分子对称性与群论初步
分子的对称性与群论基础群与分子点群
群与分子点群
3、分子点群
立方群
3)、 Ih 点群
对称元素: 6个 C5 轴(相对顶点)、 10个 C3 轴(相对面心)、 15个 C2 轴(相对棱心)、 对称中心.
120个对称操作,分为10个共轭类:
Eˆ , 6 Cˆ5 ,Cˆ54 , 6 Cˆ52,Cˆ53 , 10 Cˆ3 , Cˆ32 , iˆ , 6 Sˆ10 , Sˆ190 , 6 Sˆ130 , Sˆ170 , 10 Sˆ6 , Sˆ65 ,
24
群与分子点群
4、子群与类
如果群的某个元素与其他元素的乘积都可交换,则该元素
自成一类(不与其他元素共轭)。
若:
PA = AP ,
PB =
BP , … ...
必有:
A-1PA = P , B-1PB =
P , …… 即:对元于素分子P 点不群与:其他元素共轭。 恒等操作自成一类; 反演操作自成一类。
O2 , CO2 , C2 H 2
13
群与分子点群
3、分子点群
立方群
具有多于一个高次轴(Cn,n>2)的群,对应于凸正 多面体
4个 C3 轴 3个 C2 轴
T
Th (i)
Td (6d)
正四面体
3个 C4 轴 4个 C3 轴 6个 C2 轴
O Oh (i)
正八面体 正六面体
6个 C5 轴 10个 C3 轴
27
群与分子点群
5、同构与同态
2)、同态 定义:考虑群G与群H,若G的一组元素对应与H的一个元 素,且群G的元素的乘积对应于群H的相应元素的乘积, 则称群H 是群G的一个同态映像。
群G: …., {Aik} , …, {Aj l }, …., {AikAjl} , ….
分子对称性和群论初步
Cn轴产生n个旋转操作的周期均为n。
(2)对称轴 (Cn )和旋转操作 (Cn )
对称元素: 旋转轴C2 对称操作: 旋转
H2O中的C2
H2O2中的C2
NH3中的C3轴
SF6中的C4轴
Fe(C5H5)2中的C5轴
C6H6中的C6轴
N2中的C∞轴
(3)对称面 s 和反映操作 s
对称面
相当于一个镜面,把分子图形分成两个完全相等的对称 部分,两部分之间互为镜中映象;对称面所相应的对称 操作是镜面的一个反映,在对称面的反映操作下,分子 图形相等的两部分互相交换位置,相同性质的点(同类 原子)彼此置换。显然,反映操作的周期为2,即:
ˆ ˆ =E s
操作定义
Cn旋转轴能生成n个旋转操作,记为:
2 ˆ ˆ n, Cn , C
…
, ˆn=E ˆ C Cn
n 1 n
ˆk 若取逆时针方向的旋转为正操作,表示为 C n,则顺 k ˆ 时 针 旋 转 为 逆 操 作 , 表 示 为C n ,不难理 (nk )。 ˆk ˆ 解C n =C n
操作的周期
S8
2.5 假轴向群 Sn群
Sn:有一个 n重象转轴,须考虑 n的奇偶性。 n为偶数时, 群中有n个元素,n为奇数时,Sn不独立存在。 只有S4是独立的点群。例如:1,3,5,7-四甲基环辛四烯, 有一个S4映转轴,没有其它独立对称元素。
S2 S4
2.6 六方群
1). Td群
若一个四面体骨架的分子,存在4个C3轴,3个C2轴,同时每 个C2轴还处在两个互相垂直的平面sd的交线上,这两个平面还 平分另外2个C2轴(共有6个这样的平面)则该分子属Td对称性。 对称操作为{E,3C2,8C3,6S4,6sd}共有24阶。 四 面 体 CH4 、 CCl4 对 称 性 属 Td 群 , 一 些 含 氧 酸 根 SO42- 、 PO43-等亦是。在CH4分子中,每个C-H键方向存在1个C3轴,2 个氢原子连线中点与中心C原子间是C2轴,还有6个sd平面。
03第三章分子对称性与群论初步
对称元素:3C4+4C3+6C2+3h+6 d+3S4+4S6+i
O hE ˆ,3 C ˆ2,(3 C ˆ4,3 C ˆ4 3)4 ,C ˆ3,4 C ˆ3 2,6 C ˆ2 ,(3 S ˆ4,3 S ˆ4 3)3 ,ˆh ,(4 S ˆ6,4 S ˆ6 5)6 ,ˆd,iˆ
Oh 群
D3d : 乙烷交错型
D4d :单质硫S8
C2 C2
C2 C2
俯视图
D5d : 交错型二茂铁
7. Sn群: 分子中只有一个n重象转轴。
当n为偶数时,
S n E ˆ ,S ˆ n ,S ˆ n 2 , ,S ˆ n n 1
当n为奇数时,
Sn Cnh
反式CHClBr-CHClBr: Ci
群的阶为4n;当n为偶数时,有对称中心i.
D2h 群 :N2O4
D2h群:乙烯
主轴垂直于荧光屏. σh在荧光屏上.
D3h 群 : 乙烷重叠型
D4h群:XeF4
D6h群:苯
Dh群: I3-
6. Dnd: 在Dn基础上, 增加了n个包含主轴且平分二次副轴夹角的镜
面σd.
Cn+nC2+nd+S2n(若n为奇数,有对称中心i)
2.群的举例:
(1)水分子的所有对称操作的集合构成一个群:
C 2v
Eˆ Cˆ 2
ˆ v ˆ v
Eˆ Eˆ Cˆ 2
ˆ v ˆ v
Cˆ 2 Cˆ 2
Eˆ ˆ v ˆ v
ˆ v ˆ v
ˆ v Eˆ
Cˆ 2
ˆ v ˆ v
ˆ v
Cˆ 2
Eˆ
(2)氨分子的所有对称操作的集合构成一个群:C3V
第一章_分子的对称性和群论初步_2
群论在无机化学中的应用---例
• 例1: ABn型分子的σ杂化轨道 – 分子或离子:BF3,SO3,SF4,XeF4 … – 单核的配合物或配离子… ?:原子A以哪些原于轨道组成等价的σ杂化轨道的集合 • 特征标等于在该操作的作用下,不发生位移的向量 数.用化学的语言可表述为:特征标等于在该对称操 作的作用下,不动的化学键数. *这样得列的一组特征标是可约表示的特征标.
对称操作的表示矩阵
恒等 旋转 反映 旋转-反映
反演
对称群的表示:
一个分子的全部对称操作可形成一个群。而 把这些对称操作,用对称操作变换矩阵表示 时,这些变换矩阵也形成一个群。即用矩阵
群来表示对称操作群。因此,通常称这样的
矩阵群为相应对称(点)群的矩阵表示,简称
群的表示。
群的表示--• 由一组基函数得到的一组对称操作的表 示矩阵也构成群. 只要正确地写出点群中 每个对称操作的表示矩阵,就能够得到 相应群的矩阵表示. • 利用空间任意点的坐标,或者选择一定 的函数或物理量为基函数,不难得到对 称操作的表示矩阵.
群的不可约表示和特征标规则
1. 群的不可约表示维数平方和等于群的阶
对v的求和遍及该群所有的不可约表示.例1: C2v点群的四来自不可约表示均为一维,阶为4,即;
12 + 12 + 1 2 + 12 = 4 = h 例2: (1.24)
C3v点群的三个不可约表示中,两个一维,一个二维, 阶为6, 即; 12 + 12 + 2 2 = 6 = h (1.25)
第一章 分子的对称性和群论基础 (二)
(完整版)第三章-分子对称性和群论初步
两个或多个对称操作 的结果,等效于某个 对称操作。
例如,先作二重旋转,再对垂直 于该轴的镜面作反映,等于对 轴与镜面的交点作反演。
对称操作的乘积示意图
2.分子点群的确定
分子可以按 “点群”或“对称群”加以分 类。在一个分子上所进行的对称操作的完全组 合构成一个“点群”或“对称群”。
Third
确定分子是否具有象转轴Sn(n为偶数),如果只 存在Sn轴而别无其它对称元素,这时分子属于假轴 向群类的Sn群。
3. 分子点群的确定
Forth
假如分子均不属于上述各群,而且具有Cn旋转轴时 可进行第四步。当分子不具有垂直于Cn轴的C2轴时,
则属于轴向群类。有以下三种可能:
没有对称面 若有n个sv对称面 若有1个sh对称面
Z s2
Y
x
独立:可以通过其它对称元素或组合来产生。
CH4中的象转轴S4与旋转反映操作
4
3
43
旋转90◦
12
2
1
2
1 反映
43
3 4
2
1
注意: C4和与之垂直的σ都不独立存在
补充:反轴(In)和旋转反演操作(In )
反轴
如果分子图形绕轴旋转一定角度(θ=2π/n)后, 再按轴上的中心点进行反演,可以产生分子的 等价图形,则将该轴和反演组合所得到的对称 元素称为反轴。
对称中心的反演操作,能使分子中各相互对应的原子 彼此交换位置。即分子图形中任意一个原子的位置 A(x,y,z)将反射到点A’(-x,-y,-z),同时A’点将反射到A点, 从而产生分子的等价图形。示意图.exe
对分子图形若连续反演n次,可以满足:
iˆ
nLeabharlann =E(n为偶数) ˆi(n为奇数)
2分子对称性和群论初步
点群表示 点群示例
C
nv
= E ,C ,C n
2 n
,
…
,C
n 1 n
1 v
,s
,s
2 v
,
…
,s
n v
C2 v
C2 H 2Cl2
C3 v
NH 3
C v
CO
C3v
3). Cnh群
群中含有一个Cn轴,还有一个垂直于Cn轴σh面
点群示例
C 2h
C4 H 6
S8
2.5 假轴向群 Sn群
Sn:有一个n重象转轴,须考虑n的奇偶性。n为偶数时, 群中有n个元素,n为奇数时,Sn不独立存在。 只有S4是独立的点群。例如:1,3,5,7-四甲基环辛四烯, 有一个S4映转轴,没有其它独立对称元素。
S2 S4
2.6 六方群
1). Td群
若一个四面体骨架的分子,存在4个C3轴,3个C2轴,同时每 个C2轴还处在两个互相垂直的平面sd的交线上,这两个平面还 平分另外2个C2轴(共有6个这样的平面)则该分子属Td对称性。 对称操作为{E,3C2,8C3,6S4,6sd}共有24阶。 四 面 体 CH4 、 CCl4 对 称 性 属 Td 群 , 一 些 含 氧 酸 根 SO42- 、 PO43-等亦是。在CH4分子中,每个C-H键方向存在1个C3轴,2 个氢原子连线中点与中心C原子间是C2轴,还有6个sd平面。
s Z 2
Y x
独立:可以通过其它对称元素或组合来产生。
CH4中的象转轴S4与旋转反映操作
4 3 旋转90◦ 2 4 3
1
2
1
2
1
反映
4 3
分子的对称性和群论初步
H3BO3分
子
C3h C31, C32 , C33 E, h , S31, S35
属6阶群 S31 hC31,S32 C32,S33 h S34 C31,S35 hC32,S36 E
Cnh Cnk (k 1,n 1), E, h , hCnl (l 1,l 1)
非全同:不能通过平移或转动等第一类对称操 作使两个图形叠合。
2.旋光异构体:一对等同而非全同的分子构成 的一对对映体。
3.手性分子:没有第二类对称元素的分子。
R(右,顺时针方向转)和 S(左,逆时针旋转) 外消旋体:等量的R和S异构体混合物一定无旋光
性方向相反
4.对称性和旋光性的关系
✓ 若分子具有反轴Ι(先旋转360°/n,再反演)的对 称性,一定无旋光性;若分子不具有反轴的对称性, 则可能出现旋光性。
元的数目有限的群称为有限群,数目无限的群 称为无限群。
点群:一个有限分子的对称操作群 ☞“点”的含义 ✔这些对称操作都是点操作,操作时分子中至少
有一个点不动。 ✔分子的对称元素至少通过一个公共点。
2.2 群的乘法表
※顺序
乘法表由行和列组成,在行坐标x和列坐标y的 交点上找到的元是yx,即先操作x,后操作y。每一 行和每一列都是元的重新排列。
C6轴: C6轴包括C2 和C3 的全部对称操作。
1.3 反演操作和对称中心 i
反演操作: 将分子的各点移到对称中心连线的延长线上,
且两边的距离相等。若分子能恢复原状,即反演操 作。
✔对称因素:对称中心 i ✔特点:延长线,等距
除位于对称中心的原子外,其余均成对出现
若对称中心位置在原点 (0,0,0)处,反演操作i的表 示矩阵为:
✓ 一重反轴=对称中心,二重反轴=镜面,独立的反 轴只有I4 。则具有这三种对称操作的无旋光性, 不具有这3种对称元素的分子都可能有旋光性。
分子对称性与群论初步
=
例2.C41,n=4,φ=90 cosφ=0,sinφ=1
0 0 1 1= 1 0 0 C4 0 1 0
例3.C31 3 在直角坐标系中,n=3, φ =120°,cosφ =1/2,sinφ = /2
1 / 2 3 / 2 0 1/ 0 C31 = 3 / 2 2 0 0 1
一、对称面和对称中心的周期是2
σ的周期为2
二、n重轴的周期为n
C4的周期为4
三、映转轴和反轴的周期
1、当n为偶数,周期为n
S4的周期为4
2、当n为奇数,周期为2n
S3的周期为6
3.4 独立的对称元素
说明映轴和反轴只有轴次为4的整数倍时才是独立的, 其他的均可由反映面、旋转轴、对称中心来代替。
C3h群 Cl Cl
Cl
C3h 群:1C3,1σh
3、Cnv 群:1Cn + nσv
C2v 群
C3v群
CHCl3
NH3
C3V 群:1C3,3σV
二、双面群
包括Dn 、Dnh 、Dnv 点群.这类点群的共同特点 是除了主轴Cn外,还有与之垂直的n条C2副轴. 1、Dn 群:1×Cn ,n×C2 .
第四章 分子对称性和分子点群 第四章 分子对称性与群论初步
Chapter 4. Molecular Symmetry and Introduction to Group Theory Chapter4. Molecular Symmetry and Piont Group
4.1 对称图形的定义
生 物 界 的 对 称 性
包括Cn 、Cnh 、Cnv 点群. 这类点群的共同特点是旋转轴只有一条.
04第四章分子对称性与群论初步
(4)映轴与旋转反映操作 反轴与旋转反演操作
旋转反映或旋转反演都是复合操作,相应的对称元素分 别称为映轴Sn和反轴In . 旋转反映(或旋转反演)的两步操作 顺序可以反过来.
这两种复合操作都包含虚操作. 相应地,Sn和In都是虚轴. 对于Sn,若n等于奇数,则Cn和与之垂直的σ都独立存在; 若n等于偶数,则有Cn/2与Sn共轴,但Cn和与之垂直的σ并不 一定独立存在. 试观察以下分子模型并比较:
[Co(NH2CH2CH2NH2)3]3+是一实例.
何其相似!
唯一的C3旋转轴从xyz轴连成的 正三角形中心穿过, 通向Co; C2
三条C2旋转轴分别从每个N–N
x
键中心穿过通向Co.
C2 z
y
C2
Dnh : 在Dn 基础上,还有垂直于主轴的镜面σh .
D2h 群 :N2O4
D2h群:乙烯
主轴垂直于荧光屏. σh在荧光屏上.
穿过正四面体每条棱 并将四面体分为两半 的是一个σd , 共有6个 σd 。
Y
X
从正四面体的每个顶点到对
面的正三角形中点有一条C3 穿过, 所以共有4条C3,可作出 8个C3对称操作。
Td 群:
沿着每一条C3去看, 看到的是这样:
金刚烷 (隐氢图)
沿着每一条C2去看, 看到的是这样:
Td 群
Li CH3
旋转是真操作, 其它对称操作为虚操作.
两个或多个对称 操作的结果,等效于 某个对称操作.
例如,先作二重旋转,再对垂 直于该轴的镜面作反映,等 于对轴与镜面的交点作反演.
4.3 分子点群
分子中全部对称操作的集合构成分子点群(point groups ). 分子点群可以归为四类:
分子对称性与群论初步
A: (Cn) = 1
一 维
B: (Cn) = -1
表 示
B1’/A1’: 对于h是对称的
B1’/A1’: 对于h是反对称的
二维表示:E 三维表示:T T1/T2:对于C4或S4轴的特征标分别为1,-1 下标g、u:对于对称中心是对称的“g〞,反对称
群的不可约表示和特征标的特点:
1. 群的所有不可约表示维数的平方和等于群的阶 2. 群的不可约表示的数目等于群中类的数目 3. 群的不可约表示特征标的平方和等于群的阶 4. 群的两个不可约表示的特征标满足正交关系 5. 属于同一类的对称操作具有一样的特征标
第二章 分子对称性与群论初步
能级简并情况以及在外场条件下简并的消除
群论
推断组成杂化轨道的原子轨道 能级间电子跃迁的选律
简正振动的红外-拉曼光谱活性
• §2-1 对称操作和对称元素 • §2-2 分子对称群 • §2-3 对称性匹配函数和投影算符 • §2-4 轨道的变换性质
§2-1 对称操作和对称元素
㈠ 旋转:
一个分子绕某一轴旋转360°/n〔n=2,3, 4等整数〕后能使分子复原〔进入等价构型〕, 称为旋转对称操作,用Cn表示。
对称元素: 对称轴
主轴: 轴次最高的对称轴(n最大)
例:H2O, NH3, Ni(CN)42-, C5H5-, C6H6, CO
C2 C3
C4
C5
C6 C
㈡ 反映: 通过某一平面将分子各点反映到镜面的另 一侧位置,反映后分子又恢复原状的操作,称
④ Dn点群:对称元素为Cn,n个垂直与主轴 的C2轴,有2n个对称操作
例:[M(en)3]n+,[M(ox)3]3-等
n+
N
分子的对称性与群论基础群论与量子力学
第六讲:分子的对称性与群论基础群论与量子力学1. 分子波函数对称性分类3分子的波函数构成分子点群的不可约表示的基函数,从而分子波函数可按点群的不可约表示分类非简并波函数构成点群的一个一维表示的基。
(i)非简并情形ii i H ψεψ=ˆii i R H R ψεψˆˆˆ=)ˆ(ˆˆii R R H ψεψ=也是哈密顿算符的本征函数,且本征值为,它只能与差常数。
iR ψˆiεi ψii C R ψψ=ˆii n i n C R ψψψ==ˆ1,1-=C1. 分子波函数对称性分类4是常数,仍是哈密顿算符本征值为的本征函数:(ii)简并情形这组简并波函数在对称操作R 作用下满足封闭性,以它为基,可得对称操作R 的矩阵表示:ini in H ψεψ=ˆg n ,,1L =)ˆ()ˆ(ˆini in R R H ψεψ=∑=Γ=gm immn i in R R 1)ˆ(ˆψψinR ψ)iεmni R )ˆ(Γ⎪⎪⎪⎭⎫ ⎝⎛=gg g g g R R R RL L M M M L L L 11111),,(),,(ˆψψψψ展开系数这组简并波函数构成点群的g 维表示的基。
1. 分子波函数对称性分类5分子的电子或振动波函数可以按点群的不可约表示分类,能级简并度等于不可约表示的维数。
若分子哈密顿的是点群的对称算符,则分子的波函数构成分子所属点群的不可约表示的基函数。
如果:能级兼并度完全由体系的几何构型对称性决定,则:这个g 维表示是点群的不可约表示。
3NH V C 3E A A ,,21OH 2VC 2能级简并度为1或2能级简并度为1若能级的简并不是由体系的几何对称性引起的(称偶然简并),则这个g 维表示可以是可约表示。
但这种情形在分子体系中极为罕见。
例如:不可约表示:不可约表示:2121,,,B B A A2. 不可约表示基函数的正交性10*上述定理和推论不告诉不为零的积分的具体数值。
* 上述定理和推论只是给出积分不为零的必要条件。
第二章对称性与群论基础
节面通过成键原子
四 化学反应中的轨道对称性
化学键的形成与否取决于参与成键的轨道的对称性,具有相似对称性的相 互作用有利于反应的发生,即是允许的反应。对称性不同的相互作用是禁阻的 反应。对于一个双分子的反应,在反应时,在前线轨道中的电子流向是由一个 分子的最高占据分子轨道流向另一个分子的最低未占据轨道。
综上所述,这两种相互作用方式都是不可能的,说明H2与I2 的作用是双分子反应难以成立。
现在研究表明,H2与I2的反应是一个叁分子自由基反应,I2分 子先离解为I原子,I原子再作为自由基同H2分子反应。
(a)顺式-[Co(en)2Cl2]+ 具有旋光性
(b)反式-[Co(en)2Cl2]+ 没有旋光性
三 原子轨道和分子轨道的对称性
原子轨道或分子轨道 s p d f * * δ 对称性 节面数 节面方位 g o 无节面 u 1 节面通过成键原子 g 2 节面通过成键原子 u 3 节面通过成键原子 g u u g g o 1 1 2 2 无节面 节面位于成键原子之间 节面通过成键原子
C2v E C2 σxz σyz A1 1 1 1 1 B2 1 -1 -1 1
类似地,将py 、pz 进行操作可以得到
E C2 σxz σyz pz→ pz pz pz pz py→ py -py -py py 特征标表
pz py
2.4 对称性在无机化学中的应用 一 分子的对称性与偶极矩判定
分子的偶极矩被用来衡量分子极性的大小。对于多原子分子,它的偶极矩 就是分子中所有分偶极矩的矢量和。
Байду номын сангаас
其中,任何具有一条C2轴,2个对称面和 恒等操作这四种对称操作组合的分子属于 C2v “点群”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非真旋轴群: 包括Cs 、Ci 、C1
Ci 群: E i , h=2 只有对称中心
对称中心
Cs 群 : E σh , h=2
只有镜面
COFCl
ห้องสมุดไป่ตู้
亚硝酸酐 N2O3
B6H10
Cs 群 : E σ, h=2
只有镜面
无Cn轴群
1) C1 : 无任何对称元素,只有恒等操作Eˆ
Cs :只有一个对称面,群元素为ˆ和Eˆ
If a body has an Cn axis and also has a plane of symmetry perpendicular to this axis, then the Cn axis is also an Sn axis.
(5)映轴与旋转反映操作 反轴与旋转反演操作
旋转反映或旋转反演都是复合操作,相应的对称元素分 别称为映轴Sn和反轴In . 旋转反映(或旋转反演)的两步操作 顺序可以反过来.
D : 3 这种分子比较少见,其对称元素也不易看出.
[Co(NH2CH2CH2NH2)3]3+是一实例.
何其相似!
唯一的C3旋转轴从xyz轴连成的 正三角形中心穿过, 通向Co; C2
三条C2旋转轴分别从每个N–N
x
键中心穿过通向Co.
C2 z
y
C2
Dnh : 在Dn 基础上,还有垂直于主轴的镜面σh .
对称操作与对称元素
两个或多个对称 操作的结果,等效于 某个对称操作.
例如,先作二重旋转,再对垂 直于该轴的镜面作反映,等 于对轴与镜面的交点作反演.
Products of Symmetry Operations
Meaning successive application of the operators, the operator on the right of the product being applied first.
Ci :只有一个对称中心,群元素为iˆ和Eˆ
D2h 群 :N2O4
D3h 群 : 乙烷重叠型
D4h群:XeF4
D6h群:苯
Dh群: I3-
Dnd: 在Dn基础上, 增加了n个包含主轴且平分二次副轴
夹角的镜面σd.
Dnd: 在Dn基础上, 增加了n个包含主轴且平分二次副轴
夹角的镜面σd.
D2d : 丙二烯
D2d
D3d : 乙烷交错型
Td 群
Li CH3
(LiCH3)4
隐氢图
Td 群
P4O6
P4O10
Td 群
Oh 群 : 属于该群的分子,对称性与正八面体或正方体完全相同. SF6
立方烷
下面从正方体看Oh群的48个对称操作: E 8C3 6C2 6C4 3C2(=C42) i 6S4 8S6 3σh 6σd
每一个坐标轴方向上都有一条S4(其 中含C2)与C4共线. 这样的方向共有3个 (图中只画出一个);
D4d :单质硫
俯视图
D5d : 交错型二茂铁
C3v :NF3
Cnv 无h 上下不一样
Cnh
无v 左右或前后不对应
Dnh
全有 最对称
Dnd
有S2n, 无h 旋转对应
立方群:包括Td 、Th 、Oh 、Ih 等.
这类点群的共同特点是有多条高次(大于二次)旋转轴相交.
高对称群的对称特征与正多面体的对称性相对应 (platon’s polyhydrons) 正多面体:面为彼此相等的正多边形
第四章 分子对称性与群论初步
Molecular Symmetry and Introduction to Group Theory
4.1 对称性概念
判天地之美,析万物之理。 —— 庄 子
在所有智慧的追求中,很难找到其他例子 能够在深刻的普遍性与优美简洁性方面与对称 性原理相比.
—— 李政道
对称在科学界开始产生重要的影响始于19 世纪.发展到近代,我们已经知道这个观念是 晶体学、分子学、原子学、原子核物理学、化 学、粒子物理学等现代科学的中心观念. 近年 来,对称更变成了决定物质间相互作用的中心 思想(所谓相互作用,是物理学的一个术语, 意思就是力量,质点跟质点之间之力量).
C2v群:臭氧
C2v 群:菲
C2与两个σv 的取向参见H2O分子
C3v :NF3
C3v :CHCl3
C4v群 :BrF5
C5v群:Ti(C5H5)
C∞v群:N2O
双面群:包括Dn、Dnh、Dnd . 这类点群的共同特点是旋转轴除
了主轴Cn外,还有与之垂直的n条C2副轴.
Dn 群: 除主轴Cn外,还有与之垂直的n条C2副轴( 但没有镜面).
CH4中的映轴S4与旋转反映操作
注意: C4和与之垂直的σ都不独立存在
(1) 重叠型二茂铁具有 S5, 所以, C5和与之垂直 的σ也都独立存在;
(2) 甲烷具有S4,所以, 只有C2与S4共轴,但C4和与 之垂直的σ并不独立存在.
只有I4是独立的点群
I = iC =I 11 I = iC = 22 I = iC = C +i 3 33 I = iC 44 I = iC = C +i 5 55 I = iC = C + 6 63
n-fold rotation-reflection axis of symmetry (improper axis, or an alternating axis)
这两种复合操作都包含虚操作. 相应地,Sn和In都是虚轴. 对于Sn,若n等于奇数,则Cn和与之垂直的σ都独立存在; 若n等于偶数,则有Cn/2与Sn共轴,但Cn和与之垂直的σ并不 一定独立存在.
n-fold axis of symmetry (n-fold proper axis, or an n-fold rotation axis)
(3)镜面与反映操作
分子中若存在一个平面,将分子两半部互相反映而能使分子
复原,则该平面就是镜面σ,这种操作就是反映.
plane of symmetry
对称中心i在正方体中心
z
y x
穿过每两个相对棱心有一条C2 ; 这样 的方向共有6个(图中只画出一个) ;
此外还有对称中心i.
每一条体对角线方向上都有一条S6 (其中含C3); 这样的方向共有4个(图中 只画出一个);
z
y
x
σh
处于坐标平面上的镜面是σh . 这样的镜面共有3个(图中只画出 一个);
Oh 群
[B6H6]2-
Ih :120阶群, 在目前已知的分子中,对称性最高的就属于该群.
C60
对称操作:
E
i
12C5
12S10
12C52
12S103
20C3
20S6
15C2
15σ
h=120
Ih 群
闭合式[B12H12]2-
S4 群: E S4 C2 S43 , h=4 只有四次映轴
4.2 分子的对称操作与对称元素
A symmetry element is a geometrical entity (point, line, or plane) with respect to which a symmetry operation is carried out.
(2)旋转轴Cn与旋转操作
Spiegel is the German word for mirror
Difference between σ and C2 axis !!!
试找出分子中的镜面
(4) 对称中心与反演操作
分子中若存在一点,将每个原子通过这一点引连线并延 长到反方向等距离处而使分子复原,这一点就是对称中心i, 这种操作就是反演. Center of symmetry
(5)映轴与旋转反映操作 反轴与旋转反演操作
旋转反映 Sn
n-fold axis of symmetry (n-fold proper axis, or an n-fold rotation axis)
A body has an Sn axis if rotation by (360/n)o about the axis, followed by reflection in a plane perpendicular to the axis, carries the body into a position physically indistinguishable from the original one.
4.3 分子点群
4.3 分子点群
分子中全部对称操作的集合构成分子点群(point groups ). 分子点群可以归为四类:
(1) 单轴群: 包括Cn 、Cnh 、Cnv ;
(2) 双面群:包括Dn、Dnh、Dnd ;
(3) 立方群:包括Td 、Th 、Oh 、Ih 等; (4) 非真旋轴群:包括Cs 、Ci 、S4等.
对称操作
A symmetry operation is a transformation of a body such that the final position is physically indistinguishable from the initial position, and the distances between all pairs of points in the body are preserved.
正四面体 正六面体
正八面体
正十二面体
正二十面体
立方群:包括Td 、Th 、Oh 、Ih 等.
这类点群的共同特点是有多条高次(大于二次)旋转轴相交.
正四面体 正六面体
正八面体
正十二面体
正二十面体
面