成是偶对称极化波和奇对称极化波的线性组合。偶对称极化波和奇对称极化波具有相同的 场分布,故称之为极化简并。 圆形波导中,TE11 模的截止波长最长,是圆波导中的最低次模,也是主模。 TM01 模是圆波导的第一个高次模。由于它具有圆对称性故不存在极化简并模 比 TM01 模低的模式有 TE11、TM01、TE21 模,它与 TM11 模是简并模。它也是圆对称模,故无极化简并 波导的激励:电激励 磁激励 孔缝激励 微波集成电路: 优点:体积小、重量轻、低剖面、可靠性高、性能优越、一致性好、成本低; 缺点:损耗大、功率容量小、品质因数 Q 较低 各种微波集成传输系统,归纳起来可分为四大类: