小船渡河问题

合集下载

小船渡河问题

小船渡河问题

小船渡河问题1.船的实际运动是水流的运动和船相对静水的运动的合运动。

2.三种速度:船在静水中的速度v 1、水的流速v 2、船的实际速度v 。

3.三种情况(1)渡河时间最短:船头正对河岸,渡河时间最短,t min =d v 1(d 为河宽)。

(2)渡河路径最短(v 2<v 1时):合速度垂直于河岸,航程最短,x min =d 。

(3)渡河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直河岸渡河。

确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。

由图可知sin θ=v 1v 2,最短航程x min =d sin θ=v 2v 1d 。

【题型1】已知某船在静水中的速度为v 1=5 m/s ,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d =100 m ,水流速度为v 2=3 m/s ,方向与河岸平行,(1)欲使船以最短时间渡河,渡河所用时间是多少?位移的大小是多少;(2)欲使船以最小位移渡河,渡河所用时间是多少?(3)若水流速度为v 2′=6 m/s ,船在静水中的速度为v 1=5 m/s 不变,船能否垂直河岸渡河?【答案】(1)20 s 2034 m (2)25 s (3)不能【解析】(1)由题意知,当船在垂直于河岸方向上的分速度最大时,渡河所用时间最短,河水流速平行于河岸,不影响渡河时间,所以当船头垂直于河岸渡河时,所用时间最短,最短时间为t =d v 1=1005s =20 s. 如图甲所示,当船到达对岸时,船沿平行于河岸方向也发生了位移,由几何知识可得,船的位移为l =d 2+x 2,由题意可得x =v 2t =3×20 m =60 m ,代入得l =2034 m.(2)当船的实际速度方向垂直于河岸时,船的位移最小,因船在静水中的速度为v 1=5 m/s ,大于水流速度v 2=3 m/s ,故可以使船的实际速度方向垂直于河岸.如图乙所示,设船斜指向上游河对岸,且与河岸所成夹角为θ,则有v 1cos θ=v 2,cos θ=v 2v 1=0.6,则sin θ=1-cos 2 θ=0.8,船的实际速度v =v 1sin θ=5×0.8 m/s =4 m/s ,所用的时间为t =d v =1004s =25 s.(3)当水流速度v 2′=6 m/s 时,则水流速度大于船在静水中的速度v 1=5 m/s ,不论v 1方向如何,其合速度方向总是偏向下游,故不能垂直河岸渡河.【题型2】一小船在静水中的速度为3 m/s ,它在一条河宽为150 m ,水流速度为4 m/s 的河流中渡河,则该小船( )A .能到达正对岸B .渡河的时间可能少于50 sC .以最短时间渡河时,它沿水流方向的位移大小为200 mD .以最短位移渡河时,位移大小为150 m【答案】C【解析】因为小船在静水中的速度小于水流速度,所以小船不能到达正对岸,故A 错误;当船头与河岸垂直时渡河时间最短,最短时间t =d v 船=50 s ,故渡河时间不能少于50 s ,故B 错误;以最短时间渡河时,沿水流方向位移x =v 水t =200 m ,故C 正确;当v 船与实际运动方向垂直时渡河位移最短,设此时船头与河岸的夹角为θ,则cos θ=34,故渡河位移s =d cos θ=200 m ,故D 错误。

高中物理小船过河问题含答案讲解

高中物理小船过河问题含答案讲解

小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。

21.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间 ,显然,当时,即船头的指向与河岸垂直,渡河时间最θυυsin 1船ddt ==︒=90θ小为,合运动沿v 的方向进行。

vd2.位移最小若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短水船v v <呢?如图所示,设船头v 船与河岸成θ角。

合速度v 与河岸成α角。

可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据船头与河岸的夹角应为水船v v =θcos,船沿河漂下的最短距离为:水船v v arccos=θθθsin )cos (min 船船水v d v v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。

曲线运动精讲精练:3.小船渡河问题

曲线运动精讲精练:3.小船渡河问题

小船渡河问题一、小船渡河的基础知识1.小船渡河问题的速度(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).2.小船渡河的三种情景(1)过河时间最短:船头正对河岸时,渡河时间最短,t短=dv1(d为河宽).(2)过河路径最短(v2<v1时):合速度垂直于河岸时,航程最短,s短=d.船头指向上游与河岸夹角为α,cos α=v2v1 .(3)过河路径最短(v2>v1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v1v2,最短航程:s短=dcos α=v2v1d.二、小船渡河的经典例题例题1.(多选)一只小船在静水中的速度为3 m/s,它要渡过一条宽为30 m 的河,河水流速为4 m/s,则这只船()A.过河时间不可能小于10 sB.不能沿垂直于河岸方向过河C.渡过这条河所需的时间可以为6 sD.不可能渡过这条河解析:选AB.船在过河过程同时参与两个运动,一个沿河岸向下游的水流速度,一个是船自身的运动.垂直河岸方向位移即河的宽度d=30 m,而垂直河岸方向的最大分速度即船自身的速度3 m/s,所以渡河最短时间t=d3 m/s=10 s,A对、C错.只要有垂直河岸的分速度,就可以渡过这条河,D错.船实际发生的运动就是合运动,如果船垂直河岸方向过河,即合速度垂直河岸方向.一个分速度沿河岸向下,与合速度垂直,那么在速度合成的三角形中船的速度即斜边,要求船的速度大于河水的速度,而本题目中船的速度小于河水的速度,故不可能垂直河岸方向过河,B对.例题2.有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为( )A.kvk2-1B.v1-k2C.kv1-k2D.vk2-1解析:选B.设大河宽度为d,去程时t1=dv静,回程时,t2=dv2静-v2,又t1t2=k,得v静=v1-k2,B正确.例题3.小船匀速渡过一条河流,当船头垂直对岸方向航行时,在出发后10 min到达对岸下游120 m处;若船头保持与河岸成α角向上游航行,出发后12.5 min到达正对岸.求:(1)水流的速度;(2)船在静水中的速度、河的宽度以及船头与河岸间的夹角α.解析:(1)船头垂直对岸方向航行时,如图甲所示.由x=v2t1得v2=xt1=120600m/s=0.2 m/s①(2)船头保持与岸成α角航行时,如图乙所示.由(1)可得d=v1t1v2=v1cos α②。

小船渡河问题归纳总结

小船渡河问题归纳总结

小船渡河问题归纳总结小船渡河问题是物理学中的一个经典问题,它涉及到相对运动、速度、时间和距离等多个物理概念。

以下是关于小船渡河问题的归纳总结,详细介绍:一、基本概念1. 小船渡河:指的是一个船只在河流中从一岸行驶到另一岸的过程。

2. 静水速度:船只在静止的水中行驶的速度,通常记为vc。

3. 河流速度:河流的流速,通常记为vs。

4. 合速度:船只在河流中的实际速度,是静水速度和河流速度的矢量和。

5. 渡河时间:船只从一岸出发到达另一岸所需要的时间。

6. 渡河距离:船只在水面上实际行驶的距离。

二、问题分类1. 最短时间渡河:在给定河宽和船只静水速度的条件下,求船只渡河的最短时间。

2. 最短距离渡河:在给定河宽和船只静水速度的条件下,求船只渡河的最短距离。

3. 指定地点渡河:船只需要在河对岸的指定地点登陆,求船只的行驶方向和速度。

三、解题方法1. 最短时间渡河:-当静水速度大于河流速度时,船只应该以静水速度垂直于河岸行驶,这样渡河时间最短。

-当静水速度小于河流速度时,船只无法垂直于河岸行驶,此时渡河时间取决于静水速度与河流速度的比值。

-当静水速度等于河流速度时,船只可以垂直于河岸行驶,渡河时间也是最短的。

2. 最短距离渡河:-当静水速度大于河流速度时,船只应该以静水速度与河流速度的比值确定合速度的方向,使得合速度垂直于河岸,这样渡河距离最短。

-当静水速度小于河流速度时,船只无法垂直于河岸行驶,此时渡河距离取决于静水速度与河流速度的比值。

-当静水速度等于河流速度时,船只可以垂直于河岸行驶,渡河距离也是最短的。

3. 指定地点渡河:-确定船只的合速度方向,使得合速度的方向与指定地点的连线垂直。

-计算合速度的大小,使得船只能够准确到达指定地点。

四、实际应用1. 航海导航:在航海过程中,船只需要在不同的水流速度和方向下,选择合适的行驶方向和速度,以达到目的地。

2. 水上救援:在进行水上救援时,救援船只需要根据河流的流速和救援地点的位置,选择合适的行驶方向和速度,以尽快到达救援地点。

(完整版)高中物理小船渡河模型典型例题(含答案)【经典】..

(完整版)高中物理小船渡河模型典型例题(含答案)【经典】..

考点四:小船渡河模型1.(1.(小船渡河问题小船渡河问题小船渡河问题))小船在200 m 宽的河中横渡,水流速度是2 m/s 2 m/s,小船在静水中的航速是,小船在静水中的航速是4 m/s.4 m/s.求:求:求:(1)(1)要使小船渡河耗时最少,应如何航行?最短时间为多少?要使小船渡河耗时最少,应如何航行?最短时间为多少?要使小船渡河耗时最少,应如何航行?最短时间为多少?(2)(2)要使小船航程最短,应如何航行?最短航程为多少?要使小船航程最短,应如何航行?最短航程为多少?要使小船航程最短,应如何航行?最短航程为多少?答案 (1)船头正对河岸航行耗时最少,最短时间为50 s.(2)船头偏向上游,与河岸成60°角,最短航程为200 m.解析 (1)如图甲所示,船头始终正对河岸航行时耗时最少,即最短时间tmin =d v 船=2004s =50 s. (2)如图乙所示,航程最短为河宽d ,即最短航程为200 m ,应使v 合的方向垂直于河岸,故船头应偏向上游,与河岸成α角,有 cos α=v 水v 船=24=12,解得α=60°. 2、一小船渡河,河宽d =180 m 180 m,水流速度,水流速度v1v1==2.5 m/s.2.5 m/s.若船在静水中的速度为若船在静水中的速度为v2v2==5 m/s 5 m/s,求:,求:,求: (1)(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?答案 (1)船头垂直于河岸 36 s 90 5 m (2)船头向上游偏30° 24 3 s 180 m3、已知某船在静水中的速率为v1v1==4 m/s m/s,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d =100 m 100 m,河水的流动速度为,河水的流动速度为v2v2==3 m/s 3 m/s,方向与河岸平行,方向与河岸平行,方向与河岸平行..试分析:试分析:(1)(1)欲使船以最短时间渡过河去,船的航向怎样?最短时间是多少?到达对岸的位置怎样?船发生的位移欲使船以最短时间渡过河去,船的航向怎样?最短时间是多少?到达对岸的位置怎样?船发生的位移是多大?是多大?(2)(2)欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?解析 (1)根据运动的独立性和等时性,当船在垂直河岸方向上的分速度v⊥最大时,渡河所用时间最短.设船头指向上游且与上游河岸夹角为α,其合速度v 与分运动速度v1、v2的矢量关系如图所示.河水流速v2平行于河岸,不影响渡河快慢,船在垂直河岸方向上的分速度v⊥=v1sin α,则船渡河所用时间为t =d v1sin α. 显然,当sin α=1即α=90°时,v⊥最大,t 最小,此时船身垂直于河岸,船头始终垂直指向对岸,但船实际的航向斜向下游,如图所示.渡河的最短时间tmin =d v1=1004s =25 s 船的位移为l =v 21+v 22tmin =42+32×25 m=125 m 船渡过河时到达正对岸的下游A 处,其顺水漂流的位移为x =v2tmin =3×25 m=75 m.(2)由于v1>v2,故船的合速度与河岸垂直时,船的航行距离最短.设此时船速v1的方向(船头的指向)斜向上游,且与河岸成θ角,如图所示,则cos θ=v2v1=34,θ=arccos 34. 船的实际速度为v 合=v 21-v 22=42-32 m/s =7 m/s 故渡河时间:t′=d v 合=1007 s =10077 s. 答案 (1)t=25s ,x=75m ,l=125m (2)t=10077s 4、河宽60 m 60 m,水流速度,水流速度v1v1==6 m/s 6 m/s,小船在静水中的速度,小船在静水中的速度v2v2==3 m/s 3 m/s,则:,则:,则:(1)(1)它渡河的最短时间是多少?它渡河的最短时间是多少?它渡河的最短时间是多少?(2)(2)最短航程是多少?最短航程是多少?最短航程是多少?答案 (1)20 s (2)120 m5.(单选单选))一小船在静水中的速度为3 m/s 3 m/s,它在一条河宽为,它在一条河宽为150 m 150 m,水流速度为,水流速度为4 m/s 的河流中渡河,则该小船该小船( ( ). 答案答案 CA .能到达正对岸.能到达正对岸B B B.渡河的时间可能少于.渡河的时间可能少于50 s甲 乙 AC .以最短时间渡河时,它沿水流方向的位移大小为200 mD 200 m D.以最短位移渡河时,位移大小为.以最短位移渡河时,位移大小为150 m6. 6.一只小船在静水中的速度为一只小船在静水中的速度为5 m/s 5 m/s,它要渡过一条宽为,它要渡过一条宽为50 m 的河,河水流速为4 m/s 4 m/s,则,则,则( ( ) ) 答案答案 CA.A.这只船过河位移不可能为这只船过河位移不可能为50 mB.B.这只船过河时间不可能为这只船过河时间不可能为10 sC.C.若河水流速改变,船过河的最短时间一定不变若河水流速改变,船过河的最短时间一定不变若河水流速改变,船过河的最短时间一定不变D.D.若河水流速改变,船过河的最短位移一定不变若河水流速改变,船过河的最短位移一定不变若河水流速改变,船过河的最短位移一定不变7.(7.(运动的合成和分解运动的合成和分解运动的合成和分解))某河宽为600 m 600 m,河中某点的水流速度,河中某点的水流速度v 与该点到较近河岸的距离d 的关系如图所示.船在静水中的速度为4 m/s 4 m/s,要想使船渡河的时间最短,下列说法正确的是,要想使船渡河的时间最短,下列说法正确的是,要想使船渡河的时间最短,下列说法正确的是( ( ) ) 答案答案 ADA.A.船在航行过程中,船头应与河岸垂直船在航行过程中,船头应与河岸垂直船在航行过程中,船头应与河岸垂直B.B.船在河水中航行的轨迹是一条直线船在河水中航行的轨迹是一条直线船在河水中航行的轨迹是一条直线C.C.渡河的最短时间为渡河的最短时间为240 sD.D.船离开河岸船离开河岸400 m 时的速度大小为2 5 m/s8. ( (多选多选多选))小船横渡一条两岸平行的河流,船本身提供的速度小船横渡一条两岸平行的河流,船本身提供的速度((即静水速度即静水速度))大小不变、船身方向垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则( ( ) ) 答案答案 ACA .越接近河岸水流速度越小.越接近河岸水流速度越小B .越接近河岸水流速度越大.越接近河岸水流速度越大C .无论水流速度是否变化,这种渡河方式耗时最短.无论水流速度是否变化,这种渡河方式耗时最短D .该船渡河的时间会受水流速度变化的影响.该船渡河的时间会受水流速度变化的影响 9. ( (单选单选单选))有一条两岸平直、河水均匀流动、流速恒为v 的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k ,船在静水中的速度大小相同,则小船在静水中的速度大小为同,则小船在静水中的速度大小为( ( ) ) 答案答案 BA.kv k2k2--1B.v 1-k2C.kv 1-k2D.v k2k2--1解析 设大河宽度为d ,小船在静水中的速度为v0,则去程渡河所用时间t1=d v0,回程渡河所用时间t2=d v 20-v2.由题知t1t2=k ,联立以上各式得v0=v1-k2,选项B 正确,选项A 、C 、D 错误. 10. 10. (单选)如图所示,甲、乙两船在同一条河流边同时开始渡河,河宽为(单选)如图所示,甲、乙两船在同一条河流边同时开始渡河,河宽为H ,河水流速为u ,划船速度为v ,出发时两船相距H 332,甲、乙船头均与岸边成o 60角,且乙船恰好能直达对岸的A 点,则下列判断正确的是点,则下列判断正确的是(( D )A .甲、乙两船到达对岸的时间不同.甲、乙两船到达对岸的时间不同B .两船可能在未到达对岸前相遇.两船可能在未到达对岸前相遇C .甲船在A 点右侧靠岸点右侧靠岸D .甲船也在A 点靠岸点靠岸11.11.如图所示,一艘轮船正在以如图所示,一艘轮船正在以4 m/s 的速度沿垂直于河岸方向匀速渡河,河中各处水流速度都相同,其大小为v1v1==3 m/s 3 m/s,行驶中,轮船发动机的牵引力与船头朝向的方向相同.某时刻发动机突然熄火,轮船,行驶中,轮船发动机的牵引力与船头朝向的方向相同.某时刻发动机突然熄火,轮船牵引力随之消失,轮船相对于水的速度逐渐减小,但船头方向始终未发生变化.求:牵引力随之消失,轮船相对于水的速度逐渐减小,但船头方向始终未发生变化.求:(1)(1)发动机未熄火时,轮船相对于静水行驶的速度大小;发动机未熄火时,轮船相对于静水行驶的速度大小;发动机未熄火时,轮船相对于静水行驶的速度大小;(2)(2)发动机熄火后,轮船相对于河岸速度的最小值.发动机熄火后,轮船相对于河岸速度的最小值.发动机熄火后,轮船相对于河岸速度的最小值.答案 (1)5 m/s (2)2.4 m/s解析 (1)发动机未熄火时,轮船运动速度v 与水流速度v1方向垂直,如图所示,故此时船相对于静水的速度v2的大小:v2=v2+v 21=42+32 m/s =5 m/s ,设v 与v2的夹角为θ,则cos θ=v v2=0.8.(2)熄火前,船的牵引力沿v2的方向,水的阻力与v2的方向相反,熄火后,牵引力消失,在阻力作用下,v2逐渐减小,但其方向不变,当v2与v1的矢量和与v2垂直时,轮船的合速度最小,则vmin =v1cos θ=3×0.8 m/s =2.4 m/s.12.12.如图所示,河宽如图所示,河宽d =120 m 120 m,设小船在静水中的速度为,设小船在静水中的速度为v1v1,河水的流速为,河水的流速为v2.v2.小船从小船从A 点出发,在渡河时,船身保持平行移动若出发时船头指向河对岸上游的B 点,经过10 min 10 min,小船恰好到达河正对岸的,小船恰好到达河正对岸的C 点;若出发时船头指向河正对岸的C 点,经过8 min 8 min,小船到达,小船到达C 点下游的D 点.求:求:(1)(1)小船在静水中的速度小船在静水中的速度v1的大小;的大小;(2)(2)河水的流速河水的流速v2的大小;的大小;(3)(3)在第二次渡河中小船被冲向下游的距离在第二次渡河中小船被冲向下游的距离sCD.答案 (1)0.25 m/s (2)0.15 m/s (3)72 m解析 (1)小船从A 点出发,若船头指向河正对岸的C 点,则此时v1方向的位移为d ,故有v1=d tmin =12060×8m/s =0.25 m/s. (2)设AB 与河岸上游成α角,由题意可知,此时恰好到达河正对岸的C 点,故v1沿河岸方向的分速度大小恰好等于河水的流速v2的大小,即v2=v1cos α,此时渡河时间为t =d v1sin α,所以sin α=d v1t=0.8,故v2=v1cos α=0.15 m/s. (3)在第二次渡河中小船被冲向下游的距离为sCD =v2tmin =72 m.。

《小船渡河与关联速度问题》解题技巧

《小船渡河与关联速度问题》解题技巧

《小船渡河与关联速度问题》解题技巧一、小船渡河问题1.运动分析小船渡河时,同时参与了两个分运动:一个是船相对水的运动(即船在静水中的运动),一个是船随水漂流的运动.2.两类常见问题(1)渡河时间问题①渡河时间t取决于河岸的宽度d及船沿垂直河岸方向上的速度大小,即t=dv⊥.②若要渡河时间最短,只要使船头垂直于河岸航行即可,如图1所示,此时t=dv船.图1(2)最短位移问题①若v水<v船,最短的位移为河宽d,船头与上游河岸夹角满足v船cos θ=v 水,如图2甲所示.图2②若v水>v船,如图乙所示,从出发点A开始作矢量v水,再以v水末端为圆心,以v船的大小为半径画圆弧,自出发点A向圆弧作切线即为船位移最小时的合运动的方向.这时船头与河岸夹角θ满足cos θ=v船v水,最短位移x短=dcos θ.(多选)如图3所示为长江一段平行江道,一轮船的船头始终垂直指向江岸方向,轮船在静水中运动的速度保持不变,水匀速流动(假设整个江道水流速度相同),下列说法正确的是( )图3A.水流速度越大,轮船行驶位移越大B.水流速度增大,轮船行驶位移不变C.水流速度越大,过江时间越短D.水流速度增大,过江时间不变答案AD解析因为船垂直于江岸方向的速度不变,而水流方向是垂直于这个方向的,在这个方向上没有分速度,设江道宽为d,船垂直于江岸的速度为v,t=d v ,所以不论水速多大,船过江时间不变,故C错误,D正确.若水速越大,相同时间内沿水速方向的位移就越大,船在水中运动的总位移也就越大,故B错误,A 正确.已知某船在静水中的速度为v1=5 m/s,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d=100 m,水流速度为v2=3 m/s,方向与河岸平行,(1)欲使船以最短时间渡河,渡河所用时间是多少?位移的大小是多少;(2)欲使船以最小位移渡河,渡河所用时间是多少?(3)若水流速度为v2′=6 m/s,船在静水中的速度为v1=5 m/s不变,船能否垂直河岸渡河?答案(1)20 s 2034 m (2)25 s (3)不能解析(1)由题意知,当船在垂直于河岸方向上的分速度最大时,渡河所用时间最短,河水流速平行于河岸,不影响渡河时间,所以当船头垂直于河岸渡河时,所用时间最短,最短时间为t=dv1=1005s=20 s.如图甲所示,当船到达对岸时,船沿平行于河岸方向也发生了位移,由几何知识可得,船的位移为l=d2+x2,由题意可得x=v2t=3×20 m=60 m,代入得l=2034 m.(2)当船的实际速度方向垂直于河岸时,船的位移最小,因船在静水中的速度为v1=5 m/s,大于水流速度v2=3 m/s,故可以使船的实际速度方向垂直于河岸.如图乙所示,设船斜指向上游河对岸,且与河岸所成夹角为θ,则有v1cos θ=v2,cos θ=v2v1=0.6,则sin θ=1-cos2θ=0.8,船的实际速度v=v1sinθ=5×0.8 m/s=4 m/s,所用的时间为t=dv=1004s=25 s.(3)当水流速度v2′=6 m/s时,则水流速度大于船在静水中的速度v1=5 m/s,不论v1方向如何,其合速度方向总是偏向下游,故不能垂直河岸渡河.1.要使船垂直于河岸横渡,即路程最短,应使v船在水流方向的分速度和水流速度等大、反向,这种情况只适用于v船>v水时.2.要使船渡河时间最短,船头应垂直指向河对岸,即v船与水流方向垂直.3.要区别船速v船及船的合运动速度v合,前者是发动机(或划行)产生的分速度,后者是合速度.针对训练1 一艘船的船头始终正对河岸方向行驶,如图4所示.已知船在静水中行驶的速度为v1,水流速度为v2,河宽为d.则下列判断正确的是( )图4A.船渡河时间为d v 2B.船渡河时间为dv21+v22C.船渡河过程被冲到下游的距离为v2v1·dD.船渡河过程被冲到下游的距离为v2v21+v22·d答案 C解析小船正对河岸运动,渡河时间最短,t=dv1,沿河岸运动的位移s2=v 2t=v2v1·d,故A、B、D错误,C正确.二、关联速度问题关联速度分解问题是指物体拉绳(杆)或绳(杆)拉物体的问题(下面为了方便,统一说“绳”):(1)物体的实际速度一定是合速度,分解时两个分速度方向应取沿绳方向和垂直绳方向.(2)由于绳不可伸长,一根绳两端物体沿绳方向的速度分量大小相等.(3)常见的速度分解模型(如图5)图5(多选)如图6所示,人在岸上用跨过定滑轮的绳子拉船,已知船的质量为m,水的阻力恒为F f,当轻绳与水面的夹角为θ时,船的速度为v,人的拉力大小为F ,则此时( )图6A.人拉绳行走的速度大小为v cos θB.人拉绳行走的速度大小为v cos θC.船的加速度大小为F cos θ-F fm D.船的加速度大小为F -F fm答案 AC解析 船的运动产生了两个效果:一是使滑轮与船间的绳缩短,二是使滑轮与船间的绳偏转,因此将船的速度按如图所示(沿绳方向与垂直于绳方向)方式进行分解,人拉绳行走的速度大小v 人=v ∥=v cos θ,选项A 正确,B 错误;绳对船的拉力大小等于人拉绳的力的大小,即绳的拉力大小为F ,与水平方向成θ角,因此F cos θ-F f =ma ,解得a =F cos θ-F fm,选项C 正确,D 错误.针对训练2 如图7所示,物体A 套在竖直杆上,经细绳通过定滑轮拉动物体B 在水平面上运动,开始时A 、B 间的细绳呈水平状态,现由计算机控制物体A 的运动,使其恰好以速度v 沿杆匀速下滑(B 始终未与滑轮相碰),则( )图7A.绳与杆的夹角为α时,B的速率为v sin αB.绳与杆的夹角为α时,B的速率为v cos αC.物体B也做匀速直线运动D.物体B做匀加速直线运动答案 B解析如图所示,将A物体的速度按图示两个方向分解,绳子速率v绳=v∥=v cos α;而绳子速率等于物体B的速率,则物体B的速率v B=v绳=v cos α,故A错误,B正确;因物体A向下运动的过程中α减小,则cos α增大,v B增大,B物体加速运动,但不是匀加速运动,故C、D错误.【课堂同步练习】1.(小船渡河模型)(多选)下列图中实线为河岸,河水的流动方向如图中v的箭头所示,虚线为小船从河岸M驶向对岸N的实际航线.则其中可能正确的是( )答案AB解析小船渡河的运动可看成水流的运动和小船运动的合运动.虚线为小船从河岸M驶向对岸N的实际航线,即合速度的方向,小船合运动的速度方向就是其实际运动的方向,分析可知,实际航线可能正确的是A、B.2.(小船渡河模型)(多选)河水的流速与某河岸的距离的变化关系如图8甲所示,船在静水中的速度与时间的关系如图乙所示.若要使船以最短时间渡河,下列说法正确的是( )图8A.船渡河的最短时间为100 sB.船在行驶过程中,船头始终与河岸垂直C.船在河中航行的轨迹是一条直线D.船在河水中的最大速度为7 m/s答案AB解析由运动的独立性可知,垂直河岸方向速度越大,渡河时间越短,即船头始终与河岸垂直,航行时所用时间最短,t min=dv船=100 s,选项A、B正确;由题图甲可知,水流速度在变化,船的合速度大小及方向均会随位置发生变化,因此轨迹不是直线,选项C错误;船在静水中的速度与水流速度方向垂直,水流速度最大值为4 m/s,则船在河水中的最大速度为5 m/s,选项D错误.3.(关联速度模型)(多选)如图9所示,一人以恒定速度v0通过光滑轻质定滑轮竖直向下拉绳使小车在水平面上运动,当运动到绳与水平方向成45°角时( )图9A.小车运动的速度为1 2 vB.小车运动的速度为2v0C.小车在水平面上做加速运动D.小车在水平面上做减速运动答案BC解析将小车速度沿绳方向与垂直绳方向进行分解,如图所示人拉绳的速度与小车沿绳方向的分速度大小是相等的,根据三角函数关系v cos 45°=v0,则v=vcos 45°=2v0,B正确,A错误;随着小车向左运动,绳与水平方向的夹角越来越大,设夹角为α,由v=vcos α知,v越来越大,则小车在水平面上做加速运动,C正确,D错误.4.(关联速度模型)如图10所示,有人在河面上方20 m的岸上用跨过定滑轮的长绳拴住一条小船,开始时绳与水面的夹角为30°.人以恒定的速率v=3 m/s 拉绳,使小船靠岸,那么( )图10A.5 s时绳与水面的夹角为60°B.5 s时小船前进了15 mC.5 s时小船的速率为5 m/sD.5 s时小船到岸边距离为10 m答案 C解析 5 s 内人前进的距离s =vt =3×5 m=15 m ,滑轮至船的距离l ′=hsin 30°-15 m =25 m ,设5 s 时拉船的绳与水平方向夹角为θ,则sin θ=2025=45,由此可知,θ=53°,cos θ=v v 船,故v 船=5 m/s ,小船到岸边的距离s ′=20tan 37° m=15 m ,则5 s 时小船前进的距离为s 1=h tan 30°-s ′=(203-15) m ,故A 、B 、D 错误,C 正确.【课后强化训练】 一、选择题题型一 小船渡河模型1.小船船头指向对岸,以相对于静水的恒定速率向对岸划去,当水流匀速时,它渡河的时间、发生的位移与水速的关系是( )A.水速小时,位移小,时间也短B.水速大时,位移大,时间也长C.水速大时,位移大,但时间不变D.位移、时间大小与水速大小无关 答案 C解析 小船渡河时参与了顺水漂流和垂直河岸横渡两个分运动,由运动的独立性和等时性知,小船的渡河时间决定于垂直河岸的分运动,等于河的宽度与垂直河岸的分速度之比,由于船以一定速率垂直河岸向对岸划去,故渡河时间一定.水速大,水流方向的分位移就大,合位移也就大,反之则合位移小.2.(多选)在河道宽度为d 的河中,水流速度为v 2,船在静水中速度为v 1(且v 1>v 2),方向可以选择,现让该船开始渡河,则该船( )A.可能的最短渡河时间为dv 2B.可能的最短渡河位移为dC.只有当船头垂直河岸渡河时,渡河时间才和水流速度无关D.不管船头与河岸夹角是多少,渡河时间和水流速度均无关答案BD解析当船头与河岸垂直时,渡河时间最短,为dv1,故A错误;当合速度与河岸垂直时,渡河位移最小为d,故B正确;将船的实际运动沿垂直水流方向和水流方向分解,由于各个分运动互不影响,因而渡河时间等于沿船头方向的分运动时间,为t=x1v1(x1为沿船头指向的分位移),显然与水流速度无关,故C错误,D正确.3.在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v1,摩托艇在静水中的航速为v2,战士救人的地点A离岸边最近处O的距离为d,若战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O点的距离为( )A.dv2v22-v21B.0C.dv1v2D.dv2v1答案 C解析摩托艇登陆的最短时间t=dv2,登陆点到O点的距离s=v1t=dv1v2,故选C.4.一只小船在静水中的速度为v1=5 m/s,它要渡过一条宽为d=50 m的河,河水流速为v2=4 m/s,则( )A.这只船过河位移不可能为50 mB.这只船过河时间不可能为10 sC.若河水流速改变,船过河的最短时间一定不变D.若河水流速改变,船过河的最短位移一定不变答案 C解析当船头垂直指向河岸航行时,渡河时间最短,t min=dv1=505s=10 s,B错误;由于船在静水中的速度大于河水流速,船的实际航向可以垂直河岸,即过河最短位移为s=d=50 m,A错误;根据运动的独立性,渡河最短时间为10 s,与水速无关,C正确;若河水流速大于船在静水中的速度,则船过河最短位移大小大于河宽,D错误.5.某人划小船横渡一条两岸平行的河流,船在静水中的速度大小不变,船头方向始终垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图1所示,则( )图1A.各处水流速度大小都一样B.离两岸越近水流速度越小C.离两岸越近水流速度越大D.无论水流速度是否变化,这种渡河方式耗时最长答案 B解析从轨迹曲线的弯曲形状上可以知道,小船先具有指向下游的加速度,后具有指向上游的加速度,故加速度是变化的,水流是先加速后减速,即越接近河岸水流速度越小,故A、C错误,B正确;根据运动的独立性,船身方向垂直于河岸,这种渡河方式耗时最短,故D错误.6.(多选)如图2,河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各点到较近河岸的距离为x,v水与x的关系为v水=3400x(m/s),让小船船头垂直河岸由南向北渡河,小船在静水中的速度大小恒为v船=4 m/s,下列说法正确的是( )图2A.小船渡河的轨迹为直线B.小船在河水中的最大速度是5 m/sC.小船渡河的时间是200 sD.小船在距南岸200 m处的速度小于距北岸200 m处的速度答案BC解析小船在垂直河岸方向上做匀速直线运动,在沿河岸方向上做变速运动,合加速度的方向与合速度方向不在同一条直线上,做曲线运动,选项A错误;当小船行驶到河中央时水流速度最大,v水=3400×400 m/s=3 m/s,那么小船在河水中的最大速度v max=32+42 m/s=5 m/s,选项B正确;小船船头垂直河岸由南向北渡河,那么小船渡河的时间是t=dv船=8004s=200 s,选项C正确;在距南岸200 m处的河水速度大小与距北岸200 m处的河水速度大小相等,根据矢量的合成法则,则两种情况下小船的合速度大小相等,选项D错误.7.如图3所示为一条河流,河水流速为v,一只船从A点先后两次渡河到对岸,船在静水中行驶的速度为v静,第一次船头向着AB方向行驶,渡河时间为t1,船的位移为s1;第二次船头向着AC方向行驶,渡河时间为t2,船的位移为s2,若AB、AC与河岸垂线方向的夹角相等,则( )图3A.t1>t2,s1<s2B.t1<t2,s1>s2C.t1=t2,s1<s2D.t1=t2,s1>s2答案 D解析因为AB、AC与河岸的垂线方向的夹角相等,则在垂直于河岸方向上的分速度相等,渡河时间t=du⊥,所以两次渡河时间相等.设AB、AC与河岸夹角为θ,船头向着AB方向时,沿河岸方向的分速度v1=v静cos θ+v,船头向着AC方向行驶时,沿河岸方向的分速度v2=|v-v静cos θ|<v1,水平方向上的位移x1>x2,根据平行四边形定则,s1>s2,故D正确,A、B、C错误.8.如图4所示,一条小船位于200 m宽的河中央A点处,离A点距离为100 3 m的下游处有一危险的急流区,当时水流速度为4 m/s,为使小船避开危险区沿直线到达对岸,小船在静止水中的速度至少为( )图4A.433m/s B.833m/sC.2 m/sD.4 m/s答案 C解析小船刚好避开危险区域时,小船合运动方向与水流方向的夹角设为θ,则tan θ=1001003=33,则θ=30°,当船头垂直合运动方向渡河时,小船在静水中的速度最小,在静水中的最小速度v min=v水sin 30°=2 m/s,C正确.题型二关联速度模型9.人用绳子通过光滑轻质定滑轮拉物体A,A穿在光滑的竖直杆上,当以速度v0匀速地拉绳使物体A到达如图5所示位置时,绳与竖直杆的夹角为θ,则物体A实际运动的速度大小是( )图5A.v0sin θB.vsin θC.v0cos θD.vcos θ答案 D解析由运动的合成与分解可知,物体A参与两个分运动:一个是沿着与它相连接的绳子的运动,另一个是垂直于绳子斜向上的运动.而物体A的实际运动轨迹是沿着竖直杆向上的,这一轨迹所对应的运动就是物体A的合运动,它们之间的关系如图所示.由几何关系可得v=vcos θ,所以D正确.10.如图6所示,某人用绳通过定滑轮拉小船,设人匀速拉绳的速度为v0,小船水平向左运动,绳某时刻与水平方向夹角为α,则小船的运动性质及此时刻小船的速度v x为( )图6A.小船做变加速运动,v x=v0 cos αB.小船做变加速运动,v x=v0cos αC.小船做匀速直线运动,v x=v 0cos αD.小船做匀速直线运动,v x=v0cos α答案 A11.如图7所示,汽车用跨过定滑轮的轻绳提升物块.汽车匀速向右运动,在物块到达滑轮之前,下列说法正确的是( )图7A.物块将竖直向上做匀速运动B.物块将处于超重状态C.物块将处于失重状态D.物块将竖直向上先加速后减速答案 B解析设汽车向右运动的速度为v,绳子与水平方向的夹角为α,物块上升的速度为v′,则v cos α=v′,汽车匀速向右运动,α减小,v′增大,物块加速上升,A、D错误;物块的加速度向上,处于超重状态,B正确,C错误.12.如图8所示,人用轻绳通过定滑轮拉穿在光滑竖直杆上的物块A,人以速度v0向左匀速拉绳,某一时刻,绳与竖直杆的夹角为θ,与水平面的夹角为α,此时物块A的速度v1为( )图8A.v1=v0sin αcos θB.v1=vsin αsin θC.v1=v0cos αcos θD.v1=vcos αcos θ答案 D解析人和A沿绳方向的分速度相等可得v0cos α=v1cos θ所以v1=vcos αcos θ.13.如图9所示,一根长直轻杆AB在墙角沿竖直墙和水平地面滑动.当AB 杆和墙的夹角为θ时,杆的A端沿墙下滑的速度大小为v1,B端沿地面滑动的速度大小为v2,则v1、v2的关系是( )图9A.v1=v2B.v1=v2cos θC.v1=v2tan θD.v1=v2sin θ答案 C解析将A端的速度沿杆方向和垂直于杆的方向分解,沿杆方向的分速度为v1∥=v1cos θ,将B端的速度沿杆方向和垂直于杆方向分解,沿杆方向的分速度v2∥=v2sin θ.由于v1∥=v2∥.所以v1=v2tan θ,故C正确,A、B、D错误.二、非选择题14.如图10所示,河宽d=120 m,设小船在静水中的速度为v1,河水的流速为v2.小船从A点出发,若船头指向河对岸上游的B点,经过10 min,小船恰好到达河正对岸的C点;若船头指向河正对岸的C点,经过8 min,小船到达C 点下游的D点.求:图10(1)小船在静水中的速度v1的大小;(2)河水的流速v2的大小;(3)在第二次渡河中小船被冲向下游的距离s CD.答案(1)0.25 m/s (2)0.15 m/s (3)72 m解析(1)小船从A点出发,若船头指向河正对岸的C点,则此时v1方向的位移为d,故有v1=dtmin=12060×8m/s=0.25 m/s.(2)设AB与河岸上游成α角,由题意可知,此时恰好到达河正对岸的C点,故v1沿河岸方向的分速度大小恰好等于河水的流速v2的大小,即v2=v1cos α,此时渡河时间为t=dv1sin α,所以sin α=dv1t=0.8,故v2=v1cos α=0.15 m/s.(3)在第二次渡河中小船被冲向下游的距离为s CD=v2t min=72 m.15.一辆车通过一根跨过光滑轻质定滑轮的轻绳提升一个质量为m的重物,开始车在滑轮的正下方,绳子的端点离滑轮的距离是H.车由静止开始向左做匀加速直线运动,经过时间t绳子与水平方向的夹角为θ,如图11所示.试求:图11(1)车向左运动的加速度的大小;(2)重物m在t时刻速度的大小.答案(1)2Ht2tan θ(2)2H cos θt tan θ解析(1)车在时间t内向左运动的位移:x=Htan θ,由车做匀加速直线运动,得:x=12at2,解得:a=2xt2=2Ht2tan θ.(2)t时刻车的速度:v车=at=2Ht tan θ,由运动的分解知识可知,车的速度v车沿绳的分速度大小与重物m的速度大小相等,即:v物=v车cos θ,解得:v物=2H cos θt tan θ.。

高中物理小船过河问题含答案讲解

高中物理小船过河问题含答案讲解

小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。

1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间sin1船d dt,显然,当90时,即船头的指向与河岸垂直,渡河时间最小为vd ,合运动沿v 的方向进行。

2.位移最小若水船结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水cos若水船v v ,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。

合速度v 与河岸成α角。

可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v与圆相切时,α角最大,根据水船v v cos船头与河岸的夹角应为v水θv αABEv船v 水v船θvV水v 船θv 2v 1水船v v arccos,船沿河漂下的最短距离为:sin)cos (min 船船水v dv v x 此时渡河的最短位移:船水v dv d scos【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间ss dt2030602(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v方向越接近垂直河岸方向,航程越短。

(完整版)小船渡河问题练习题大全

(完整版)小船渡河问题练习题大全

小船过河问题I1河宽d = 60m,水流速度v i = 6m/ s,小船在静水中的速度V2=3m / s,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?2在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v i,摩托艇在静水中的航速为V2,战士救人的地点A离岸边最近处0的距离为d,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离0点的距离为(C )C.速,则船速与水速之比为()3某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T i;若此船用最短的位移过河,则需时间为T2,若船速大于水(B) T2(C)T iJ2T22(D)T iT4小河宽为d,河水中各点水流速度大小与各点到较近河岸边的距离成正比,4v nV水kx, k —0, X是各点到近岸的距离,小船船头d垂直河岸渡河,小船划水速度为v0,则下列说法中正确的是()A、小船渡河的轨迹为曲线C、小船渡河时的轨迹为直线B、小船到达离河岸-处,船渡河的速度为• 2v02D、小船到达离河岸3d/4处,船的渡河速度为.1^05.如图1所示,人用绳子通过定滑轮以不变的速度v0拉水平面上的物体A ,当绳与水平方向成B角时,物体A的速度6如图3所示,某人通过一根跨过定滑轮的轻绳提升一个质量为m的重物,开始时人在滑轮的正下方,绳下端A点离滑轮的距离为H。

人由静止拉着绳向右移动,当绳下端到B点位置时,人的速度为v , 与水平面夹角为B。

问在这个过程中,人对重物做了多少功?7. 一条宽度为L的河,水流速度为v水,已知船在静水中速度为v船,那么:(1)怎样渡河时间最短?(2)若v船v水,怎样渡河位移最小? 3)若v船v水,怎样渡河船漂下的距离最短?绳8河宽60m,小船在静水中的速度为4m/s,水流速度为3m/s。

求小船渡河的最小时间是多少,小船实际渡河的位移为多大?若小船在静水中的速度为5m/s,水流速度为3m/s。

小船渡河练习题及答案

小船渡河练习题及答案

小船渡河练习题及答案在生活中,我们常常遇到许多需要解决问题的情况,而解决问题的能力和智慧正是我们成长的基石。

小船渡河练习题作为一种常见的逻辑思维训练题,可以帮助我们锻炼思维的灵活性和解决问题的能力。

下面将为大家介绍一些关于小船渡河的练习题以及相应的答案。

题目一:小船渡河问题有一对夫妇和两个小孩需要渡河,河边只有一条只能承载两人的小船。

夫妇需要船带回来,而且小孩之间不能独自在河边,夫妇之间也不能独自在河边。

请考虑一种渡河方案,使得所有人都成功渡河。

解答:首先,夫妻一起渡河,然后丈夫返回,而妻子和其中一个小孩留在对岸。

随后,丈夫从河对岸返回,然后带着另一个小孩一起渡河。

接下来,丈夫留在对岸,而妻子返回河边。

最后,妻子和其中一个小孩一起渡河,完成所有人的渡河任务。

题目二:加入限制条件在之前的小船渡河问题的基础上,加入以下限制条件:1. 大家都需要戴口罩。

2. 大家每次渡河都需要保持安全距离(至少1米)。

解答:在考虑口罩和安全距离的情况下,解决方案如下:夫妻和一个小孩一起上船,丈夫带着这个小孩一起返回。

然后,妻子和另一个小孩一起上船,妻子将第一个小孩送回对岸后返回。

最后,夫妻一起上船,丈夫将妻子送回对岸后返回。

在整个过程中,每个人都要佩戴口罩,并在上下船和接触时保持安全距离,以确保安全。

题目三:时间限制在之前的小船渡河问题中,加入以下时间限制条件:1. 整个渡河过程需要在10分钟内完成。

2. 每次通行船程不能超过5分钟。

解答:这个问题需要考虑每次船行的时间。

解决方案如下:夫妻和一个小孩一起上船,丈夫带着这个小孩一起返回(用时5分钟)。

然后,妻子和另一个小孩一起上船,妻子将第一个小孩送回对岸后返回(用时5分钟)。

最后,夫妻一起上船,丈夫将妻子送回对岸后返回(用时5分钟)。

通过按照这个方案行动,整个渡河任务可以在10分钟内完成。

通过以上的小船渡河练习题,我们可以锻炼自己的逻辑思维和问题解决能力。

无论是在日常生活中还是工作中,这种能力都是非常重要的。

高中物理:题型一:小船渡河问题

高中物理:题型一:小船渡河问题
题型一:小船渡河问题
小船渡河问题的分析:
(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船在静水中的速度v1,水流速度v2,船的实际速度v.
(3)三种情形

①过河时间最短:船头正对河岸时,过河时间最短,短 =1
(d为河宽)。
②过河路径最短
a. v2<v1时,合速度垂直于河岸,航程最短,短 =d,船头指向上游,与河岸夹
的角度。
D.小船不可能垂直河岸到达对岸。
答案:BD
2.河宽为d,水流速度为v1,小汽艇在静水中航行速度为v2,且v1<v2,如果小
汽艇航向与河岸成夹角,斜向上游,求:
B
A
C
(1)它过河需要多少时间?
(2)到达对岸的位置?
(3)如果它以最短时间渡河,航向应如何?
(4)如果它要直达正对岸,航向又应怎样?
角为a,cosa=2

1
b. v2>v1,合速度不可能垂直于河岸,无法垂直渡河。确定方法如下
如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的
始端向圆弧作切线,则合速度沿此切线方向航程最短。


v1 d v1
a
2
1

由图可知:cosa=1
,最短航程:
航行方向是实际运动方向,也就是合速度方向。
(2)小船过河最短时间与水流速度无关。
典例
1.小船渡河,河宽90米,船在静水中的速度是3m/s,水流速度是4m/s,那么

)(多选)
A.小船渡河最短时间为18s.
B.小船渡河最短时间为30s.
C.要使小船能垂直河岸以最短路程到达对岸,船头要偏向上游与河岸夹一定

15-小船渡河问题

15-小船渡河问题

15-小船渡河问题D则的前提下,处理合运动和分运动关系时要灵活采用合适的方法,或用作图法,或用【解析】法,依情况而定。

可以借鉴力的合成和分解的知识,具体问题具体分析。

3. 小船过河:三种过河情况(1)过河时间最短:小船沿着上述不同的方向运动,走到对岸的时间是不相等的,由于运动的等时性知,在垂直于河岸上的速度越大则过河时间越短,所以此时应该调整小船沿着d 的方向运动,则求得最短时间为船v d t=m in(2)过河路径最短:第一种情况:当船速大于水速时从上图可以看出,当我们适当调整船头的方向,使得船在水流方向上的分速度等于水速,即21cos v v =θ此时水流方向上小船是不动的,小船的合速度即为V 向对岸运动,此时小船的最短位移为S d =第二种情况:船速小于水速,那么在水流方向上,船的分速度12cos v v θ<此时无论我们怎么调整船头的方向都没有办法保证水流方向的合速度为零,所以小船一定要向下游漂移,如图当合速度的方向与船相对水的速度的方向垂直时,合速度的方向与河岸的夹角最短,渡河航程最小;根据几何关系,则有:d s =12v v ,因此最短的航程是:21v s d v = 【典例精讲】1. 求最短位移典例1如图,小船在静水中航行速度为10 m/s ,水流速度为5 m/s ,为了在最短距离内渡河,则小船船头应该保持的方向为(图中任意两个相邻方向间的夹角均为30°)( )A . a 方向B . b 方向C . c 方向D . d 方向典例2船在静水中的航速为v 1,水流的速度为v 2,为使船行驶到河正对岸的码头,则v 1相对v 2的方向应为( )A .B .C .D .2. 求最短时间典例3小河宽为d ,河水中各点水流速度大小与各点到较近河岸边的距离成正比,即kx v =水,d v k o4=,x 是各点到近岸的距离.小船划水速度大小恒为v 0,船头始终垂直河岸渡河.则下列说法正确的是( )A .小船的运动轨迹为直线B .水流速度越大,小船渡河所用的时间越长C .小船渡河时的实际速度是先变小后变大D .小船到达离河对岸43d 处,船的渡河速度为02v3. 船速大于水速典例4(多选) 如图所示,某人由A 点划船渡河,船头指向始终与河岸垂直,则( )A .船头垂直河岸渡河所用时间最短B .小船到达对岸的位置为正对岸的B 点C .保持其他条件不变,小船行至河中心后,若水流速度突然增大,则渡河时间变长D .保持其他条件不变,小船行至河中心后,若水流速度突然增大,则渡河位移变大典例5(多选) 在宽度为d 的河中,水流速度为v 2,船在静水中速度为v 1(且v 1>v 2),方向可以选择,现让该船开始渡河,则该船( )A .可能的最短渡河时间为2v dB .可能的最短渡河位移为dC .只有当船头垂直河岸渡河时,渡河时间才和水速无关D .不管船头与河岸夹角是多少,渡河时间和水速均无关4. 水速大于船速典例6 (多选)一船在静水中的速度是6m/s,要渡过宽为180m、水流速度为8 m/s的河流,则下列说法中正确的是( )A.船相对于地的速度可能是15m/sB.此船过河的最短时间是30sC.此船可以在对岸的任意位置靠岸D.此船不可能垂直到达对岸5. 综合题典例7 已知某船在静水中的速度为v1=4 m/s,现让船渡过某条河。

(完整版)小船过河问题分析与题解

(完整版)小船过河问题分析与题解

小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动. (2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。

(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。

②过河路径最短:在v 船>v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。

在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。

此种情况下,合速度不可能垂直于河岸,无法垂直渡河。

最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。

(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。

【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河?渡河时间多长?(3)船在静水中的速度为1。

5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少?[思路分析](1)当船头垂直于河岸时,渡河时间最短: t min =d/v 2=100/4=25s 合速度v=s m v v /543222221=+=+船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3 t=s v d 93100= (3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小, 设船头与河岸夹角为β,如图所示:v 1 dvv 2v 1θvv 2cosβ=2135.112==v v 所以β=600 最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m; (2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。

5.2小船过河问题人教版高中物理必修二课件共25张PPT

5.2小船过河问题人教版高中物理必修二课件共25张PPT
cos
v船
【例题1-2】
一艘小船在100m宽的河中横渡到对岸,已知水流速度是3m/s,小船在静水中的速度是4m/s,
求:
(2)欲使航行距离最短,船应该怎样渡河?渡河时间多长?
【例题1-2】
一艘小船在100m宽的河中横渡到对岸,已知水流速度是3m/s,小船在静水中的速度是4m/s,
求:
(2)欲使航行距离最短,船应该怎样渡河?渡河时间多长?
一般情况下与船头指向不一致。
小船渡河模型
(二)求解小船渡河问题的方法
求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移。
无论哪类都必须明确以下四点:
(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则按水流
方向和船头指向分解。
小船渡河模型
(二)求解小船渡河问题的方法
求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移。
解析:1、当船头指向斜上游,与岸夹角为Ѳ时,合运动垂直河岸,航程最短,数值
等于河宽100米。

1 3
cos =
=
2 4
合速度:
=
过河时间:
100
100 7
= =
=


7
7
2 2 − 1 2 =
42 − 32 Τ = 7 Τ
小船渡河模型
(4)求最短渡河位移时,根据船速船与水流速度水的大小情况用三角形法
何变化?
小船渡河模型
思考题:
1、在船头始终垂直对岸的情况下,在行驶到河中间时,水流速度突然增大,过
河时间如何变化?
答案:不变
2、为了垂直到达河对岸,在行驶到河中间时,水流速度突然增大,过河时间如

小船渡河问题(含知识点例题和练习)

小船渡河问题(含知识点例题和练习)

小船渡河问题小船渡河的问题,可以分解为它同时参与的两个分运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(即水冲船的运动,等于水流的运动),船的实际运动为合运动.两种情况:①船速大于水速;②船速小于水速。

两种极值:①渡河最小位移;②渡河最短时间。

【例1】一条宽度为L 的河,水流速度为水v ,已知船在静水中速度为船v ,那么:(1)怎样渡河时间最短? (2)若水船v v >,怎样渡河位移最小?(3)若水船v v <,怎样渡河位移最小,船漂下的距离最短?解析:(1)小船过河问题,可以把小船的渡河运动分解为它同时参与的两个运动,一是小船运动,一是水流的运动,船的实际运动为合运动。

如右图所示,船头与河岸垂直渡河,渡河时间最短:船v L t =min 。

此时,实际速度(合速度)22水船合v v v +=实际位移(合位移)船水船v v v L L 22sin s +=∂= (2)如右图所示,渡河的最小位移即河的宽度。

为使渡河位移等于L ,必须使船的合速度v 合的方向与河岸垂直,即使沿河岸方向的速度分量等于0。

这时船头应指向河的上游,并与河岸成一定的角度θ,所以有水船v v =θcos ,即船水v v arccos=θ。

因为θ为锐角,1cos 0<<θ,所以只有在水船v v >时,船头与河岸上游的夹角船水v v arccos =θ,船才有可能垂直河岸渡河,此时最短位移为河宽,即L s =min 。

实际速度(合速度)θsin 船合v v =,运动时间θsin 船合v Lv L t ==(3)若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?V 船V 水V 合如右图所示,设船头v 船与河岸成θ角。

合速度v 合与河岸成α角。

可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 合与圆相切时,α角最大,根据水船v v =θcos ,船头与河岸的夹角应为水船v v arccos=θ,此时渡河的最短位移:船水v Lv Ls ==θcos 渡河时间:θsin 船v Lt =,船沿河漂下的最短距离为:θθsin )cos (min 船船水v Lv v x ⋅-=误区:不分条件,认为船位移最小一定是垂直到达对岸;将渡河时间最短与渡河位移最小对应。

小船渡河问题

小船渡河问题
小船渡河问题
合运动与分运动有什么关系?
同时性: 独立性: 等效性: 同一性:
运动的合成和分解的应用 1.小船渡河
例1:一艘小船在宽为d的河中横渡到对岸,已知水流速度是v水,小船在静水中的速度是v船,求: (1)当v船>v水时,欲使航行距离最短,船应该怎样渡河?渡河时间多长?
分析1:航程最短
v船 v
思考2:小船渡河问题除了用运动的合成与分解方法外,还可以用什么方法?
v船 v船 v船
v水
v船
v船 v船
v水
θ
结论:当v船< v水时,最短航程不等于河宽d。 船头指向与上游河岸成θ:
v船
θ
v水
cos v2
v
运动的合成和分解的应用 2.绳拉物牵连速度问题
【例题1】如图所示,汽车沿水平路面以恒定速度v前进,则当拉绳与水平方向成θ角时,被吊起的物体
d
θ
v水
结论:当v船>v水时,最短航程等于河宽d。
设船头指向与上游河岸成θ:
cos v水
v船
(2)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?
分析2:时间最短
v v 船
d
v水
结论:欲使船渡河时间最短,船头的方向应该垂直于河岸。
t 最短

d v船
例1:河宽60m,小船在静水中的速度为4m/s,水流速度为3m/s。求小船渡河的最小时间是多少, 小船实际渡河的位移为多大?小船渡河的最小位移是多少,小船实际渡河的时间为多大?
B的速度为vB=
,物体上升的运动是_____
(填“加速”、“减速”、“匀速”)
B
方法:运动的合成与分解
绳拉物体或物体拉绳问题的主要思路: (1)物体的实际运动为合运动; (2)沿绳的运动为一个分运动; (3)垂直于绳的运动为另一个分运动。

小船渡河的问题

小船渡河的问题

小船渡河的问题在高中物理教学中,往往遇到小船在水有一定流速的河中渡河的问题。

这类问题一般有小船渡河的时间最小,位移最小,速度最小三种情况:问题一:小船如何渡河时间最小,最小时间为多少?分析及解答:设河宽为d ,小船在静水中的速度为V 船,水流速度为V 水,如图1中的甲。

将船对水的速度沿平行河岸方向和垂直河岸方向正交分解。

沿平行河岸方向的速度不影响渡河的快慢,小船渡过河时时间与垂直河岸方向的速度有关,当小船垂直河岸渡过河时时间最小,即最小时间为t min =d/V 船。

[例题1]:河宽60m,小船在静水中的速度为4m/s,水流速度为3m/s 。

求小船渡河的最小时间是多少,小船实际渡河的位移为多大?分析及解答:如图1中的乙,当小船垂直河岸渡过河时时间最小,即最小时间为t min =d/V 船。

∴t min =d/V 船=60/4=15(s)。

小船实际渡河的位移S AB =V 合t min =5*15=75(m).问题二:小船如何渡河到达对岸的位移最小,最小位移是多少?分析及解答:在小船渡河过程中,将船对水的速度沿平行河岸方向和垂直河岸方向正交分解,如图2中的甲。

当小船沿平行河岸方向的分速度与水速大小相等,方向相反时,即V 1=V 水,小船的合速度(V 2)就沿垂直河岸方向, 这时渡河到达对岸的位移最小,S min =d 。

而渡河时间t=d/V 2=d/Vsin θ。

[例题2]:河宽60m,小船在静水中的速度为5m/s,水流速度为3m/s 。

求小船渡河的最小位移是多少,小船实际渡河的时间为多大?分析及解答:如图2 中的乙,当小船沿平行河岸方向的分速度V 1=V 水,小船要垂直河岸方向渡河,这时渡河到达对岸的位移最小,Smin=d=60(m)。

而V船与河岸的夹角θ=arc cos(V 船/V 水)=530。

这时小船实际渡河的时间t=d/V 2=d/V 船sin θ=60/4=15(s).问题三:小船如何渡河速度最小,最小速度为多少?分析及解答:将小船渡河运动看作水流的运动(水冲船的运动)和小船相对静水的运动(设水流不流动时船的运动)的合运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小船渡河问题【专题概述】1. 合运动与分运动的关系等效性 各分运动的共同效果与合运动的效果相同 等时性 各分运动与合运动同时发生和结束,时间相同 独立性 各分运动之间互不相干,彼此独立,互不影响 同体性各分运动与合运动的研究对象是同一物体的运动2. 合运动与分运动的求法(1) 运动合成与分解:已知分运动求合运动,叫运动的合成;已知合运动求分运动,叫运动的分解。

(2) 运动合成与分解的法则:合成和分解是位移、速度、加速度的合成与分解,这些量都是矢量,遵循的是平行四边形定则。

(3) 运动合成与分解的方法:在遵循平行四边形定则的前提下,处理合运动和分运动关系时要灵活采用合适的方法,或用作图法,或用【解析】法,依情况而定。

可以借鉴力的合成和分解的知识,具体问题具体分析。

3. 小船过河:三种过河情况 (1)过河时间最短:小船沿着上述不同的方向运动,走到对岸的时间是不相等的,由于运动的等时性知,在垂直于河岸上的速度越大则过河时间越短,所以此时应该调整小船沿着d 的方向运动,则求得最短时间为船v d t =m in (2)过河路径最短:第一种情况:当船速大于水速时从上图可以看出,当我们适当调整船头的方向,使得船在水流方向上的分速度等于水速,即21cos v v =θ此时水流方向上小船是不动的,小船的合速度即为V 向对岸运动,此时小船的最短位移为S d =第二种情况:船速小于水速,那么在水流方向上,船的分速度12cos v v θ<此时无论我们怎么调整船头的方向都没有办法保证水流方向的合速度为零,所以小船一定要向下游漂移,如图当合速度的方向与船相对水的速度的方向垂直时,合速度的方向与河岸的夹角最短,渡河航程最小; 根据几何关系,则有:d s =12v v ,因此最短的航程是:21v s d v =【典例精讲】1. 求最短位移典例1如图,小船在静水中航行速度为10 m /s,水流速度为5 m/s ,为了在最短距离内渡河,则小船船头应该保持的方向为(图中任意两个相邻方向间的夹角均为30°)( )A. a 方向B. b方向C. c 方向 D . d方向典例2船在静水中的航速为v 1,水流的速度为v 2,为使船行驶到河正对岸的码头,则v 1相对v 2的方向应为( )A. B. C. D .2. 求最短时间典例3小河宽为d,河水中各点水流速度大小与各点到较近河岸边的距离成正比,即kx v =水,dv k o4=,x 是各点到近岸的距离.小船划水速度大小恒为v 0,船头始终垂直河岸渡河.则下列说法正确的是( )A.小船的运动轨迹为直线B.水流速度越大,小船渡河所用的时间越长 C .小船渡河时的实际速度是先变小后变大 D .小船到达离河对岸43d处,船的渡河速度为02v3. 船速大于水速典例4(多选) 如图所示,某人由A 点划船渡河,船头指向始终与河岸垂直,则( )A.船头垂直河岸渡河所用时间最短 B.小船到达对岸的位置为正对岸的B 点C.保持其他条件不变,小船行至河中心后,若水流速度突然增大,则渡河时间变长 D.保持其他条件不变,小船行至河中心后,若水流速度突然增大,则渡河位移变大典例5(多选) 在宽度为d 的河中,水流速度为v 2,船在静水中速度为v 1(且v1>v2),方向可以选择,现让该船开始渡河,则该船( )A.可能的最短渡河时间为2v dB.可能的最短渡河位移为dC .只有当船头垂直河岸渡河时,渡河时间才和水速无关 D.不管船头与河岸夹角是多少,渡河时间和水速均无关 4. 水速大于船速典例6 (多选)一船在静水中的速度是6m /s,要渡过宽为180m 、水流速度为8 m/s 的河流,则下列说法中正确的是( )A.船相对于地的速度可能是15m /s B.此船过河的最短时间是30s C.此船可以在对岸的任意位置靠岸 D.此船不可能垂直到达对岸 5. 综合题典例7 已知某船在静水中的速度为v 1=4 m/s,现让船渡过某条河。

假设这条河的两岸是理想的平行线,河宽为d=100 m,水流速度为v 2=3 m /s,方向与河岸平行,(1) 欲使船以最短时间渡河,航向怎样?最短时间是多少?船发生的位移有多大? (2) 欲使船以最小位移渡河,航向又怎样?渡河所用时间是多少? 【总结提升】解决小船渡河问题应注意的两个问题(1)渡河时间只与船垂直于河岸方向的分速度有关,与水速无关(2)渡河位移最短值与船速与水速的大小有关,当船速大于水速时,最短位移为河宽 当船速小于水速时,应利用图解法求极值的方法处理 船头垂直于河岸时,航行时间最短,船v d t m in在处理此问题时要注意三个速度值:小船在静水中的速度、水流的速度、船的实际速度。

【专练提升】1、(多选)在一条宽200 m 的河中,水的流速v 1=1 m/s,一只小船要渡过河至少需要100 s 的时间.则下列判断正确的是( )A.小船相对于静水的速度为2 m/s B .无论小船怎样渡河都无法到达正对岸C .若小船以最短时间渡河,到达对岸时,距正对岸100 mD .若小船航向(船头指向)与上游河岸成60°角,则小船渡河位移最短2、(多选)甲、乙两船在同一条河流中同时开始渡河,河宽为H ,河水流速为v 0,划船速度均为v ,出发时两船相距332H,甲、乙两船船头均与河岸成60°角,如图所示.已知乙船恰好能垂直到达对岸A 点,则下列判断正确的是( )A .甲、乙两船到达对岸的时间不同 B.v =2v 0C.两船可能在未到达对岸前相遇 D .甲船也在A 点靠岸3、一艘小船要从O 点渡过一条两岸平行、宽度为d=100 m 的河流,已知河水流速为v 1=4 m/s,小船在静水中的速度为v 2=2 m/s ,B 点距正对岸的A 点x0=173 m .下面关于该船渡河的判断,其中正确的是( )A. 小船过河的最短航程为100 mB. 小船过河的最短时间为25 sC. 小船可以在对岸A、B两点间任意一点靠岸 D. 小船过河的最短航程为200 m4、如图所示,河水流动的速度为v且处处相同,河宽度为a.在船下水点A 的下游距离为b 处是瀑布.为了使小船渡河安全(不掉到瀑布里去)( )A . 小船船头垂直河岸渡河时间最短,最短时间为t =.速度最大,最大速度为v max =bavB. 小船轨迹沿y 轴方向渡河位移最小.速度最大,最大速度为v max =bb a v 22+C . 小船沿轨迹AB 运动位移最大、时间最短.速度最小,最小速度v min =bav D. 小船沿轨迹AB 运动位移最大.速度最小,最小速度v min =22b a vb +5、如图所示,甲、乙两船在同一河岸边A 、B 两处,两船船头方向与河岸均成θ角,且恰好对准对岸边C 点.若两船同时开始渡河,经过一段时间t,同时到达对岸,乙船恰好到达正对岸的D点.若河宽d、河水流速均恒定,两船在静水中的划行速率恒定,不影响各自的航行,下列判断正确的是( )A. 两船在静水中的划行速率不同B . 甲船渡河的路程有可能比乙船渡河的路程小 C. 两船同时到达D 点 D. 河水流速为td θtan 6、如图所示,两次渡河时船相对水的速度大小和方向都不变.已知第一次实际航程为A至B,位移为x1,实际航速为v 1,所用时间为t 1.由于水速增大,第二次实际航程为A 至C,位移为x 2,实际航速为v 2,所用时间为t 2.则( )A. t 2>t 1,v 2=112x v x B. t 2>t1,v 2=211x v xC . t 2=t 1,v 2=112x v x D. t 2=t 1,v 2=211x v x小船渡河问题答案【典例精讲】典例1【答案】C【解析】因为水流速度小于船在静水中速度,则合速度与河岸垂直时,渡河航程最短,最短航程等于河的宽度;因船在静水中速度为10 m/s ,水流速度为5 m/s ,设船头与河岸的夹角为θ,则有水流速度与船在静水中速度的夹角为cos θ=21,即θ=60°;则船头与河岸的夹角为60°,且偏向上游,由图可知,C 正确,A,B,D 错误.典例2【答案】C【解析】根据小船渡河问题的知识,可知要使船垂直到达正对岸即要船的合速度指向对岸.根据平行四边形定则,合运动方向与水速垂直,仅C 能满足典例3【答案】D典例4【答案】AD典例5【答案】BD【解析】当船头与河岸垂直时,渡河时间最短,为,因而A 错误;当合速度与河岸垂直时,渡河位移最小,为d,故B 正确;将船的实际运动沿船头方向和水流方向分解,由于各个分运动互不影响,因而渡河时间等于沿船头方向的分运动时间,为t=(x 1为沿船头指向的分位移)显然与水流速度无关,因而C 错误,D 正确。

典例6【答案】BD典例7【答案】(1)当船在垂直于河岸方向上的分速度最大时,渡河所用时间最短 125m (2)当船1007的实际移动速度方向垂直于河岸时,船的位移最小s7【解析】(1)当船在垂直于河岸方向上的分速度最大时,渡河所用时间最短,河水流速平行于河岸,不影响渡河时间,所以当船头垂直于河岸向对岸渡河时,所用时间最短,则最短时间为t==25 s。

如图所示,当船到达对岸时,船沿河流方向也发生了位移,由直角三角形的知识可得,船的位移为l=,由题意可得x=v2t=3 m/s×25 s=75 m,代入得l=125 m。

【专练提升】1、【答案】ACD【解析】当小船的船头始终正对对岸时,渡河时间最短:t=;因此v船==m/s=2 m/s;小船以最短时间渡河,到达对岸时,距正对岸的距离,x=v水t=1×100 m=100 m.即在正对岸下游100 m处靠岸.故A,C正确;当合速度与河岸垂直,小船到达正对岸.设静水速的方向与河岸的夹角为θ.cos θ==解得:θ=60°,故B错误,D正确.2、【答案】BD3、【答案】D4、【答案】D【解析】当小船船头垂直河岸渡河时间最短,最短时间为:t=,故A错误;小船轨迹沿y轴方向渡河位移最小,为a,但沿着船头指向的分速度必须指向上游,合速度不是最大,故B错误;由图,小船沿轨迹AB运动位移最短,由于渡河时间,与船的船头指向沿垂直河岸的分速度有关,故时间不一定最短,故C错误;要充分利用水流的速度,故要合速度要沿着AB方向,此时位移显然是最大的.的速度最小,故:,故v合=;故D正确.5、【答案】C6、【答案】C。

相关文档
最新文档