基于ANSYS的框架结构分析1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于ANSYS 的框架结构分析
摘要:本文简述了框架结构的优缺点,提及了结构分析的重要性,通过使用ANSYS 软件,建立了一个两跨十二层的框架结构模型,并对其进行了结构静态分析,模态分析,特征值屈曲分析以及地震反应时程分析。
关键词:框架结构;ANSYS;静态分析;模态分析;特征值屈曲分析;
地震时程分析
1.引言
框架结构作为一种常用的结构体系,对其结构进行合理分析至关重要。行业内对框架结构的分析方法众多,且电算逐渐趋于主流。ANSYS 软件是一种大型通用的有限元分析软件,界面直观,已广泛应用于结构力学(包括线性与非线性)、结构动力学、传热学、流体力学等。它可以对房屋建筑、桥梁、隧道以及地下建筑物等工程结构在各种外荷载条件下的受力、变形、稳定性及各种动力特性做出全面分析,因而在结构分析中应用广泛。
2.框架结构优缺点
框架结构是指由梁和柱以刚接或者铰接相连接而成,构成承重体系的结构,即由梁和柱组成框架共同抵抗使用过程中出现的水平荷载和竖向荷载。结构的房屋墙体不承重,仅起到围护和分隔作用,广泛用于住宅、学校、办公室,也有根据需要对混凝土梁或板施加预应力,以适用于较大的跨度;框架钢结构常用于大跨度的公共建筑、多层工业厂房和一些特殊用途的建筑物中,如剧场、商场、体育馆、火车站、展览厅、造船厂、飞机库、停车场、轻工业车间等。
框架建筑的主要优点:空间分隔灵活,自重轻,节省材料;具有可以较灵活地配合建筑平面布置的优点,利于安排需要较大空间的建筑结构;框架结构的梁、柱构件易于标准化、定型化,便于采用装配整体式结构,以缩短施工工期;采用现浇混凝土框架时,结构的整体性、刚度较好,设计处理好也能达到较好的抗震效果,而且可以把梁或柱浇注成各种需要的截面形状。
框架结构体系的缺点为:框架节点应力集中显著;框架结构的侧向刚度小,属柔性结构框架,在强烈地震作用下,结构所产生水平位移较大,易造成严重的非结构性破坏数量多,吊装次数多,接头工作量大,工序多,浪费人力,施工受季节、环境影响较大;不适宜建造高层建筑,框架是由梁柱构成的杆系结构,其承载力和刚度都较低,特别是水平方向的(即使可以考虑现浇楼面与梁共同工作以提高楼面水平刚度,但也是有限的),它的受力特点类似于竖向悬臂剪切梁,其总体水平位移上大下小,但相对于各楼层而言,层间变形上小下大,设计时如何提高框架的抗侧刚度及控制好结构侧移为重要因素,对于钢筋混凝土框架,当高
度大、层数相当多时,结构底部各层不但柱的轴力很大,而且梁和柱由水平荷载所产生的弯矩和整体的侧移亦显著增加,从而导致截面尺寸和配筋增大,对建筑平面布置和空间处理,就可能带来困难,影响建筑空间的合理使用,在材料消耗和造价方面,也趋于不合理,故一般适用于建造不超过15层的房屋。
3.基于ANSYS 的框架模型分析
3.1. 工程实例
工程实例为某十二层框架结构,首层层高6米,其它层层高3米,结构平面如图1所示,其主要承重构件的截面尺寸及材料力学性能:框架柱:600mm×600mm 混凝土柱;外环梁:300mm×600mm混凝土梁;楼面梁:10×600工字钢,高
H=600mm,宽B=200mm,翼缘厚度t1=16mm,腹板厚t2=10mm;楼面板:120mm 厚混凝土楼面板。材料特性:采用C30混凝土,弹性模量E=3.0×1010N/m2,主泊松比ν=0.2,密度ρ=2500Kg/m3;型钢钢材,弹性模量E=2.1×1011N/m2,泊松比ν=0.3,密度ρ=7800Kg/m3。计算结构的模态、特征值屈曲分析以及在7度(0.15g)水平惯性力和自重作用下的结构变形。地震反应谱分析,按7度多遇地震,地震影响系数为0.08,第一组,III类场地,卓越周期Tg=0.45s。平面布置见图1.
图1 平面布置图
3.2. 单元类型选择
模型和单元选择是进行建筑结构动力分析的关键。本文将梁柱作为杆系,因为杆系模型能够较好地分析结构的受力和破坏状态,引入三维梁单元BEAM4;混凝土板则引入壳单元SHELL63。
BEAM4梁单元最大特点是可以考虑剪切变形和翘曲,同时也支持大转动和大应变等非线性行为,适合于分析从细长到中等粗短的梁结构,用其模拟框架结构中的梁和框架柱。SHELL63单元可以同时承受壳面内、外的荷载,同时具有壳单元算法和膜单元算法,该单元还考虑了应力刚化效应以及大变形效应,用其模拟楼板。
BEAM4单元:
框架柱截面:600mm×600mm;外环梁:300mm×600mm;楼面梁:10×600工字钢,高H=600mm,宽B=200mm,翼缘厚度t1=16mm,腹板厚度t2=10mm;SHELL63单元:
楼面板:120mm厚混凝土楼面板。
材料特性见题例。
3.3. 模型建立
3.3.1. 建立几何模型
按照设计书的具体坐标建立关键点,连接关键点生成线,从而建立框架的梁柱框架。再在梁柱框架的基础上建立楼板平面,完成几何建模。详见图2--图4。
图2 模型关键点
图3 梁柱框架图
图4 生成的框架结构几何模型
3.3.2. 建立有限元模型
对几何模型进行网格划分,形成计算分析的有限元模型。网格划分前首先设置好不同构件的材料参数,再对网格的尺寸进行设定。该模型的网格尺寸由平面各条边的划分数决定,底层柱单元划分数NDIV为10,其余柱划分数为5,所有框架中梁的划分数为8。网格尺寸设定后,进行划分网格。详见图5与图6。
图5 框架梁、柱有限元单元
图6 框架结构有限元计算模型示意图
3.3.3. 加载和求解
对柱底施加位移约束,见图7。并施加水平风荷载。重力方向朝下,大小为9.8N,活荷载方向朝下,大小为3.0N,X、Y向风荷载基本风压=0.25KN/M2,体形系数为1.0。最终模型详见图8。
图7 约束布置图
图8 有限元模型
4. 结构静态分析
通过静态分析,可以求解出相应的位移与应力,以及相对的约束支座反力,便于分析和验算。详见图9-图17。